Homework Set \#1.

Consider the Harmonic Oscillator

$$
L(x, \dot{x})=\frac{1}{2} \dot{x}^{2}-\frac{1}{2} x^{2}
$$

under the following discretization procedure of the Feynman Path integral (Lecture 2):

$$
\begin{aligned}
& T_{0}=2 \pi \quad \text { classial period of oscillator } \\
& \Delta t=\frac{T_{0}}{128} \\
& N_{D}=600 \quad x_{0}=-4, x_{D}=+4 \\
& x_{\text {start }}=0.75 \\
& \psi_{0}=\left(\frac{\alpha}{\pi}\right)^{\frac{1}{4}} e^{-\frac{\alpha}{2}\left(x-x_{s} \text { art }\right)^{2}} \text { initial wevefunction } \\
& \alpha=2
\end{aligned}
$$

1. Calculate the propagator K from the elementary K_{E} matrix $\left(N_{D}+1\right) \times\left(N_{D}+1\right)$ dimensional,

$$
\begin{aligned}
& \varepsilon=\frac{T_{0}}{128}=\Delta t \quad \text { for time period } \frac{T_{0}}{16} \\
& K=(\Delta x)^{N-1} \cdot K_{\varepsilon}^{N}(\Delta t)
\end{aligned}
$$

2. Evolve the wavefunction in time with $\frac{T_{0}}{16}$ stepsize aud measure $\langle x\rangle$ as a function of time. Make a plot
3. Calculate $\langle E\rangle,\langle K\rangle,\langle v\rangle$ is a function of time. Make a plot.
4. Calculate the evolution of the wave function as a function of time. Make plot.
5. Congeare your plots with the first three plots of Lecture 2
6. ${ }^{142 \text { and } 242 \text { : Animation of the worefunction }}$
