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The Dirac Equation and
The Lorentz Group

Part I – Classical Approach

1 Derivation of the Dirac Equation

The basic idea is to use the standard quantum mechanical substitutions

p→ −i~∇ and E → i~
∂

∂t
(1)

to write a wave equation that is first-order in both E and p. This will give us an
equation that is both relativistically covariant and conserves a positive definite
probability density.

We start by assuming that we can factor the relativistic expression E2 =
p2 +m2 into the form (we will use units with ~ = c = 1 from now on)

E = α · p + βm (2)

where α and β are to be determined. Note that α and β can not simply be
numbers because equation (2) would not even be rotationally invariant. Since
we must still satisfy E2 = p2 +m2, we have

E2 = (α · p + βm)2 = (αipi + βm)(αjpj + βm)

= αiαjpipj + (αiβ + βαi)pim+ β2m2

=
1

2
(αiαj + αjαi)pipj + (αiβ + βαi)pim+ β2m2

where we used the fact that pipj = pjpi. This requires that

1

2
(αiαj + αjαi) = δij (3a)

αiβ + βαi = 0 (3b)

β2 = I (3c)

Since pure numbers commute, let us assume that the αi and β are matrices.
Using equations (3), we define the matrices

γi := βαi and γ0 := β.

Then

2δij = αiαj + αjαi = β2αiαj + β2αjαi = −βαiβαj − βαjβαi

= −(γiγj + γjγi)

1



and
0 = αiβ + βαi =⇒ 0 = βαiβ + β2αi = γiγ0 + γ0γi

and hence we have
γµγν + γνγµ = {γµ, γν} = 2gµν (4)

where we are using the metric g = diag(1,−1,−1,−1), i.e.,

(gµν) =




1
−1

−1
−1


 = (gµν).

Matrices satisfying equation (4) are said to form a Clifford algebra. Note in
particular that we also have

(αi)2 = I.

From equation (3b) we see that βαiβ = −αi and αiβαi = −β. Using
the cyclic property of the trace along with β2 = (αi)2 = I, these imply that
trβ = trαi = 0. Now let λ be an eigenvalue of β. Then βv = λv implies
v = β2v = λβv = λ2v and therefore λ = ±1. But the trace of a matrix
is the sum of its eigenvalues (i.e., if P−1AP = D = diag(λ1, . . . , λn), then
trA = trP−1AP = trD), and hence it follows that β must be even-dimensional,
with an exactly analogous result for αi.

Now, the energy operator E must have real eigenvalues and hence must be
Hermitian. Since p is already Hermitian, it follows from equation (2) that α
and β must be Hermitan matrices. The most general 2× 2 Hermitian matrix is
of the form

[
z x− iy

x+ iy t

]
= xσ1 + yσ2 +

z

2
(σ3 + I)− t

2
(σ3 − I)

where

σ1 =

[
1

1

]
σ2 =

[
−i

i

]
σ3 =

[
1
−1

]
I =

[
1

1

]
.

Hence the most general 2 × 2 Hermitian matrix is a linear combination of the
three (Hermitan) Pauli matrices and the identity matrix. (It is easy to see that
if we write σ0 := I, then

0 =

3∑

i=0

ciσi =

[
c0 + c3 c1 − ic2
c1 + ic2 c0 − c3

]

implies that all of the ci must equal zero, and hence the four matrices σ0, . . . , σ3

are linearly independent and form a basis for the space M2(C).) If we take the
α’s to be linear combinations of the σ’s, then this leaves β = I. But I commutes
with everything, so it certainly can’t anticommute with the α’s. Thus we assume
that the γ’s are in fact 4× 4 matrices.
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In block matrix form, we define the standard representation to be

β =

[
1
−1

]
. (5a)

Since the α’s are Hermitan, we have

0 = αiβ + βαi =

[
A B
B† C

] [
1
−1

]
+

[
1
−1

] [
A B
B† C

]

=

[
2A

−2C

]

so that A = C = 0 and we can choose

α =

[
0 σ

σ 0

]
. (5b)

In other words, we take the standard representation of the gamma matrices to
be (in block matrix form)

γ0 =

[
1 0
0 −1

]
γ =

[
0 σ

−σ 0

]
. (6)

I leave it as an exercise to show directly that if {γµ} is a set of matrices
satisfying {γµ, γν} = 2gµν , then γµ 6= γν for µ 6= ν and the γ’s are linearly
independent.

Next, recall that the gradient is defined by ∇ = ∂/∂x so ∇i = ∂/∂xi = ∂i

and we write
∂µ = (∂0, ∂i) = (∂0,−∂i) = (∂0,−∇)

along with ∂µ = (∂0,+∇). The quantum mechanical operators are E = i∂0 and
pi = −i∂i or p = −i∇, and hence we can write

pµ = +i∂µ. (7)

Then the operators in the Dirac equation become i∂0 = −iαi∂i + βm so that
multiplying through by γ0 this is iγ0∂0 = −γi∂i +m (the I multiplying the m is
understood) or simply iγµ∂µ −m = 0. As a very convenient notational device,
we introduce the “Feynman slash” notation for the contraction of any 4-vector
aµ with the gamma matrices γµ in which we write

/a := γµaµ.

Using this notation, the Dirac equation is then written as
(
iγµ ∂

∂xµ
−m

)
ψ(x) = 0

or simply
(i/∂ −m)ψ(x) = 0. (8)
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Equivalently, we can write this in the form

(/p−m)ψ(x) = 0. (9)

It is extremely important to realize that now the wavefunction ψ is a 4-
component column vector, generally referred to as a Dirac spinor. We will
see that these four degrees of freedom allow us to describe both positive and
negative energy solutions, each with spin 1/2 either up or down. The negative
energy solutions are interpreted as describing positive energy antiparticles. In
other words, the Dirac equation describes spin 1/2 electrons and positrons (as
well as the other leptons and quarks).

Note that γ0† = γ0 and γi† = (βαi)† = αi†β† = αiβ = β2αiβ = βγiβ =
γ0γiγ0 and hence in general we have the very useful result

γµ† = γ0γµγ0 (10)

which is independent of the representation of the gamma matrices. We will see
that rather than ψ†, it turns out that the useful quantity will be

ψ := ψ†γ0.

Taking the adjoint of (8) yields

0 = ψ†(−iγµ†←−∂µ −m) = ψ†(−iγ0γµγ0←−∂µ − γ0γ0m)

where the symbol
←−
∂µ means that the derivative acts to the left. Multiplying

this from the right by γ0 we have ψ†γ0(−iγµ←−∂µ −m) = 0 and hence ψ satisfies
the equation

ψ(x)(i
←−
/∂ +m) = 0. (11)

To get a probability current, we multiply (8) from the left by ψ and (11)
from the right by ψ and add to obtain

i(ψγµ∂µψ + ∂µψγ
µψ) = 0

or simply
∂µ(ψγµψ) = 0. (12)

Hence the probability current is given by

jµ = ψγµψ

and it satisfies the continuity equation ∂µj
µ = 0.

2 Basic Properties of the Dirac Equation

Before we turn to the issue of covariance under Lorentz transformations, let us
take a look at some of the basic properties of the Dirac equation.
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To begin with, note that equation (8) has solutions of the form

ψ(x, t) = u(p)e−ipµxµ

where u(p) is a 4-component spinor that must satisfy

(/p−m)u(p) = 0.

This is a set of four homogeneous linear equations, and it will have a nontrivial
solution if and only if the matrix (/p − m) does not have an inverse. From
equation (4) we see that in general for any 4-vectors aµ, bµ we have

/a/b + /b/a = (γµγν + γνγµ)aµbν = 2a · b

so that /p/p = p2. It is then easy to see

(/p+m)(/p−m) = p2 −m2

so that a formal inverse to (/p−m) is (p2 −m2)−1(/p+m). But if this inverse is
not to exist, we must have p2 −m2 = 0 so that (p0)2 − p2 = m2 or

E = ±
√

p2 +m2.

In other words, the Dirac equation allows solutions with negative energy, and
free particles have an energy E with |E| ≥ m.

Since negative energy states have never been observed, we have to somehow
explain their absence. (Such states would have an acceleration in a direction
opposite to the applied force. If a particle is accelerated from rest to an energy
E =

∫
F · dr = ±m

∫
a · v dt = ±m

∫
(dv/dt) · v dt = ±(m/2)

∫
(dv2/dt) dt < 0,

then we must have F = −ma.) While the completely correct answer lies in
the formalism of relativistic quantum field theory, at the time Dirac postulated
that all negative energy states were already filled by an infinite sea of negative
energy electrons, and the Pauli principle prevented any positive energy electron
from falling down into the negative sea. If such a negative energy electron were
hit by a sufficiently energetic photon, it could make the transition to a positive
energy state, leaving behind a “hole” that we would perceive as a positive energy
positively charged electron, a “positron.”

In any case, what can we say about the constants of the motion? Defining
the Dirac Hamiltonian

HD = α · p + βm

we can write the Dirac equation as

HDψ = i
∂ψ

∂t

which is of the same form as the Schrödinger equation. Then this has a formal
solution with time dependence that goes as e−iHDt, and we can define operators
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O in the Heisenberg picture with the usual equation of motion that allows us
to look for conserved quantities:

dO
dt

= −i[O, HD].

Let us first look at the orbital angular momentum L = r × p. Using the
commutator identity

[ab, c] = a[b, c] + [a, c]b

along with the fundamental commutation relations [pi, pj ] = 0 and [xi, pj ] =
iδij , we compute (using a sloppy summation convention)

[Li, HD] = εijk[xjpk, HD] = εijk(xj [pk, HD] + [xj , HD]pk).

But
[pk, HD] = [pk, αlpl + βm] = 0

while

εijk[xj , HD]pk = εijk[xj , αlpl + βm]pk = iεijkδ
j
l α

lpk = i(α× p)i

so that
[L, HD] = i(α× p).

This shows that the orbital angular momentum is not a constant of the motion.
Now consider the matrix operator

σ′ =

[
σ 0
0 σ

]

where the Pauli matrices obey the relations

[σi, σj ] = 2iεijkσk (13a)

σiσj = δij + iεijkσk (13b)

and therefore also (σi)
2 = 1. These show that the operator S defined by S =

σ′/2 satisfies
[Si, Sj ] = iεijkSk

and hence is an angular momentum operator. Since σ2 = σ ·σ = 3, we see that

S2 =
3

4

[
1 0
0 1

]

so that s(s + 1) = 3/4 implies that s = 1/2. Thus S is the spin operator for
a particle of spin 1/2. However, we still haven’t connected this to the Dirac
equation.

Recall that the standard representation for α and β is

α =

[
0 σ

σ 0

]
and β =

[
1 0
0 −1

]
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so it it easy to see that

[σ′
i, αj ] = 2iεijkαk and [σ′

i, β] = 0.

Hence we find that

[σ′
i, HD] = [σ′

i, αjp
j + βm] = 2iεijkαkp

j = 2i(p×α)i

or, alternatively,
[S, HD] = −i(α× p).

Combining this with our previous result for L we see that the operator

J := L + S

is conserved because [J, HD] = 0, and furthermore it is an angular momentum
operator because

[Ji, Jj ] = iεijkJk.

I leave it as an exercise to show that [J2, HD] = [S2, HD] = 0, and hence the
operatorsHD,J,J

2 and S2 are a mutually commuting set. This then shows that
the Dirac equation represents a particle with conserved total angular momentum
J = L + S and with spin equal to 1/2.

Now let’s take a look at the interaction of a Dirac particle with the electro-
magnetic field. Since quantum mechanics is formulated using the Hamiltonian,
we need to know what the canonical momentum is for a particle of charge e in an
electromagnetic field. By definition, this is p = ∂L/∂q̇ where L = L(q, q̇, t) is the
Lagrangian of the system. In this case, the answer is we make the replacements

p→ p− eA and E → E − eφ (14)

where A is the magnetic vector potential and φ is the electric potential. For
those who are interested, let me somewhat briefly go through the derivation of
this result.

In a proper derivation of the Lagrange equations of motion, one starts from
d’Alembert’s principle and derives Lagrange’s equation

d

dt

∂T

∂q̇i
− ∂T

∂qi
= Qi (15)

where T = T (qi, q̇i) is the kinetic energy and Qi is a generalized force. In the
particular case that Qi is derivable from a conservative force, then we have
Qi = −∂V/∂qi. Since the potential energy V is assumed to be independent of
q̇i, we can replace ∂T/∂q̇i by ∂(T −V )/∂q̇i and we arrive at the usual Lagrange
equation

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 (16)
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where L = T − V . However, even if there is no potential function V , we can
still arrive at this result if there exists a function U = U(qi, q̇i) such that the
generalized forces may be written as

Qi = −∂U
∂q̇i

+
d

dt

∂U

∂q̇i

because defining L = T − U we again arrive at equation (16). The function
U is called a generalized potential or a velocity dependent potential.
We now seek such a function to describe the force on a charged particle in an
electromagnetic field.

Recall from electromagnetism that the Lorentz force law is given by

F = e(E + v ×B)

or

F = e
(
−∇φ− ∂A

∂t
+ v × (∇ ×A)

)

where E = −∇φ − ∂A/∂t and B = ∇ ×A. Our goal is to write this in the
form

Fi = − ∂U
∂xi

+
d

dt

∂U

∂ẋi

for a suitable U . All it takes is some vector algebra. We have

[v × (∇ ×A)]i = εijkε
klmvj∂lAm = (δl

iδ
m
j − δm

i δ
l
j)v

j∂lAm

= vj∂iAj − vj∂jAi = vj∂iAj − (v ·∇)Ai.

But xi and ẋj are independent variables (in other words, ẋj has no explicit
dependence on xi) so that

vj∂iAj = ẋj ∂Aj

∂xi
=

∂

∂xi
(ẋjAj) =

∂

∂xi
(v ·A)

and we have

[v × (∇ ×A)]i =
∂

∂xi
(v ·A)− (v ·∇)Ai.

But we also have

dAi

dt
=
∂Ai

∂xj

dxj

dt
+
∂Ai

∂t
= vj ∂Ai

∂xj
+
∂Ai

∂t
= (v ·∇)Ai +

∂Ai

∂t

so that

(v ·∇)Ai =
dAi

dt
− ∂Ai

∂t

and therefore

[v × (∇×A)]i =
∂

∂xi
(v ·A)− dAi

dt
+
∂Ai

∂t
.
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But we can write Ai = ∂(vjAj)/∂v
i = ∂(v ·A)/∂vi which gives us

[v × (∇×A)]i =
∂

∂xi
(v ·A)− d

dt

∂

∂vi
(v ·A) +

∂Ai

∂t
.

The Lorentz force law can now be written in the form

Fi = e

(
− ∂φ
∂xi
− ∂Ai

∂t
+ [v × (∇×A)]i

)

= e

(
− ∂φ
∂xi
− ∂Ai

∂t
+

∂

∂xi
(v ·A)− d

dt

∂

∂vi
(v ·A) +

∂Ai

∂t

)

= e

[
− ∂

∂xi
(φ− v ·A)− d

dt

∂

∂vi
(v ·A)

]
.

Since φ is independent of v we can write

− d

dt

∂

∂vi
(v ·A) =

d

dt

∂

∂vi
(φ− v ·A)

so that

Fi = e

[
− ∂

∂xi
(φ− v ·A) +

d

dt

∂

∂vi
(φ− v ·A)

]

or

Fi = − ∂U
∂xi

+
d

dt

∂U

∂ẋi

where U = e(φ− v ·A). This shows that U is a generalized potential and that
the Lagrangian for a particle of charge e in an electromagnetic field is

L = T − eφ+ ev ·A (17a)

or

L =
1

2
mv2 − eφ+ ev ·A. (17b)

Since the canonical momentum is defined as pi = ∂L/∂q̇i = ∂L/∂vi we now
see that

pi = mvi + eAi

or
p = mv + eA.

Therefore, in the absence of the electromagnetic field the Hamiltonian is H =
p2/2m where p = mv, so if the field is present we must now write

H =
(p− eA)2

2m
. (18)

(You can also think of this as writing v = (p − eA)/m and now making this
substitution in the definition H = piq̇i −L so that H = H(q, p).) Furthermore,
the energy of the particle now has an additional term −eφ due to the work in
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moving against the E field, so the energy operator must be E−eφ (the magnetic
field B does no work since the force is perpendicular to the velocity).

We can combine these results into a single relativistic 4-momentum by mak-
ing the replacement

pµ → pµ − eAµ (19)

where the 4-potential is given by Aµ = (φ,A). The Dirac Hamiltonian now
becomes

HD = α · p− eα ·A + βm+ eφ+ V (20)

where V is any additional potential that may be acting on the particle. Making
the replacement (19) in the case where V = 0, the Dirac equation becomes

(/p− e /A−m)ψ = 0. (21)

One of the great triumphs of the Dirac equation is that it gives us the correct
gyromagnetic ratio with g = 2 for the electron, and the correct form of the spin-
orbit coupling including the Thomas factor of 1/2. We are now in the position
to prove these results.

To see all of this, first write the Dirac equation as two coupled spinor equa-
tions, and then take the non-relativistic limit. Using the Hamiltonian (20) and
the standard representation for the Dirac matrices, the Dirac equation can be
written in the form

i∂t

[
ϕ
χ

]
= α · (p− eA)

[
ϕ
χ

]
+ βm

[
ϕ
χ

]
+ eφ

[
ϕ
χ

]

where p = −i∇ and α and β are given by equations (5). This is equivalent to
the coupled equations

i∂tϕ = σ · (p− eA)χ+ (eφ+m)ϕ (22a)

i∂tχ = σ · (p− eA)ϕ+ (eφ−m)χ (22b)

In the non-relativistic limit, m is the largest energy term in this equation, so
we write [

ϕ
χ

]
= e−imt

[
ϕ̃
χ̃

]

where the 2-component spinors ϕ̃ and χ̃ are relatively slowly varying functions
of time.

Using (22b) we have

i∂tχ̃ = σ · (p− eA)ϕ̃+ (eϕ− 2m)χ̃ ≈ 0.

Since eϕ≪ 2m this becomes

χ̃ =
1

2m
σ · (p− eA)ϕ̃
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and since p ≈ mv, we see that χ̃ ∼ O(v/c)× ϕ̃. (Remember we are using units
where c = 1.) Because of this, we refer to χ̃ as the “small component” and ϕ̃
as the “large component” of ψ.

Substituting the above expression for χ̃ into (22a) we obtain

i∂tϕ̃ =
1

2m
[σ · (p− eA)]2ϕ̃+ eφϕ̃.

From equation (13b) we have the very useful result

(σ · a)(σ · b) = a · b + iσ · (a× b). (23)

Writing π := p− eA and using (23) we have

(σ · π)2 = π · π + iσ · (π × π).

Note that π is a differential operator so that π ×π 6= 0. In particular, we have

π × π = (p− eA)× (p− eA) = −e(A× p + p×A)

= ie(A×∇ + ∇×A)

so that

(π × π)ϕ̃ = ie[A×∇ϕ̃+ ∇× (Aϕ̃)] = ie(∇×A)ϕ̃ = ieBϕ̃.

Therefore we have

i
∂ϕ̃

∂t
=

(p− eA)2

2m
ϕ̃− e

2m
(σ ·B)ϕ̃+ eφ ϕ̃. (24)

This is the non-relativistic Pauli equation for a particle of spin 1/2 in an elec-
tromagnetic field. Note that the magnetic moment is predicted to be e/2m (in
other units, this is e~/2mc), and thus we automatically have g = 2 exactly.
(There are higher order corrections to this that follow from the formalism of
QED.)

(A sketch of the classical theory is as follows: The orbital magnetic moment
of a current loop is

µl =
I

c
× area

where

I =
charge

time
=

charge

dist/vel
=

e

2πr/v
=

ev

2πr

so that

µl =
ev

2πrc
πr2 =

evr

2c
=

eL

2mc
.

As vectors, this is

µl =
e

2mc
L

where the ratio of µ to L is called the gyromagnetic ratio γ.
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Generalizing this, we make the definition

µ = g
e

2mc
J

where g is a constant. For an electron we have J = S = (~/2)σ and, from
experiment, g is very close to 2 so that

µs =
e~

2mc
σ

with an energy −µs ·B = −(e~/2mc)(σ ·B).)
Now for the spin-orbit coupling in a hydrogen atom (with a nucleus of essen-

tially infinite mass). To describe this, we first rewrite equations (22) by looking
for energy eigenstates ψ(x, t) = e−iEtψ(x). Then we can write equations (22)
as

Eϕ = σ · (p− eA)χ+ (eφ+m)ϕ (25a)

Eχ = σ · (p− eA)ϕ+ (eφ−m)χ (25b)

where now ϕ and χ are independent of time. With A = 0 (there is no external
field) and letting eφ = V , the second of these may be written as

χ = (E − V +m)−1(σ · p)ϕ.

(Be sure to remember that p = −i∇ so the order of factors is important because
V is not a constant.) Let E = E′ +m so that

χ = (E′ − V + 2m)−1(σ · p)ϕ.

Putting this into (25a) we can write

E′ϕ =
(σ · p)

2m

(
1 +

E′ − V
2m

)−1

(σ · p)ϕ+ V ϕ

and to first order this is

E′ϕ =
(σ · p)

2m

(
1− E′ − V

2m

)
(σ · p)ϕ+ V ϕ.

From [p, V ] = −i∇V we have pV = V p− i∇V so our equation becomes

E′ϕ =

[
1

2m

(
1− E′ − V

2m

)
(σ · p)2 − i

4m2
(σ ·∇V )(σ · p)

]
ϕ+ V ϕ.

Using (23) we have (σ · p)2 = p2 and

(σ ·∇V )(σ · p) = ∇V · p− iσ · (∇V × p)

so that

E′ϕ =

[(
1− E′ − V

2m

)
p2

2m
− i

4m2
∇V · p− 1

4m2
σ · (∇V × p)

]
ϕ+ V ϕ.
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We assume spherical symmetry for V (for the hydrogen atom V = −e2/r) so
that

∇V =
dV

dr
r̂ =⇒ ∇V · p = −idV

dr

∂

∂r

and

∇V × p =
dV

dr
r̂× p =

1

r

dV

dr
r× p =

1

r

dV

dr
L.

Therefore, since S = σ/2 we have

E′ϕ =

[(
1− E′ − V

2m

)
p2

2m
+ V

]
ϕ− 1

4m2

dV

dr

∂ϕ

∂r
− 1

2m2

1

r

dV

dr
(S · L)ϕ.

Finally, since E is the total energy, we can write E′ − V ≈ p2/2m to arrive at
the Schrödinger-like (two-component) equation

[
p2

2m
− p4

8m3
+ V − 1

4m2

dV

dr

∂

∂r
− 1

2m2

1

r

dV

dr
(S · L)

]
ϕ = E′ϕ. (26)

The second term is a relativistic correction to the kinetic energy, and the
fourth term is called the “Darwin term.” It is essentially due to the fact that a
relativistic particle can’t be localized to within better than its Compton wave-
length ~/mc, and as a result the effective potential is really smeared out. And
lastly, the final term is the spin-orbit coupling including the factor of 1/2 from
Thomas precession. (Very roughly, here is the non-relativistic approach: The
electron sees a current due to the relative motion of the nucleus, and this is the
source of a magnetic field

B = (−e/c)v× r/r3 = (e/mc)p× r/r3 = (−e/mcr3)L.

Then there will be an interaction energy term in the Hamiltonian that is

−µ ·B = −(e/mc)(−e/mcr3)S · L = (e2/m2c2r3)S · L.

With c = 1 and V = −e2/r, this is the same as (1/m2r)(dV/dr)(S·L). However,
this answer is off by a factor of 1/2 due to Thomas precession, and this is
automatically taken into account in equation (26).)

3 Covariance of the Dirac Equation

We now turn our attention to the covariance of the Dirac equation under a
Lorentz transformation

xµ → x′µ = Λµ
νx

ν . (27)

Note that x′µx′µ = Λµ
νΛµ

αxνxα := xνxν which implies

Λµ
νΛµ

α = ΛT α
µΛµ

ν = δα
ν = gα

ν . (28)
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This shows that ΛT α
µ = Λ−1α

µ so that Λ is an orthogonal transformation, i.e.,

(Λ−1)αµ = (ΛT )αµ = Λµα.

Equation (28) can also be written as (ΛT )αµΛµ
ν = (ΛT )αµ g

µβΛβν = gαν or
most simply as

ΛT gΛ = g (29)

which is frequently taken as the definition of a Lorentz transformation Λ. Note
in particular that since ΛT = Λ−1 we also have ΛgΛT = g and therefore

gαβ = gµνΛµ
αΛν

β = ΛναΛν
β = Λα

νΛβν. (30)

Since ∂µ is a 4-vector we have ∂′µ = Λµ
ν∂ν , and inverting this yields ∂α =

(Λ−1)α
µ
∂′µ = Λµ

α∂
′
µ. (That ∂µ is a true 4-vector follows from equation (27).

We first have xα = (Λ−1)α
µx

′µ so that ∂xα/∂x′µ = (Λ−1)α
µ = Λµ

α. Therefore

∂′µ =
∂

∂x′µ
=
∂xα

∂x′µ
∂

∂xα
= Λµ

α ∂

∂xα
= Λµ

α∂α

which shows that ∂µ indeed has the correct transformation properties.) Apply-
ing this to the Dirac equation we have

0 = (iγµ∂µ −m)ψ(x) = (iγµΛα
µ∂

′
α −m)ψ(Λ−1x′)

Let us define γ′α = Λα
µγ

µ and observe that (using equation (30))

{γ′α, γ′β} = Λα
µΛβ

ν{γµ, γν} = 2Λα
µΛβ

νg
µν = 2Λα

µΛβµ = 2gαβ

so the γ′µ also obey equation (4). As we will prove below, Pauli’s Funda-

mental Theorem shows that given any two sets of matrices {γµ} and {γ′µ}
satisfying the Clifford algebra (4), there exists a nonsingular matrix S such that

γ′α = Λα
µγ

µ = S−1γαS. (31)

(That γ′α = Λα
µγ

µ is simply our definition of γ′α — it has nothing to do with
the general conclusion of Pauli’s theorem.)

We now use this result to write

0 = (iγµΛα
µ∂

′
α −m)ψ(Λ−1x′) = (iS−1γαS∂′α −m)ψ(Λ−1x′)

= (iS−1γαS∂′α − S−1Sm)ψ(Λ−1x′)

= S−1(iγα∂′α −m)Sψ(Λ−1x′)

which then implies
0 = (i/∂

′ −m)ψ′(x′)

where we have defined the transformed wave function

ψ′(x′) := S(Λ)ψ(Λ−1x′) = S(Λ)ψ(x). (32)
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It is important to realize that the gamma matrices themselves do not change
under a Lorentz transformation. Everything will be fine if we can show that the
transformed wave function ψ′(x′) has the correct physical interpretation in the
primed frame, i.e., we want to show that jµ → j′µ = Λµ

νj
ν . Before doing this

however, we first go back and prove Pauli’s fundamental theorem because we
will need some of the results that we prove along the way.

First of all, we want 16 linearly independent 4×4 matrices. Since {γµ, γν} =
2gµν , it follows that (γµ)2 = ±1, and hence we need only consider products of
distinct gamma matrices. Note that from the binomial theorem, the number of
combinations of n objects taken one at a time, two at a time, . . . , n at a time is

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n

)
=

n∑

k=1

(
n

k

)
=

n∑

k=0

(
n

k

)
1k1n−k − 1

= (1 + 1)n − 1 = 2n − 1.

In our case we have n = 4, so there are 15 possible distinct combinations of the
gamma matrices taken one, two, three and four at a time. Together with the
identity matrix, this gives us the 16 matrices Γi defined by

I Γ1

γ0 iγ1 iγ2 iγ3 Γ2 − Γ5

γ0γ1 γ0γ2 γ0γ3 γ1γ2 γ1γ3 γ2γ3 Γ6 − Γ11

iγ0γ1γ2 iγ0γ1γ3 iγ0γ2γ3 iγ1γ2γ3 Γ12 − Γ15

iγ0γ1γ2γ3 Γ16

The factors of i are included so that

(Γi)
2 = +1. (33)

Using the fact that the gamma matrices anticommute, it is easy to see that
ΓiΓj = ±ΓjΓi, and in fact

ΓiΓj = aijΓk where aij = ±1,±i. (34)

If Γj 6= Γ1, there exists at least one Γi such that

ΓiΓjΓi = −Γj. (35)

In particular, we have

Γj , 2 ≤ j ≤ 5 =⇒ Γi = Γ16

Γj , 6 ≤ j ≤ 11 =⇒ Γi = whichever of the Γ2,Γ3,Γ4 or Γ5 that
contains one of the same γµ’s that is in Γj

Γj , 12 ≤ j ≤ 15 =⇒ Γi = Γ16

Γj = Γ16 =⇒ Γi = Γ2,Γ3,Γ4 or Γ5 all work

(36)
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Note that equations (33) and (35) together imply

tr Γj = 0 for j 6= 1. (37)

We still have to show that the Γi’s are linearly independent. There are (at
least) two ways to show this. First, suppose that x1Γ1+· · ·+x16Γ16 = 0. Taking
the trace shows that x1 = 0 since tr Γ1 = 4 6= 0 and tr Γj = 0 for j 6= 1. From
(35) we have ΓiΓj = −ΓjΓi (for j 6= 1), so it follows that tr ΓiΓj = 0 as long
as i 6= j. Therefore, multiplying x2Γ2 + · · ·+ x16Γ16 = 0 by Γi and taking the
trace implies that xi = 0 for each i = 2, . . . , 16. Therefore the Γ’s are linearly
independent and form a basis for the space of 4× 4 complex matrices.

The second way to see this is to also start from
∑16

k=1 xkΓk = 0. Multiplying
by Γm we obtain

0 = xmI +
∑

k 6=m

xkΓkΓm = xmI +
∑

k 6=m

xkakmΓn

where Γn 6= I since k 6= m. (If k 6= m and ΓkΓm = akmI, then Γk = akmΓm

which is impossible.) Taking the trace now shows that xm = 0.
In either case, we see that any 4×4 complex matrixX has a unique expansion

X =
∑
xiΓi, since if we also have X =

∑
yiΓi, then

∑
(xi − yi)Γi = 0 which

implies that xi = yi since the Γ’s are linearly independent. Note also that the
expansion coefficients xi are determined by

tr(XΓj) = xj tr I = 4xj

or

xi =
1

4
tr(XΓi). (38)

It is also true that ΓiΓj = aijΓk where Γk is different for each j (and fixed i).
To see this, suppose ΓiΓj = aijΓk and ΓiΓj′ = aij′Γk. Multiplying from the left
by Γi shows that Γj = aijΓiΓk and Γj′ = aij′ΓiΓk which implies (1/aij)Γj =
(1/aij′)Γj′ or Γj = (aij/aij′)Γj′ which contradicts the linear independence of
the Γ’s if j 6= j′.

The following theorem is sometimes called Schur’s lemma, but technically
that designation refers to irreducible group representations. In this case, the
sixteen matrices Γi form a basis for what is called the Dirac algebra, which
is a particular type of non-commutative ring. It can be shown that the only
irreducible representation of the Dirac algebra is four-dimensional, but to do so
would lead us too far astray from our present purposes.

Theorem 1. If X ∈ M4(C) and [X, γµ] = 0 for all µ, then X = cI for some
scalar c.

Proof. Assume X 6= cI and write X = xkΓk +
∑

j 6=k xjΓj for any k 6= 1.
From (35), there exists Γi such that ΓiΓkΓi = −Γk. But [X, γµ] = 0 implies
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[X,Γi] = 0, and hence

X = ΓiXΓi = xkΓiΓkΓi +
∑

j 6=k

xjΓiΓjΓi = −xkΓk +
∑

j 6=k

±xjΓj.

But the uniqueness of the expansion for X implies that xk = 0. Since k was
arbitrary except that k 6= 1, it follows that X = x1Γ1 ≡ cI (where we could

have c = 0 if X = 0). v
We are now in a position to prove Pauli’s theorem.

Theorem 2 (Pauli’s Fundamental Theorem). If {γµ, γν} = 2gµν =
{γµ, γν}, then there exists a nonsingular S such that γµ = SγµS−1, and S
is unique up to a multiplicative constant. (And hence we can always choose
detS = +1.)

Proof. Define

S =

16∑

i=1

ΓiMΓi

where the Γ’s are constructed from the γ’s in exactly the same manner as the
Γ’s are from the γ’s, and M is arbitrary. Note that M can always be chosen so
that S 6= 0. Indeed, let Mrs = δrr′δss′ have all 0 entries except for Mr′s′ = 1.
Then

Spq =
∑

irs

(Γi)prMrs(Γi)sq =
∑

i

(Γi)pr′(Γi)s′q.

If S = 0 for all M , then Spq = 0 for all p, q and all s′. But then we have
0 =

∑
i(Γi)pr′Γi as a matrix equation (just take the s′q entry of this equation),

which contradicts the fact that the Γ’s are linearly independent. Therefore,
there exists M such that S 6= 0.

Now, ΓiΓj = aijΓk implies ΓiΓjΓiΓj = (aij)
2(Γk)2 = (aij)

2, and hence
multiplying by Γi from the left and Γj from the right yields

ΓjΓi = (aij)
2ΓiΓj = (aij)

3Γk.

Similarly, by definition it also follows that ΓjΓi = (aij)
3Γk. Using the fact that

(aij)
4 = 1 along with our earlier result that ΓiΓj = aijΓk where distinct Γj ’s

correspond to distinct Γk’s, we have

ΓiSΓi =
∑

j

ΓiΓjMΓjΓi =
∑

j

aijΓkM(aij)
3Γk =

∑

k

ΓkMΓk = S

and therefore SΓi = ΓiS or
Γi = AΓiS

−1

if S−1 exists.
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Defining S =
∑

i ΓiMΓi for arbitrary M yields (by symmetry with our
previous result) ΓiSΓi = S. Hence

SS = ΓiSΓiΓiSΓi = ΓiSSΓi

or [SS,Γi] = 0, and therefore SS = cI by Schur’s lemma. Since S, S 6= 0
we have S−1 = (1/c)S and S is nonsingular. To prove uniqueness, suppose
S1γ

µS−1
1 = S2γ

µS−1
2 . Then S−1

2 S1γ
µ = γµS−1

2 S1 which (by Schur’s lemma)

implies S−1
2 S1 = aI or S1 = aS2. v

We now return to showing that the transformed wave function ψ′(x′) has
the correct physical interpretation in the primed frame, i.e., that j′µ = Λµ

νj
ν .

Using equations (10) and (31), the fact that Λα
µ is just a real number and the

fact that (γ0)−1 = γ0 we have

Λα
µγ

µ = Λα
µγ

0γµ†γ0 = γ0(Λα
µγ

µ)†γ0 = γ0(S−1γαS)†γ0

= γ0S†γα†S−1†γ0 = (γ0S†γ0)γα(γ0S†−1γ0)

= (γ0S†γ0)γα(γ0S†γ0)−1.

But we also have Λα
µγ

µ = S−1γαS, so equating this with the above result
shows that

γαS(γ0S†γ0) = S(γ0S†γ0)γα

and hence Sγ0S†γ0 commutes with γα. Applying Schur’s lemma we have
Sγ0S†γ0 = cI or

Sγ0S† = cγ0. (39)

Taking the adjoint of this equation shows that c is real. We set the normalization
of S be requiring that detS = +1 = detS†, and hence taking the determinant
of equation (39) shows that c4 = 1 (since det(cγ0) = c4 det γ0) so that c = ±1.

We now show that c = +1 if Λ0
0 > 0, i.e., there is no time reversal. First

multiplying equation (39) from the right by γ0 and from the left by S−1 gives us
γ0S†γ0 = cS−1, and therefore S†γ0 = cγ0S−1. We then have (using equation
(31))

S†S = S†γ0γ0S = cγ0S−1γ0S = cγ0Λ0
µγ

µ

= cγ0Λ0
0γ

0 + cγ0Λ0
iγ

i

= cΛ0
0I + cΛ0

iγ
0γi.

Since S†S is Hermitian, it’s eigenvalues are real. Alternatively, if (S†S)x = λx

where x is normalized to ‖x‖ = 1, then λ = 〈x, S†Sx〉 = 〈Sx, Sx〉 = ‖Sx‖2 > 0.
(That ‖Sx‖ 6= 0 follows because the norm is positive definite, and the fact that
S is nonsingular means Sx = 0 if and only if x = 0 which can’t be true by
definition of eigenvector.) In any case, we have trS†S =

∑
λi > 0, and since
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γ0γi = −γiγ0 we see that tr γ0γi = 0. But then taking the trace of the above
expression for S†S we obtain

0 < trS†S = tr(cΛ0
0I) = 4cΛ0

0

and we conclude that
Λ0

0 > 0 =⇒ c = +1

and
Λ0

0 < 0 =⇒ c = −1

as claimed. Since we restrict ourselves to the so-called orthochronous Lorentz
transformations with Λ0

0 > 0 then c = +1, and we have Sγ0S† = γ0 or

S†γ0 = γ0S−1. (40)

(As a side remark just for the sake of complete accuracy, it follows from equation
(30) that

1 = g00 = gµνΛµ
0Λ

ν
0 = (Λ0

0)
2 −

3∑

i=1

(Λi
0)

2

and therefore (Λ0
0)

2 = 1 +
∑

i(Λ
i
0)

2 ≥ 1 so we actually have either Λ0
0 ≥ 1 or

Λ0
0 ≤ −1.)
Back to the physics of the transformed wave function ψ′(x′) = Sψ(x). Tak-

ing the adjoint of this we have ψ′† = ψ†S† so that using equation (40) we have

ψ′ = ψ′†γ0 = ψ†S†γ0 = ψ†γ0S−1 = ψS−1. (41)

Therefore
j′µ = ψ′γµψ′ = ψS−1γµSψ = Λµ

αψγ
αψ = Λµ

αj
α

as desired. In other words, the probability current jµ = ψγµψ transforms as a
4-vector and validates our interpretation of

ψ′(x′) = S(Λ)ψ(Λ−1x′) = S(Λ)ψ(x)

as the wavefunction as seen in the transformed frame. We will use this equation
to write the arbitrary momentum free particle solutions of the Dirac equation
in terms of the rest particle solutions (which are easy to derive).

In fact, it is the transformation law (31) together with equation (41) that
gives us the various types of elementary particle properties described as scalar,
pseudoscalar, vector and pseudovector. Let us take a more careful look at just
what this means.

The equations of motion are determined by a Lagrangian density L which
is always a Lorentz scalar. But the terms that comprise L can vary widely. For
example, consider the “scalar” ψψ. That this is indeed a Lorentz scalar follows
by direct calculation:

ψ′ψ′ = ψS−1Sψ = ψψ.
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Furthermore, we just showed in the calculation above that the quantity ψγµψ
transforms as a true 4-vector. What about the pseudo quantities? To treat
these, we introduce the extremely useful gamma matrix

γ5 := γ5 := iγ0γ1γ2γ3 =
i

4!
εαβµνγ

αγβγµγν. (42)

That this last equality is true follows from the fact that all four indices must be
distinct or else the ε symbol vanishes, and the gamma matrices all anticommute.
Thus there are 4! possible permutations of four distinct gamma matrices, and
putting these into increasing order introduces the same sign as the ε symbol
acquires so all terms have the coefficient +1.

Under a Lorentz transformation we have

S−1γ5S =
i

4!
εαβµνS

−1γαγβγµγνS

=
i

4!
εαβµνS

−1γαSS−1γβSS−1γµSS−1γνS

=
i

4!
εαβµνΛα

α′Λβ
β′Λµ

µ′Λν
ν′γα′

γβ′

γµ′

γν′

=
i

4!
(detΛ)εα′β′µ′ν′γα′

γβ′

γµ′

γν′

or
S−1γ5S = (detΛ)γ5 (43)

which shows that γ5 transforms as a pseudoscalar, i.e., it depends on the sign of
detΛ = ±1. (Compare this with equation (31) which shows that γµ transforms
as a vector.)

Using this result we can easily show that ψγ5ψ transforms as a pseudoscalar
and ψγ5γ

µψ transforms as a pseudovector:

ψ′γ5ψ
′ = ψS−1γ5Sψ = (detΛ)ψγ5ψ

and

ψ′γ5γ
µψ′ = ψS−1γ5γ

µSψ = ψS−1γ5SS
−1γµSψ

= (det Λ)Λµ
ν(ψγ5γ

νψ).

4 Construction of the Matrix S(Λ)

We begin by considering an infinitesimal Lorentz transformation

Λµ
ν = gµ

ν + ωµ
ν . (44)

Then to first order in ω we have

gαβ = Λµ
αΛµβ = (gµ

α + ωµ
α)(gµβ + ωµβ) = gαβ + ωαβ + ωβα
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and thus
ωαβ = −ωβα.

Let us expand S(Λ) to first order in the parameters ωµν to write

S = 1− i

2
ωµνΣµν (45a)

S−1 = 1 +
i

2
ωµνΣµν . (45b)

Note that ωµν is a number, while Σµν is a 4× 4 matrix. Since ωµν = −ωνµ we
can antisymmetrize over µ and ν so that ωµνΣµν = ωµνΣ[µν] and hence we may
just as well assume that Σ is antisymmetric, i.e.,

Σµν = −Σνµ.

Just to clarify the antisymmetrization of Σµν , note that in general if we have
an antisymmetric quantity Aµν contracted with an arbitary quantity T µν, then
we always have

AµνT
µν =

1

2
(AµνT

µν +AµνT
µν)

=
1

2
(AµνT

µν −AνµT
µν) by the antisymmetry of Aµν

=
1

2
(AµνT

µν −AµνT
νµ) by relabeling µ↔ ν

=
1

2
Aµν(T µν − T νµ)

= AµνT
[µν].

This is an extremely useful property that we will use often. Note also that the
quantity T can have additional indices that don’t enter into the antisymmetriza-
tion, e.g., AµνT

µνρ = AµνT
[µν]ρ.

Working to first order, we substitute equations (44) and (45) into equation
(31):

(gα
µ + ωα

µ)γµ =

(
1 +

i

2
ωµνΣµν

)
γα

(
1− i

2
ωµνΣµν

)

or

γα + ωα
µγ

µ = γα − i

2
ωµνγ

αΣµν +
i

2
ωµνΣµνγα

which implies that

ωα
µγ

µ = − i
2
ωµν [γα,Σµν ].

On the right hand side of this equation ωµν is contracted with an antisymmetric
quantity, so we want to do the same on the left. To accomplish this, we rewrite
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the left hand side as

ωα
µγ

µ = ωβµg
αβγµ = ωβµg

α[βγµ] =
1

2
ωβµ(gαβγµ − gαµγβ)

=
1

2
ωµν(gαµγν − gανγµ).

Therefore, since ωµν is arbitrary, we must in fact have (after multiplying through
by i)

i(gαµγν − gανγµ) = [γα,Σµν ].

Now, Σµν is antisymmetric and, as we have seen, it must be a linear combi-
nation of the Γ matrices, i.e., it must be a product of γ matrices. If µ 6= ν we
know that γµγν = −γνγµ, and if µ = ν then obviously [γµ, γν] = 0. Hence we
try something of the form Σµν ∼ [γµ, γν ], and it is reasonably straightforward
to verify that

Σµν =
i

4
[γµ, γν ] (46)

will work. (To verify this, you will find it useful to note that γαγν+γνγα = 2gαν

implies [γα, γν ] = γαγν −γνγα = 2(γαγν−gαν) along with the general commu-
tator identity [a, bc] = b[a, c] + [a, b]c.) Thus we finally obtain (for infinitesimal
ωµν)

S(Λ) = 1− i

2
ωµνΣµν = 1 +

1

8
ωµν [γµ, γν ]. (47)

We now turn our attention to constructing S(Λ) for finite Λµ
ν . Since a

finite transformation consists of a product of a (infinite) number of infinitesimal
transformations, we first prove a very useful mathematical result that you may
have seen used in an elementary quantum mechanics course to construct the
finite rotation operators U(R(θ)) = eiθ·J/~.

Lemma.

lim
n→∞

(
1 +

θ

n

)n

= eθ.

Proof. First note that the logarithm is a continuous function (i.e., limx→a f(x) =
f(a)) so that

ln lim
n→∞

(
1 +

θ

n

)n

= lim
n→∞

ln

(
1 +

θ

n

)n

= lim
n→∞

n ln

(
1 +

θ

n

)

= lim
n→∞

ln
(
1 + θ/n

)

1/n
.

As n → ∞ both the numerator and denominator each go to zero, so we use
l’Hôpital’s rule and take the derivative of both with respect to n. This yields

ln lim
n→∞

(
1 +

θ

n

)n

= lim
n→∞

−θ/n2

1+θ/n

−1/n2
= lim

n→∞

θ

1 + θ/n
= θ.
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Taking the exponential of both sides then proves the lemma. v
Now, equations (45) and (47) apply to an infinitesimal boost parameter ωµν .

In the case of a finite boost, let us write (as n→∞)

ωµν =
ω

n
ω̂µν

which is a product of a Lorentz boost parameter ω and a unit Lorentz trans-
formation matrix ω̂µν (to be defined carefully below). Then this finite Λ is
comprised of an infinite number of infinitesimal boosts and we have

S(Λ) = lim
n→∞

(
1− i

2

ω

n
ω̂µνΣµν

)n

= e−
i
2
ωbωµνΣµν

(48)

Let us verify equation (40) for this S. We first recall that γµ† = γ0γµγ0 and
therefore

Σµν† =

(
i

4
[γµ, γν]

)†

= − i
4
[γν†, γµ†] =

i

4
[γµ†, γν†] = γ0 i

4
[γµ, γν ]γ0

= γ0Σµνγ0.

Writing ωω̂µν = ωµν we then have (using the fact that (γ0)2 = I to bring the
γ0’s out of the exponential)

S = e−
i
2

ωµνΣµν

=⇒ S† = e
i
2

ωµνΣµν†

= γ0e
i
2
ωµνΣµν

γ0 = γ0S−1γ0

so that again we find γ0S† = S−1γ0 or Sγ0S† = γ0.
We now wish to construct an explicit form for S. To accomplish this, we need

to know the boost generators ω̂µν . We know that for a Lorentz transformation
along the positive x-axis we have (where the “lab frame” is labeled by xµ and
the “moving frame” is labeled by x′µ)

x′0 = γ(x0 − βx1) x′1 = γ(x1 − βx0) x′2 = x2 x′3 = x3 (49)

where β = v/c and γ2 = 1/(1−β2). To describe a boost in an arbitrary direction
we first decompose this one into its components parallel and orthogonal to the
velocity to write (keeping the axes of our coordinate systems parallel)

x′0 = γ(x0 − β · x) x′
‖ = γ(x‖ − βx0) x′

⊥ = x⊥

Now expand x′ as follows:

x′ = x′
⊥ + x′

‖ = x⊥ + γ(x‖ − βx0) = x− x‖ + γ(x‖ − βx0)

= x + (γ − 1)x‖ − γβx0.

But

x‖ = (x · β̂)β̂ =
x · β
β2

β
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and hence we have

x′ = x +
(γ − 1)

β2
(x · β)β − γβx0 (50a)

x′0 = γ(x0 − β · x). (50b)

Comparing these equations with x′µ = Λµ
νx

ν we write out the matrix (Λµ
ν):

(Λµ
ν) =




γ −γβ1 −γβ2 −γβ3

−γβ1 1 + (γ−1)
(β)2 (β1)2 (γ−1)

(β)2 β
1β2 (γ−1)

(β)2 β
1β3

−γβ2 (γ−1)
(β)2 β

2β1 1 + (γ−1)
(β)2 (β2)2 (γ−1)

(β)2 β
2β3

−γβ3 (γ−1)
(β)2 β

3β1 (γ−1)
(β)2 β

3β2 1 + (γ−1)
(β)2 (β3)2



. (51)

For an infinitesimal transformation we have γ → 1 so that

(Λµ
ν) =




1 −β1 −β2 −β3

−β1 1

−β2 1

−β3 1




= (gµ
ν) + (ωµ

ν).

(Note that this is for a pure boost only. If we also included a spatial rotation,
then the lower right 3×3 block would contain an infinitesimal rotation matrix.)
In any case, we therefore have (in a somewhat ambiguous but standard notation)

(ωµ
ν) =




0 −β1 −β2 −β3

−β1 0

−β2 0

−β3 0




= β




0 − cosα − cosβ − cos γ

− cosα 0

− cosβ 0

− cosγ 0




:= β (ω̂µ
ν) (52)

which defines the unit transformation matrix (ω̂µ
ν), and where (cosα, cos β, cos γ)

are the direction cosines of the infinitesimal boost β = ω/n. (See the figure be-
low.)
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x

y

z

α

β

γ
β

From the figure we have β = (β cosα)x̂+(β cosβ)ŷ+(β cos γ)ẑ so β2 = β ·β =
β2(cos2 α+ cos2 β + cos2 γ) and hence

cos2 α+ cos2 β + cos2 γ = 1.

Note also that we have defined the matrix (ω̂µ
ν), and from this we can write

ω̂µν = gµα ω̂
α

ν . Then

ω̂0i = g0αω̂
α

i = ω̂0
i and ω̂i0 = giαω̂

α
0 = −ω̂i

0

so we see from (52) that indeed we have ωµν = −ωνµ.
We can now use these ω̂µν ’s to find another form of the Lorentz transfor-

mation matrix Λµ
ν via exponentiation. Thus, a finite Lorentz transformation

is now given by

lim
n→∞

(
gµ

ν +
ω

n
ω̂µ

ν

)n
= (eωbω)µ

ν = Λµ
ν (53)

where ω is a finite boost. To explicitly evaluate this, we observe that

(ω̂µ
ν)2 =




1 0 0 0

0 cos2 α cosα cosβ cosα cos γ

0 cosβ cosα cos2 β cosβ cos γ

0 cos γ cosα cos γ cosβ cos2 γ




and (ω̂µ
ν)3 = (ω̂µ

ν). We also note that

cosh θ =
1

2
(eθ + e−θ) = 1 +

θ2

2!
+
θ4

4!
+ · · ·

sinh θ =
1

2
(eθ − e−θ) = θ +

θ3

3!
+
θ5

5!
+ · · ·

and therefore

Λµ
ν = (eωbω)µ

ν =
(
1 + ωω̂ +

ω2

2!
ω̂2 +

ω3

3!
ω̂ +

ω4

4!
ω̂2 +

ω5

5!
ω̂ + · · ·

)µ

ν

=
[
ω̂
(
ω +

ω3

3!
+
ω5

5!
+ · · ·

)
+ 1− ω̂2 + ω̂2

(
1 +

ω2

2!
+
ω4

4!
+ · · ·

)]µ
ν

= [1− ω̂2 + ω̂2 coshω + ω̂ sinhω]µν .
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For example, in the particular case of a boost along the x1-axis we have
cosα = 1 and cosβ = cos γ = 0 so that

ω̂µ
ν =




0 −1 0 0
−1 0

0 0
0 0


 (ω̂µ

ν)2 =




1
1

0
0




and hence

eωbω =




coshω − sinhω 0 0

− sinhω coshω 0 0

0 0 1 0

0 0 0 1


 = (Λµ

ν).

Therefore, looking at the 0 component for example, we have

x′0 = Λ0
νx

ν = x0 coshω − x1 sinhω = coshω(x0 − x1 tanhω)

and comparing this with equation (49) shows that

coshω = γ and tanhω = β (54)

which should be familiar from more elementary courses. In other words, ex-
ponentiating an infinitesimal Lorentz boost gives back exactly the same trans-
formation matrix as we could have written down directly from equation (49),
which should have been expected.

Now let us finish computing the spinor transformation matrix S(Λ) defined
in equation (48). First, using ω̂µ

ν as defined in equation (52) we have

ω̂µνΣµν = gµρ ω̂
ρ
νΣµν

= ω̂0
1Σ

01 + ω̂0
2Σ

02 + ω̂0
3Σ

03 − ω̂1
0Σ

10 − ω̂2
0Σ

20 − ω̂3
0Σ

30.

But Σ0i = −Σi0 = (i/4)[γ0, γi] where the gamma matrices are given in equation
(6) so that

Σ0i =
i

2

[
0 σi

σi 0

]
:=

i

2
αi.

Now observe that (as we saw above) ω̂i
0 = giµω̂µ0 = −ω̂i0 = ω̂0i = g0µω̂

µ
i = ω̂0

i

(which also follows from the explicit form of equation (52)) and therefore

ω̂µνΣµν = 2 ω̂0
iΣ

0i = −2(Σ01 cosα+ Σ02 cosβ + Σ03 cos γ)

= −i(α1 cosα+ α2 cosβ + α3 cos γ)

= −iα · β̂.

Recall that the Pauli matrices obey the relation (using the summation con-
vention on repeated indices)

σiσj = δij + iεijkσk
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which implies
(a · σ)(b · σ) = a · b + i(a× b) · σ

so that (σ · β̂)2 = β̂ · β̂ = 1. Then from

α · β̂ =

[
0 σ · β̂

σ · β̂ 0

]

(remember this is a block matrix) we see that

(α · β̂)2 =

[
1 0
0 1

]
.

This then gives us

S(Λ) = e−
i
2
ωbωµνΣµν

= e−
1

2
ωα·bβ

= I − ω

2
α · β̂ +

1

2!

(ω
2

)2

(α · β̂)2 − 1

3!

(ω
2

)3

(α · β̂)3 + · · ·

= I −α · β̂
[
ω

2
+

1

3!

(ω
2

)3

+ · · ·
]

+ I

[
1

2!

(ω
2

)2

+
1

4!

(ω
2

)4

+ · · ·
]

or simply

S(Λ) = I cosh
ω

2
− (α · β̂) sinh

ω

2
. (55)

If this looks vaguely familiar to you, it’s because you may recall from a
quantum mechanics course that the rotation operator for spin 1/2 particles is
given by

U(R(θ)) = e−iθ·J/~ = e−iθ·σ/2~ = I cos
θ

2
− i(σ · θ̂) sin

θ

2
.

Anyway, to put equation (55) into a more useable form, we make note of the
following identities:

cosh2 x− sinh2 x = 1

sinh(x+ y) = sinhx cosh y + coshx sinh y

cosh(x+ y) = coshx cosh y + sinhx sinh y

and these then imply

1 + cosh 2x = 2 cosh2 x

cosh 2x− 1 = 2 sinh2 x

cosh
x

2
=

[
1

2
(1 + coshx)

]1/2

sinh
x

2
=

[
1

2
(coshx− 1)

]1/2

.
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Using equation (54) we then have

cosh
ω

2
=

[
1

2
(1 + γ)

]1/2

and sinh
ω

2
=

[
1

2
(γ − 1)

]1/2

.

Now we use the relativistic expressions E = γm and p = γmv = Ev so that
p̂ = p/p = p/Ev. Since we want to boost from the rest frame of the particle to

a frame where it has velocity v, we have β = −v and β̂ = −p̂. We also have
E2/m2 = γ2 = 1/(1− β2) so that

β2 = 1− m2

E2
=
E2 −m2

E2
=

(E +m)(E −m)

E2

or
Eβ = [(E +m)(E −m)]1/2.

Therefore

(
γ + 1

2

)1/2

=

(
E/m+ 1

2

)1/2

=

(
E +m

2m

)1/2

= cosh
ω

2
(56a)

(
γ − 1

2

)1/2

=

(
E −m

2m

)1/2

= sinh
ω

2
(56b)

−σ · β̂ = +σ · p̂ =
σ · p
Eβ

=
σ · p

[(E +m)(E −m)]1/2
(56c)

Using equations (56) in equation (55) then yields our desired final form

S(Λ) =

(
E +m

2m

)1/2




1 0 pz/(E +m) p−/(E +m)

0 1 p+/(E +m) −pz/(E +m)

pz/(E +m) p−/(E +m) 1 0

p+/(E +m) −pz/(E +m) 0 1




(57)

where p± = px ± ipy.
We now use equation (57) to write down the arbitrary momentum free par-

ticle solutions to the Dirac equation. For a particle at rest we have p = 0, so
the Dirac Hamiltonian (equation (2)) becomes simply E = α · p + βm = βm,
and the Dirac equation is just

(iγ0∂0 −m)ψ(x) = 0.

Using (in block form)

γ0 =

[
1

−1

]
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we write the equation in the form

i




1

1

−1

−1


 ∂0




φ1

φ2

χ1

χ2


 = m




φ1

φ2

χ1

χ2


 .

The obvious solutions are of the form

ψr(x) = wr(0)e−iǫrmt

where

ǫr =

{
+1 for r = 1, 2

−1 for r = 3, 4

and

w1(0) =




1
0
0
0


 w2(0) =




0
1
0
0


 w3(0) =




0
0
1
0


 w4(0) =




0
0
0
1


 .

Since mt = p̊0x
0 = p̊µx

µ is a Lorentz scalar (where ˚ means the rest frame),
we may write the phase in the form e−iǫrpµxµ

. And since the spinor part is given
by wr(p) = S(Λ)wr(0), the general solution is thus

ψr(x) = wr(p)e−iǫrpµxµ

= wr(p)e−iǫrp·x (58)

where the rth column of (57) gives wr(p). Recalling that ψψ is a Lorentz scalar,
it is also easy to see directly from the columns of (57) that

wr(0)ws(0) = wr(p)ws(p) = ǫrδrs.

But note that we can multiply wr(0) by any constant to fix the normalization.
The last topic to cover in this section is to consider what happens under

parity (i.e., space reflection). In this case equation (31) can not be solved by
considering the infinitesimal transformation (44). Now we have the Lorentz
transformation t→ t and x→ −x so the Lorentz matrix ΛP is given by

(ΛP )µ
ν =




1

−1

−1

−1




= gµν

and we seek a matrix denoted by P (rather than S) that satisfies

(ΛP )µ
νγ

ν = P−1γµP.
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In particular, γ0 = P−1γ0P and −γi = P−1γiP or −Pγi = γiP . It should be
clear that this is satisfied by choosing anything of the form

P = eiϕγ0. (59)

In other words, we have

ψ(x)
P−→ ψ′(x′) = ψ′(t,−x) = eiϕγ0ψ(t,x).

5 Easier Approach to the Spinor Solutions

The Dirac equation is (α · p + βm)ψ = Eψ, and with γ0 = β,γ = βα we have
(γ ·p+m)ψ = γ0Eψ. Using pµ = (p0 = p0 = E,p) we write the Dirac equation
as (γ0p0 − γ · p−m)ψ = (γµpµ −m)ψ = 0 or just

(/p−m)ψ = 0. (60)

(For simplicity we will generally leave out the identity matrix in these equations.)
Now note that multiplying {γµ, γν} = 2gµν by scalars aµ, bν we obtain

{/a, /b} = 2 a · b (61)

and hence in particular /p/p = p · p = p2. Operating on equation (60) from
the left with /p + m yields (p2 −m2)ψ = 0, and using pµ = i∂µ this becomes
(−∂µ∂

µ −m2)ψ = 0 or
(� +m2)ψ = 0.

In other words, each component of any ψ that satisfies the Dirac equation also
satisfies the Klein-Gordon equation. This equation has the solutions e±ik·x with
−k2 +m2 = 0 so that k2

0 − k2 = m2 or k2
0 = k2 +m2. We define

ωk := +
√

k2 +m2 (62)

so that the solution e−ik·x ∼ e−iωkt is referred to as the positive frequency

solution (since in the Schrödinger theory ψ ∼ e−iEt), and the solution e+ik·x ∼
eiωkt is called the negative frequency solution.

Let us write the plane wave solutions to the Dirac equation in the form

ψ(x) ∼ u(k)e−ik·x + v(k)eik·x

where k2 = kµk
µ = m2. Then (i/∂ −m)ψ = 0 implies

(+/k −m)u(k)e−ik·x + (−/k −m)v(k)eik·x = 0.

Since the positive and negative frequency solutions are independent (they each
satisfy the Dirac equation separately) this implies

(/k −m)u(k) = 0 (63a)

(/k +m)v(k) = 0. (63b)
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Using γµ† = γ0γµγ0, we take the adjoint of each of these and multiply through
by γ0 to obtain

u(k)(/k −m) = 0 (64a)

v(k)(/k +m) = 0. (64b)

For solutions at rest we have k = 0 (and hence k0 = m) so equations (63)
become

(γ0 − 1)u(0) = 0

(γ0 + 1)v(0) = 0.

The first of these is



1
1
−1

−1


u(0) = u(0)

which has solutions of the form

u(0) =




∗
∗
0
0




where the *’s stand for an arbitrary entry. Similarly, the second of these has
solutions of the form

v(0) =




0
0
∗
∗


 .

Since each of these has two independent components, we write the rest frame
solutions as

u1(0) =




1
0
0
0


 u2(0) =




0
1
0
0


 v1(0) =




0
0
1
0


 v2(0) =




0
0
0
1


 (65)

up to an arbitrary constant.
Using

(/k −m)(/k +m) = k2 −m2 ≡ 0 (66)

along with the fact that u(k) satisfies equation (63a), we see that any spinor of
the form u′ = (/k +m)u will automatically satisfy (/k −m)u′ = 0. We therefore
write the solutions for arbitrary k in the form

ur(k) = c(/k +m)ur(0) (67a)

−vr(k) = c′(/k −m)vr(0) (67b)
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where the normalization constants c and c′ are to be determined, and the (−)
sign in front of vr(k) is an arbitrary convention. We must also therefore have
(by inserting γ0γ0 = I in front of the m)

u†r(k) = c∗u†r(0)(γ0γµγ0kµ +m) = c∗ur(0)(/k +m)γ0

and
−v†r(k) = c′∗v†r(0)(γ0γµγ0kµ −m) = c′∗vr(0)(/k −m)γ0

so that

ur(k) = c∗ur(0)(/k +m) (68a)

−vr(k) = c′∗vr(0)(/k −m). (68b)

Next, from equations (66), (67) and (68) we see that

ur(k)vs(k) = −c∗c′ur(0)(/k +m)(/k −m)vr(0) ≡ 0

and similarly
vr(k)us(k) = 0.

This means that ψψ ∼ uu+ vv, and since u and v are independent solutions, it
follows from the fact that ψψ is Lorentz invariant that uu and vv must also be
Lorentz invariant. We fix our normalization by requiring that

ur(k)us(k) = ur(0)us(0) = 2mδrs (69a)

vr(k)vs(k) = vr(0)vs(0) = −2mδrs (69b)

where the (−) sign in equation (69b) is due to the form of γ0 and equations
(65).

Let us now find the normalization constants in equations (67). We compute
using equations (66), (67) and (68):

ur(k)us(k) = |c|2 ur(0)(/k +m)2us(0) = |c|2 ur(0)(/k
2
+ 2m/k +m2)us(0)

= |c|2 ur(0)2m(m+ /k)us(0) = 2m |c|2 ur(0)(/k +m)us(0)

= 2m |c|2 u†r(0)γ0(γ0k0 − γ · k +m)us(0).

But

(γ · k)us(0) =

[
0 σ · k

−σ · k 0

]



∗
∗
0
0


 ∼




0
0
∗
∗




while

ur(0) = u†r(0)γ0 =
[
∗ ∗ 0 0

] [ 1
−1

]
∼
[
∗ ∗ 0 0

]
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and hence
ur(0)(γ · k)us(0) ≡ 0.

We also have k0 = E and

γ0us(0) =




1
1
−1

−1







∗
∗
0
0


 = us(0)

so that (using equation (69))

ur(k)us(k) = 2m |c|2 (E +m)ur(0)us(0) = ur(0)us(0)

which then implies (choosing the phase equal to +1)

c = [2m(E +m)]−1/2 (70)

In an exactly analogous manner, we have

vr(k)vs(k) = |c′|2 vr(0)(/k −m)2vs(0) = |c′|2 vr(0)(/k
2 − 2m/k +m2)vs(0)

= |c′|2 vr(0)(2m2 − 2mEγ0 − 2mγ · k)vs(0).

But

vr(0)(γ · k)vs(0) =
[
0 0 ∗ ∗

]
[

1

−1

][
0 σ · k

−σ · k 0

]



0
0
∗
∗




=
[
0 0 ∗ ∗

]



∗
∗
0
0


 ≡ 0

and

vr(0)γ0vs(0) = vr(0)

[
1
−1

] [
0
∗

]
= −vr(0)vs(0).

Therefore

vr(k)vs(k) = |c′|2 2m(m+ E)vr(0)vs(0) = vr(0)vs(0)

so that
c′ = [2m(E +m)]−1/2 = c.

Lastly, observe that equations (69) and the forms (65) require that we mul-
tiply each of equations (65) by

√
2m. We are then left with our final result
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ur(k) =
1√

E +m
(/k +m)

[
ϕr

0

]
(71a)

vr(k) =
−1√
E +m

(/k −m)

[
0

χr

]
(71b)

where

ϕ1 = χ1 =

[
1

0

]
and ϕ2 = χ2 =

[
0

1

]
.

Explicitly, these may be written out using

/k +m = γ0E − γ · k +mI =

[
E +m −σ · k
+σ · k −E +m

]

where

σ · k =

[
k3 k−

k+ −k3

]

and

/k −m = γ0E − γ · k−mI =

[
E −m −σ · k
+σ · k −(E +m)

]

so that

ur(k) =
1√

E +m

[
E +m −σ · k
σ · k −E +m

][
ϕr

0

]
=

1√
E +m

[
(E +m)ϕr

(σ · k)ϕr

]

vr(k) =
−1√
E +m

[
E −m −σ · k
σ · k −(E +m)

] [
0

χr

]
=

1√
E +m

[
(σ · k)χr

(E +m)χr

]

or

u1(k) =
1√

E +m




E +m

0

k3

k+


 u2(k) =

1√
E +m




0

E +m

k−

−k3


 (72a)

v1(k) =
1√

E +m




k3

k+

E +m

0


 v2(k) =

1√
E +m




k−

−k3

0

E +m


 (72b)

Note that to within the normalization constant 1/
√

2m, these agree with equa-
tions (57) as they should.
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Part II – Useful Facts Dealing With the Dirac
Spinors

6 Energy Projection Operators and Spin Sums

In order to actually calculate scattering cross sections, there are a number of
properties of the Dirac spinors that will prove very useful. We will work in the
normalization of Section 5:

ur(k) =
1√

E +m
(/k +m)

[
ϕr

0

]
(73a)

vr(k) =
−1√
E +m

(/k −m)

[
0

χr

]
(73b)

(these are just equations (71)) where

ϕ1 = χ1 =

[
1

0

]
and ϕ2 = χ2 =

[
0

1

]

and
ur(k)us(k) = −vr(k)vs(k) = 2mδrs (74)

(these are equations (69)). We also have the basic equations (63) and (64)

(/k −m)u(k) = 0 = (/k +m)v(k) (75a)

u(k)(/k −m) = 0 = v(k)(/k +m) (75b)

As a consequence of these we immediately have the identity

u(k){(/k −m), γµ}us(k) = 0.

Noting that {γµ, γν} = 2gµν implies {/k, γµ} = 2kµ, this last equation can be
written

ur(k)(2kµ − 2mγµ)us(k) = 2kµur(k)us(k) − 2mur(k)γµus(k) = 0.

Letting µ = 0 and using (74) yields (where k0 = Ek = ωk)

u†r(k)us(k) = 2ωkδrs. (76a)

Similarly,

vr(k){(/k +m), γµ}vs(k) = vr(k)(2kµ + 2mγµ)vs(k) = 0

results in
v†r(k)vs(k) = 2ωkδrs. (76b)
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From equation (10) we see that /k
†

= γµ†kµ = γ0γµγ0kµ = γ0/kγ0 so that
from equations (73) we have

ur(k)vs(k) =
−1

E +m

[
ϕ†

r 0
]
(γ0/kγ0 +m)γ0(/k −m)

[
0
χs

]

=
−1

E +m

[
ϕ†

r 0
]
γ0(/k +m)(/k −m)

[
0
χs

]
.

There is also a similar result for vr(k)us(k), so that using (/k + m)(/k −m) =
k2 −m2 = 0 (equation (66)) we obtain

ur(k)vs(k) = vr(k)us(k) = 0. (77)

For convenience, let us define k̃µ = (k0,−k) where we still have k2
0−k2 = m2

or ωk = ω−k = ωek
=
√

k2 +m2. From equation (75a) we have (/̃k+m)vs(−k) =
0, so multiplying this from the left by ur(k) and also multiplying ur(k)(/k−m) =
0 from the right by vs(−k) and then adding, we obtain

0 = ur(k)(/̃k + /k)vs(−k) = ur(k)(γ0k0 − γiki + γ0k0 + γiki)vs(−k)

= ur(k)2γ0k0vs(−k) = 2ωku
†
r(k)vs(−k)

so that
u†r(k)vs(−k) = 0 = v†r(k)us(−k) (78)

where we didn’t bother to repeat the identical argument for v†u.
Now for the energy projection operators. First note that because of equations

(75) we have /ku = mu and /kv = −mv. Then if we define

Λ±(k) = ±/k +m (79)

we have

Λ+u = /ku+mu = 2mu while Λ+v = /kv +mv = 0 (80a)

and

Λ−u = −/ku+mu = 0 while Λ−v = −/kv +mv = 2mv. (80b)

Similarly we find

uΛ+ = 2mu while vΛ+ = 0 (80c)

and

uΛ− = 0 while vΛ− = 2mv. (80d)
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It is easy to see that the Λ± are indeed projection operators since

(Λ±)2 = (±/k +m)2 = /k
2 ± 2m/k +m2 = 2m(±/k +m) = 2mΛ± (81a)

Λ±Λ∓ = (±/k +m)(∓/k +m) = −/k2
+m2 = 0 (81b)

Λ+ + Λ− = 2mI. (81c)

(If we had defined Λ± = (±/k +m)/2m, then these would be (Λ±)2 = Λ± and
Λ+ + Λ− = 1 which is the more common way to define projection operators.)

To put Λ± into a more useable form, we proceed as follows. First note that
we have ur(k) = S(Λ)ur(0) and vr(k) = S(Λ)vr(0). Using S†γ0 = γ0S−1 (equa-
tion (40)) these yield ur(k) = u†r(0)S†γ0 = ur(0)S−1 and vr(k) = vr(0)S−1. It
will be convenient for us to change notation slightly and write u(k, r) = ur(k)
so that uα(k, r) represents the αth spinor component of u(k, r). Then consider
the sum

2∑

r=1

[uα(k, r)uβ(k, r) − vα(k, r)vβ(k, r)]

= Sαµ

{
2∑

r=1

[uµ(0, r)uν(0, r)− vµ(0, r)vν(0, r)]

}
S−1

νβ . (82)

Observe that what we might call the outer product of a column vector a with
a row vector bT is



a1

...
an



[
b1 · · · bn

]
=



a1b1 · · · a1bn

...
...

anb1 · · · anbn




so that (abT )ij = aibj . (This is just the usual rule for multiplying matrices. It
is also just the usual direct product of two matrices.) To evaluate the term in
braces on the right-hand side of equation (82), we first note that from equations
(73) we have

u(0, r) =
√

2m

[
ϕr

0

]
and v(0, r) =

√
2m

[
0

χr

]

and hence the sum of outer products is given by (note γ0 changes the sign of χ
in v)

u(0, 1)u(0, 1) + u(0, 2)u(0, 2)− v(0, 1)v(0, 1)− v(0, 2)v(0, 2)

= 2m









1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


+




0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0



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+




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


+




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1








= 2mI.

Then the term in braces in equation (82) is just 2mδµν and we have

2∑

r=1

[uα(k, r)uβ(k, r) − vα(k, r)vβ(k, r)] = 2mδαβ .

Taking the (α, β)th element of equation (81c) this last equation can be written
as

2∑

r=1

[uα(k, r)uβ(k, r) − vα(k, r)vβ(k, r)] = Λ+
αβ + Λ−

αβ.

Multiplying from the right by Λ+
βµ and using equations (80) and (81) we have

2∑

r=1

[uα(k, r)2muµ(k, r) − 0] = 2mΛ+
αµ + 0

or our desired result

2∑

r=1

uα(k, r)uβ(k, r) = Λ+
αβ = (/k +m)αβ . (83a)

Similarly, multiplying by Λ−
βµ yields

−
2∑

r=1

vα(k, r) vβ(k, r) = Λ−
αβ = (−/k +m)αβ . (83b)

Another way to see this is to use the explicit expressions from the end of
Section 5:

/k +m =

[
E +m −σ · k
+σ · k −E +m

]
and /k −m =

[
E −m −σ · k
+σ · k −(E +m)

]

together with

ur(k) =
√
E +m

[
ϕr

σ·k
E+mϕr

]
and vr(k) =

√
E +m

[
σ·k

E+mχr

χr

]

so we also have

ur(k) = u†r(k)γ0 =
√
E +m

[
ϕ†

r −ϕ†
r

σ·k
E+m

]

vr(k) = v†r(k)γ0 =
√
E +m

[
χ†

r
σ·k

E+m −χ†
r

]
.
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We now use these to form the outer products

ur(k)ur(k) = (E +m)




ϕrϕ
†
r −ϕrϕ

†
r

σ·k
E+m

σ·k
E+mϕrϕ

†
r − σ·k

E+mϕrϕ
†
r

σ·k
E+m




vr(k)vr(k) = (E +m)




σ·k
E+mχrχ

†
r

σ·k
E+m − σ·k

E+mχrχ
†
r

χrχ
†
r

σ·k
E+m −χrχ

†
r




Noting that

χ1χ
†
1 + χ2χ

†
2 =

[
1

0

]
[
1 0

]
+

[
0

1

]
[
0 1

]
=

[
1 0

0 1

]

with a similar result for ϕ1ϕ
†
1 + ϕ2ϕ

†
2, we have

2∑

r=1

ur(k)ur(k) = (E +m)




1 − σ·k

E+m

σ·k
E+m − (σ·k)2

(E+m)2





2∑

r=1

vr(k)vr(k) = (E +m)

[
(σ·k)2

(E+m)2 − σ·k
E+m

σ·k
E+m −1

]
.

But (σ · k)2 = k2 = E2 −m2 = (E +m)(E −m) and we are left with

2∑

r=1

ur(k)ur(k) =

[
E +m −σ · k
σ · k −E +m

]
= /k +m = Λ+(k)

2∑

r=1

vr(k)vr(k) =

[
E −m −σ · k
σ · k −(E +m)

]
= /k −m = Λ−(k)

which agree with equations (83).

7 Trace Theorems

We now turn to the various trace theorems and some related algebra. Everything
is based on the relation

{γµ, γν} = 2gµν (84)

where

gµν =




1
−1

−1
−1


 .
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We also use the matrix γ5 defined by (see equation (42))

γ5 = γ5 := iγ0γ1γ2γ3 =
i

4!
εαβµνγ

αγβγµγν . (85)

As we saw before, that the last expression is equivalent to iγ0γ1γ2γ3 is an imme-
diate consequence of the fact that both εαβµν and γαγβγµγν are antisymmetric
in all indices which must also be distinct. Then there are 4! possible orders of
indices, and putting them into increasing order introduces the same sign from
both terms. This is just a special case of the general result that for any two
antisymmetric tensors Ai1··· ir

and T j1··· jr we have

Ai1··· ir
T i1··· ir = r!A|i1··· ir |T

i1··· ir

where |i1 · · · ir| means to sum over all sets of indices with i1 < i2 < · · · < ir.
Now note that

{γ5, γ
µ} = 0 (86)

because
γ5γ

µ = iγ0γ1γ2γ3γµ = −iγµγ0γ1γ2γ3 = −γµγ5

due to the fact that no matter what µ is, γµ will anticommute with precisely
three of the γ’s in γ5, and hence gives an overall (−) sign. We also have

(γ5)
2 = 1. (87)

To see this, first recall that equation (84) implies (γ0)2 = +1 and (γi)2 = −1.
Then

(γ5)
2 = −γ0γ1γ2γ3γ0γ1γ2γ3 = +γ0γ0γ1γ2γ3γ1γ2γ3 = γ1γ2γ3γ1γ2γ3

= γ1γ1γ2γ3γ2γ3 = −γ2γ3γ2γ3 = +γ2γ2γ3γ3 = (−1)2 = 1.

In what follows, we shall leave off the identity matrix so as to not clutter
the equations. For example, to say γµγ

µ = 4 really means γµγ
µ = 4I.

Theorem 3. The gamma matrices have the following properties:

γµγ
µ = 4 (88a)

γµ/aγ
µ = −2/a (88b)

γµ/a/bγ
µ = 4a · b (88c)

γµ/a/b/cγ
µ = −2/c/b/a (88d)

γµ/a/b/c/dγ
µ = 2(/d/a/b/c + /c/b/a/d) (88e)

{/a, /b} = 2a · b (88f)
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Proof. Since (γ0)2 = 1 and (γi)2 = −1, we have

γµγ
µ = (γ0)2 + γiγ

i = (γ0)2 −
∑

(γi)2 = 1− 3(−1) = 4.

Next we have (using (88a))

γµ/aγ
µ = aνγµγ

νγµ = aν(−γνγµ + 2gν
µ)γµ = −/aγµγ

µ + 2/a = −2/a.

Note that (88f) simply follows by multiplying {γµ, γν} = 2gµν by aµbν . Then

γµ/a/bγ
µ = γµ/abν(−γµγν + 2gµν) = −γµ/aγ

µ/b + 2/b/a

= +2/a/b + 2/b/a by (88b)

= 4a · b by (88f).

Now observe that

{γµ, /a} = aν{γµ, γν} = aν2gµν = 2aµ.

Then

γµ/a/b/cγ
µ = γµ/a/b(−γµ/c + 2cµ) = −γµ/a/bγ

µ/c + 2/c/a/b

= −4a · b/c + 2/c/a/b by (88c)

= −4a · b/c + 2/c(−/b/a+ 2a · b) by (88f)

= −2/c/b/a.

Finally, we have

γµ/a/b/c/dγ
µ = γµ/a/b/c(−γµ/d+ 2dµ) = −γµ/a/b/cγ

µ/d+ 2/d/a/b/c

= 2(/c/b/a/d+ /d/a/b/c) by (88d). v
Theorem 4. The gamma matrices obey the following trace relations:

tr I = 4 (89a)

tr γ5 = 0 (89b)

tr(odd no. γ’s) = 0 (89c)

tr /a/b = 4a · b (89d)

tr /a/b/c/d = 4[(a · b)(c · d) + (a · d)(b · c)− (a · c)(b · d)] (89e)

tr γ5/a = 0 (89f)
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tr γ5/a/b = 0 (89g)

tr γ5/a/b/c = 0 (89h)

tr γ5/a/b/c/d = −4iεµνρσaµbνcρdσ = +4iεµνρσa
µbνcρdσ (89i)

tr /a1 · · · /a2n = tr /a2n · · · /a1 (89j)

Proof. That tr I = 4 is obvious. Next,

−i trγ5 = tr γ0γ1γ2γ3 = − tr γ1γ2γ3γ0 by (84)

= + tr γ1γ2γ3γ0 by the cyclic property of the trace

Therefore tr γ5 = 0. Now let n be odd and use the fact that (γ5)
2 = 1 to write

tr γ1 · · ·γn = tr γ1 · · · γnγ5γ5

= − tr γ5γ
1 · · ·γnγ5 by (86) with n odd

= − tr γ1 · · ·γn(γ5)
2 by the cyclic property of the trace

= − tr γ1 · · ·γn

so that tr γ1 · · · γn = 0. Next we have

tr /a/b =
1

2
(tr /a/b + tr /b/a) =

1

2
tr(/a/b + /b/a)

=
1

2
(2a · b) tr I = 4a · b by (88f) and (89a).

For the next identity we compute

tr /a/b/c/d = − tr /b/a/c/d+ 2a · b tr /c/d

= + tr /b/c/a/d− 2a · c tr /b/d+ 8(a · b)(c · d)

= − tr /b/c/d/a+ 2a · d tr /b/c − 8(a · c)(b · d) + 8(a · b)(c · d)

= − tr /a/b/c/d+ 8(a · d)(b · c)− 8(a · c)(b · d) + 8(a · b)(c · d)

where the first line follows from (88f), the second and third from (88f) and (89d),
and the last by the cyclic property of the trace. Hence

tr /a/b/c/d = 4[(a · d)(b · c)− (a · c)(b · d) + (a · b)(c · d)].

Equation (89f) follows from (89c) or from tr γ5/a = − tr /aγ5 = − tr γ5/a = 0 where
we used (86) and the cyclic property of the trace.

For the next result, note that tr γ5/a/b = aµbν tr γ5γ
µγν . If µ = ν then

tr γ5(γ
µ)2 = ± tr γ5 = 0 by (89b). Now assume that µ 6= ν. Then

γ5γ
µγν = iγ0γ1γ2γ3γµγν = ±iγαγβ
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where α 6= β are those two indices (out of 0, 1, 2, 3) remaining after moving γµγν

through to obtain (γµ)2 and (γν)2 (each equal to ±1). But

tr γαγβ = − tr γβγα = − tr γαγβ = 0

if α 6= β (by (84) and the cyclic property of the trace). Therefore tr γ5γ
µγν = 0.

Continuing, we see that (89h) follows from (89c). Now consider tr γ5γ
µγνγργσ.

If any two indices are the same, then this is zero since we just showed that
tr γ5γ

µγν = 0. Thus assume that µ 6= ν 6= ρ 6= σ, i.e., (µ, ν, ρ, σ) is a permuta-
tion of (0, 1, 2, 3). If we choose (µ, ν, ρ, σ) = (0, 1, 2, 3) then we have

tr γ5γ
0γ1γ2γ3 = −i tr(γ5)

2 = −4i = −4iε0123.

Since both sides of this equation are totally antisymmetric, it must hold for all
values of the indices so that

tr γ5γ
µγνγργσ = −4iεµνρσ

and hence
tr γ5/a/b/c/d = −4iεµνρσaµbνcρdσ.

For the second part of (89i), note that εµνρσ is not a tensor by definition.
Indeed, we have ε0123 := ε0123 := +1. But the only non-vanishing terms in
εµνρσaµbνcρdσ comes when all the indices are distinct, and a0 = a0 while ai =
−ai etc., so we actually have

εµνρσaµbνcρdσ = −εµνρσa
µbνcρdσ.

Finally, let us define γ̃µ = −(γµ)T . Then {γ̃µ, γ̃ν} = 2gµν , and hence by
Theorem 2 there exists a matrix C such that CγµC−1 = −(γµ)T . Then we have

tr /a1 · · · /a2n = trC/a1 · · · /a2nC
−1 = trC/aC−1C/a2 · · ·C/a2nC

−1

= (−1)2n tr /a
T
1 · · · /a

T
2n = tr(/a2n · · · /a1)

T

= tr /a2n · · · /a1. v
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Part III – Group Theoretic Approach

8 Decomposing the Lorentz Group

In this part we will derive the Dirac equation from the standpoint of represen-
tations of the Lorentz group. To begin with, let us first show that the (homoge-
neous) Lorentz transformations form a group. (By “homogeneous” we mean as
distinct from the general Poincaré (or inhomogeneous Lorentz) transformations
of the form x′µ = Λµ

νx
ν + aµ where aν is a constant.)

Clearly the set of all Lorentz transformations contains the identity trans-
formation (i.e., zero boost), and corresponding to each Lorentz transformation
Λµ

ν there is an inverse transformation Λ−1 = ΛT (equation (28)). Thus we need
only show that the set of Lorentz transformations is closed, i.e., that the com-
position of two Lorentz transformations is another such transformation. Well,
if x′µ = Λµ

αx
α and x′′ν = Λ′ν

βx
′β , then

x′′ν = Λ′ν
βx

′β = Λ′ν
βΛβ

αx
α

and therefore (using equation (30))

x′′νx′′ν = Λ′ν
βΛβ

αx
αΛ′

νρΛ
ρσxσ = (Λ′ν

βΛ′
νρ)(Λ

β
αΛρσ)xαxσ

= gβρ(Λ
β

αΛρσ)xαxσ = ΛραΛρσxαxσ = gσ
αx

αxσ = xσxσ

and therefore the composition of two Lorentz transformations is also a Lorentz
transformation (because it preserves the length xσxσ). This defines the Lorentz

group.
If we let xµ denote the “lab frame” and x′µ the “moving frame,” then for a

pure boost along the x1-axis we have (note that this is just equation (49) with
β → −β and switching the primes)

x0 = γ(x′0 + βx′1) x1 = γ(x′1 + βx′0) x2 = x′2 x3 = x′3

with the corresponding Lorentz transformation matrix

Λ(β)µ
ν =




γ γβ

γβ γ

1

1


 . (90)

However, we can also include purely spatial rotations since these also preserve
the lengths x · x and hence also xµxµ = (x0)2 − x · x. For example, a purely
spatial rotation about the x3-axis has the Lorentz transformation matrix

Λ(θ)µ
ν =




1

cos θ − sin θ

sin θ cos θ

1


 . (91)
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Since such rotations clearly form a group themselves, the spatial rotations form
a subgroup of the Lorentz group. However, the set of pure boosts does not
form a subgroup. In fact, the commutator of two different boost generators is a
rotation generator (see equation (93b) below), and this is the origin of Thomas
precession.

It is easy to see that the Lorentz group depends on six real parameters.
From a physical viewpoint, there can be three independent boost directions,
so there will be three boost parameters (like the direction cosines in equation
(52)), and there are obviously three independent rotation angles for another
three parameters (for example, the three Euler angles). Alternatively, Lorentz
transformations are also defined by the condition ΛT gΛ = g. Since both sides
of this equation are symmetric 4 × 4 matrices, there are (42 − 4)/2 + 4 = 10
constraint equations coupled with the 16 entries in a 4× 4 matrix for a total of
6 independent entries.

For an infinitesimal boost β ≪ 1, equation (90) becomes

Λ(β)µ
ν =




1 β

β 1

1

1


 := I + ω10M

10

where I = (gµ
ν) = (δµ

ν ), the infinitesimal boost parameter along the x-axis is
defined by ω10 := β, and we define the generator of boosts along the x-axis by

M10 =




0 1
1 0

0
0


 .

Let us define ω01 := −ω10 and M01 := −M10 so that

ω10M
10 =

1

2
(ω10M

10 + ω10M
10) =

1

2
(ω10M

10 + ω01M
01).

Since we can clearly do the same thing for boosts along the x2 and x3 directions,
we see that the general boost generator matrix (as in equation (52)) is given by

1

2
(ωi0M

i0 + ω0iM
0i)

where

M20 =




0 1
0

1 0
0


 and M30 =




0 1
0

0
1 0


 .
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Similarly, for an infinitesimal spatial rotation θ ≪ 1, equation (91) becomes

Λ(θ)µ
ν =




1

1 −θ
θ 1

1


 := I + ω12M

12

where now the parameter for rotation about the x3-axis is defined by ω12 := θ,
and the corresponding rotation generator is defined by

M12 =




0

0 −1

1 0

0


 .

Again, we define ω21 = −ω12 and M21 = −M12 so that

ω12M
12 =

1

2
(ω12M

12 + ω12M
12) =

1

2
(ω12M

12 + ω21M
21).

With

M23 =




0

0

0 −1

1 0


 and M31 =




0

0 1

0

−1 0




as the generators of rotations about the x1 and x2 axes respectively, we have
the spatial rotation generator matrix

1

2
(ωijM

ij + ωjiM
ji).

(Notice that the signs appear wrong in M31, but they’re not. This is because
all rotations are defined by the right-handed orientation of R3 as shown in the
figure below.)

x

x

x

y

y

y

z

z

z

Just as we did in equation (53), the matrix representing a finite Lorentz
transformation (including both boosts and rotations) is obtained by exponen-
tiating the infinitesimal results so that we have the general result (where we
define ω00 = ωii = 0)

Λ = e
1

2
ωµνMµν

. (92)
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Let us define the vectors

M = (M23,M31,M12) and N = (M10,M20,M30).

By direct computation you can easily show that (using the summation conven-
tion on repeated letters)

[Mi,Mj ] = εijkMk (93a)

[Ni, Nj ] = −εijkMk (93b)

[Mi, Nj ] = εijkNk. (93c)

Note that these are now to be interpreted as the components of vectors in R3

where the metric is just δij . In other words, they are a shorthand for relations
such as [M23,M31] = M12 plus its cyclic permutations. They are exactly the
same as you have seen in elementary treatments of angular momentum in quan-
tum mechanics. It is also worth observing that from equation (93b) we see that
a combination of two boosts in different directions results in a rotation rather
than another boost. As mentioned above, this is in fact the origin of Thomas
precession.

However, we see that the vectors M and N don’t commute, and hence we
define the new vectors

J =
i

2
(M + iN) and K =

i

2
(M− iN)

so that
M = −i(J + K) and N = K− J. (94)

Now you can also easily show that

[Ji, Jj ] = iεijkJk (95a)

[Ki,Kj ] = iεijkKk (95b)

[Ji,Kj ] = 0 (95c)

which are simply the commutation relations for two sets of independent, com-
muting angular momentum generators of the group SU(2). Thus we have shown
that a general Lorentz transformation is of the equivalent forms

Λ = eωi0Mi0+ 1

2
ωijMij

= ea·N+b·M = e−(a+ib)·J+(a−ib)·K. (96)

And since J and K commute, this is

Λ = e−(a+ib)·Je(a−ib)·K. (97)

Note that since M and N are real and antisymmetric, it is easy to see that
J† = K so that Λ† = ΛT = Λ−1 which again shows that Lorentz transformations
are orthogonal.

47



9 Angular Momentum in Quantum Mechanics

While the decomposition (97) may look different, it is actually exactly the same
as what you have probably learned in quantum mechanics when you studied
the addition of angular momentum. So, to help clarify what we have done, let’s
briefly review the theory of representations of the rotation group as applied to
angular momentum in quantum mechanics.

First, let’s take a brief look at how the spatial rotation operator is defined.
If we rotate a vector x in R3, then we obtain a new vector x′ = R(θ)x where
R(θ) is the matrix that represents the rotation. In two dimensions this is

[
x′

y′

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
.

If we have a scalar wavefunction ψ(x), then under rotation we obtain a new
wavefunction ψR(x′), where ψ(x) = ψR(x′) = ψR(R(θ)x). (See the figure
below.)

x

x
′

θ
ψ(x)

ψR(x′)

Alternatively, we can write

ψR(x) = ψ(R−1(θ)x).

Since R is an orthogonal transformation (it preserves the length of x) we know
that R−1(θ) = RT (θ), and in the case where θ ≪ 1 we then have

R−1(θ)x =

[
x+ θy
−θx+ y

]
.

Expanding ψ(R−1(θ)x) with these values for x and y we have

ψR(x) = ψ(x+ θy, y − θx) = ψ(x)− θ[x∂y − y∂x]ψ(x)

or, using pi = −i∂i this is

ψR(x) = ψ(x)− iθ[xpy − ypx]ψ(x) = [1− iθLz]ψ(x).

For finite θ we exponentiate this to write ψR(x) = e−iθLzψ(x), and in the case
of an arbitrary angle θ in R3 this becomes

ψR(x) = e−iθ·Lψ(x).
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In an abstract notation we write this as

|ψR〉 = U(R)|ψ〉

where U(R) = e−iθ·L. For simplicity and clarity, we have written U(R) rather
than the more complete U(R(θ)) which we continue to do unless the more
complete notation is needed.

What we just did was for orbital angular momentum. In the case of spin there
is no classical counterpart, so we define the spin angular momentum operator
S to obey the usual commutation relations, and the spin states to transform
under the rotation operator e−iθ·S. It is common to use the symbol J to stand
for any type of angular momentum operator, for example L,S or L+S, and this
is what we shall do from now on. The operator J is called the total angular

momentum operator. (This example applied to a scalar wavefunction ψ,
which represents a spinless particle. Particles with spin are described by vector
wavefunctions ψ (as we have seen for the Dirac spinors), and in this case the
spin operator S serves to mix up the components of ψ under rotations.)

The angular momentum operators J2 = J · J and Jz commute and hence
have the simultaneous eigenstates denoted by |jm〉 with the property that (with
~ = 1)

J2|jm〉 = j(j + 1)|jm〉 and Jz|jm〉 = m|jm〉
where m takes the 2j + 1 values −j ≤ m ≤ j. Since the rotation operator is
given by U(R) = e−iθ·J we see that [U(R), J2] = 0. Then

J2U(R)|jm〉 = U(R)J2|jm〉 = j(j + 1)U(R)|jm〉

so that the magnitude of the angular momentum can’t change under rotations.
However, [U(R), Jz] 6= 0 so the rotated state will no longer be an eigenstate of
Jz with the same eigenvalue m.

Note that acting to the right we have the matrix element

〈j′m′|J2U(R)|jm〉 = 〈j′m′|U(R)J2|jm〉 = j(j + 1)〈j′m′|U(R)|jm〉

while acting to the left gives

〈j′m′|J2U(R)|jm〉 = j′(j′ + 1)〈j′m′|U(R)|jm〉

and therefore
〈j′m′|U(R)|jm〉 = 0 unless j = j′. (98)

We also make note of the fact that acting with J2 and Jz in both directions
yields

〈j′m′|J2|jm〉 = j′(j′ + 1)〈j′m′|jm〉 = j(j + 1)〈j′m′|jm〉
and

〈jm′|Jz |jm〉 = m′〈jm′|jm〉 = m〈jm′|jm〉
so that (as you should have already known)

〈j′m′|jm〉 = δj′jδm′m. (99)
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In other words, the states |jm〉 form a complete orthonormal set, and the state
U(R)|jm〉 must be of the form

U(R)|jm〉 =
∑

m′

|jm′〉〈jm′|U(R)|jm〉 =
∑

m′

|jm′〉D(j)
m′m(θ) (100)

where
D

(j)
m′m(θ) := 〈jm′|U(R)|jm〉 = 〈jm′|e−iθ·J|jm〉. (101)

(Notice the order of susbscripts in the sum in equation (100). This is the same as
the usual definition of the matrix representation [T ]e = (aij) of a linear operator
T : V → V defined by Tei =

∑
j ejaji.)

Since for each j there are 2j + 1 values of m, we have constructed a (2j +
1)× (2j+1) matrix D(j)(θ) for each value of j. This matrix is referred to as the
jth irreducible representation of the rotation group. The word “irreducible”
means that there is no subset of the space of states {|jj〉, |j,m− 1〉, . . . , |j,−j〉}
that transforms into itself under all rotations U(R(θ)). Put in another way, a
representation is irreducible if the vector space on which it acts has no invariant
subspaces.

Now, it is a general result of the theory of group representations that any
representation of a finite group or compact Lie group is equivalent to a unitary
representation, and any reducible unitary representation is completely reducible.
Therefore, any representation of a finite group or compact Lie group is either
already irreducible or else it is completely reducible (i.e., the space on which the
operators act can be put into block diagonal form where each block corresponds
to an invariant subspace). However, at this point we don’t want to get into the
general theory of representations, so let us prove directly that the representa-
tions D(j)(θ) of the rotation group are irreducible. Recall that the raising and
lowering operators J± are defined by

J±|jm〉 = (Jx ± iJy)|jm〉 =
√
j(j + 1)−m(m± 1) |j,m± 1〉.

In particular, the operators J± don’t change the value of j when acting on the
states |jm〉.

Theorem 5. The representations D(j)(θ) of the rotation group are irreducible.
In other words, there is no subspace of the space of states |jm〉 (for fixed j) that
transforms among itself under all rotations.

Proof. Fix j and let V be the space spanned by the 2j+ 1 vectors |jm〉 := |m〉.
We claim that V is irreducible with respect to rotations U(R). This means
that given any |u〉 ∈ V , the set of all vectors of the form U(R)|u〉 (i.e., for all
rotations U(R)) spans V . (Otherwise, if there exists |v〉 such that {U(R)|v〉}
didn’t span V , then V would be reducible since the collection of all such U(R)|v〉
would define an invariant subspace.)
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To show V is irreducible, let Ṽ = span{U(R)|u〉} where |u〉 ∈ V is arbitrary
but fixed. For infinitesimal θ we have U(R(θ)) = e−iθ·J = 1 − iθ · J and in
particular U(R(εx̂)) = 1− iεJx and U(R(εŷ)) = 1− iεJy. Then

J±|u〉 = (Jx ± iJy)|u〉 =

{
1

iε
[1− U(R(εx̂))]± i

(
1

iε
[1− U(R(εŷ))]

)}
|u〉

=
1

ε

{
± [1− U(R(εŷ))]− i+ iU(R(εx̂))

}
|u〉 ∈ Ṽ

by definition of Ṽ and vector spaces. Since J± acting on |u〉 is a linear combi-

nation of rotations acting on |u〉 and this is in Ṽ , we see that (J±)2 acting on
|u〉 is again some other linear combination of rotations acting on |u〉 and hence

is also in Ṽ . So in general, we see that (J±)n|u〉 is again in Ṽ .
By definition of V , we may write (since j is fixed)

|u〉 =
∑

m

|jm〉〈jm|u〉 =
∑

m

|m〉〈m|u〉

= |m〉〈m|u〉+ |m+ 1〉〈m+ 1|u〉+ · · ·+ |j〉〈j|u〉

where m is simply the smallest value of m for which 〈m|u〉 6= 0 (and not all
of the terms up to 〈j|u〉 are necessarily nonzero). Acting on this with J+ we
obtain (leaving off the constant factors and noting that J+|j〉 = 0)

J+|u〉 ∼ |m+ 1〉〈m|u〉+ |m+ 2〉〈m+ 1|u〉+ · · ·+ |j〉〈j − 1|u〉 ∈ Ṽ .

Since 〈m|u〉 6= 0 by assumption, it follows that |m+ 1〉 ∈ Ṽ .
We can continue to act on |u〉 with J+ a total of j−m times at which point

we will have shown that |m+ j −m〉 = |j〉 := |jj〉 ∈ Ṽ . Now we can apply J−
2j + 1 times to |jj〉 to conclude that the 2j + 1 vectors |jm〉 all belong to Ṽ ,

and thus Ṽ = V . (This is because we have really just applied the combination
of rotations (J−)2j+1(J+)j−m to |u〉, and each step along the way is just some

vector in Ṽ .) v
Now suppose that we have two angular momenta J1 and J2 with [J1,J2] = 0.

Then J1
2, J2

2, J1z and J2z all commute, and hence we can construct simultane-
ous eigenstates which we write as |j1j1m1m2〉. Furthermore, with J = J1 + J2

it follows that J2, Jz , J1
2 and J2

2 all commute, and hence we can also con-
struct the simultaneous eigenstates |j1j2jm〉. However, J2 does not commute
with either J1z or J2z , so if we specify J2, then we are only free to also specify
Jz = J1z + J2z and not J1z or J2z individually.

Since j1 and j2 are fixed, there are 2j1 +1 possible values for m1, and 2j2 +1
possible values of m2 for a total of (2j1 +1)(2j2 +1) linearly independent states
of the form |j1j2m1m2〉, which must be the same as the number of states of the
form |j1j2jm〉. The maximum possible value of m = m1 +m2 is j1 + j2. But
the next value j1 + j2− 1 can be due to either m1 = j1 and m2 = j2− 1, or due
to m1 = j1 − 1 and m2 = j2. And as we go to lower values of m, there will be
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even more possible choices. Since the largest m value is j1 + j2, there must be a
state of total j = j1 + j2, and a multiplet of 2(j1 + j2) + 1 states corresponding
to this value of j. But this j = j1 + j2 state only accounts for one of the states
with m = j1 + j2−1, and hence there must be another state with j = j1 + j2−1
and its corresponding multiplet of 2(j1 + j2 − 1) + 1 states |j1j2jm〉.

We can continue to consider states with lower and lower j values and corre-
sponding multiplets of 2j + 1 possible m values. However, the total number of
states must equal (2j1 + 1)(2j2 + 1), and hence we have the relation

j1+j1∑

j=N

2j + 1 = (2j1 + 1)(2j2 + 1)

where N is to be determined. Using the formula (which you can check)

n2∑

j=n1

j =
1

2
(n2 − n1 + 1)(n2 + n1)

it takes a little bit of elementary algebra to show that N2 = (j1 − j2)
2 and

therefore the minimum value of j is |j1 − j2|, i.e., |j1 − j2| ≤ j ≤ j1 + j2.
What else can we say about the angular momentum states |j1j2m1m2〉?

These are really direct product states and are written in the equivalent forms

|j1j2m1m2〉 = |j1m1〉 ⊗ |j2m2〉 = |j1m1〉|j2m2〉.

(Remark: You may recall from linear algebra that given two vector spaces V
and V ′, we may define a bilinear map V × V ′ → V ⊗ V ′ that takes ordered
pairs (v, v′) ∈ V × V ′ and gives a new vector denoted by v ⊗ v′. Since this
map is bilinear by definition, if we have the linear combinations v =

∑
xivi

and v′ =
∑
yjv

′
j then v ⊗ v′ =

∑
xiyj(vi ⊗ v′j). In particular, if V has basis

{ei} and V ′ has basis {e′j}, then {ei ⊗ e′j} is a basis for V ⊗ V ′ which is then
of dimension (dimV )(dim V ′) and called the direct (or tensor) product of
V and V ′. Then, if we are given two operators A ∈ L(V ) and B ∈ L(V ′),
the direct product of A and B is the operator A ⊗ B defined on V ⊗ V ′ by
(A⊗B)(v ⊗ v′) := A(v)⊗B(v′).)

When we write 〈j1j2m1m2|j′1j′2m′
1m

′
2〉 we really mean

(〈j1m1| ⊗ 〈j2m2|)(|j′1m′
1〉 ⊗ |j′2m′

2〉) = 〈j1m1|j′1m′
1〉〈j2m2|j′2m′

2〉

so that by equation (99) we have

〈j1j2m1m2|j′1j′2m′
1m

′
2〉 = δj1j′

1
δj2j′

2
δm1m′

1
δm2m′

2
(102)

We point out that a special case of this result is

〈j1j2m1m2|j1j2m′
1m

′
2〉 = δm1m′

1
δm2m′

2

As we will see below, the matrix elements 〈j1j2jm|j1j2m1m2〉 will be very
important to us. Now consider the expression Jz = J1z+J2z. What the operator
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on the right really stands for is J1z ⊗ I + I ⊗ J2z . Then on the one hand we
have

〈j1j2jm|Jz|j1j2m1m2〉 = 〈j1j2jm|(J1z ⊗ I + I ⊗ J2z)(|j1m1〉 ⊗ |j2m2〉)

= 〈j1j2jm|(J1z |j1m1〉 ⊗ |j2m2〉+ |j1m1〉 ⊗ J2z|j2m2〉)

= (m1 +m2)〈j1j2jm|(|j1m1〉 ⊗ |j2m2〉)

= (m1 +m2)〈j1j2jm|j1j2m1m2〉

while acting to the left with Jz we have

〈j1j2jm|Jz|j1j2m1m2〉 = m〈j1j2jm|j1j2m1m2〉.

Comparing these last two results shows that

〈j1j2jm|j1j2m1m2〉 = 0 unless m = m1 +m2. (103)

We also see that for i = 1, 2 we can let Ji
2 act either to the right or left also

and we have

〈j′1j′2jm|Ji
2|j1j2m1m2〉 = ji(ji + 1)〈j′1j′2jm|j1j2m1m2〉

= j′i(j
′
i + 1)〈j′1j′2jm|j1j2m1m2〉

so that
〈j′1j′2jm|j1j2m1m2〉 = 0 unless j′1 = j1 and j′2 = j2. (104)

In a similar manner, by letting the operator act to both the right and left we
can consider the matrix elements of J1

2, J2
2, J2 and Jz to show that (compare

with equation (102))

〈j′1j′2j′m′|j1j2jm〉 = δj′
1
j1δj′2j2δj′jδm′m (105)

Since both of the sets {|j1j2m1m2〉} and {|j1j2jm〉} are complete (i.e., they
form a basis for the two particle angular momentum states where j1 and j2 are
fixed), we can write either set as a function of the other:

|j1j2jm〉 =
∑

m1,m2

(m1+m2=m)

|j1j2m1m2〉〈j1j2m1m2|j1j2jm〉 (106)

or
|j1j2m1m2〉 =

∑

j
(m=m1+m2)

|j1j2jm〉〈j1j2jm|j1j2m1m2〉. (107)

The matrix elements 〈j1j2jm|j1j2m1m2〉 are called Clebsch-Gordan coeffi-

cients, and may always be taken to be real (see below). Note that the Clebsch-
Gordan coefficients are nothing more than the matrix elements of the transition
matrix that changes between the |j1j2jm〉 basis and the |j1j2m1m2〉 basis. In
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fact, since both bases are orthonormal, the Clebsch-Gordan coefficients define a
unitary transformation matrix.

That the Clebsch-Gordan coefficients may be taken as real is the so-called
“Condon-Shortley convention.” It follows from the fact that the maximum
values of j and m are jmax = j1 + j2 = mmax so that (leaving out the fixed j1
and j2 labels of the two particles so as not to be too confusing)

|jmaxmmax〉 =
∑

m1+m2=mmax

|m1m2〉〈m1m2|jmaxmmax〉

= |j1j2〉〈j1j2|jmaxmmax〉.

But then

〈jmaxmmax|jmaxmmax〉 = 〈jmaxmmax|j1j2〉〈j1j2|j1j2〉〈j1j2|jmaxmmax〉

or (since 〈jm|jm〉 = 〈m1m2|m1m2〉 = 1)

1 = |〈jmaxmmax|j1j2〉|2 .

Therefore we take as our (Condon-Shortley) convention 〈jmaxmmax|j1j2〉 := +1,
and this forces the rest of the Clebsch-Gordan coefficients to be real also since
they are constructed by repeated application of the operator J− = J1− + J2−

to the |jm〉 and |m1m2〉 states starting at the top.
Let us see what we can say about the rotation operator that acts on com-

posite angular momentum states. The corresponding rotation operator is

e−iθ·J = e−iθ·J1 ⊗ e−iθ·J2 = e−iθ·J1e−iθ·J2

where the last equality is just a commonly used shorthand notation. Writing
the rotation operator as the direct product U(R) = U1(R) ⊗ U2(R), its action
is defined by

[U1(R)⊗ U2(R)]|j1j2m1m2〉 = [U1(R)⊗ U2(R)](|j1m1〉 ⊗ |j2m2〉)
= U1(R)|j1m1〉 ⊗ U2(R)|j2m2〉.

Applying equation (100) we can now write

[U1(R)⊗ U2(R)]|j1j2m1m2〉 = U1(R)|j1m1〉 ⊗ U2(R)|j2m2〉

=
∑

m′
1
m′

2

|j1m′
1〉 ⊗ |j2m′

2〉D
(j1)
m′

1
m1

(θ)D
(j2)
m′

2
m2

(θ)

=
∑

m′
1
m′

2

|j1j2m′
1m

′
2〉D

(j1)
m′

1
m1

(θ)D
(j2)
m′

2
m2

(θ) (108)

which implies

〈j1j2m′
1m

′
2|U1(R)⊗ U2(R)|j1j2m1m2〉 = D

(j1)
m′

1
m1

(θ)D
(j2)
m′

2
m2

(θ). (109)
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We regard the left side of this equation as the m′
1m

′
2,m1m2 matrix element of a

[(2j1 +1)(2j2 +1)× (2j1 +1)(2j2 +1)]-dimensional matrix called the direct (or
Kronecker) product of D(j1)(θ) and D(j2)(θ) and written D(j1)(θ)⊗D(j2)(θ).
In other words

[D(j1)(θ)⊗D
(j2)(θ)]m′

1
m′

2
,m1m2

= D
(j1)
m′

1
m1

(θ)D
(j2)
m′

2
m2

(θ).

The double subscripts make the direct product of two matrices look confusing,
but the result really isn’t if we just use the definitions carefully. So to understand
this, we need to take another small linear algebra detour.

If we have a vector space V with basis {e1, . . . , en} and another space V ′

with basis {e′1, . . . , e′m}, then we have the space V ⊗V ′ with the basis {ei⊗ e′j}
which we take to have the ordering

{e1 ⊗ e′1, e1 ⊗ e′2, . . . , e1 ⊗ e′m, e2 ⊗ e′1, . . . , e2 ⊗ e′m, . . . , en ⊗ e′1, . . . , en ⊗ e′m}.

Given the operators A ∈ L(V ) and B ∈ L(V ′), the matrix representations of A
and B are defined by Aei =

∑
k ekaki and Be′j =

∑
l e

′
lblj , and thus the matrix

representation of A⊗B is also defined in the same way by

(A⊗B)(ei ⊗ e′j) = Aei ⊗Be′j =
∑

kl

(ek ⊗ e′l)akiblj =
∑

kl

(ek ⊗ e′l)(A⊗B)kl,ij .

But Aei is just the ith column of the matrix (aij), and now we have each row
and column labeled by a double subscript so that, e.g., the (1, 1)th column of
the matrix representation of A⊗B is given relative to the above ordered basis
by

(A⊗B)(e1 ⊗ e′1)

=
∑

kl

(ek ⊗ e′l)ak1bl1

= {a11b11, a11b21, . . . , a11bm1, a21b11, . . . , a21bm1, . . . , an1b11, . . . , an1bm1}

Since this is really a column vector, we see by careful inspection that it is just
a11 times the first column of B followed by a21 times the first column of B, and
so on down to an1 times the first column of B. And in general, the matrix of
A⊗B is given in block matrix form by




a11B a12B · · · a1nB

...
...

...

an1B an2B · · · annB


 .

There is another basic result from linear algebra that we should review before
treating U(R). Suppose we have an operator T ∈ L(V ), and let W be an
invariant subspace of V . By this we mean that T (W ) ⊂ W . Let {e1, . . . , em}
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be a basis for W , and extend this to a basis {e1, . . . , em, em+1, . . . , en} for V .
By definition of invariant subspace, for any 1 ≤ i ≤ m the effect of T on ei is
given by

Tei =

m∑

j=1

ejaji 1 ≤ i ≤ m

for appropriate scalars aji. Compare this to

Tei =
m∑

j=1

ejbji +
n∑

j=m+1

ejcji m+ 1 ≤ i ≤ n

for some scalars bji and cji where we have assumed that the subspace spanned
by {em+1, . . . , en} is not an invariant subspace itself. Since the ith column of
[T ] = (aij) is given by Tei, a moments thought should convince you that the
matrix representation for T will be of the block matrix form

[
A B
0 C

]
.

If it turns out that {em+1, . . . , en} also spans an invariant subspace W ′, then
for m + 1 ≤ i ≤ n we will have Tei =

∑n
j=m+1 ejcji and the representation of

T will look like [
A 0
0 C

]
.

In this case we have V = W ⊕W ′ (the direct sum) and we write T = TW ⊕TW ′

where TW is the restriction of T to W and TW ′ is the restriction of T to W ′.
(As a reminder, we say that V is the direct sum of subspaces W1, . . . ,Wr

if the union of bases for the Wi is a basis for V , and in this case we write
V = W1 ⊕ · · · ⊕Wr . If each of these Wi is also an invariant subspace with
respect to some operator T , then we write T = TW1

⊕ · · · ⊕ TWr
and its matrix

representation with respect to this basis will be block diagonal.)
Now let’s go back to the rotation operator U(R) = U1(R) ⊗ U2(R). When

we say that a representation is reducible, we mean there exists a basis for the
state space relative to which the matrix representation of all relevant operators
is block diagonal. We now want to show that the set of direct product matrices
is reducible, and thus in the |j1j2jm〉 basis the matrix representation of the
direct product takes the form




. . .



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where each block represents the (2j+1)× (2j+1) matrix D(j)(θ) for each value
of j = j1 + j2, j1 + j2 − 1, . . . , |j1 − j2|. Symbolically we write this as

D
(j1)(θ)⊗D

(j2)(θ) = D
(j1+j2)(θ)⊕D

(j1+j2−1)(θ)⊕ · · · ⊕D
|j1−j2|(θ) (110)

The idea here is just a somewhat complicated version of the usual result from
linear algebra dealing with the matrix representation of a linear operator under
a change of basis. So let’s first review that topic.

Given an operator T , its representation A = (aij) := [T ]e on a basis {ei} is
defined by Tei =

∑
j ejaji. If we want to change to a new basis {e′i}, then we

first define the transition matrix P by e′i =
∑

j ejpji. Then on the one hand we
have the representation A′ = (a′ij) := [T ]e′ given by

Te′i =
∑

j

e′ja
′
ji =

∑

j

∑

k

ekpkja
′
ji

while on the other hand we have

Te′i = T
(∑

j

ejpji

)
=
∑

j

(Tej)pji =
∑

j

∑

k

ekakjpji.

Equating these last two results and using the fact that the {ek} are a basis (and
hence linearly independent) we have

∑

j

pkja
′
ji =

∑

j

akjpji

which in matrix notation is just PA′ = AP . The transition matrix P must be
nonsingular because either basis can be written in terms of the other, so we are
left with the fundamental result

A′ = P−1AP.

Furthermore, if both bases are orthonormal, then P will be unitary so that
P−1 = P † = P ∗T and we have A′ = P †AP . In terms of components this is

a′ij =
∑

kl

p∗ki akl plj . (111)

Now let’s go back and prove equation (110). We first insert complete sets of
the states |jm〉 into the left side of equation (109) to obtain (again leaving out
the j1 and j2 for neatness)

〈m′
1m

′
2|U(R)|m1m2〉 =

∑

j′m′

jm

〈m′
1m

′
2|j′m′〉〈j′m′|U(R)|jm〉〈jm|m1m2〉

=
∑

j′m′

jm

〈m′
1m

′
2|j′m′〉〈m1m2|jm〉D(j)

m′m(θ)δj′j

=
∑

j′m′m

〈m′
1m

′
2|j′m′〉〈m1m2|j′m〉D(j′)

m′m(θ) (112)
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where the second line follows from equations (98), (101) and the fact that the
Clebsch-Gordan coefficients are real. From equation (109) we then have (after
relabeling the dummy index j′ → j)

D
(j1)
m′

1
m1

(θ)D
(j2)
m′

2
m2

(θ) =
∑

jm′m

〈m′
1m

′
2|jm′〉〈m1m2|jm〉D(j)

m′m(θ) (113)

where the sum is over |j1 − j2| ≤ j ≤ j1+j2. Equation (113) is sometimes called
the Clebsch-Gordan series. Also note that there is no real sum over m′ and
m in this equation because we must have m′ = m′

1 +m′
2 and m = m1 +m2.

Analogous to the akl in equation (111), we write equation (112) as

〈m′
1m

′
2|U1(R)⊗ U2(R)|m1m2〉 := Rm′

1
m′

2
,m1m2

=
∑

j′m′m

〈m′
1m

′
2|j′m′〉〈m1m2|j′m〉D(j′)

m′m(θ).

From equation (106) we have the (real) transition matrix elements which we
write as

pm1m2,jm = 〈m1m2|jm〉.
Defining the analogue of a′ij in equation (111) by

R′
j′m′,jm := 〈j′m′|U(R)|jm〉

we then have

〈j′m′|U(R)|jm〉 =
∑

m̄1m̄2

m̄′
1
m̄′

2

〈m̄1m̄2|j′m′〉Rm̄1m̄2,m̄′
1
m̄′

2
〈m̄′

1m̄
′
2|jm〉

=
∑

m̄1m̄2

m̄′
1
m̄′

2

∑

j′′m′′m̄′′

〈m̄1m̄2|j′m′〉〈m̄1m̄2|j′′m′′〉〈m̄′
1m̄

′
2|j′′m̄′′〉

×D
(j′′)
m′′m̄′′(θ)〈m̄′

1m̄
′
2|jm〉.

But ∑

m̄1m̄2

〈j′m′|m̄1m̄2〉〈m̄1m̄2|j′′m′′〉 = 〈j′m′|j′′m′′〉 = δj′j′′δm′m′′

and ∑

m̄′
1
m̄′

2

〈j′′m̄′′|m̄′
1m̄

′
2〉〈m̄′

1m̄
′
2|jm〉 = 〈j′′m̄′′|jm〉 = δj′′jδm̄′′m

so we are left with

〈j′m′|U(R)|jm〉 =
∑

j′′m′′m̄′′

δj′j′′δm′m′′δj′′jδm̄′′mD
(j′′)
m′′m̄′′(θ) = D

(j)
m′m(θ)δj′j

(114)
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If on the two particle angular momentum space we take our ordered basis
{|jm〉} to be

{|j1 + j2, j1+j2〉, |j1 + j2, j1 + j2 − 1〉, . . . , |j1 + j2,−(j1 + j2)〉,
|j1 + j2 − 1, j1 + j2 − 1〉, . . . , |j1 + j2 − 1,−(j1 + j2 − 1)〉,
. . . , | |j1 − j2| , |j1 − j2|〉, . . . , | |j1 − j2| ,− |j1 − j2|〉}

then equation (114) is just equation (110) in terms of components.
Of course, had we just started with U(R) = e−iθ·J and used equations (99)

and (100) we would have again had

〈j′m′|U(R)|jm〉 =
∑

m′′

〈j′m′|jm′′〉D(j)
m′′m(θ) = D

(j)
m′m(θ)δj′j .

But this doesn’t show that in fact the matrix (112) can be put into the block
diagonal form (110). In other words, the operator e−iθ·J acts on the states |jm〉
in a manifestly block diagonal manner (due to equation (100)), whereas the
operator e−iθ·J1 ⊗ e−iθ·J2 acts on the states |m1m2〉 in the complicated manner
of equation (108), and we had to show that this could in fact be put into block
diagonal form by the appropriate change of basis.

10 Lorentz Invariance and Spin

Before turning to another derivation of the Dirac equation, we need to take
a more careful look at the inhomogeneous Lorentz group, also called the
Poincaré group. These are transformations of the form

xµ = Λµ
νx

ν + aµ (115)

where we are using the metric

gµν = gµν =




1
−1

−1
−1




and Λ satisfies
ΛT gΛ = g or gµνΛµ

αΛν
β = gαβ. (116)

(This is a consequence of requiring that xµxµ = xνxν where xµ = Λµ
νx

ν .) We
will refer to the transformation (115) as simply a “Lorentz transformation,” and
sometimes abbreviate it by simply LT. If we compose two successive transfor-
mations (115) we obtain

x
µ

= Λ
µ

νx
ν + aµ

= Λ
µ

ν(Λν
αx

α + aν) + aµ

= (Λ
µ

νΛν
α)xα + (Λ

µ
νa

ν + aµ) (117)
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which is just another LT, and hence the set of transformations (115) forms a
group called the “Poincaré group” as claimed.

From ΛT gΛ = g we see that (detΛ)2 = 1 so that detΛ = ±1. Since the
identity transformation has determinant equal to +1, we restrict ourselves to
the case detΛ = +1 because we will want to look at transformations that differ
infinitesimally from the identity transformation. It also follows from equation
(116) that gµνΛµ

0Λ
ν
0 = 1 or (Λ0

0)
2 = 1 +

∑
i(Λ

i
0)

2 ≥ 1 so that

Λ0
0 ≥ 1 or Λ0

0 ≤ −1.

Since only the case Λ0
0 ≥ 1 can be used for an infinitesimal transformation,

we will restrict ourselves from now on to the set of proper, orthochronous

Lorentz transformations. However, note that the set of all Lorentz transfor-
mations can be divided into four classes given by detΛ = ±1 and either Λ0

0 ≥ 1
or Λ0

0 ≤ −1.
Our goal is to relate this to quantum mechanics and the description of quan-

tum mechanical states, so to each transformation (115) we shall associate a uni-
tary operator on the (infinite-dimensional) Hilbert space of all physical state
vectors, denoted by U(a,Λ). The effect of this operator is defined by

U(a,Λ)ψ(x) := ψ(Λx+ a).

From equation (115) we have

U(a,Λ) = U(a, 1)U(0,Λ) := U(a)U(Λ). (118)

Then using equation (117) we have the multiplication law

U(a′,Λ′)U(a,Λ) = U(Λ′a+ a′,Λ′Λ) (119)

and therefore, in particular

U(a′)U(a) = U(a′ + a) (120a)

U(Λ′)U(Λ) = U(Λ′Λ). (120b)

For an infinitesimal transformation

Λµ
ν = gµ

ν + ωµ
ν (121)

we have from equation (116)

gαβ = (gµ
α + ωµ

α)(gν
β + ων

β)gµν = (gµ
α + ωµ

α)(gµβ + ωµβ)

= gαβ + ωβα + ωαβ

and therefore
ωαβ = −ωβα.
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Then we write our operators in the form

U(a) = eiaµP µ

(122a)

U(Λ) = e
i
2
ωµνMµν

(122b)

where the generators Pµ and Mµν remain to be specified. (This is just expo-
nentiating the general form of an infinitesimal transformation. Note also that
we have included a factor of i in the definition of U(Λ) (as compared to equation
(92)) because we are now talking about quantum mechanical operators.)

Before proceeding, let us define just what is meant when we say that an
operator transforms as a vector. Recall from linear algebra (yet again) that
under a rotation R : v → v′ we have Rv = R(viei) = viRei = vie′jR

j
i. But

Rv = v′ = v′je′j so that v′j = Rj
iv

i defines how the components of a vector
transform. In quantum mechanics we require that the expectation values of an
operator transform in the same way. Thus, if |ψ〉 → |ψ′〉 = U(R)|ψ〉 where U(R)
is the unitary quantum mechanical operator corresponding to the rotation R,
then an operator A is defined to be a vector operator if

〈ψ′|Ai|ψ′〉 = Ri
j〈ψ|Aj |ψ〉.

Using |ψ′〉 = U(R)|ψ〉 and the fact that |ψ〉 is arbitary, this yields

U †(R)AiU(R) = Ri
jA

j (123)

where (Ri
j) is a real, orthogonal matrix that represents rotations in R3.

If we require that the expectation value of a rotated operator in the original
state be the same as the expectation value of the original operator in the rotated
state, then 〈ψ|A′|ψ〉 = 〈ψ′|A|ψ′〉 = 〈ψ|U †(R)AU(R)|ψ〉 so that

A′i = U †(R)AiU(R) = Ri
jA

j

which shows the meaning of equation (123). (This is just the difference between
active and passive transformations.) In addition, we can multiply both sides
of equation (123) by (R−1)k

i and sum to write U †(R)(R−1)k
iA

iU(R) = Ak so
that (since U † = U−1)

U(R)AkU−1(R) = (R−1)k
iA

i (124)

which we take as an equivalent definition of a vector operator.
The only difference between this rotational case and our present purposes

is that now we are using a Lorentz transformation Λµ
ν instead of the rotation

matrix Ri
j , but otherwise everything is exactly the same since Λ is also an

orthogonal transformation. (In fact, this is the same as we saw earlier with
equation (31) describing why the Dirac gamma matrices are said to transform
as vectors.)

(It should be pointed out that what we have done is not the same as
changing between “pictures” such as the Schrödinger and Heisenberg repre-
sentations. In that case, we require that the expectation value of an oper-
ator in the Schrödinger picture in a Schrödinger state be the same as the
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expectation value of a Heisenberg operator in a Heisenberg state. In other
words, 〈ψS |AS |ψS〉 := 〈ψH |AH |ψH〉, and if |ψH〉 = U(t)|ψS〉(= e+iEt|ψS〉),
then 〈ψH |AH |ψH〉 = 〈ψS |U †(t)AHU(t)|ψS〉 so that AH = U(t)ASU

†(t). Note
that the U(t) and U †(t) are reversed from what they are in equation (123).)

Another point that we should discuss is the commutation relation between
vector operators and the generator of rotations, i.e., the angular momentum
operators. These will serve to help classify certain operators. So, recall from
classical mechanics that a vector v undergoing a rotation dθ changes by an
amount dv as shown in the figure below.

α

dθ

dv

v

v + dv

We have ‖dv‖ = ‖v‖ sinα ‖dθ‖ in the direction shown (i.e., perpendicular to
the plane defined by v and dθ) so that dv = dθ × v and v→ v + dv.

But we just saw above that under a rotation R we have vi → Ri
jv

j so that
(using (dθ × v)i = εijkdθjvk and then relabeling)

vi → v′i = Ri
jv

j = vi + dvi = vi + εijkdθjvk = (δij + εikjdθk)vj

which shows that to first order we have (where in this case there is no difference
between upper and lower indices since in R3 with cartesian coordinates we have
gij = δij anyway)

Ri
j = δi

j − εi
jkdθ

k. (125)

Next, expand the left side of (123) to first order using U(R) = e−idθ·J to yield

(1 + idθ · J)Ai(1 − idθ · J) = Ai − idθj [A
i, Jj ].

Finally, using equation (125) in (123) we obtain [Ai, Jj ] = iεijkAk which we can
write as

[J i, Aj ] = iεijkAk. (126)

This then is the commutation relation of a vector operator with the generator
of angular momentum.

Now back to where we were. To define the Poincaré algebra, we need to
obtain the commutation relations for the generators. Since [A,B] = 0 implies
eAeB = eA+B, we see from equations (120a) and (122a) that

[Pµ, P ν ] = 0. (127)

Now put equation (118) into (119) and use (120b):

U(a′)U(Λ′)U(a)U(Λ) = U(a′)U(Λ′a)U(Λ′)U(Λ)
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so that
U(Λ′)U(a)U−1(Λ′) = U(Λ′a)

or (dropping the prime on Λ)

U(Λ)eiaµP µ

U−1(Λ) = eiΛµ
νaνP µ

.

To first order this is

U(Λ)(1 + iaµP
µ)U−1(Λ) = 1 + iP νΛν

µaµ

and hence
U(Λ)PµU−1(Λ) = P νΛν

µ = (Λ−1)µ
νP

ν (128)

so that comparison with equation (124) shows that the operator Pµ transforms
as a 4-vector.

An equivalent way of writing equation (128) is

U−1(Λ)PµU(Λ) = Λµ
νP

ν . (129)

It is worth pointing out the physical meaning of this equation. Suppose we have
an eigenstate of Pµ:

Pµ|Ψp〉 = pµ|Ψp〉.
Then acting on |Ψp〉 with U(Λ) results in a state with eigenvalue p′µ = Λµ

νp
ν

because

Pµ[U(Λ)|Ψp〉] = U(Λ)[U−1(Λ)PµU(Λ)]|Ψp〉 = U(Λ)[Λµ
νp

ν ]|Ψp〉
= Λµ

νp
ν [U(Λ)|Ψp〉]. (130)

In other words, U(Λ) boosts a state with eigenvalue p to a state with eigenvalue
Λp. Alternatively, we can say that the expectation value of the operator Pµ in
the boosted state is the same as the expectation value of the boosted operator
ΛP in the original state.

Next we want to find the commutation relations for the generators Mµν .
Using equation (122b) for infinitesimal ωµν together with equation (121) in
(128) we have

(1 +
i

2
ωµνM

µν)Pα(1− i

2
ωρσM

ρσ) = (gα
β − ωα

β)P β

or

(1 +
i

2
ωµνM

µν)(Pα − i

2
ωρσP

αMρσ) = Pα − ωα
βP

β

so that (to first order as usual)

Pα − i

2
ωµνP

αMµν +
i

2
ωµνM

µνPα = Pα − ωα
βP

β = Pα − gαµωµνP
ν

= Pα − 1

2
ωµν(gαµP ν − gανPµ)
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where in the last line we antisymmetrized over the indices µ and ν. Canceling
Pα and equating the coefficients of ωµν (which is just some arbitrary number)
we are left with

[Mµν , Pα] = −i(Pµgνα − P νgµα). (131)

It will be important to us later to realize that this result applies to any 4-
vector, and not just Pµ. This is because equation (128) applies to any 4-vector
by definition.

Since ωµν is antisymmetric, we may just as well assume that Mµν is too, so
let us define the quantities (essentially the same as we did in Section 8)

Ki = Mi0 and Ji =
1

2
εijkM

jk. (132)

In order to find the commutation relations for the Ji and Ki, we need those for
the Mµν . To obtain these, we perform the following manipulations.

First note that

U(Λ)U−1(Λ) = 1 = U(ΛΛ−1) = U(Λ)U(Λ−1)

and therefore
U−1(Λ) = U(Λ−1).

(This is really just a special case of the general result from group theory that
if ϕ : G → G′ is a homomorphism of groups, then for any g ∈ G we have
e′ = ϕ(e) = ϕ(gg−1) = ϕ(g)ϕ(g−1) so that ϕ(g)−1 = ϕ(g−1). In this case, the
operator U(Λ) is the image of the group element Λ under the homomorphism
U : Λ → U(Λ). We are also writing U−1(Λ) rather than the more correct
U(Λ)−1, but this is common practice.) Next we have

U(Λ)U(Λ′)U−1(Λ) = U(ΛΛ′Λ−1)

which we want to evaluate for infinitesimal transformations. In a symbolic
notation, if we have Λ′ = 1 + ω′ so that ΛΛ′Λ−1 = 1 + Λω′Λ−1 := 1 + ω̃, then

ω̃µν = Λµ
αω′

αβ(Λ−1)β
ν = (Λ−1)α

µ(Λ−1)β
νω

′
αβ .

Therefore

U(ΛΛ′Λ−1) = 1 +
i

2
ω̃µνM

µν = 1 +
i

2
(Λ−1)α

µ(Λ−1)β
νω

′
αβM

µν . (133)

But

U(Λ)U(Λ′)U−1(Λ) = U(Λ)(1 +
i

2
ω′

αβM
αβ)U−1(Λ)

= 1 +
i

2
ω′

αβU(Λ)MαβU−1(Λ) (134)

so that equating equations (133) and (134) yields

U(Λ)MαβU−1(Λ) = (Λ−1)α
µ(Λ−1)β

νM
µν . (135)
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This equation shows (by definition) thatMµν transforms as a second rank tensor
operator.

Using (Λ−1)α
µ = gα

µ − ωα
µ in equation (135) we have

(1 +
i

2
ωµνM

µν)Mαβ(1 − i

2
ωµνM

µν) = (gα
µ − ωα

µ)(gβ
ν − ωβ

ν)Mµν

which to first order expands to

Mαβ − i

2
ωµνM

αβMµν +
i

2
ωµνM

µνMαβ = Mαβ − ωβ
νM

αν − ωα
µM

µβ

or
i

2
ωµν [Mµν ,Mαβ] = −Mανωβ

ν −Mνβωα
ν .

Antisymmetrizing over µ and ν we can write the two terms on the right side of
this equation as

Mανωβ
ν = Mανωµνg

µβ =
1

2
ωµν(Mανgµβ −Mαµgνβ)

and

Mνβωα
ν = Mνβωµνg

µα =
1

2
ωµν(Mνβgµα −Mµβgνα).

Using these, we finally obtain the commutation relation for the generators Mµν

[Mµν ,Mαβ ] = i(Mανgµβ +Mνβgµα −Mαµgνβ −Mµβgνα). (136)

Equations (127), (131) and (136) define the Poincaré algebra. An explicit
example of the generators is provided by the matrix Σµν defined in equation
(46). You should be able to see the reason for this.

(Technically, one says that these generators define the Lie algebra of the
Poincaré group, so let me briefly explain what is going on. The Poincaré (or
inhomogeneous Lorentz) group consists of translations (in four directions), ro-
tations (with three degrees of freedom) and boosts (in three directions), each of
which is specified by some set of parameters. In other words, we can think of
each group element as a point in a (in this case) 10-dimensional space. To each
point in this space we associate an operator U(a,Λ) = U(a)U(Λ) and hence a
matrix. We expand these operators in a neighborhood of the identity, and as
each group parameter is varied, a curve is traced out in the differentiable man-
ifold that defines the group space. The derivative of this coordinate curve with
respect to its parameter is the tangent vector to the curve at that point. The
generators are then the tangent vectors to each coordinate curve at the identity,
and the vector space spanned by the generators is the Lie algebra (which is
then the tangent space at the identity). (In general, an algebra is a vector
space on which we have also defined the vector product of two vectors. In this
case, the product is the commutator (or Lie bracket).) In other words, the
generators are a basis for the tangent space at the identity (the Lie algebra). It
can be shown that by exponentiating the Lie algebra, one can construct every
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group element (i.e., the operators U(a,Λ)) at least in a neighborhood of the
identity. The question of whether or not we can get to every group element by
exponentiating the Lie algebra is a nontrivial one, and the answer depends on
the topology of the group in question.)

At last we are ready to find the commutation relations for the generators J

and K. Remember that now we are doing this calculation in R3 with the metric
gij = δij as discussed following equations (93). Furthermore, εijk is just the
permutation symbol so it doesn’t carry spacetime (tensor) indices. Then using

εijkε
klm = δl

iδ
m
j − δm

i δ
l
j

or the equivalent form

εijkεklm = δliδmj − δmiδlj

we have

[Ji, Jj ] =
1

4
εilmεjrs[M

lm,M rs]

=
i

4
εilmεjrs(M

rmgsl +Mmsglr −M rlgsm −M lsgmr)

= i εilmεjrsM
rmgsl = i εilmεjrlM

rm

= −i εjrlεlimM
rm = −i(δjiδrm − δjmδri)M

rm

= iM ij

where M rmδrm = M rr = 0 since M rm is antisymmetric. But we can invert the
equation

Ji =
1

2
εijkM

jk

to write

εlmiJi =
1

2
εlmiεijkM

jk =
1

2
(δljδmk − δlkδmj)M

jk =
1

2
(M lm −Mml) = M lm

and therefore

[Ji, Jj ] = iεijkJk. (137a)

Similarly, we find

[Ji,Kj ] = iεijkKk (137b)

[Ki,Kj ] = −iεijkJk (137c)

It should be clear that J generates rotations and K generates boosts. It is
also important to note that comparing equations (137b) and (126) we see that
K is a polar (or true) vector, whereas J is an axial (or pseudo) vector. This is
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because letting J → −J, the left side of (137a) does not change sign, whereas
the right side does. This is also a consequence of the fact that J is essentially
the angular momentum operator r × p which, because of the cross product,
depends on the chosen orientation of the coordinate system for its definition.
Indeed, under the parity operation x → −x, the boost generators M i0 defined
in Section 8 will change sign because we would have β → −β, but the spatial
rotation generators M ij will not change sign. (This is essentially because under
a rotation dθ we have dv = dθ× v and this doesn’t change sign if both dθ and
v change sign.)

Now let’s write out the term

ωµνM
µν = 2ω0iM

0i + ωijM
ij = −2ω0iKi + ωijεijkJk

so that we may write

U(Λ) = e
i
2
ωµνMµν

= e−ia·J+ib·K. (138)

Define

A =
1

2
(J + iK) and B =

1

2
(J− iK) (139)

or, equivalently,

J = A + B and K = −i(A−B). (140)

The reason for this is that now A and B satisfy the simple commutation relations

[Ai, Aj ] = iεijkAk (141a)

[Bi, Bj ] = iεijkBk (141b)

[Ai, Bj ] = 0 (141c)

so they are commuting angular momentum generators. (These are just what we
had in equations (95).)

Using equation (140) in (138) we have (by (141c) also)

U(Λ) = eA·(b−ia)e−B·(b+ia) (142)

and we have (again) decomposed our Lorentz transformation into a product of
two rotations, i.e., a direct product. It is also worth pointing out that the U(Λ)
of equation (142) is unitary if and only if b = 0, i.e., only for a rotation.

Because of equations (141), the generators A and B are represented by
(2A + 1)- and (2B + 1)-dimensional angular momentum matrices respectively.
Treating A and B as independent variables, we then describe a particle of spin
J = A + B. We thus define the [(2A + 1) × (2B + 1)]-dimensional irreducible
representation (A,B) for any integer values of 2A and 2B by

〈a′b′|A|ab〉 = δb′bJ
(A)
a′a and 〈a′b′|B|ab〉 = δa′aJ

(B)
b′b (143)
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where a = −A, . . . , A, b = −B, . . . , B and the states are really |ab〉 = |a〉 ⊗ |b〉.
The operators are really A⊗ I and I ⊗B so that J

(A)
a′a = 〈a′|A|a〉 and similarly

for B. In other words, the operators J(j) are the usual (2j + 1)-dimensional
representation of the rotation group, i.e.,

〈jσ′|Jz |jσ〉 = δσ′σσ

and
〈jσ′|J±|jσ〉 =

√
j(j + 1)− σ(σ ± 1)δσ′,σ±1.

Although the representation (A,B) is in general reducible, as shown previously
it is reducible for rotations alone. In other words, it is the product of (2A+ 1)-
and (2B + 1)-dimensional representations.

Now note that under space inversion (i.e., parity) we have J → +J (it’s an
axial vector), while K→ −K (it’s a polar vector). But then under space inver-
sion we have A→ B and B→ A so the representation (A,B)→ (B,A). There-
fore, if we want to construct a wave function that has space-innversion sym-
metry, it must transform under a representation of the form (j, j) or, we must
double the number of components and have them transform under (j, 0)⊕(0, j).
The representations are often denoted by D(A,B)(Λ). The (j, 0) representation
corresponds to A = J and B = 0, and the (2j + 1)-dimensional matrix repre-
senting a finite Lorentz transformation we be denoted by D(j)(Λ). Similarly, the
(0, j) representation corresponds to A = 0 and B = J and will be denoted by

D
(j)

(Λ). From equation (142) we see that the two representations are related
by

D(j)(Λ) = D
(j)

(Λ−1)†. (144)

Let us now see how to describe the action of a Lorentz transformation on
the states. Using equations (127) and (131) it is easy to verify that the operator

M
2 = PµP

µ (145)

commutes with all of the generators. (You will find it very helpful to use the
general identity [ab, c] = a[b, c] + [a, c]b.) We may thus classify the irreducible
representations of the group by the value of this invariant operator. Since the
Pµ all commute, they may be simultaneously diagonalized, and hence we define
the states |p〉 such that

Pµ|p〉 = pµ|p〉.
To interpret this, let’s look at translations as they are described in the

Schrödinger theory. If we consider a displacement x → x′ = x + a, then
ψ(x) → ψ′(x′) = ψ′(x + a) or ψ′(x) = ψ(x − a). Expanding the infinitesi-
mal case with ‖a‖ ≪ 1 we have

ψ′(x) = ψ(x− a) = ψ(x) − a ·∇ψ(x) = [1− ia ·P]ψ(x)

where P = −i∇ is the momentum operator. For a finite displacement we
exponentiate as usual to write

ψ′(x) = e−ia·Pψ(x).
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Now, the effect of U(a) (which generates translations by definition) acting
on a state |p〉 is given by

U(a)|p〉 = eiaµP µ |p〉 = eiaµpµ |p〉 = eia·p|p〉

so that comparing this with the Schrödinger theory, we identify Pµ as the 4-
momentum of the system. It is now clear that equation (145) represents the
square of the system’s mass.

Until further notice, all of what follows is based on the assumption that we
are dealing with particles of nonzero rest mass.

From experience, we know that one-particle states are also characterized by
their spin, i.e., the angular momentum in the rest frame of the particle. We now
seek the invariant operator that describes spin. Such an operator is

Wσ := −1

2
εµνρσM

µνP ρ (146)

which is called the Pauli-Lubanski spin vector. (We will discuss the represen-
tations of the Lorentz group in more detail below, and provide some motivation
for this definition when we define the little group.) Note that for a system at rest
we have P = 0 and hence Wσ = −(1/2)εµν0σM

µνP 0. Therefore, for a system
at rest we have W0 = 0 and Wi = −(1/2)εµν0iM

µνP 0 = −(1/2)ε0iµνM
µνP 0 =

−(1/2)εijkM
jkP 0 so that from equation (132) we see that Wi = −mJi. We

also clearly have
WσP

σ = 0 (147)

and from equation (131) it also follows that

[Wσ , P
µ] = 0. (148)

Since Wσ is a 4-vector by construction, it must also have the same commu-
tation relation with Mµν that Pσ does (see the comment immediately following
equation (131)), and hence

[Mµν ,Wσ] = −i(Wµgνσ −Wνgµσ). (149)

Then equations (148) and (149) may be used to easily prove

[Wα,Wβ ] = iεαβµνW
µP ν (150)

and
[Mµν ,WσW

σ] = 0. (151)

Thus, like M 2 = PµP
µ, equations (148) and (151) show that S 2 = WσW

σ

commutes with all of the generators. These two invariants are called Casimir

operators, and they are the only such operators for the Poincaré group. (It
is a nontrivial theorem that the number of Casimir operators of a Lie group is
equal to the rank of the group.)

We now have two operators which may be used to label the irreducible
representations. To find the eigenvalues of WσW

σ we go to the rest frame. Let
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L(p) be the Lorentz transformation which takes the 4-vector (m,0) to pµ. If
|Ψp〉 is the state vector for a system with 4-momentum pµ, then this system at
rest is obtained by operating on |Ψp〉 with U(L−1(p)), i.e.,

|Ψrest〉 = U(L−1(p))|Ψp〉.

Then we have

WσW
σ|Ψrest〉 = WσW

σU(L−1(p))|Ψp〉 = U(L−1(p))W ′
σW

′σ|Ψp〉 (152)

where the operator in the rest frame is given by

W ′
σ = U(L(p))WσU

−1(L(p))

and we used the fact that U(L−1(p)) = U−1(L(p)). Since Wσ is a 4-vector, we
use equation (128) to conclude that

W ′
σ = (L−1(p))σ

ρ
Wρ

or
W ′σ = (L−1(p))σ

ρW
ρ.

It is also easy to show directly that W ′
σW

′σ = WσW
σ. Indeed, we have

W ′
σW

′σ = (L−1(p))σ
α
(L−1(p))σ

βWαW
β = L(p)α

σ(L−1)σ
βWαW

β = WαW
α

or alternatively

W ′
σW

′σ = U(L(p))WσU
−1(L(p))U(L(p))W σU−1(L(p))

= U(L(p))WσW
σU−1(L(p))

= WσW
σ

because S 2 = WσW
σ commutes with all of the generators, and hence with any

U(a,Λ).
It is also worth noting that (since U(L(p)) is unitary)

〈Ψrest|WσW
σ|Ψrest〉 = 〈Ψp|U(L(p))WσW

σU−1(L(p))|Ψp〉 = 〈Ψp|WσW
σ|Ψp〉

and therefore we have the equivalent expectation values

〈Ψrest|W ′
σW

′σ|Ψrest〉 = 〈Ψrest|WσW
σ|Ψrest〉 = 〈Ψp|WσW

σ|Ψp〉
= 〈Ψp|W ′

σW
′σ|Ψp〉.

The reason for pointing this out is that while they are all mathematically equiv-
alent, we will show below that the operator W ′

σW
′σ is just −m2S2 which we

think of as measuring the spin of the particle. Since spin is just the angular
momentum in the rest frame, the comments following equation (123) suggest
that from an intuitive viewpoint we want to consider the expectation value
〈Ψrest|WσW

σ|Ψrest〉 = 〈Ψp|W ′
σW

′σ|Ψp〉.
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Now recall that equation (51) gives the pure boost Λµ
ν where x′µ = Λµ

νx
ν

and x is the lab frame while x′ is the moving (or rest) frame. In other words,
this Λµ

ν boosts from the frame with momentum p to the rest frame.

Λµ
ν =




γ −γβ1 −γβ2 −γβ3

−γβ1 1 + (γ−1)
(β)2 (β1)2 (γ−1)

(β)2 β
1β2 (γ−1)

(β)2 β
1β3

−γβ2 (γ−1)
(β)2 β

2β1 1 + (γ−1)
(β)2 (β2)2 (γ−1)

(β)2 β
2β3

−γβ3 (γ−1)
(β)2 β

3β1 (γ−1)
(β)2 β

3β2 1 + (γ−1)
(β)2 (β3)2



.

To boost from the rest frame to the lab frame we have xµ = (Λ−1)µ
νx

′ν where
(Λ−1)µ

ν = (ΛT )µ
ν = Λν

µ := (L(p))µ
ν . Then (L−1(p))µ

ν = (L(p))ν
µ

= Λµ
ν .

Now we use the relativistic expressions Ep = γm, pi = γmβi and p2 =
E2

p −m2 = (Ep −m)(Ep +m) to write

γ =
Ep

m
and − γβi = −p

i

m
(153)

along with (since (β)2 = p2/γ2m2)

(γ − 1)

(β)2
βiβj =

(Ep/m− 1)

(p2/γ2m2)

pipj

γ2m2
=
Ep −m
mp2

pipj =
pipj

m(Ep +m)
.

Then in block matrix form we have

(L−1(p))µ
ν =




Ep/m −pi/m

−pi/m gi
j + pipj

m(Ep+m)


 .

We can now write out the components of W ′σ as follows (note pj = −pj and
PσW

σ = EpW
0 − p ·W = 0):

W ′0 = (L−1(p))0ρW
ρ = (Ep/m)W 0 − p ·W/m = (1/m)PσW

σ = 0

W ′i = (L−1(p))i
ρW

ρ = (L−1(p))10W
0 + (L−1(p))i

jW
j

= −p
i

m
W 0 +W i − pipjW

j

m(Ep +m)
= −p

i

m
W 0 +W i +

pi(p ·W)

m(Ep +m)

= W i − pi

m

[
W 0 − p ·W

Ep +m

]
= W i − piW 0

m

[
1− Ep

Ep +m

]

= W i − pi

Ep +m
W 0.

Since spin is the angular momentum in the rest frame, let us now define the
operators

Si = − 1

m
W ′i. (154)
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It can be shown, after a lot of algebra (see below for the details), that

[Si, Sj ] = iεijkSk (155)

which is just the usual commutation relation for an angular momentum operator
S where the eigenvalues of S2 are equal to s(s+1) with s = 0, 1

2 , 1,
3
2 , . . . . Since

W ′0 = 0, we now have

W ′
σW

′σ = W ′
iW

′i = −m2S2

so that (see equation (152))

WσW
σ|Ψrest〉 = U(L−1(p))W ′

σW
′σ|Ψp〉 = −m2s(s+ 1)U(L−1(p))|Ψp〉

or
WσW

σ|Ψrest〉 = −m2s(s+ 1)|Ψrest〉. (156)

In summary, the irreducible representations of the Poincaré group are char-
acterized by two invariants: mass and spin.

Now let’s go back and prove equation (155). This is equivalent to showing
that

[W ′
i ,W

′
j ] = −imεijkW

′k

because from the definition of Si we have Si = (−1/m)W ′i = (+1/m)W ′
i so

that
[W ′

i ,W
′
j ] = m2[Si, Sj] = m2iεijkSk = −imεijkW

′k.

We start from
W ′

i = Wi −
pi

E +m
W0

where now pi is a c-number since our states are eigenstates of Pµ, and where
for simplicity we write E instead of Ep. Then using equations (146), (149) and
(147) we have (note that now εµνρσ carries spacetime (tensor) indices because
of equation (146) where both sides are tensors)

[W ′
i ,W

′
j ] = [Wi −

pi

E +m
W0,Wj −

pj

E +m
W0]

= [Wi,Wj ]−
pj

E +m
[Wi,W0]−

pi

E +m
[W0,Wj ]

= −1

2
εµν

ρip
ρ[Mµν ,Wj ] +

1

2

pjp
ρ

E +m
εµν

ρi[Mµν ,W0]

− 1

2

pip
ρ

E +m
εµν

ρj [Mµν ,W0]

=
i

2
εµν

ρip
ρ(Wµgνj −Wνgµj)−

i

2

pjp
ρ

E +m
εµν

ρi(Wµgν0 −Wνgµ0)

+
i

2

pip
ρ

E +m
εµν

ρj(Wµgν0 −Wνgµ0)
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=
i

2
(εµ

jρip
ρWµ − ε ν

j ρip
ρWν)

− i

2

pρ

E +m
(pjε

µ
0ρiWµ − pjε

ν
0 ρiWν − piε

µ
0ρjWµ + piε

ν
0 ρjWν)

= iεµ
jρip

ρWµ − i
pρ

E +m
(pjε

µ
0ρiWµ − piε

µ
0ρjWµ)

= ipρWµ
(
εµjρi −

pj

E +m
εµ0ρi +

pi

E +m
εµ0ρj

)
.

Note that this last line vanishes identically if i = j, so we now assume that
i 6= j and expand the sums over µ and ρ, keeping in mind that the ε symbols
restrict the possible values of the indices. For example, since i 6= j we have
pρWµεµjρi = pρW 0ε0jρi + pρW kεkjρi where there is no sum over k because it
must be either 1, 2 or 3 depending on what i and j are. But now summing over
ρ we really don’t have any choices, so that pρWµεµjρi = pkW 0ε0jki +p

0W kεkj0i

where we stress that there is no sum over the repeated index k.
Continuing with this process we have (using the fact that p0 = E and re-

membering that there is no sum over any of the indices i, j, k)

[W ′
i ,W

′
j ] = ipρW 0ε0jρi + ipρW kεkjρi − i

pρpj

E +m
(W jεj0ρi +W kεk0ρi)

+ i
pρpi

E +m
(W iεi0ρj +W kεk0ρj)

= iε0jkip
kW 0 + iEW kεkj0i − i

pj

E +m
(W jεj0kip

k +W kεk0jip
j)

+ i
pi

E +m
(W iεi0kjp

k +W kεk0ijp
i).

Now use the antisymmetry of ε and note that ε0ijk is exactly the same as εijk

to write

[W ′
i ,W

′
j ] = iεijk

[
W 0pk −W kE

+
( 1

E +m

)
(W jpjp

k −W kpjpj +W ipip
k −W kpipi)

]
.

Next look at the four terms in parenthesis. By adding and subtracting the
additional term W kpkp

k we can rewrite this term as

(W ipi +W jpj +W kpk)pk −W k(pipi + pjpj + pkpk)

= (Wµpµ −W 0E)pk +W kp2

where we also used
∑3

l=1 p
lpl = −∑plpl = −p2. But Wµpµ = 0, and recalling

that E2 = p2 +m2 we finally have

[W ′
i ,W

′
j ] = iεijk

[
W 0pk −W kE +

( 1

E +m

)
(−W 0Epk +W kp2)

]
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= iεijk

[
W 0pk −W k

(
E − p2

E +m

)
−W 0pk

( E

E +m

)]

= iεijk

[
W 0pk −W k

(E2 +mE − p2

E +m

)
−W 0pk

( E

E +m

)]

= iεijk

[
W 0pk −mW k −W 0pk

( E

E +m

)]

= iεijk

[
W 0pk

(
1− E

E +m

)
−mW k

]

= iεijkm

[
W 0pk

E +m
−W k

]

= −imεijkW
′k

which is what we wanted to show.
We still have to motivate the definition (146) of the Pauli-Lubanski spin

vector. This is based on what is called the “method of induced representations”
of the inhomogeneous Lorentz group.

Since all of the Pµ commute, we can describe our states as eigenstates of the
4-momentum. Let us label these states as |Ψp,σ〉 where σ stands for all other
degrees of freedom necessary to describe the state. Then by definition we have

Pµ|Ψp,σ〉 = pµ|Ψp,σ〉.

From equation (122a) we see how these states transform under translations:

U(a)|Ψp,σ〉 = eiaµpµ |Ψp,σ〉.

What we now need to figure out is how they transform under homogeneous
Lorentz transformations U(Λ).

Using equation (129) we see that

Pµ[U(Λ)|Ψp,σ〉] = U(Λ)[U−1(Λ)PµU(Λ)]|Ψp,σ〉 = U(Λ)[Λµ
νP

ν ]|Ψp,σ〉
= Λµ

νp
ν [U(Λ)|Ψp,σ〉]

so that the state U(Λ)|Ψp,σ〉 is an eigenstate of Pµ with eigenvalue Λµ
νp

ν and
hence must be some linear combination of the states |ΨΛp,σ〉. Thus we write

U(Λ)|Ψp,σ〉 =
∑

σ′

Cσ′σ(Λ, p)|ΨΛp,σ′〉. (157)

We think of the |Ψp,σ〉 as forming a basis for the space carrying a representation
of the Poincaré group, and therefore in general the matrix Cσ′σ(Λ, p) will be
complicated. However, recall from basic linear algebra that we can diagonalize
a matrix by finding suitable linear combinations of the basis vectors (these will
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then form a basis of eigenvectors) relative to which the matrix is diagonal. But
if any eigenvalue has multiplicity greater than one, then all we can do is put the
matrix into block diagonal form where each block is an invariant subspace. In
our present situation, we will assume that by using suitable linear combinations
of the Cσ′σ(Λ, p) it is possible to choose the labels σ so that the matrix Cσ′σ(Λ, p)
will be block diagonal, and hence for σ in the appropriate range, each block will
form an irreducible representation of the Poincaré group. We will identify the
states of a specific type of particle with each of these irreducible representations.

To analyze the structure of the coefficients Cσ′σ(Λ, p) in a particular irre-
ducible representation, first note that all proper orthochronous Lorentz trans-
formations leave both the quantity pµp

µ and the sign of p0 invariant. Hence for
each value of p2 and each sign of p0, we can choose a “standard” 4-momentum
p̊µ and write any other pµ in this same class as

pµ = Lµ
ν(p)p̊ν (158)

where Lµ
ν(p) is some standard Lorentz transformation that depends both on

pµ and our reference p̊µ. (The six classes are p2 > 0 and p2 = 0 together with
each sign of p0, along with p2 < 0 and pµ = 0. But only the three classes
p2 > 0 with p0 > 0, p2 = 0 with p0 > 0, and pµ = 0 have any known physical
interpretation.) We then define the states |Ψp,σ〉 by

|Ψp,σ〉 := N(p)U(L(p))|Ψp̊,σ〉 (159)

where N(p) is a normalization factor to be determined.
Observe that p = L(p)p̊ so that Λp = L(Λp)p̊ where Λ is any homogeneous

Lorentz transformation. Then p̊ = L−1(Λp)Λp = L−1(Λp)ΛL(p)p̊ so that the
transformation L−1(Λp)ΛL(p) takes p̊ back to p̊. This transformation then
belongs to the subgroup of the homogeneous Lorentz group consisting of those
transformations Λ̊µ

ν that leave p̊ invariant:

Λ̊µ
ν p̊

ν = p̊µ. (160)

This subgroup is called the little group.
For example, if we consider the class defined by p2 > 0 and p0 > 0, then

we can take p̊µ = (m, 0, 0, 0) so that p̊2 = m2 > 0 and p̊0 = m > 0. Then
the little group is just SO(3) (the ordinary group of rotations in R3 with posi-
tive determinant) because rotations are the only proper orthochronous Lorentz
transformations that leave at rest a particle with p = 0.

For an infinitesimal transformation Λ̊µ
ν = gµ

ν + ω̊µ
ν we then must have

ω̊µ
ν p̊

ν = 0 (161)

and a general expression for ω̊µν that satisfies this is

ω̊µν = εµνρσ p̊
ρnσ
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where nσ is an arbitrary 4-vector. The corresponding unitary transformation
U(Λ̊) is then

U(Λ̊) = 1 +
i

2
ω̊µνM

µν = 1 +
i

2
εµνρσ p̊

ρnσMµν

or
U(Λ̊) = 1− inσWσ

where

Wσ =
1

2
εµνρσM

µνP ρ

is the Pauli-Lubanski spin vector. Note that we replaced p̊ρ by P ρ because U(Λ̊)
acts only on the states |Ψp̊,σ〉. This is the motivation for equation (146) that
we were looking for.

Since Λ̊p̊ = p̊, we see from equation (157) that we may write

U(Λ̊)|Ψp̊,σ〉 =
∑

σ′

Dσ′σ(Λ̊)|Ψp̊,σ′〉 (162)

where the Dσ′σ(Λ̊) form a representation of the little group. Indeed, for any
Λ̊, Λ̊′ we have

∑

σ′

Dσ′σ(Λ̊′Λ̊)|Ψp̊,σ′〉 = U(Λ̊′Λ̊)|Ψp̊,σ〉 = U(Λ̊′)U(Λ̊)|Ψp̊,σ〉

= U(Λ̊′)
∑

σ′′

Dσ′′σ(Λ̊)|Ψp̊,σ′′〉

=
∑

σ′σ′′

Dσ′′σ(Λ̊)Dσ′σ′′ (Λ̊′)|Ψp̊,σ′〉

which shows that

Dσ′σ(Λ̊′Λ̊) =
∑

σ′′

Dσ′σ′′(Λ̊′)Dσ′′σ(Λ̊)

and hence that the Dσ′σ(Λ̊) are in fact a representation of the little group (i.e., a
homomorphism from the group of all such Λ̊ to the group of matrices Dσ′σ(Λ̊)).

Acting on equation (159) with an arbitrary U(Λ) we have (by inserting the
identity transformation appropriately)

U(Λ)|Ψp,σ〉 = N(p)U(Λ)U(L(p))|Ψp̊,σ〉 = N(p)U(ΛL(p))|Ψp̊,σ〉

= N(p)U(L(Λp))U(L−1(Λp)ΛL(p))|Ψp̊,σ〉.

Let us define the little group transformation known as the Wigner rotation

W (Λ, p) := L−1(Λp)ΛL(p)
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(which was the original Λ̊ used as an example to define the little group) so using
equation (162) this last equation becomes

U(Λ)|Ψp,σ〉 = N(p)U(L(Λp))U(W (Λ, p))|Ψp̊,σ〉

= N(p)
∑

σ′

Dσ′σ(W (Λ, p))U(L(Λp))|Ψp̊,σ′〉

or, using equations (159) and (158)

U(Λ)|Ψp,σ〉 =
N(p)

N(Λp)

∑

σ′

Dσ′σ(W (Λ, p))|ΨΛp,σ′〉. (163)

Thus we see that, aside from determining the normalization factors, we have
reduced the problem of finding the coefficients Cσ′σ in equation (157) to the
problem of finding the representations of the little group. This is the method

of induced representations. For our present purposes, this is as far as we
really need to go with this.

However, we can take a look at the normalization because it will give us two
important basic results that are of great use in quantum field theory. We first
want to show that when integrating over p “on the mass shell” (meaning that
p2 = m2), the invariant volume element is

d3p

(2π)32ωp

where ωp = +
√

p2 +m2. (The numerical factors aren’t necessary for Lorentz
invariance.) To see this, first observe that

d4p

(2π)4
2πδ(p2 −m2)θ(p0)

is manifestly Lorentz invariant for proper orthochronous Lorentz transforma-
tions. (The step function is defined by θ(x) = 1 for x ≥ 0 and θ(x) = 0 for
x < 0.) This is because with detΛ = 1 we have d4p′ = |∂p′/∂p|d4p = d4p, and
for timelike pµ an orthochronous transformation can’t change the sign of p0 so
the step function doesn’t change. Then we have

d4p

(2π)4
2πδ(p2 −m2)θ(p0) =

d4p

(2π)3
δ(p2

0 − ω2
p)θ(p0)

=
d3p dp0

(2π)3
δ[(p0 − ωp)(p0 + ωp)]θ(p0)

=
d3p dp0

(2π)3
1

2ωp

[δ(p0 − ωp) + δ(p0 + ωp)]θ(p0)

=
d3p dp0

(2π)32ωp

δ(p0 − ωp)

=
d3p

(2π)32ωp
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where the first line is because p2 − m2 = p2
0 − p2 − m2 = p2

0 − ω2
p; the third

line follows because integrating over all p0 gives contributions at both p0 = +ωp

and p0 = −ωp, and using δ(ax) = (1/ |a|)δ(x); the fourth line is because the
theta function restricts the range of integration to p0 > 0 so δ(p0 + ωp) always
vanishes; and the last line follows because we want to integrate a function over
d3p so integrating over p0 with the delta function just gives 1. This result is
really a shorthand notation for

d3p

(2π)32ωp

=

∫

p0

d4p

(2π)4
2πδ(p2 −m2)θ(p0). (164)

Another way to see this is to write the integral of an arbitrary function
f(p) = f(p0,p) as

∫
d4p δ(p2 −m2)θ(p0)f(p) =

∫
d3p dp0 δ(p

2
0 − p2 −m2)θ(p0)f(p0,p)

=

∫
d3p

1

2ωp

δ(p0 − ωp)f(p0,p)

=

∫
d3p

2ωp

f(ωp,p)

which also shows that when integrating over the mass shell p2 = m2 the invariant
volume element is d3p/ωp = d3p/

√
p2 +m2.

The second result we want to show is that the invariant delta function

(2π)32ωpδ(p − q) is Lorentz invariant (where p2 = q2 = m2 and again the
numerical factors are not necessary). The easy way to see this is to use the
definition of the delta function to write

f(p) =

∫
d3q δ(p− q)f(q) =

∫
d3q

2ωq

[2ωqδ(p− q)]f(q).

But d3q/2ωq is Lorentz invariant, so 2ωqδ
3(p− q) must also be invariant.

The hard way to see this is a brute force calculation which is a good illus-
tration of how to manipulate the delta function. Consider a boost in the p3

direction:
p′1 = p1 p′2 = p2 p′3 = γ(p3 + βp0)

i.e., p′
⊥ = p⊥ and similarly for q. (These are the usual boost equations if you

remember that p0 = p0 while pi = −pi.) Now write

δ(p− q) = δ(p⊥ − q⊥)δ(p3 − q3) = δ(p′
⊥ − q′

⊥)δ(p3(p
′
3)− q3)

:= δ(p′
⊥ − q′

⊥)δ(f(p′3)).

If p′3,0 is a zero of f(p′3), then expanding to first order we have

f(p′3) = f(p′3,0) +
df

dp′3
(p′3,0)(p

′
3 − p′3,0) =

df

dp′3
(p′3,0)(p

′
3 − p′3,0)
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and therefore

δ(f(p′3)) =
1∣∣∣ df

dp′
3

∣∣∣
p′
3,0

δ(p′3 − p′3,0).

To find the zero of f(p′3) we first expand

0 = f(p′3) = γ(p′3 − βp′0)− q3 = γ
(
p′3 − β

√
p′2 +m2

)
− q3

= γ
(
p′3 − β

√
p′
⊥
2 + p′3

2 +m2
)
− q3.

To solve this for p′3 we rearrange it to write

q3 − γp′3 = −γβ
√

p′
⊥
2 + p′3

2 +m2

and then square both sides:

q23 + γ2p′3
2 − 2γq3p

′
3 = γ2β2

(
p′
⊥
2

+ p′3
2
+m2

)
.

Grouping the p′3
2

terms and using γ2(1 − β2) = 1 we have

p′3
2 − 2γq3p

′
3 + q3

2 − γ2β2
(
p′
⊥
2

+m2
)

= 0

which is just a quadratic in p′3. Using the quadratic formula we obtain

p′3,0 = γq3 ±
√
γ2q32 − q32 + γ2β2

(
p′
⊥
2 +m2

)

= γq3 ± γβ
√
q32 + p′

⊥
2 +m2

where we used γ2 − 1 = γ2β2.
Next we note that the factor δ(p⊥−q⊥) in the expression for δ(p−q) means

that we must have q⊥ = p⊥ = p′
⊥ so that (since p2 = q2 = m2)

p′3,0 = γq3 ± γβq0
so we take p′3,0 = γ(q3 + βq0) ≡ q′3. Now we evaluate dp3/dp

′
3 using p′0 =√

p′2 +m2:

dp3

dp′3
=

d

dp′3
γ(p′3 − βp′0) = γ − γβ dp

′
0

dp′3
= γ − γβ p

′
3

p′0

=
γ

p′0
(p′0 − βp′3) =

p0

p′0
=
ωp

ωp′

.

Finally, we put all of this together to find

δ(p− q) = δ(p⊥ − q⊥)δ(p3 − q3)

= δ(p′
⊥ − q′

⊥)
1∣∣∣ df

dp′
3

∣∣∣
p′
3
=q′

3

δ(p′3 − q′3) =
1∣∣∣ df

dp′
3

∣∣∣
p′
3
=q′

3

δ(p′ − q′)

=
ωp′

ωp

δ(p′ − q′)
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and hence
ωpδ(p− q) = ωp′δ(p′ − q′) (165)

as claimed.
Let us now return to determining the normalization constants in equation

(163). To begin with, we could choose a different standard state p̊′µ from the
original one p̊µ we chose (but still with p̊′2 = p̊2). However, we choose our
standard states to have the normalization

〈Ψp̊′,σ′ |Ψp̊,σ〉 = δ(̊p′ − p̊)δσ′σ.

For arbitrary momentum pµ and p′µ (but still in the same irreducible represen-
tation with p′2 = p2 = p̊2) we then have (using equation (159) and the fact that
U is unitary)

〈Ψp′,σ′ |Ψp,σ〉 = 〈Ψp′,σ′ |N(p)U(L(p))|Ψp̊,σ〉

= N(p)〈U †(L(p))Ψp′,σ|Ψp̊,σ〉

= N(p)〈U(L−1(p))Ψp′,σ|Ψp̊,σ〉 (166)

From equation (163) we see that

U(L−1(p))|Ψp′,σ′〉 = N(p′)

N(p̊′)

∑

σ′′

Dσ′′σ′(W (L−1(p), p′))|Ψp̊′,σ′′〉

where we have defined p̊′ := L−1(p)p′. Using the adjoint of this equation in
equation (166) we have

〈Ψp′,σ′ |Ψp,σ〉 =
N(p)N∗(p′)

N∗(p̊′)

∑

σ′′

D∗
σ′′σ′(W (L−1(p), p′))〈Ψp̊′,σ′′ |Ψp̊,σ〉

=
N(p)N∗(p′)

N∗(p̊′)

∑

σ′′

D∗
σ′′σ′(W (L−1(p), p′))δ(̊p′ − p̊)δσ′′σ.

Because of the factor δ(̊p′ − p̊), the right side of this equation is nonzero only
for p̊′ = p̊, so we can take the constant N∗(p̊′) to be the same as N∗(p̊). But
from equation (159) it is clear that N(p̊) = 1 (since U(L(p̊)) = U(1) = 1) and
thus we are left with

〈Ψp′,σ′ |Ψp,σ〉 = N(p)N∗(p′)D∗
σσ′ (W (L−1(p), p′))δ(̊p′ − p̊).

Since we have both p̊′ = L−1(p)p′ and p̊ = L−1(p)p, we see that δ(̊p′ − p̊)
must be proportional to δ(p′ − p) (this is just the statement that δ(ax) =
(1/ |a|)δ(x)). Then the right side of the above equation vanishes for p′ 6= p, and
if p′ = p the Wigner rotation becomes simply

W (L−1(p), p) = L−1(L−1(p)p)L−1(p)L(p) = L−1(p̊) = 1
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because equation (158) applied to p̊ is just p̊ = L(p̊)p̊. But then

D∗
σσ′ (W (L−1(p), p)) = δσσ′

and we can write

〈Ψp′,σ′ |Ψp,σ〉 = |N(p)|2 δ(̊p′ − p̊)δσ′σ. (167)

Lastly, we need to determine N(p). Since p is related to p̊ by the same
Lorentz transformation that relates p′ to p̊′, we use equation (165) to write

p̊0δ(̊p′ − p̊) = p0δ(p′ − p)

so that equation (167) becomes

〈Ψp′,σ′ |Ψp,σ〉 = |N(p)|2 p
0

p̊0
δ(p′ − p)δσ′σ.

Therefore, if we choose
N(p) =

√
p̊0/p0

we are left with our final result

〈Ψp′,σ′ |Ψp,σ〉 = δ(p′ − p)δσ′σ. (168)

Now let us turn our attention to massless particles. Since there is no rest
frame for the particle, we can’t repeat the above procedure. In this case we take
our standard 4-momentum to be the light-like 4-vector p̊µ = (1, 0, 0, 1) so that
p̊2 = 0 and p̊0 > 0. By definition we have Λ̊p̊ = p̊, so for the timelike 4-vector
tµ = (1, 0, 0, 0) we have

(Λ̊t)µ(Λ̊t)µ = tµtµ = 1 (169a)

and
(Λ̊t)µ(Λ̊p̊)µ = (Λ̊t)µp̊µ = tµp̊µ = 1. (169b)

Any 4-vector (Λ̊t)µ satisfying equation (169b) is of the form

(Λ̊t)µ = (1 + ζ, α, β, ζ)

so equation (169a) yields the relation

ζ =
1

2
(α2 + β2). (170)

Using equation (170), it is not hard to verify that

S(α, β)µ
ν =




1 + ζ α β −ζ
α 1 0 −α
β 0 1 −β
ζ α β 1− ζ


 (171)
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is a Lorentz transformation (i.e., ST gS = g). Furthermore, it has the property
that (St)µ = (Λ̊t)µ and (Sp̊)µ = (Λ̊p̊)µ. This does not mean that S = Λ̊, but it
does mean that S−1Λ̊ leaves the vector tµ = (1, 0, 0, 0) invariant so it represents
a pure rotation. In fact, it also leaves the vector p̊ = (1, 0, 0, 1) invariant, so it
must be a rotation about the x3-axis by some angle θ. In other words, we have

S−1(α, β)Λ̊ = R(θ)

where

R(θ)µ
ν =




1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1


 . (172)

Thus the most general element of the little group is of the form

Λ̊(θ, α, β) = S(α, β)R(θ). (173)

Let us look at equation (173) for infinitesimal θ, α, β. To first order we have
cos θ = 1, sin θ = θ and ζ = 0, so multiplying the matrices from equations (171)
and (172) and keeping first order terms yields

Λ̊(θ, α, β)µ
ν =




1 α β 0

α 1 θ −α
β −θ 1 −β
0 α β 1


 := gµ

ν + ω̊µ
ν

where

ω̊µν = gµαω̊
α
ν =




0 α β 0

−α 0 −θ α

−β θ 0 β

0 −α −β 0


 .

(Note this satisfies ω̊µ
ν p̊

ν = 0 as required by equation (161).) The corresponding
unitary transformation is

U(Λ̊(θ, α, β)) = 1 +
i

2
ω̊µνM

µν = 1 +
i

2
(ω̊0iM

0i + ω̊i0M
i0 + ω̊ijM

ij)

= 1 +
i

2

(
αM01 + βM02 − αM10 − βM20

− θM12 + αM13 + θM21 + βM23 − αM31 − βM32
)
.

Using Mµν = −Mνµ along with the definitions

Ji =
1

2
εijkM

jk and Ki = Mi0 = −M i0
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(see equation (132)) we have

U(Λ̊(θ, α, β)) = 1 + i[α(−J2 +K1) + β(J1 +K2)− θJ3]

:= 1 + iαA+ iβB − θJ3 (174)

where we have defined the Hermitian operators

A = −J2 +K1 and B = J1 +K2.

Using the commutation relations in equations (137) we find

[A, J3] = −iB
[B, J3] = +iA

[A,B] = 0.

Since A,B and PµP
µ are commuting Hermitian operators, they may be

simultaneously diagonalized by states |Ψp̊,a,b〉 and we can write

A|Ψp̊,a,b〉 = a|Ψp̊,a,b〉
B|Ψp̊,a,b〉 = b|Ψp̊,a,b〉.

But now this is a problem which we can see as follows. For proper rotations, J

and K transform as ordinary vectors, and hence by equation (124) we have

U(R)J iU−1(R) = (R−1)i
kJ

k

with a similar result for K. (Here the matrix Ri
j consists of the 3 × 3 spatial

part of equation (172).) Then it is straightforward using equation (172) to show
that

U [R(θ)]AU−1[R(θ)] = A cos θ −B sin θ

U [R(θ)]B U−1[R(θ)] = A sin θ +B cos θ.
(175)

Defining the states
|Ψθ

p̊,a,b〉 := U−1[R(θ)]|Ψp̊,a,b〉
we then have

A|Ψθ
p̊,a,b〉 = A

{
U−1(R(θ))|Ψp̊,a,b〉

}

= U−1[R(θ)]
{
U [R(θ)]AU−1[R(θ)]

}
|Ψp̊,a,b〉

= (a cos θ − b sin θ)U−1[R(θ)]|Ψp̊,a,b〉

= (a cos θ − b sin θ)|Ψθ
p̊,a,b〉

and similarly
B|Ψθ

p̊,a,b〉 = (a sin θ + b cos θ)|Ψθ
p̊,a,b〉.
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In other words, for arbitrary θ, the states |Ψθ
p̊,a,b〉 are simultaneous eigenstates

of A and B. But massless particles are not observed to have any continuous
degree of freedom like θ, and therefore we are forced to require that physical
states be eigenvectors of A and B with eigenvalues a = b = 0.

Let us label our (physical) massless states |Ψp̊,σ〉 so that A|Ψp̊,σ〉 = B|Ψp̊,σ〉 =
0, and where the label σ is the eigenvalue of the remaining generator J3 in equa-
tion (174):

J3|Ψp̊,σ〉 = σ|Ψp̊,σ〉.
Since the spatial momentum p̊ is in the 3-direction, this shows that σ is the
component of angular momentum (spin) in the direction of motion. This is
called the helicity of the particle.

11 The Dirac Equation Again

Now that we have studied direct product groups and representations of the
Poincaré group, let us return to the Lorentz group decomposition (138):

Λ = e−ia·J+ib·K = e−(ia−b)·A−(ia+b)·B = e−(ia−b)·Ae−(ia+b)·B

where

A =
1

2
(J + iK) and B =

1

2
(J− iK)

and these commuting operators each satisfy the angular momentum commuta-
tion relations (141). This is exactly equivalent to the operator SU(2)⊗ SU(2)
that we described earlier, and hence we can label the representations by a pair
of angular momentum states (j, j′).

Let us label the (2j + 1)(2j′ + 1)-dimensional representations

Λ = e−i(a+ib)·A ⊗ e−i(a−ib)·B (176)

by D(j,j′)(Λ), where j labels the value of A2 and j′ labels the value of B2. In
particular, we consider the 2-dimensional representations

D(Λ) := D(1/2,0)(Λ) and D(Λ) := D(0,1/2)(Λ).

Recall from the theory of spin 1/2 particles in quantum mechanics that the
2-dimensional representation of SU(2) is just σ/2 where the Pauli matrices are
given by

σ1 =

[
1

1

]
σ2 =

[
−i

i

]
σ3 =

[
1

−1

]
.

Then we see that

For D(Λ) : B = 0 =⇒ J = iK =⇒ A = iK =
σ

2
. (177a)

For D(Λ) : A = 0 =⇒ J = −iK =⇒ B = −iK =
σ

2
. (177b)
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Each of these 2-dimensional representations acts on a 2-component spinor that
then transforms under either D(Λ) or D(Λ) where

D(Λ) = e−i(a+ib)·σ/2 (178a)

and
D(Λ) = e−i(a−ib)·σ/2. (178b)

Note that a gives the rotation angle, and b gives the boost parameters.
It is important to understand that the representations D and D are inequiv-

alent representations of the Lorentz group. In other words, there is no matrix
S such that S−1D(Λ)S = D(Λ) for all Λ. To see this, first note that using

eiθ·σ = I cos θ + i(θ̂ · σ) sin θ =

[
cos θ + iθ̂3 sin θ iθ̂− sin θ

iθ̂+ sin θ cos θ − iθ̂3 sin θ

]

(which follows from (θ · σ)2 = θ2 and where θ̂± = θ̂1 ± iθ̂2) it is easy to
see that detD = detD = 1. Thus D and D are 2 × 2 complex matrices with
determinant equal to one. The set of all such matrices forms the group SL(2, C).
In general, a 2× 2 complex matrix has eight independent components. But the
requirement that it have unit determinant amounts to two equations relating the
components, and hence an element of SL(2, C) has six independent parameters.
In the present case, these are the three boost parameters plus the three rotation
angles.

Next, by explicit calculation you can easily show that

σ2σ
∗σ2 = −σ.

Now define S = iσ2 so that S−1 = −iσ2. Then writing D = ec·σ for simplicity
we in fact have (using (σ2)

2 = 1 and inserting this between products of σ∗’s)

S−1D∗S = σ2e
c∗·σ∗

σ2 = σ2[1 + c∗ · σ∗ + (1/2)(c∗ · σ∗)2 + · · · ]σ2

= 1 + c∗ · (σ2σ
∗σ2) + (1/2)(c∗ · (σ2σ

∗σ2))
2 + · · ·

= 1− c∗σ + (1/2)(−c∗ · σ)2 + · · ·

= e−c∗·σ = D

since −c∗ = −(−i(a + ib)/2)∗ = −i(a− ib)/2. In other words, D(Λ) is similar
to D(Λ)∗ but not to D(Λ). If D were equivalent to D, then this would mean
that D was equivalent to D∗. That this cannot happen in general (in the present
case of the 2-dimensional representation of SL(2, C)) can be shown by a counter
example. Let M be a 2× 2 matrix in SL(2, C), and let its eigenvalues be λ and
λ−1 where |λ| 6= 1 and Imλ 6= 0. In other words, we can write

M =

[
λ

1/λ

]
and M∗ =

[
λ∗

1/λ∗

]
.
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But any matrix similar to M (i.e., equivalent) will have the same eigenvalues
(since the characteristic polynomial doesn’t change under a similarity transfor-
mation), and hence if M∗ were equivalent to M we would have either λ∗ = λ
or λ∗ = λ−1. Writing λ = a+ ib we have λ∗ = a− ib and

λ−1 =
1

a+ ib
=

a− ib
|a|2 + |b|2

.

Clearly λ∗ is not equal to either λ or λ−1, and thus M can’t be similar to M∗.
Therefore D can’t be equivalent to D as claimed.

In the particular case of a pure boost Λ = L(p), we have a = 0 so that

D(L(p)) = eb·σ/2 and D(L(p)) = e−b·σ/2. (179)

If the boost is along the z-direction, then b = uẑ and hence

D(L(p3)) = euσ3/2 = exp

[
u/2 0

0 −u/2

]
=

[
eu/2 0

0 e−u/2

]
(180a)

and

D(L(p3)) = e−uσ3/2 = exp

[
−u/2 0

0 u/2

]
=

[
e−u/2 0

0 eu/2

]
(180b)

where, by equations (53) and (54), the boost parameter u is defined by

coshu = γ and sinhu = γβ.

Now what about the states of our system? In the last section we saw that the
two Casimir operators M 2 = PµP

µ and S 2 = WµW
µ are the only operators

that commute with all of the generators of Lorentz transformations, so our par-
ticles (the irreducible representations) can be specified by the Lorentz invariant
eigenvalues m2 and s(s + 1) of these operators. Since [Pµ, Pν ] = [Pµ,Wν ] = 0
while [Wµ,Wν ] 6= 0, we can label our states by the eigenvalues of the commuting
operators Pµ,WνW

ν and one of the Wν , say W3. Thus we label our states by
|p σ〉 where p2 = m2 (so the spatial components of pµ are independent) and σ
is the eigenvalue of W3. (For simplicity we have suppressed the eigenvalue s of
S 2, i.e., we should really write |p s σ〉.)

Next, in the case of a pure rotation Λ = R we have b = 0 so that R =
e−ia·J. From equations (178) we then see that D(R) = D(R). Applying this to
the particular case of the Wigner rotation we then have D(L−1(Λp)ΛL(p)) =
D(L−1(Λp)ΛL(p)). Using the group property of the representations we can
write this out as a matrix product:

D(L−1(Λp))D(Λ)D(L(p)) = D(L−1(Λp))D(Λ)D(L(p)). (181)

Let us define the two states

|p σ 1〉 =
∑

σ′

D−1
σ′σ(L(p))|p σ′〉 =

∑

σ′

Dσ′σ(L−1(p))|p σ′〉

|p σ 2〉 =
∑

σ′

D
−1

σ′σ(L(p))|p σ′〉 =
∑

σ′

Dσ′σ(L−1(p))|p σ′〉
(182)
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where the sums are over the index values −1/2 and 1/2. We can invert both of
these to solve for |p σ′〉 and write

∑

σ′′

Dσ′′σ′ (L(p))|p σ′′ 1〉 = |p σ′〉 =
∑

σ′′

Dσ′′σ′(L(p))|p σ′′ 2〉. (183)

Now put these back into the right side of equations (182) to obtain the coupled
equations

|p σ 1〉 =
∑

σ′σ′′

|p σ′′ 2〉Dσ′′σ′(L(p))Dσ′σ(L−1(p))

|p σ 2〉 =
∑

σ′σ′′

|p σ′′ 1〉Dσ′′σ′(L(p))Dσ′σ(L−1(p)).
(184)

To evaluate these matrix products, consider a boost in the z-direction. From
equations (180) along with D(L−1) = D−1(L) we have

D(L(p3))D
−1(L(p3)) =

[
e−u/2 0

0 eu/2

][
e−u/2 0

0 eu/2

]
=

[
e−u 0

0 eu

]

D(L(p3))D
−1

(L(p3)) =

[
eu/2 0

0 e−u/2

][
eu/2 0

0 e−u/2

]
=

[
eu 0

0 e−u

]
.

(185)

Now note the identities

eu = coshu+ sinhu = γ + γβ =
p0

m
+
p3

m

e−u = coshu− sinhu = γ − γβ =
p0

m
− p3

m

where we also used equations (153). Then we have
[
e−u 0

0 eu

]
=

[
p0/m− p3/m

p0/m+ p3/m

]
=
p0

m
I − p3

m
σ3 =

p0

m
I − p · σ

m

[
eu 0

0 e−u

]
=

[
p0/m+ p3/m

p0/m− p3/m

]
=
p0

m
I +

p3

m
σ3 =

p0

m
I +

p · σ
m

.

(186)

Combining equations (184), (185) and (186) yields

|p σ 1〉 =
∑

σ′

|p σ′ 2〉
(
p0

m
I − p · σ

m

)

σ′σ

|p σ 2〉 =
∑

σ′

|p σ′ 1〉
(
p0

m
I +

p · σ
m

)

σ′σ

(187)
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If we write

|p 1〉 =
[
|p 1

2 1〉
|p −1

2 1〉

]

so that |p 1〉T = [ |p 1
2 1〉 |p −1

2 1〉 ] with a similar result for |p 2〉, then equations
(187) can be written in matrix form as

|p 1〉T = |p 2〉T
(
p0

m
I − p · σ

m

)
and |p 2〉T = |p 1〉T

(
p0

m
I +

p · σ
m

)

where the first row and column correspond to σ = 1/2 and the second row and
column correspond to σ = −1/2. Rearranging, these become

−m|p 1〉T + |p 2〉T (p0I − p · σ) = 0

|p 1〉T (p0I + p · σ)−m|p 2〉T = 0

which can be combined into the form

[ |p 1〉T |p 2〉T ]

[
−mI p0 + p · σ

p0I − p · σ −mI

]
= 0.

Defining the row vector

(
|p ζ〉

)T
=
[
|p 1

2 1〉 |p −1
2 1〉 |p 1

2 2〉 |p −1
2 2〉

]

(where ζ = 1, . . . , 4) we have

∑

ζ

|p ζ〉
[

−mI p0 + p · σ
p0I − p · σ −mI

]

ζζ′

= 0. (188)

Let |u〉 denote an arbitrary state and let 〈p ζ|u〉 = uζ(p). Noting 〈u|p ζ〉 =
〈p ζ|u〉∗ and using the summation convention on the index ζ, equation (188)
becomes

[
−mI p0 + p · σ

p0I − p · σ −mI

]T

ζ′ζ

u∗ζ(p)

=

[
p0

(
1

1

)
+ p ·

(
σ

−σ

)
−m

(
1

1

)]T

ζ′ζ

u∗ζ(p) = 0. (189)

Now define

γ0 =

(
1

1

)
and γ =

(
σ

−σ

)
(190)

and note γµ† = γ0γµγ0 so that γ0† = γ0 and γi† = −γi. (The representation
(190) is called the chiral (or Weyl) representation of the Dirac matrices, but be
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aware that different authors use different sign conventions.) Taking the complex
conjugate of equation (189) yields

0 = (p0γ
0 + p · γ −mI)†u(p) = (p0γ

0† + p · γ† −mI)u(p)

or finally
(p0γ

0 − p · γ −m)u(p) = 0

i.e.,
(γµpµ −m)u(p) = 0

which is the Dirac equation.
Let us write out the Dirac equation in the chiral basis as

[
−m p0 − σ · p

p0 + σ · p −m

][
ψL

ψR

]
= 0

where we have written the 4-component Dirac spinor as a combination of two
2-component spinors, called Weyl spinors. We can put this into an even more
concise form by defining

σµ = (I,σ) and σµ = (I,−σ)

in which case we have

γµ =

[
0 σµ

σµ 0

]

and the Dirac equation becomes

[
−m pµσ

µ

pµσ
µ −m

] [
ψL

ψR

]
= 0.

In the particular case of massless particles this becomes what are known as
the Weyl equations:

(p0 − σ · p)ψR = 0 and (p0 + σ · p)ψL = 0.

Since in the massless case we have p0 = |p|, these can be written

σ · p̂ψL = −ψL and σ · p̂ψR = ψR

which shows that ψL has helicity −1 and ψR has helicity +1. Therefore we
call ψL a left-handed spinor and ψR a right-handed spinor. Thus the
Weyl spinors are helicity eigenstates, which is the reason for choosing the Weyl
representation. Note also that in the Weyl representation we have

γ5 = iγ0γ1γ2γ3 =

[
−1

1

]
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so that

1

2
(1 + γ5) =

[
0

1

]
and

1

2
(1− γ5) =

[
1

0

]
.

Applying these operators to the 4-component spinor we see that

1

2
(1 + γ5)

[
ψL

ψR

]
=

[
0

ψR

]
and

1

2
(1− γ5)

[
ψL

ψR

]
=

[
ψL

0

]

and hence the operators (1±γ5)/2 project out the right- and left-handed spinors.
I leave it as an easy exercise to show that an interaction term in the Lagrangian
of the form

ψγµ

(
1− γ5

2

)
ψ

results in a current containing only left-handed spinors. Since we know that
ψγµψ transforms as a vector and ψγµγ5ψ transforms as an axial vector, this is
called a “V − A interaction” (read “V minus A”), and is fundamental to the
description of the weak interactions.
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