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The Dirac Equation and
The Lorentz Group

Part I — Classical Approach

1 Derivation of the Dirac Equation

The basic idea is to use the standard quantum mechanical substitutions
. 0
p — —ihV and E— zha (1)

to write a wave equation that is first-order in both F and p. This will give us an
equation that is both relativistically covariant and conserves a positive definite
probability density.

We start by assuming that we can factor the relativistic expression E? =
p? + m? into the form (we will use units with 2 = ¢ = 1 from now on)

E=a-p+pm (2)

where « and  are to be determined. Note that a and [ can not simply be
numbers because equation (2) would not even be rotationally invariant. Since
we must still satisfy E? = p? + m?, we have

E? = (a-p+ Bm)* = (a'p; + Bm) (! p; + fm)
= o'aIpip; + (a' B + o’ )pim + 3°m?
1o, 0 ; -
— §(oﬂaﬂ + ol )pip; + (o' B + Ba’)pim + 5°m?

where we used the fact that p;p; = p;p;. This requires that

%(aiaj +adal) = 6 (3)
a'B+pfa’ =0 (3b)
=1 (3¢)

Since pure numbers commute, let us assume that the o and 3 are matrices.
Using equations (3), we define the matrices

7" = Ba’ and 0= p.

Then
209 = a'ad + ot = FPatad + fPalat = —BalBal — Bal Bat

=07 +97)



and
0=a'f+pfa" = 0=pa'B+ %" =" +4%'
and hence we have
YA A ="} = 29" (4)

where we are using the metric g = diag(1, —1,—1,—1), i.e.,

Matrices satisfying equation (4) are said to form a Clifford algebra. Note in

particular that we also have _
(a)? =1.

From equation (3b) we see that Ba’3 = —a' and o‘Ba’ = —B. Using
the cyclic property of the trace along with 3% = (a)? = I, these imply that
tr3 = tra’ = 0. Now let A\ be an eigenvalue of 3. Then fv = v implies
v = B%v = ABv = A%v and therefore A = +1. But the trace of a matrix
is the sum of its eigenvalues (i.e., if P71AP = D = diag(\1,...,\,), then
tr A =tr P"'AP = tr D), and hence it follows that 3 must be even-dimensional,
with an exactly analogous result for a’.

Now, the energy operator E must have real eigenvalues and hence must be
Hermitian. Since p is already Hermitian, it follows from equation (2) that «
and [ must be Hermitan matrices. The most general 2 x 2 Hermitian matrix is
of the form

2wy z b
[:v—i—iy t }_Mﬁy”ﬁz(aﬁm pos =)

where

o I S AR L IS O

Hence the most general 2 x 2 Hermitian matrix is a linear combination of the
three (Hermitan) Pauli matrices and the identity matrix. (It is easy to see that
if we write og := I, then

3 .
co+c3 1 —ico
O:Zciai - [014-1'02 co — €3 }
=0
implies that all of the ¢; must equal zero, and hence the four matrices og, ..., 03
are linearly independent and form a basis for the space M5(C).) If we take the
a’s to be linear combinations of the ¢’s, then this leaves 8 = I. But I commutes
with everything, so it certainly can’t anticommute with the a’s. Thus we assume
that the 4’s are in fact 4 x 4 matrices.



In block matrix form, we define the standard representation to be

g:[l _1} (52)

Since the a’s are Hermitan, we have

o_aimﬂof—{gf ng —1%[1 —1Hg* g]

{214

a0]

so that A = C' = 0 and we can choose

a_[o "}. (5b)

o 0

In other words, we take the standard representation of the gamma matrices to
be (in block matrix form)

o B |

I leave it as an exercise to show directly that if {7} is a set of matrices
satisfying {v#,7"} = 2g"”, then v* # 4" for p # v and the 7’s are linearly
independent.

Next, recall that the gradient is defined by V = 9/0x so V¢ = 9/9z" = 0;
and we write

o = (8°,0) = (8°,—9;) = (8°, —V)

along with 9,, = (0o, +V). The quantum mechanical operators are F = idy and

pt = —i0; or p = —iV, and hence we can write
pt = 410", (7)
Then the operators in the Dirac equation become i0° = —ia’d; + Bm so that

multiplying through by 7° this is i7°9y = —~'9; +m (the I multiplying the m is
understood) or simply i7#0,, —m = 0. As a very convenient notational device,
we introduce the “Feynman slash” notation for the contraction of any 4-vector
at with the gamma matrices v* in which we write

d = ~v"a,.

Using this notation, the Dirac equation is then written as
0
W ——m |Y(x) =0
(7 e >¢( )

(i — m)y(x) = 0. (8)

or simply



Equivalently, we can write this in the form

(p —m)v(z) = 0. (9)

It is extremely important to realize that now the wavefunction ¢ is a 4-
component column vector, generally referred to as a Dirac spinor. We will
see that these four degrees of freedom allow us to describe both positive and
negative energy solutions, each with spin 1/2 either up or down. The negative
energy solutions are interpreted as describing positive energy antiparticles. In
other words, the Dirac equation describes spin 1/2 electrons and positrons (as
well as the other leptons and quarks).

Note that 7T = 4% and 4T = (Ba’)! = o181 = i3 = FaiB = By'3 =
~9~i49 and hence in general we have the very useful result

i = 0k (10)

which is independent of the representation of the gamma matrices. We will see
that rather than ¢, it turns out that the useful quantity will be

¥ = iy0.
Taking the adjoint of (8) yields
0 =yl (=ir"T 8, = m) = 41 (=i1°91° By, = 3°m)

where the symbol 3# means that the derivative acts to the left. Multiplying

this from the right by 7" we have 1/)770(—1'7“(5# —m) = 0 and hence v satisfies
the equation

E(x)(z% +m) = 0. (11)

To get a probability current, we multiply (8) from the left by 1 and (11)
from the right by ¢ and add to obtain

i(w’waﬂ/’ + 5;@7%) =0

or simply _
Ou(pytp) = 0. (12)
Hence the probability current is given by
3" =9y

and it satisfies the continuity equation d,j" = 0.

2 Basic Properties of the Dirac Equation

Before we turn to the issue of covariance under Lorentz transformations, let us
take a look at some of the basic properties of the Dirac equation.



To begin with, note that equation (8) has solutions of the form
Y(x,t) = u(p)e” "o

where u(p) is a 4-component spinor that must satisfy

(p - m)u(p) = 0.

This is a set of four homogeneous linear equations, and it will have a nontrivial
solution if and only if the matrix (p — m) does not have an inverse. From
equation (4) we see that in general for any 4-vectors a,, b, we have

db + bt = (" + "y )aub, = 2a - b

so that pp = p?. Tt is then easy to see

(¢+m)(p—m)=p2—m2

so that a formal inverse to (p m) is (p? —m? gzﬁ—l— m). But if this inverse is
not to exist, we must have p> —m? =0 so that p2 =m?or

E = ++/p? +m2.

In other words, the Dirac equation allows solutions with negative energy, and
free particles have an energy F with |E| > m.

Since negative energy states have never been observed, we have to somehow
explain their absence. (Such states would have an acceleration in a direction
opposite to the applied force. If a particle is accelerated from rest to an energy
E=[F-dr=+4m[a-vdt ==xm [(dv/dt) - vdt=%(m/2) [(dv?/dt)dt <0,
then we must have F = —ma.) While the completely correct answer lies in
the formalism of relativistic quantum field theory, at the time Dirac postulated
that all negative energy states were already filled by an infinite sea of negative
energy electrons, and the Pauli principle prevented any positive energy electron
from falling down into the negative sea. If such a negative energy electron were
hit by a sufficiently energetic photon, it could make the transition to a positive
energy state, leaving behind a “hole” that we would perceive as a positive energy
positively charged electron, a “positron.”

In any case, what can we say about the constants of the motion? Defining
the Dirac Hamiltonian

Hp=a-p+m

we can write the Dirac equation as

oY

Hpy = ia

which is of the same form as the Schrodinger equation. Then this has a formal
solution with time dependence that goes as e"*#r? and we can define operators



O in the Heisenberg picture with the usual equation of motion that allows us
to look for conserved quantities:

do ,
E = —Z[O, HD]

Let us first look at the orbital angular momentum L = r x p. Using the
commutator identity
[ab, c] = alb, c] + [a, c]b

along with the fundamental commutation relations [p;,p;] = 0 and [z;,p;] =
id;5, we compute (using a sloppy summation convention)

[Li, Hp] = eiji[2?p®, Hp] = eijn(2? [p*, Hp] + [27, Hp]p").

But
[pkaD] = [pkaalpl + ﬁm] =0
while
aijk[xj, HD]pk = sijk[xj, olp + ﬁm]pk = iaijkéljalpk =i(a X p);
so that

[L, Hp] = i(a x p).

This shows that the orbital angular momentum is not a constant of the motion.
Now consider the matrix operator

, _|o 0
7700 o
where the Pauli matrices obey the relations
[0i,05] = 2iejoy (13a)
0;05 = 517‘ + ieijkgk (lgb)
and therefore also (0;)> = 1. These show that the operator S defined by S =

o' /2 satisfies
[Si, Sj] = iEiijk

and hence is an angular momentum operator. Since o

31 0
2—_
S _4[0 1]

so that s(s + 1) = 3/4 implies that s = 1/2. Thus S is the spin operator for
a particle of spin 1/2. However, we still haven’t connected this to the Dirac
equation.

Recall that the standard representation for o and [ is

co[7] e o) )

2 =o-0 =3, we see that



so it it easy to see that

[0, aj] = 2ieqjpau and [0}, 3] = 0.

7

Hence we find that
[0}, Hp] = [0}, a;p” + Bm] = 2ig;jpanp’ = 2i(p X a);

or, alternatively,
[S,Hp] = —i(ax x p).

Combining this with our previous result for L we see that the operator
J:=L+S8S

is conserved because [J, Hp] = 0, and furthermore it is an angular momentum
operator because
[Ji, Jj] = iEiijk.

I leave it as an exercise to show that [J2, Hp] = [S%, Hp] = 0, and hence the
operators Hp,J,J? and S? are a mutually commuting set. This then shows that
the Dirac equation represents a particle with conserved total angular momentum
J =L+ S and with spin equal to 1/2.

Now let’s take a look at the interaction of a Dirac particle with the electro-
magnetic field. Since quantum mechanics is formulated using the Hamiltonian,
we need to know what the canonical momentum is for a particle of charge e in an
electromagnetic field. By definition, this is p = 0L/90¢ where L = L(q, ¢, t) is the
Lagrangian of the system. In this case, the answer is we make the replacements

P—p-—cA and E—FE—e¢p (14)

where A is the magnetic vector potential and ¢ is the electric potential. For
those who are interested, let me somewhat briefly go through the derivation of
this result.

In a proper derivation of the Lagrange equations of motion, one starts from
d’Alembert’s principle and derives Lagrange’s equation

i oT _ oT
dt 0¢;  0g;

e (15)

where T' = T'(¢;, ¢;) is the kinetic energy and @); is a generalized force. In the
particular case that @); is derivable from a conservative force, then we have
Qi = —0V/0q;. Since the potential energy V' is assumed to be independent of
Gi, we can replace 9T /0q; by (T — V') /0q; and we arrive at the usual Lagrange
equation
d oL OL
dt 0g;  Oqi

(16)



where L = T — V. However, even if there is no potential function V', we can
still arrive at this result if there exists a function U = U(g;, ¢;) such that the
generalized forces may be written as

ou doUu

Q= 94 +aa(1i

because defining L = T — U we again arrive at equation (16). The function
U is called a generalized potential or a velocity dependent potential.
We now seek such a function to describe the force on a charged particle in an
electromagnetic field.

Recall from electromagnetism that the Lorentz force law is given by

F=¢(E+v xB)

or

F:e(—V(b—%—?—i-vx(VxA))

where E = = V¢ — JA /0t and B = V x A. Our goal is to write this in the

form
oU d oU

o, T dl oi,

for a suitable U. All it takes is some vector algebra. We have

F=-

[v x (V x A)]; = eijre™™ 0 A, = (0167 — 66507 0 Ar,
= ’U‘jaiAj - ’Ujain = ’UjaiAj - (V . V)Al

But z¢ and i/ are independent variables (in other words, 4/ has no explicit
dependence on z') so that

04; 0

IO A — 49 2270
VoA =& drt  Oxt

(#4) = (v - A)

and we have

[vx(VxA);= %(V-A) —(v-V)A,.

But we also have

dA; 0A; dz? 04, C0A;  0A; 04;
1 — Z_ T — Vi T T — . . T
dt — Ox7 dt ot o ot (v- V)4 + ot
so that JA 54
V-V =~
and therefore
0 dA;  0A4;



But we can write A; = d(v? A;)/0vt = d(v - A)/Ov" which gives us

0 d 0 0A4;
2 VA T Gaa VAT

[vx(VxA)=

The Lorentz force law can now be written in the form

B o OA; }
Fi_e(_(?xi_(?t —i—[vx(VxA)]l)

B o¢p  0A; 0 d 0 0A;

= <_@_W+axi(v' ) =G (VA 8t)

ze[—aaxi(qS—V-A)—%%(v-A)]

Since ¢ is independent of v we can write

d o d o
_Eavi(v.A)_aavi((b_v'A)
so that 5 4o
Fi_e{_axi(¢—V'A)+Ew(¢—V'A)}
o oU  doU

where U = e(¢ — v - A). This shows that U is a generalized potential and that
the Lagrangian for a particle of charge e in an electromagnetic field is

L=T—-ep+ev-A (17a)

or

1
L= imv2 —ep+ev-A. (17b)

Since the canonical momentum is defined as p; = OL/9¢' = OL/0v* we now
see that
pi =mu; +ed;

or
P =mv + eA.

Therefore, in the absence of the electromagnetic field the Hamiltonian is H =
p?/2m where p = mv, so if the field is present we must now write

(p—eA)”

H:
2m

(18)
(You can also think of this as writing v = (p — eA)/m and now making this
substitution in the definition H = p’¢; — L so that H = H(q,p).) Furthermore,
the energy of the particle now has an additional term —e¢ due to the work in



moving against the E field, so the energy operator must be F —e¢ (the magnetic
field B does no work since the force is perpendicular to the velocity).
We can combine these results into a single relativistic 4-momentum by mak-

ing the replacement
pt — pH —eAH (19)

where the 4-potential is given by A* = (¢, A). The Dirac Hamiltonian now
becomes
Hp=a-p—ea-A+pfm+ep+V (20)

where V is any additional potential that may be acting on the particle. Making
the replacement (19) in the case where V' = 0, the Dirac equation becomes

(p—eA—m)d) =0. (21)

One of the great triumphs of the Dirac equation is that it gives us the correct
gyromagnetic ratio with g = 2 for the electron, and the correct form of the spin-
orbit coupling including the Thomas factor of 1/2. We are now in the position
to prove these results.

To see all of this, first write the Dirac equation as two coupled spinor equa-
tions, and then take the non-relativistic limit. Using the Hamiltonian (20) and
the standard representation for the Dirac matrices, the Dirac equation can be
written in the form

aff) e o-em 5] m[5][1]

where p = —iV and « and 3 are given by equations (5). This is equivalent to
the coupled equations

iOp =0 (p—eA)x+ (e¢ +m)p (22a)
iOx =0 (p—eA)p+(e¢ —m)x (22b)

In the non-relativistic limit, m is the largest energy term in this equation, so

we write _
1)~ (¢
X X

where the 2-component spinors ¢ and X are relatively slowly varying functions
of time.
Using (22b) we have

X =0-(p—eA)p+ (ep—2m)x = 0.

Since ey < 2m this becomes

10



and since p &~ mv, we see that ¥ ~ O(v/c) x ¢. (Remember we are using units
where ¢ = 1.) Because of this, we refer to X as the “small component” and @
as the “large component” of .

Substituting the above expression for Y into (22a) we obtain

- 1 - -
i0:¢ = 5[0 (p— eA)’3 + egp.

From equation (13b) we have the very useful result
(c-a)(c-b)=a-b+io-(axDb). (23)

Writing 7 := p — €A and using (23) we have

2

(o-m)*=m -ww+io- (7w xm).

Note that 7 is a differential operator so that 7w x 7w # 0. In particular, we have

axm=(p—eA)x (p—eA)=—-e(Axp+pxA)
=ie(AXV+VxA)

so that
(mxm)p =ie[A X Vg+ V x (AQ)] =ie(V x A)g = ieBgp.

Therefore we have

05 (pcAP_ e

This is the non-relativistic Pauli equation for a particle of spin 1/2 in an elec-
tromagnetic field. Note that the magnetic moment is predicted to be e/2m (in
other units, this is efi/2mc), and thus we automatically have g = 2 exactly.
(There are higher order corrections to this that follow from the formalism of
QED.)

(A sketch of the classical theory is as follows: The orbital magnetic moment
of a current loop is

W = — X area
c

where
_ charge  charge e = ev
time  dist/vel 27r/v 27
so that
ev 5 eur eL
= = — = ——.
Hi 27re 2¢ 2me
As vectors, this is
— € L
H = 2me

where the ratio of p to L is called the gyromagnetic ratio .

11



Generalizing this, we make the definition

e
=g—11UJ
k=9 2me

where ¢ is a constant. For an electron we have J = S = (i/2)o and, from
experiment, g is very close to 2 so that

with an energy —pu, - B = —(eh/2mc)(o - B).)

Now for the spin-orbit coupling in a hydrogen atom (with a nucleus of essen-
tially infinite mass). To describe this, we first rewrite equations (22) by looking
for energy eigenstates 1(x,t) = e Fl)(x). Then we can write equations (22)
as

Ep=0-(p—eA)x+ (ed+m)p (25a)
Ex=0-(p—eA)p+(ed—m)x (25b)

where now ¢ and x are independent of time. With A = 0 (there is no external
field) and letting e¢p = V', the second of these may be written as

X=(E-V+m) (o pe.

(Be sure to remember that p = —iV so the order of factors is important because
V is not a constant.) Let E = E’ + m so that

X=(E' =V +2m)~ (o p)p.
Putting this into (25a) we can write
: E v\
E'spz(”_p) 1+=—2) (o-pp+ Ve
2m 2m

and to first order this is

. E —
2m 2m

> (0 -plp+ Ve

From [p, V] = —iVV we have pV = Vp —iVV so our equation becomes

Bo=| g (1- 550 ) @ 0P - gl V(o p) |04 Ve

Using (23) we have (o - p)? = p? and
(0-VV)(o-p)=VV-p—io- - (VV xp)

so that

E —-V\ p? 1 1

12



We assume spherical symmetry for V' (for the hydrogen atom V = —e?/r) so
that

dV . dV 0

VV—d—r — VV p—-ZEaT

and qv 1dV 1dV
VVXp:dTr P= T P T

Therefore, since S = o/2 we have

E,(p:Kl_E’—V) p? V] 1 dVdy 1 1av

£ i e I AYPY

2m 2m YT wmzdr or ~ 2m2r dr ( )
Finally, since E is the total energy, we can write £’ — V =~ p?/2m to arrive at
the Schrodinger-like (two-component) equation

2 4
{p p Ld_vg_ild_v(s[‘) (p:E/(p. (26)
2m  8m?3 4m?2 dr Or  2m?r dr

The second term is a relativistic correction to the kinetic energy, and the
fourth term is called the “Darwin term.” It is essentially due to the fact that a
relativistic particle can’t be localized to within better than its Compton wave-
length //me, and as a result the effective potential is really smeared out. And
lastly, the final term is the spin-orbit coupling including the factor of 1/2 from
Thomas precession. (Very roughly, here is the non-relativistic approach: The
electron sees a current due to the relative motion of the nucleus, and this is the

source of a magnetic field
B = (—¢/c)v xr/r® = (e/mc)p x r/r® = (—e/mer®)L.
Then there will be an interaction energy term in the Hamiltonian that is
—p-B = —(e/mc)(—e/mer®)S - L = (e2/m*c*r)S - L.
With ¢ = 1 and V = —e?/r, this is the same as (1/m?r)(dV/dr)(S-L). However,
this answer is off by a factor of 1/2 due to Thomas precession, and this is
automatically taken into account in equation (26).)

3 Covariance of the Dirac Equation

We now turn our attention to the covariance of the Dirac equation under a
Lorentz transformation
ot — ' = A (27)

Note that a:’“x’u = A* A, "2z, = x¥z, which implies

A ALY = AT AR, = 60 = g2 (28)

13



This shows that ATQM = A‘laH so that A is an orthogonal transformation, i.e.,
(A_l>au = (AT)OW - A,ua-

Equation (28) can also be written as (AT), A", = (AT)au g"PAgy = gow or
most simply as
ATgAh =g (29)

which is frequently taken as the definition of a Lorentz transformation A. Note
in particular that since AT = A~! we also have AgA” = ¢ and therefore

JapB = gHVAMOZAVB = AuaAUﬁ = AonAﬁu- (30)

Since 9, is a 4-vector we have 0), = A,”0,, and inverting this yields 9, =
(A’l)a”(% = A0, (That 0, is a true 4-vector follows from equation (27).
We first have 2 = (A~")* a’* so that 0z*/9z" = (A~")*, = A,*. Therefore

which shows that 0,, indeed has the correct transformation properties.) Apply-
ing this to the Dirac equation we have
0= (iy"0 — m)y(x) = (iv" A0, — m)p(A™"a)
Let us define 4" = A%,~* and observe that (using equation (30))
(Y, 4Py = A AP {7 = 20 AP g = 2% APH = 24

so the v'* also obey equation (4). As we will prove below, Pauli’s Funda-
mental Theorem shows that given any two sets of matrices {v*} and {y*}
satisfying the Clifford algebra (4), there exists a nonsingular matrix S such that

Y =A% A = S71yes. (31)

(That v'* = A% ,v* is simply our definition of 4’ — it has nothing to do with
the general conclusion of Pauli’s theorem.)
We now use this result to write

0= (i7"A%, 0, —m)p(A™1a) = (iS™14*S8, —m)p(A~'a)
iST NS0, — STESm)y(A )
S~1(iy*0!, — m)Sy(A )

which then implies )
0= (i) —m)y'(a")

where we have defined the transformed wave function

V'(2') = S(A)p(AT1a") = S(A)g(w). (32)

14



It is important to realize that the gamma matrices themselves do not change
under a Lorentz transformation. Everything will be fine if we can show that the
transformed wave function ¢’(z") has the correct physical interpretation in the
primed frame, i.e., we want to show that j# — j’# = A*,j”. Before doing this
however, we first go back and prove Pauli’s fundamental theorem because we
will need some of the results that we prove along the way.

First of all, we want 16 linearly independent 4 x 4 matrices. Since {y*,v"} =
29" it follows that (y#)? = £1, and hence we need only consider products of
distinct gamma matrices. Note that from the binomial theorem, the number of
combinations of n objects taken one at a time, two at a time, ..., n at a time is

(T)+(Z>++(2) :;(D:é@)lkln_k—l
=(1+)"-1=2"—-1.

In our case we have n = 4, so there are 15 possible distinct combinations of the
gamma matrices taken one, two, three and four at a time. Together with the
identity matrix, this gives us the 16 matrices I'; defined by

I T,
it iy i? Iy —T;
Pyt 492 %% Ay 413 42 T —Tn
Oyt iy iy iyl T —Tus
U R e 6

The factors of ¢ are included so that
(T;)? = +1. (33)

Using the fact that the gamma matrices anticommute, it is easy to see that
I‘Z-Fj = :l:FjFi, and in fact

iy = aqi Ly where a;; = 1, +i. (34)
If I'; # I'y, there exists at least one I'; such that
r,r,r; = -r;. (35)
In particular, we have

[;,2<j5<5 = I;=Ts

rp,6<;<11 —> I'; = whichever of the I'y, '3, 'y or I';5 that
contains one of the same ~*’s that is in I'; (36)

I'i =T
Fi = FQ, Fg, F4 or F5 all work

r;12<;j<15
szrlg

Ll

15



Note that equations (33) and (35) together imply
trI’; =0 for j # 1. (37)

We still have to show that the I';’s are linearly independent. There are (at
least) two ways to show this. First, suppose that 111+ - -+x16I'16 = 0. Taking
the trace shows that 1 = 0 since trI'y =4 # 0 and trI'; = 0 for j # 1. From
(35) we have I';T'; = —I',;T; (for j # 1), so it follows that trI';I'; = 0 as long
as i # j. Therefore, multiplying xol's + -+ - 4+ 216116 = 0 by I'; and taking the
trace implies that z; = 0 for each ¢ = 2,...,16. Therefore the I'’s are linearly
independent and form a basis for the space of 4 x 4 complex matrices.

The second way to see this is to also start from Z,lle 'y = 0. Multiplying
by I',,, we obtain

0=mx,1+ Z 21,0l = o I + Z I

where T, # I since k # m. (If k # m and Ty, = agm I, then Ty = apm D
which is impossible.) Taking the trace now shows that z,, = 0.

In either case, we see that any 4 x4 complex matrix X has a unique expansion
X = > ;T since if we also have X = > y;I';, then Y (z; — y;)T'; = 0 which
implies that z; = y; since the I'’s are linearly independent. Note also that the
expansion coefficients x; are determined by

tr(XT;) =z, tr I = 4x;

or

1

It is also true that I';I'; = a;;T'x, where I'; is different for each j (and fixed 7).
To see this, suppose I';I'; = a;;I'y, and I';I'jy = a;;.I';;,. Multiplying from the left
by Fi shows that Fj = aijl"il"k and Fj/ = aij/l"il"k which implies (1/aij)1"j =
(1/a;j)Tj or T'; = (a;;/a;; )T which contradicts the linear independence of
the s if j # j'.

The following theorem is sometimes called Schur’s lemma, but technically
that designation refers to irreducible group representations. In this case, the
sixteen matrices I'; form a basis for what is called the Dirac algebra, which
is a particular type of non-commutative ring. It can be shown that the only
irreducible representation of the Dirac algebra is four-dimensional, but to do so
would lead us too far astray from our present purposes.

Theorem 1. If X € My(C) and [X,v*] = 0 for all u, then X = ¢l for some

scalar c.

Proof. Assume X # cI and write X = xx[x + Z#k x;I'; for any k # 1.
From (35), there exists I'; such that I';['yI'; = —T'x. But [X,~v#] = 0 implies
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[X,T;] = 0, and hence

X =TDiXT; = ap D0k + Y a0y = —a Ty + Y day Ty
i#k i#k
But the uniqueness of the expansion for X implies that z; = 0. Since k was

arbitrary except that k& # 1, it follows that X = 211 = ¢I (where we could
have ¢ =0 if X = 0). |

We are now in a position to prove Pauli’s theorem.

Proof. Define

where the I'’s are constructed from the 7’s in exactly the same manner as the
[’s are from the ~’s, and M is arbitrary. Note that M can always be chosen so
that S # 0. Indeed, let M,s = 9,,/65s have all 0 entries except for M,y = 1.
Then

Spg = Z(Fi)pers(Fi)sq = Z(Fi)pr' (Ti)sq-
wrs 3

If S = 0 for all M, then S,; = 0 for all p,q and all s'. But then we have
0=>,(T:)p~T; as a matrix equation (just take the s'q entry of this equation),
which contradicts the fact that the I'’s are linearly independent. Therefore,
there exists M such that S # 0.

Now, I';T'; = a;;I'y implies T;I;T5T; = (aij)?(Tx)? = (as5)?, and hence
multiplying by I'; from the left and I'; from the right yields

;T = (ai)*Til = (ai;) T

Similarly, by definition it also follows that I';T'; = (a;;)*Ts. Using the fact that
(aij)‘1 = 1 along with our earlier result that I;I'; = a;;I'yx where distinct I';’s
correspond to distinct I'y’s, we have

FiSF,’ = ZFiFjMFjFi = Zaijko(aij)?Tk = ZFkMFk = S
J J k

and therefore ST; =TS or B
T, — AT,5"

if S~1 exists.
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Defining S = Lrimi for arbitrary M yields (by symmetry with our
previous result) I';ST; = S. Hence

SS = Flﬁflsn = FSSFZ

or [SS,T;] = 0, and therefore SS = ¢l by Schur’s lemma. Since S,S # 0
we have S™1 = (1/¢)S and S is nonsingular. To prove uniqueness, suppose
Sw”Sfl = 527“551. Then 551517“ = 7”5{151 which (by Schur’s lemma)
implies 52_151 =al or S1 = aS5s. |

We now return to showing that the transformed wave function ¢’(x’) has
the correct physical interpretation in the primed frame, i.e., that j* = A#,j".
Using equations (10) and (31), the fact that A%, is just a real number and the

fact that (7)1 =~° we have
A%t = A% Ty = 0 (A% )T = 40§71y 8)T
=708y 15700 = (108T40)y* (1057140
= (7°5T )y (75T

But we also have A%, v* = S7142S, so equating this with the above result
shows that
7*8(7°51°) = S(7°5T )"
and hence Sv°ST4% commutes with v®. Applying Schur’s lemma we have
S+08T~0 = ¢I or
SAYST = 40, (39)
Taking the adjoint of this equation shows that c is real. We set the normalization
of S be requiring that det S = +1 = det ST, and hence taking the determinant
of equation (39) shows that ¢* = 1 (since det(cy?) = c¢*det ") so that ¢ = +1.
We now show that ¢ = +1 if A% > 0, i.e., there is no time reversal. First
multiplying equation (39) from the right by 4° and from the left by S~! gives us
708740 = ¢S~ and therefore ST4? = ¢4°S~1. We then have (using equation

(31))
STS = 5179998 = /0871408 = ¢y OA0 4
= ’A%0y" + "\
= cA%T + cA%~%A%
Since STS is Hermitian, it’s eigenvalues are real. Alternatively, if (STS)z = Az
where z is normalized to ||z| = 1, then A = (z, STSz) = (S, Sz) = ||Sz|* > 0.
(That ||Sz|| # 0 follows because the norm is positive definite, and the fact that

S is nonsingular means Sz = 0 if and only if x = 0 which can’t be true by
definition of eigenvector.) In any case, we have tr STS = Y>> \; > 0, and since
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~AO~F = —~~0 we see that try°y* = 0. But then taking the trace of the above
expression for STS we obtain

0 < trSTS = tr(cA%I) = 4¢A°

and we conclude that
Ay>0 = c=+1

and
ANy<0 = c¢=-1

as claimed. Since we restrict ourselves to the so-called orthochronous Lorentz
transformations with A% > 0 then ¢ = +1, and we have S7°ST = ~" or

S0 = 1051, (40)

(As a side remark just for the sake of complete accuracy, it follows from equation

(30) that
3

1= goo = g AoA"o = (A%)% = (A'0)?
i=1
and therefore (A%)? =1+ >",(A%)? > 1 so we actually have either A% > 1 or
A% < —1)
Back to the physics of the transformed wave function ¢’ (2’) = S (x). Tak-
ing the adjoint of this we have /T = 7St so that using equation (40) we have

P =90 = 9T STyl = Ty 0871 =gt (41)

Therefore o _ _

G =AY = PSTINNS Y = ARy = Ao ¢
as desired. In other words, the probability current j* = 1)y transforms as a
4-vector and validates our interpretation of

V'(a') = S(A)p(AT1) = S(A)¥(x)

as the wavefunction as seen in the transformed frame. We will use this equation
to write the arbitrary momentum free particle solutions of the Dirac equation
in terms of the rest particle solutions (which are easy to derive).

In fact, it is the transformation law (31) together with equation (41) that
gives us the various types of elementary particle properties described as scalar,
pseudoscalar, vector and pseudovector. Let us take a more careful look at just
what this means.

The equations of motion are determined by a Lagrangian density . which
is always a Lorentz scalar. But the terms that comprise .# can vary widely. For
example, consider the “scalar” 1)1. That this is indeed a Lorentz scalar follows
by direct calculation:

Py =PSTHSY = Y.
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Furthermore, we just showed in the calculation above that the quantity "
transforms as a true 4-vector. What about the pseudo quantities? To treat
these, we introduce the extremely useful gamma matrix

. i
7" =5 = i7" = Seapmy ™y (42)

That this last equality is true follows from the fact that all four indices must be
distinct or else the € symbol vanishes, and the gamma matrices all anticommute.
Thus there are 4! possible permutations of four distinct gamma matrices, and
putting these into increasing order introduces the same sign as the £ symbol
acquires so all terms have the coefficient +1.
Under a Lorentz transformation we have
87158 = %EQWVS’W”‘WV”V”S

1

— Igaﬁwsﬂwss*yﬁSS*wSS*w"S

l’ ’ ’ ’ ’
= IEQBHVAQQ’ABB’AMM’AVU’VQ 76 7“ /YV

1

= (et Azargy ™77y

or

57158 = (det A)vs (43)

which shows that 5 transforms as a pseudoscalar, i.e., it depends on the sign of
det A = +1. (Compare this with equation (31) which shows that y* transforms
as a vector.)

Using this result we can easily show that t¢ys¢ transforms as a pseudoscalar
and 1)ysy*1) transforms as a pseudovector:

Pyt =S58 = (det A)pysep
and
Pysy' ' =S sy S = S5 SS IV SY
= (det A)A*, (y57" ).

4 Construction of the Matrix S(A)
We begin by considering an infinitesimal Lorentz transformation

AF, = g*, +wHy. (44)
Then to first order in w we have

Jop = Mol ug = (9", +W'a)(gus + wWps) = gap + Wap + Wpa

20



and thus
Wap = —Waa-

Let us expand S(A) to first order in the parameters w,,, to write

/I; v
S=1- gwwE“ (45a)
5*1::1+-%WMU2#". (45b)
Note that wy,, is a number, while X is a 4 x 4 matriz. Since w,, = —w,,, we

can antisymmetrize over y and v so that w,, X" = w#UE[‘“’] and hence we may
just as well assume that ¥ is antisymmetric, i.e.,

S = v

Just to clarify the antisymmetrization of X# note that in general if we have
an antisymmetric quantity A,, contracted with an arbitary quantity 7, then
we always have

1
A, TH = §(AWT“" + A, TH)
§(AWTW — A, TH) by the antisymmetry of A,,,
1
= §(AH,,T‘“’ — AT by relabeling p < v

1
= §A#V(TMU - TVM)
_ AMUT[#V]'

This is an extremely useful property that we will use often. Note also that the
quantity T' can have additional indices that don’t enter into the antisymmetriza-
tion, e.g., A, TH" = AWT[‘“’]p.

Working to first order, we substitute equations (44) and (45) into equation
(31):

i i
(9%, +wu )V = (1 + QWWEW) o (1 - QWWEW>
or . ]
Y+ w =" = %WW’YQEW + %WWEW’YQ

which implies that .
i
W = =Sy, B

On the right hand side of this equation w,,, is contracted with an antisymmetric
quantity, so we want to do the same on the left. To accomplish this, we rewrite
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the left hand side as

1
Wyt = wﬂugaﬁ,yu _ Wgugaw’y“] — §wﬁu(gaﬂ7u _ gau,yﬁ)

1 v v
- §wuu(gaM7 _ga Wﬂ)

Therefore, since wy,,, is arbitrary, we must in fact have (after multiplying through
by i)
g™y = g™ ) = [y, B

Now, ¥*¥ is antisymmetric and, as we have seen, it must be a linear combi-
nation of the I' matrices, i.e., it must be a product of v matrices. If u # v we
know that v~ = —y”~*, and if ;1 = v then obviously [y*,~+”] = 0. Hence we
try something of the form X#¥ ~ [y#,~¥], and it is reasonably straightforward
to verify that ‘

Q 17
= 10" (46)
will work. (To verify this, you will find it useful to note that y*~* +~"~* = 2g*¥
implies [y*, "] = y*yY — Y7y = 2(y*y” — ¢*”) along with the general commu-
tator identity [a, be] = bla, ¢] + [a, b]e.) Thus we finally obtain (for infinitesimal

i

W) ) )
S(A) =1 - Zwu D =1+ wuh 7] (47)

We now turn our attention to constructing S(A) for finite A*,. Since a
finite transformation consists of a product of a (infinite) number of infinitesimal
transformations, we first prove a very useful mathematical result that you may
have seen used in an elementary quantum mechanics course to construct the
finite rotation operators U(R(8)) = ¢/

Proof. First note that the logarithm is a continuous function (i.e., lim, ., f(x) =
f(a)) so that

. o\" . o\" . 0
In lim 1+ — Im In{14+—) = lim nln {1+ —

_ nh_{go In (11—;: / n) '

As n — oo both the numerator and denominator each go to zero, so we use
I’Hopital’s rule and take the derivative of both with respect to n. This yields

—0/n?
1+é7n . 0

. 0\ .
ot (1+ g) = dm e = g, =Y
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Taking the exponential of both sides then proves the lemma. |

Now, equations (45) and (47) apply to an infinitesimal boost parameter w,,,.
In the case of a finite boost, let us write (as n — o0)

W
Wy = —Wuw
w e

which is a product of a Lorentz boost parameter w and a unit Lorentz trans-
formation matrix &, (to be defined carefully below). Then this finite A is
comprised of an infinite number of infinitesimal boosts and we have

S(A) = lim (1 - %EQWZW> B "

n— o0 n

Let us verify equation (40) for this S. We first recall that v#T = v94#~% and
therefore

. i . . .
i i i i
ot = <Z[”Y“7”YU]) = ——[ Ay = [T = 402 Y

_ ,YOE,LW,YO'
Writing w,, = wy, we then have (using the fact that (y")? = I to bring the
7%’s out of the exponential)

—L i K2 2] i pv _
S =e 39w — GF = ez BT — 03w B0 — 10g-1,0

so that again we find 705t = =140 or §708T =40,

We now wish to construct an explicit form for .S. To accomplish this, we need
to know the boost generators @,,. We know that for a Lorentz transformation
along the positive x-axis we have (where the “lab frame” is labeled by z* and
the “moving frame” is labeled by x/#)

.I/O — ,Y(xo _ Bxl) 117/1 _ ,Y(Il _ 6.@0) $/2 _ .IZ 117/3 — .IS (49)

where 3 = v/c and 42 = 1/(1—3?). To describe a boost in an arbitrary direction
we first decompose this one into its components parallel and orthogonal to the
velocity to write (keeping the axes of our coordinate systems parallel)

PO Box) X = - B X =%
Now expand x’ as follows:
x' = x| +x| =x1+(x) - Ba°) =x — x| +v(x — Bz?)
=x+ (y— 1)x; —yB°.
But




and hence we have
x- )8 —yBz" (50a)

2% =~z - B-x). (50b)

Comparing these equations with ' = A*,z" we write out the matrix (A*,):

¥ - -2 —763
) -8 1+ G () %é’ﬁ C W S -
v —’752 'yﬁ);)6261 1_|_ (6)2 (52) 6)2 6263
—’753 (vﬁ);)ﬁ?,ﬁl ('yﬁ);)ﬁ?,ﬁz 1+ ('yﬁ);)(ﬁs)

For an infinitesimal transformation we have v — 1 so that

1 =gt =5 -
_51 1

(Note that this is for a pure boost only. If we also included a spatial rotation,
then the lower right 3 x 3 block would contain an infinitesimal rotation matrix.)
In any case, we therefore have (in a somewhat ambiguous but standard notation)

0 —ﬁl —ﬁQ —ﬁS

wa=| "
—62 0
_53 0
0 —cosa —cosfl —cosy
_ —cos 0 _p@m) (52)
—cosf3 0
— cosvy 0

which defines the unit transformation matrix (", ), and where (cos a, cos 3, cos )
are the direction cosines of the infinitesimal boost 8 = w/n. (See the figure be-
low.)
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From the figure we have 3 = (8 cosa)x+ (Bcos 3)y + (Bcosvy)z so 32 = B-8 =
B%(cos? a + cos? 3 + cos? v) and hence

cos® a4 cos® B+ cos® y = 1.

Note also that we have defined the matrix (©*,), and from this we can write
Opy = Gua @*,. Then

~ ~a ~0 ~ ~a ~i
Woi = GoaW™; =W and Wio = GiaW"y = =W’
so we see from (52) that indeed we have w,, = —w,,.

We can now use these @,,’s to find another form of the Lorentz transfor-
mation matrix A*, via exponentiation. Thus, a finite Lorentz transformation
is now given by

n .
lim (g, + 204, ) = (e9)", = A%, (53)
n—oo

where w is a finite boost. To expllcltly evaluate this, we observe that

0 0 0

cos? a cosacos 3 COSQCosYy

1
@2 =
0 cosfcosa cos? cos 3 cosy
0

cosycosa cos7ycos /3 cos? vy

and (@",)% = (©*,). We also note that

6% o

cosh9—2(e +e ) = 1+_+E+

1 6 6

51nh9—§(e —e” )—H—i—y—i—g—i—

and therefore
R 2 3 4 s L

W WP , 2 A "
=plo+S+5+)+1-0 —I—w(l—l—?—i—zﬁ- )

=[1 - &* + @° coshw + Usinhw]”,
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For example, in the particular case of a boost along the x'-axis we have
cosa =1 and cos § = cosy = 0 so that

0O -1 0 O 1
-1 0 1
O SHO\2
w v 0 0 (w u) - 0
0 0 0
and hence
coshw —sinhw 0 0
_ —sinh w coshw 0 0
evY = = (A")
0 0 1 0
0 0 0 1

Therefore, looking at the 0 component for example, we have

2" =AY, 2" = 2% coshw — 2! sinhw = coshw(z® — 2! tanh w)

and comparing this with equation (49) shows that
coshw =~ and tanhw = 3 (54)

which should be familiar from more elementary courses. In other words, ex-
ponentiating an infinitesimal Lorentz boost gives back exactly the same trans-
formation matrix as we could have written down directly from equation (49),
which should have been expected.

Now let us finish computing the spinor transformation matrix S(A) defined
in equation (48). First, using @", as defined in equation (52) we have

-~ v -~ v
W M = g BH

=50, 50 450,502 4 50,508 — 5l ;N0 _ 52 220 _ 53 030,

But X% = -3 = (i/4)[y°,v'] where the gamma matrices are given in equation
(6) so that _
0i __ 1 0_ o ﬁ i
2—2{01 O}.—Za.
Now observe that (as we saw above) @', = ¢"*@,0 = —Wi0 = Do; = gou@"; = @Y%

(which also follows from the explicit form of equation (52)) and therefore
B I =20%%% = —2(X% cosa + 1% cos B + %% cos )
= —i(a' cosa + o cos f + a3 cos )

= —ia- B.

Recall that the Pauli matrices obey the relation (using the summation con-
vention on repeated indices)

0i05 = 517‘ + i&iijk
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which implies
(a-o)(b-o)=a-b+i(axb) o

~

so that (o - ﬁ)Q =[-8 =1. Then from

(remember this is a block matrix) we see that
. N2 o 1 O

This then gives us

S(A) = e Bm T _ o~huarB

1 a8 35 e B )
—r-aBlyeg(s) o rEE) 5 3) ]
or simply
S(A) = Icosh% — (« B) sinhg. (55)

If this looks vaguely familiar to you, it’s because you may recall from a
quantum mechanics course that the rotation operator for spin 1/2 particles is
given by

o~

. . 0 0
U(R(0)) = e~ 0I/1 — ¢=16-0/21 _ [ o 3~ i(o - 0)sin 3

Anyway, to put equation (55) into a more useable form, we make note of the
following identities:

cosh? z —sinh?z = 1
sinh(z + y) = sinh 2 cosh y + cosh  sinh y
cosh(z + y) = coshz coshy + sinh z:sinh y
and these then imply
1+ cosh 2z = 2 cosh? z

cosh2z — 1 = 2sinh? z

. 1 1/2
cosh 5= [5(1 + cosh :v)]

. 1 1/2
sinh 5= [§(coshx - 1)] .
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Using equation (54) we then have

w 1 1/2 w 1 1/2
cosh 5= [5(1 + 7)] and sinh 5= [5(7 - 1)] :
Now we use the relativistic expressions £ = ym and p = ymv = Ev so that
p = p/p = p/Ev. Since we want to boost from the rest frame of the particle to
a frame where it has velocity v, we have 3 = —v and 3 = —p. We also have
E?/m? =~+% =1/(1 - %) so that

62_1_m_2_E2—m2_(E+m)(E—m)
a E?2 E2 E?

or

EB =[(E+m)(E —m)]"2
Therefore

B 1\ /2 B 1/2
/m7+) —< —l—m) :cosh% (56a)

<

2m
~ ~ o' . p a' . p
—o-83= D= = 56
Using equations (56) in equation (55) then yields our desired final form
S(A) =
1 0 p:/(E+m) p_/(E+m)
(E+m)1/2 0 1 p+/(E+m) —p./(E+m)
2m pz/(E+m) p_/(E+m) 1 0
p+/(E4+m) —p./(E+m) 0 1
(57)

where p+ = p, £ ip,.

We now use equation (57) to write down the arbitrary momentum free par-
ticle solutions to the Dirac equation. For a particle at rest we have p = 0, so
the Dirac Hamiltonian (equation (2)) becomes simply £ = « - p 4+ fm = fm,
and the Dirac equation is just

(i7°0p — m)y(x) = 0.

Using (in block form)



we write the equation in the form

1 o1 o1
1
; B ®2 - o2
-1 X1 X1
-1 X2 X2

The obvious solutions are of the form

"/Jr (JJ) = w, (0)€7i€Tmt

where
+1 forr=1,2
€ =
-1 forr=3,4
and
1 0 0 0
0 1 0 0
w1 (0) = 0 w29 (O) = 0 ws (O) = 1 w4(0) = 0
0 0 0 1

Since mt = pox® = p,a* is a Lorentz scalar (where * means the rest frame),
we may write the phase in the form e~*?+*"  And since the spinor part is given
by w,(p) = S(A)w,(0), the general solution is thus

Ur(x) = we(p)e” P = w,(p)e T (58)

where the rth column of (57) gives w,(p). Recalling that 17 is a Lorentz scalar,
it is also easy to see directly from the columns of (57) that

Wy (0)’(05 (0) = Wy (p)ws (p) = €,0ps.

But note that we can multiply w,(0) by any constant to fix the normalization.
The last topic to cover in this section is to consider what happens under
parity (i.e., space reflection). In this case equation (31) can not be solved by
considering the infinitesimal transformation (44). Now we have the Lorentz
transformation ¢ — ¢ and x — —x so the Lorentz matrix Ap is given by

(AP)'U‘U = 1 = Guv
—1

and we seek a matrix denoted by P (rather than S) that satisfies

(Ap)t 4" =P 'y*P.
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In particular, ¥° = P='49P and —+* = P~ !'4*P or —P~’ = 4*P. It should be
clear that this is satisfied by choosing anything of the form
P =40, (59)

In other words, we have

Y(z) = V' (a') = ' (t, —x) = e (L, x).

5 [Easier Approach to the Spinor Solutions

The Dirac equation is (o p + 3m)y = E, and with 4° = 3,4 = Sa we have
(v-p+m) =~ Erp. Using p* = (p® = po = E,p) we write the Dirac equation
as (Yo — v -p —m)y = (y"p,, —m)yp = 0 or just

(p—m)v = 0. (60)

(For simplicity we will generally leave out the identity matrix in these equations.)
Now note that multiplying {v*,~v"} = 2¢"" by scalars a,, b, we obtain

{¢,p} =2a-b (61)

and hence in particular pp = p-p = p?. Operating on equation (60) from
the left with p 4 m yields (p* — m?)y = 0, and using p* = 9" this becomes
(=9,0" —m?)p =0 or

(O +m?)yp =0.
In other words, each component of any v that satisfies the Dirac equation also

satisfies the Klein-Gordon equation. This equation has the solutions e***® with
—k% +m? = 0 so that k2 — k? = m? or k¢ = k? + m?. We define

k= +VKk2+m? (62)

—ikw  emwkt is referred to as the positive frequency

—Et) "and the solution et?®

so that the solution e
solution (since in the Schrodinger theory ¢ ~ e
ekt is called the negative frequency solution.

Let us write the plane wave solutions to the Dirac equation in the form

~

Y(x) ~ u(k)e T 4 u(k)et®
where k? = k,k* = m?2. Then (i} — m)y = 0 implies
(+§ — m)u(k)eiik'x + (—§ - m)v(k)eik'x =0.

Since the positive and negative frequency solutions are independent (they each
satisfy the Dirac equation separately) this implies

(¥ —m)u(k) =0 (63a)
(F + m)v(k) = 0. (63D)
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Using v#1 = 494#40 we take the adjoint of each of these and multiply through
by 7° to obtain

a(k)(f —m) =0 (64a)
(k) (f +m) = 0. (64D)

For solutions at rest we have k = 0 (and hence kg = m) so equations (63)
become

(40 = 1)u(0) = 0
(+* + 1)v(0) = 0.
The first of these is
1
P o) = u()
-1
which has solutions of the form
*
u(©0) = |
0

where the *’s stand for an arbitrary entry. Similarly, the second of these has
solutions of the form

v(0) =

¥ * O

Since each of these has two independent components, we write the rest frame
solutions as

1 0 0 0
0 1 0 0
ul(o) = 0 U‘?(O) = 0 U1 (0) = 1 UQ(O) = 0 (65)
0 0 0 1
up to an arbitrary constant.
Using
(k= m)(f+m)=k> —m? =0 (66)

along with the fact that u(k) satisfies equation (63a), we see that any spinor of
the form v’ = (f + m)u will automatically satisfy (f —m)u’ = 0. We therefore
write the solutions for arbitrary k in the form

ur (k) = c(k +m)u,(0) (67a)
—vp(k) = (f — m)v,.(0) (67D)
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where the normalization constants ¢ and ¢’ are to be determined, and the (—)
sign in front of v, (k) is an arbitrary convention. We must also therefore have
(by inserting v°4" = I in front of the m)

ul (k) = " ul(0)(v"7#7 ky +m) = T (0) (K +m)y°

and
—vf (k) = "0} (0)(7°7#7 ky — m) = 0, (0)(f — m)7°
so that
ur (k) = " u,(0)(f +m) (68a)
v, (k) = "0,.(0)(f — m). (68b)

Next, from equations (66), (67) and (68) we see that
. (k)vs(k) = —c* - (0)(F + m)(} — m)v.(0) =0

and similarly
7, (k)us(k) = 0.

This means that ¢1) ~ Tu + Vv, and since u and v are independent solutions, it
follows from the fact that ) is Lorentz invariant that wu and Tv must also be
Lorentz invariant. We fix our normalization by requiring that

- (k)us(k) =
v (k)vs (k) =

S

T(O)us (0) = 2md,s (69&)
(0)vs(0) = —2mdys (69D)

<

where the (—) sign in equation (69b) is due to the form of v and equations
(65).

Let us now find the normalization constants in equations (67). We compute
using equations (66), (67) and (68):

@, (k)us (k) = |e* @ (0)(k + m)?us(0) = e T (0) (K + 2mf + m*)us (0)
= [c[* @, (0)2m(m + F)us(0) = 2m |e|* @, (0) (k + m)u(0)
= 2m |e* ul (0)7°(7°ko — v - k + m)us(0).

But
* 0
0 o-k % 0
k)us(0) = ~
(v K)us(0) l—a-k()]o !
0 *
while



and hence

We also have kg = E and

I
—
oo % %

so that (using equation (69))
Uy (k)us(k) = 2m|c|* (B 4+ m)u, (0)us(0) = @, (0)us(0)
which then implies (choosing the phase equal to +1)
c=[2m(E +m)]"Y/? (70)
In an exactly analogous manner, we have
T (k) (k) = |/ 50 (0) (F — m)?vs(0) = |/ T (0) (K — 2mk + m?)v,(0)
=|¢|*5,(0)(2m?* — 2mEA" — 2m~y - K)v, (0).

But
1 0 k X
_ B . o 0
worrmm=o o - [ ][0, [
= [O 0 =x *] Z; =0
K
and
57“(0)'}/0115 (0) =7,(0) [1 _1} {2} = —7,(0)vs(0)
Therefore
B, (k)vs (k) = || 2m(m + E)5,(0)v,(0) = 7,.(0)v(0)
so that

d =[2m(E+m) Y% =c

Lastly, observe that equations (69) and the forms (65) require that we mul-
tiply each of equations (65) by v2m. We are then left with our final result
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1 Pr
(k) = + Tla
ur () =~k +m) O] (71a)
-1 0
or(k) = ( —m)[ ] (71b)
FE+m Xr
where
1 0
L=xa= and o2 =x2 = s
Explicitly, these may be written out using
EFE+m —-o-k
F+m="FE—~ -k4+mlI=
4+o-k —E+m
where
ks k_
o-k=
ky —ks
and
E—-m —o-k
k—m:”yOE—'y-k—mI:
+o-k —(E+m)
so that
) 1 [E+m —o-k | [ 1 (E+m)p,
u’l‘ = ——— - = ———
VE+m | ok —E+m]| [0 VE+m | (o-k)p,
5 1 [E-m —o-k ][O 1 (o -Kk)xr
’UT = - —_——-
VE+m | ok —(E+m)]| |xr VE+m | (E+m)x,
or
[E+m] 0
1 0 1 E+m
k)= —— k) = —— 72
uy (k) T | ks usa (k) T | ok (72a)
L A+ ] —ks
[ ks ] k_
1 ky 1 —ks3
k)= —— k)= —— 72b
v (k) T | Bam va(k) | o (72b)
. 0 E+m

Note that to within the normalization constant 1/+/2m, these agree with equa-

tions (57) as they should.
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Part II — Useful Facts Dealing With the Dirac
Spinors

6 Energy Projection Operators and Spin Sums
In order to actually calculate scattering cross sections, there are a number of

properties of the Dirac spinors that will prove very useful. We will work in the
normalization of Section 5:

1 ©r
S p— ¥ 0 73b
vy (k) = \/ﬁ( —m) o ( )

(these are just equations (71)) where

1 0
<P1:X1: O and (pz:xz: 1

Uy (k)us(k) = =0, (k)vs(k) = 2moy,s (74)
(these are equations (69)). We also have the basic equations (63) and (64)

and

(k= m)u(k) = 0 = (¥ +m)v(k) (75a)
() (k —m) = 0 = oK) (F + m) (75b)

S

As a consequence of these we immediately have the identity

a(k){(k —m),7"}us(k) = 0.

Noting that {v#,v"} = 2¢*” implies {§,v*} = 2k*, this last equation can be
written

(k) (2" — 2my*)us (k) = 2kH T, (K)us (k) — 2ma, (k)y*us(k) = 0.
Letting = 0 and using (74) yields (where k° = Fy = wy)
ul (K)us (k) = 2widys. (76a)
Similarly,
T (K){(F +m), 7" }vs(k) =7, (k) (25" 4 2m~y")vs(k) =0
results in

vl (k)vs (K) = 2wicbrs. (76Db)
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From equation (10) we see that §' = Yk, = 409190k, = 4%F~° so that
from equations (73) we have

W90 () = 5 [ 0] (% my = m) | |
— e Lt 0] m-m | 0 ].

There is also a similar result for 7, (k)us(k), so that using (f +m)(f —m) =
k* —m? = 0 (equation (66)) we obtain

Uy (k)vs (k) =0, (k)us(k) = 0. (77)
For convenience, let us define k= (k°, —k) where we still have kZ —k? = m?
orwi = w_x = wi = Vk2 +m?2. From equation (75a) we have (f+m)v,(—k) =

0, so multiplying this from the left by @, (k) and also multiplying u, (k)(f —m) =
0 from the right by vs(—k) and then adding, we obtain

T (K) (K + F)vs(—K) =T () (120 — i + 7o + i )vs (—K)
=7, (k)27 kovs (—k) = 2wy (k)vs(—k)

0

so that
ul (K)vs(—k) = 0 = vf (k)uy(~k) (78)

where we didn’t bother to repeat the identical argument for vu.
Now for the energy projection operators. First note that because of equations

(75) we have fu = mu and fv = —mv. Then if we define
A (K) = +f+m (79)
we have
ATy = fu+mu=2mu while ATv=fv+mv=0 (80a)
and
Au=—fu+mu=0 while A v=—fv+mv=_2mv. (80Db)

Similarly we find

uAT =2mu  while AT =0 (80c)
and

uA~™ =0 while TAT =2m7. (80d)
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It is easy to see that the AT are indeed projection operators since

(AF)?2 = (2 +m)? = I + 2mf + m? = 2m(£f + m) = 2mA* (81a)

AAF = (b + m)(Fh+m) = = +m? = 0 (81b)

AT+ AT =2ml. (81c)

(If we had defined A* = (+§ + m)/2m, then these would be (A*)2 = A* and
AT 4+ A~ =1 which is the more common way to define projection operators.)

To put AT into a more useable form, we proceed as follows. First note that
we have u,. (k) = S(A)u,(0) and v, (k) = S(A)v,.(0). Using ST4? = 728~ (equa-
tion (40)) these yield %, (k) = u}(0)STy°* = %,(0)S~! and 7, (k) = 7,(0)S~L. It
will be convenient for us to change notation slightly and write u(k,r) = u,(k)
so that uq(k,r) represents the ath spinor component of u(k,r). Then consider
the sum

2

Z[ua (k7 T)ﬂﬁ (k7 T) — va(k, r)ﬁﬁ (k, T‘)]

-1 )
= Sap {Z[UH(O,T)ﬂU(O,T) —v,(0,7)7,(0, r)]} S’V_ﬁl (82)

Observe that what we might call the outer product of a column vector a with
a row vector b? is
ai aiby -+ aib,
[ by -+ by ] =

Gn, anbl e anbn

so that (ab”);; = a;b;. (This is just the usual rule for multiplying matrices. It
is also just the usual direct product of two matrices.) To evaluate the term in
braces on the right-hand side of equation (82), we first note that from equations
(73) we have

u(0,7) = V2m [i;] and v(O,r)—\/%[ : ]
Xr

and hence the sum of outer products is given by (note 4" changes the sign of
in 7)

o O oo
o O oo
o O oo

e — @|
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000 0 000 0
000 0 000 0
Tloo10|/T]oo0o0o0
000 0 000 1

=2ml.

Then the term in braces in equation (82) is just 2md,, and we have

2
> lualk, r)as(k, ) — va(k, 1)Ts(K, 7)] = 2m ag.

r=1

Taking the (a, §)th element of equation (81c) this last equation can be written

as
2

Z[ua(k, rug(k,r) —va(k,r)ug(k,r)] = A;rﬁ + A;ﬁ.

r=1
Multiplying from the right by A;# and using equations (80) and (81) we have
2
> lualk,m)2ma,(k,r) — 0] = 2mA, +0
r=1
or our desired result

> ualk,r)agk,r) = ALy = (k+m)agp. (83a)

r=1
Similarly, multiplying by AE# yields

2
= valk, ) Ta(k, 1) = Ajg = (—F + m)ap. (83b)

r=1

Another way to see this is to use the explicit expressions from the end of
Section 5:

F+m —-o-k E—-—m —o-k

frm= +o-k —(E+m)

and f—m=
+o-k —E+4+m

together with

ok
Pr ErmXr
ur(k)=vE+m| _ ] and v.(k)=VvE+m BfmX ]
E'erspr Xr

(k) = ul (k7" = VE+m[¢l —ofZ% ]
7,(k) = vl (k) =VE+m [ x| &% —x]



We now use these to form the outer products

or o] —orofl Zs
ur(k)ur (k) = (E+m)
_é.;r—'l:n(prspl _%@rwlﬁ
T X Xb B~ B XX
00 (&) () = (E +m)
Xr X —Xrx}

Noting that

[1 0]+

T T 1
X1X1 + X2X2 = 0

0 1}_[1 0]

with a similar result for ¢ cpi + gogcpg, we have

S w0 = (E+m) | o o
= | Btm T Erm

Zvr(kﬁr (k) = (E +m) (E+m)? E+m
r=1 L E+m -1

[ _(ok)? ok ‘|

But (o -k)? =k?=E? —m? = (E +m)(E —m) and we are left with

2 [E+m —o-k
[E—-m -0k B
Sutomo= | | kA

which agree with equations (83).

7 Trace Theorems

We now turn to the various trace theorems and some related algebra. Everything
is based on the relation

{7 =2¢" (84)
where
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We also use the matrix 5 defined by (see equation (42))

) { v
%=f:w%Wf=ImeWWW (85)

As we saw before, that the last expression is equivalent to i7%y'y2~3 is an imme-

diate consequence of the fact that both £44,, and Y*y?y#+" are antisymmetric
in all indices which must also be distinct. Then there are 4! possible orders of
indices, and putting them into increasing order introduces the same sign from
both terms. This is just a special case of the general result that for any two
antisymmetric tensors A;,...;, and T71"Jr we have

T

Ail-nirT i = T'A|“@T|T prte

where [i1 - - - i,.| means to sum over all sets of indices with i; < iy < -+ < 4.
Now note that

{57} =0 (86)

because
Oyl 2Bt = —jyhaOylPy® = by

due to the fact that no matter what p is, v* will anticommute with precisely
three of the 4’s in 75, and hence gives an overall (—) sign. We also have

(55)? =1 (87)
To see this, first recall that equation (84) implies (7°)? = +1 and ()2 = —1.
Then

(15)2 = =° 20y = 400 R = Aty e

Y5y =iy

= 7123028 = =233 = 4423yt = (-1)2 = 1

In what follows, we shall leave off the identity matrix so as to not clutter
the equations. For example, to say 7,v" = 4 really means ~,v* = 41.
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Proof. Since (7°)? =1 and (7%)? = —1, we have
Y = (0 ' = (0P =Y () =1-3(-1) = 4.
Next we have (using (88a))
Vudtr" = @y = an (=" + 290" = —dyuyt + 24 = =24
Note that (88f) simply follows by multiplying {v*,~"} = 2¢** by a,b,. Then
Vb = by (=7 + 29") = gty b+ 2

= +2¢tp + 2pd by (88b)
=4da-b by (88f).

Now observe that

(Vs #t} = @’ {0} = 0”29, = 20,
Then

Vudbrt = VudB(—"¢ + 2¢") = —yudbt ¢ + 244P

— —da - b¢ + 24dp by (88c)
= —da- b+ 2¢(—bd + 2a - b) by (88f)
= —2¢pd.

Finally, we have

YVudbgdrt = vudbd(—Hd + 2d*) = —~,dbdrtd + 2ddBé
= 2(¢bid + ddb¢) by (88d).
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Proof. That tr I = 4 is obvious. Next,

—itrys = try%y' %% = —try'y?3y0 by (84)

= +try'v2y34% by the cyclic property of the trace
Therefore trv5 = 0. Now let n be odd and use the fact that (y5)? = 1 to write
troyl " =teyt oy s
= —trys7t--y"ys by (86) with n odd
= —tryl- " (7s)? by the cyclic property of the trace
n

= —tl")’l Sy
so that try!---4™ = 0. Next we have

trdp = %(tr db + trbd) = % tr(db + Bd)

= %(2a b)trl =4a-b by (88f) and (89a).
For the next identity we compute
trdhéd = —tr badd + 2a - bir ¢d
= +tr bédd — 2a - ctr bd + 8(a - b)(c - d)
= —trb¢dd + 2a - dtr b¢ — 8(a-c)(b-d) + 8(a-b)(c- d)
= —trghéd +8(a-d)(b-c) —8(a-c)(b-d) +8(a-b)(c-d)

where the first line follows from (88f), the second and third from (88f) and (89d),
and the last by the cyclic property of the trace. Hence

trdpgd = 4[(a-d)(b-c) = (a-c)(b-d) + (a-b)(c-d)].

Equation (89f) follows from (89c) or from trys¢ = — tr ¢ys = — trys¢ = 0 where
we used (86) and the cyclic property of the trace.

For the next result, note that tr'y5¢l5 = aub, trysy*y”. If 4 = v then
trys(v#)? = £ trys = 0 by (89b). Now assume that p # v. Then

Y5y = iy Pyt = iy
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where o # 3 are those two indices (out of 0,1, 2, 3) remaining after moving y*~"
through to obtain (y#)? and (v¥)? (each equal to 41). But

tr7a75 = —trvﬁwo‘ = —trwo‘vﬁ =0

if « # 3 (by (84) and the cyclic property of the trace). Therefore try5y#~" = 0.

Continuing, we see that (89h) follows from (89¢). Now consider tr 5y~ ~Py7.
If any two indices are the same, then this is zero since we just showed that
trysyHy” = 0. Thus assume that u # v # p # o, i.e., (1, v, p,0) is a permuta-
tion of (0,1,2,3). If we choose (i, v, p,0) = (0,1,2,3) then we have

trysy0y 2y = —itr(ys)? = —di = —4ic123,

Since both sides of this equation are totally antisymmetric, it must hold for all
values of the indices so that

tr sy Py = —daehtre

and hence
ol = — 4177 b, cypds.

For the second part of (89i), note that e,,,, is not a tensor by definition.

Indeed, we have gg123 := €123 := +1. But the only non-vanishing terms in

et??a,b,c,ds comes when all the indices are distinct, and ag = a® while a; =
—a' etc., so we actually have

e"P%a,bycpdy = —€pppoalb’c’d’.

Finally, let us define ¥# = —(y*)?. Then {7#,7"} = 2¢"", and hence by
Theorem 2 there exists a matrix C such that Cy#*C~1 = —(y#*)?. Then we have

-y, = 1Oy -y, O = tr OC™' Oy - Oy, O
= (L ey g, = (o)
:tr¢2n"'¢1' i
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Part 1II — Group Theoretic Approach

8 Decomposing the Lorentz Group

In this part we will derive the Dirac equation from the standpoint of represen-
tations of the Lorentz group. To begin with, let us first show that the (homoge-
neous) Lorentz transformations form a group. (By “homogeneous” we mean as
distinct from the general Poincaré (or inhomogeneous Lorentz) transformations
of the form a" = A*, a” + a* where a" is a constant.)

Clearly the set of all Lorentz transformations contains the identity trans-
formation (i.e., zero boost), and corresponding to each Lorentz transformation
A#, there is an inverse transformation A~! = AT (equation (28)). Thus we need
only show that the set of Lorentz transformations is closed, i.e., that the com-
position of two Lorentz transformations is another such transformation. Well,
if 2/ = APz and 2" = A" ga’P, then

" = A”’gx’ﬁ = A”’ﬁAﬁaxo‘
and therefore (using equation (30))
"l = A”’gAﬁaxo‘A;,pAp":zrg = (A’”ﬁA;p)(AﬁQAp”)xo‘xg
= gﬁp(ABaAp"):vo‘xg = Apu N7 2%, = gl 0%2s = 2720

and therefore the composition of two Lorentz transformations is also a Lorentz
transformation (because it preserves the length 2%, ). This defines the Lorentz
group.

If we let z# denote the “lab frame” and x’* the “moving frame,” then for a
pure boost along the z'-axis we have (note that this is just equation (49) with
B — —f and switching the primes)

¥ = (@0 + g2 2t =@+ 20 2P=2? 2P =2
with the corresponding Lorentz transformation matrix

v B

By

AP, = (90)

1

However, we can also include purely spatial rotations since these also preserve
the lengths x - x and hence also zVx, = (2°)?2 — x - x. For example, a purely
spatial rotation about the x3-axis has the Lorentz transformation matrix

1

cosf) —sinf
AOYW = . 91
)", sin 6 cos (o1)
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Since such rotations clearly form a group themselves, the spatial rotations form
a subgroup of the Lorentz group. However, the set of pure boosts does not
form a subgroup. In fact, the commutator of two different boost generators is a
rotation generator (see equation (93b) below), and this is the origin of Thomas
precession.

It is easy to see that the Lorentz group depends on six real parameters.
From a physical viewpoint, there can be three independent boost directions,
so there will be three boost parameters (like the direction cosines in equation
(52)), and there are obviously three independent rotation angles for another
three parameters (for example, the three Euler angles). Alternatively, Lorentz
transformations are also defined by the condition A”gA = g. Since both sides
of this equation are symmetric 4 x 4 matrices, there are (4> —4)/2 +4 = 10
constraint equations coupled with the 16 entries in a 4 x 4 matrix for a total of
6 independent entries.

For an infinitesimal boost § < 1, equation (90) becomes

1 B
AB)", = 1 = T + wy oM™
1

where I = (g*,) = (%), the infinitesimal boost parameter along the z-axis is
defined by wig := 3, and we define the generator of boosts along the x-axis by

0 1
oo |10
0

Let us define wo1 := —wio and MO := —M1'9 so that
1 1
wloMlo = E(wloMlo + wloMlo) = E(wloMlo + WQ1M01).

Since we can clearly do the same thing for boosts along the 22 and 23 directions,
we see that the general boost generator matrix (as in equation (52)) is given by

%(inMiO + WOiMOi)
where
0 1 0 1
M= : 0 and M = 0 0
0 1 0
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Similarly, for an infinitesimal spatial rotation § < 1, equation (91) becomes

1 -6
A(@)“V = 0 1 =1 + W12M12

1

where now the parameter for rotation about the z3-axis is defined by wig := 6,
and the corresponding rotation generator is defined by

0
M2 — 0 -1
1 0
0
Again, we define wo; = —wio and M?' = —M'2 so that

1 1
w12M12 = §(w12M12 + W12M12) = §(w12M12 + WQ1M21).

With
0 0
0 -1 0
1 0 -1 0

as the generators of rotations about the z' and x? axes respectively, we have
the spatial rotation generator matrix

1 3 -~
5 (Wi MY+ wji M),

(Notice that the signs appear wrong in M3!, but they’re not. This is because
all rotations are defined by the right-handed orientation of R3 as shown in the
figure below.)

Y z T
L x L Y L z
z T Y
Just as we did in equation (53), the matrix representing a finite Lorentz
transformation (including both boosts and rotations) is obtained by exponen-
tiating the infinitesimal results so that we have the general result (where we

define Woo = Wi = O)
A = ez@m M (92)
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Let us define the vectors
M = (M23,M31,M12) and N = (Mlo,M207M30>'

By direct computation you can easily show that (using the summation conven-
tion on repeated letters)

[M;, M;] = eijr My (93a)
[Ni, Nj| = —€iju My (93b)
[M;, Nj] = €Nk (93c)

Note that these are now to be interpreted as the components of vectors in R?
where the metric is just d;;. In other words, they are a shorthand for relations
such as [M?23, M3 = M'? plus its cyclic permutations. They are exactly the
same as you have seen in elementary treatments of angular momentum in quan-
tum mechanics. It is also worth observing that from equation (93b) we see that
a combination of two boosts in different directions results in a rotation rather
than another boost. As mentioned above, this is in fact the origin of Thomas
precession.

However, we see that the vectors M and N don’t commute, and hence we
define the new vectors

J= %(M+iN) and K= %(M—iN)

so that
M=—-i(J+K) and N=K-1J. (94)

Now you can also easily show that

[Ji, Jj] = i€iji i (95a)

(K, K] = ieiji Ky (95b)

Ji, Kj] =0 95¢
J

which are simply the commutation relations for two sets of independent, com-
muting angular momentum generators of the group SU(2). Thus we have shown
that a general Lorentz transformation is of the equivalent forms

A _ einMi0+%wijMij _ ea-N+b~M — 67(a+ib)~J+(a7ib)~K. (96)
And since J and K commute, this is
A= ef(aJrib)-Je(afib)K' (97)

Note that since M and N are real and antisymmetric, it is easy to see that
Jt = K sothat AT = AT = A~! which again shows that Lorentz transformations
are orthogonal.
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9 Angular Momentum in Quantum Mechanics

While the decomposition (97) may look different, it is actually exactly the same
as what you have probably learned in quantum mechanics when you studied
the addition of angular momentum. So, to help clarify what we have done, let’s
briefly review the theory of representations of the rotation group as applied to
angular momentum in quantum mechanics.

First, let’s take a brief look at how the spatial rotation operator is defined.
If we rotate a vector x in R3, then we obtain a new vector x’ = R(0)x where
R(0) is the matrix that represents the rotation. In two dimensions this is

x|  |cosf —sinf| |z
y | | sinf  cosf||y|’
If we have a scalar wavefunction t(x), then under rotation we obtain a new

wavefunction ¥gr(x’), where ¥(x) = Yr(x’) = Yr(R(0)x). (See the figure
below.)

Yr(x)

N\
x/
0 N ()
x
X
Alternatively, we can write

Since R is an orthogonal transformation (it preserves the length of x) we know
that R=1(0) = RT(0), and in the case where § < 1 we then have

1 _ T+ Oy
R (0)x = [—Gz—l—y]'

Expanding 1(R~1(6)x) with these values for 2 and y we have
Vr(x) = (z + 0y, y — 02) = P(x) — 0[z0y — yO:|1h(x)

or, using p' = —id; this is
Yr(x) = P(x) — i0lzpy — yp.](x) = [1 — 0L ]y (x).

For finite § we exponentiate this to write 1¥r(x) = e ?L=1)(x), and in the case
of an arbitrary angle 6 in R3 this becomes

Yr(x) = eiiG'Ld)(x).
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In an abstract notation we write this as

[¥r) = U(R)[Y)

where U(R) = eI For simplicity and clarity, we have written U(R) rather
than the more complete U(R(0)) which we continue to do unless the more
complete notation is needed.

What we just did was for orbital angular momentum. In the case of spin there
is no classical counterpart, so we define the spin angular momentum operator
S to obey the usual commutation relations, and the spin states to transform
under the rotation operator e=*S_ It is common to use the symbol J to stand
for any type of angular momentum operator, for example L, S or L+ S, and this
is what we shall do from now on. The operator J is called the total angular
momentum operator. (This example applied to a scalar wavefunction ),
which represents a spinless particle. Particles with spin are described by vector
wavefunctions 1 (as we have seen for the Dirac spinors), and in this case the
spin operator S serves to mix up the components of ¥ under rotations.)

The angular momentum operators J? = J -J and J, commute and hence
have the simultaneous eigenstates denoted by |jm) with the property that (with
h=1)

Jjm) = j(G+1)ljm)  and  JL|jm) = mljm)

where m takes the 25 + 1 values —j < m < j. Since the rotation operator is
given by U(R) = e~ we see that [U(R), J?] = 0. Then
JPU(R)|jm) = U(R)T*|jm) = j(j + DU (R)|jm)

so that the magnitude of the angular momentum can’t change under rotations.
However, [U(R), J.] # 0 so the rotated state will no longer be an eigenstate of
J, with the same eigenvalue m.

Note that acting to the right we have the matrix element

(m! [ J2U(R)|jm) = (' [U(R).J?|jm) = j(j + 1){5"m/|U(R) | jm)
while acting to the left gives
(g'm/| PU(R)|jm) = j'(j" + 1){5'm/|U (R)| jm)

and therefore
('m/|U(R)|jm) =0 unless j = j'. (98)

We also make note of the fact that acting with J? and J, in both directions
yields
(g'm/| J2[jm) = 5" (7" + 1){i'm’[jm) = 5(j + 1) {5'm/|jm)
and
(G| T |jm) = m’(jm’|jm) = m{jm|jm)
so that (as you should have already known)

<]’m’|jm> = 5j’j5m/m- (99)
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In other words, the states |jm) form a complete orthonormal set, and the state
U(R)|jm) must be of the form

R)|jm) = lem Y(im!/ [U(R)|jm) = lem (6)  (100)

where

Dyi(8) = (i |U(R)|jm) = (jm’|e= " |jm). (101)

(Notice the order of susbscripts in the sum in equation (100). This is the same as
the usual definition of the matrix representation [T']e = (ai;) of a linear operator
T:V —V defined by Te; = 3, ejaj.)

Since for each j there are 25 + 1 values of m, we have constructed a (25 +
1) x (2§ 4 1) matrix 21 (0) for each value of j. This matrix is referred to as the
jth irreducible representation of the rotation group. The word “irreducible”
means that there is no subset of the space of states {|jj),|j,m—1),...,|4,—j)}
that transforms into itself under all rotations U(R(0)). Put in another way, a
representation is irreducible if the vector space on which it acts has no invariant
subspaces.

Now, it is a general result of the theory of group representations that any
representation of a finite group or compact Lie group is equivalent to a unitary
representation, and any reducible unitary representation is completely reducible.
Therefore, any representation of a finite group or compact Lie group is either
already irreducible or else it is completely reducible (i.e., the space on which the
operators act can be put into block diagonal form where each block corresponds
to an invariant subspace). However, at this point we don’t want to get into the
general theory of representations, so let us prove directly that the representa-
tions 21 (@) of the rotation group are irreducible. Recall that the raising and
lowering operators J1 are defined by

Jilim) = (Jo £iJy)[jm) = Vi(G+1) —m(m £1) [jm£1).

In particular, the operators J1 don’t change the value of j when acting on the
states |jm).

Theorem 5. The representations 2 () of the rotation group are irreducible.
In other words, there is no subspace of the space of states |jm) (for fized j) that
transforms among itself under all rotations.

Proof. Fix j and let V be the space spanned by the 2j + 1 vectors [jm) := |m).
We claim that V' is irreducible with respect to rotations U(R). This means
that given any |u) € V, the set of all vectors of the form U(R)|u) (i.e., for all
rotations U(R)) spans V. (Otherwise, if there exists |v) such that {U(R)|v)}
didn’t span V, then V' would be reducible since the collection of all such U(R)|v)
would define an invariant subspace.)
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To show V is irreducible, let V = span{U(R)|u)} where |u) € V is arbitrary
but fixed. For infinitesimal 8 we have U(R(0)) = e=®J =1 —i6-J and in
)

particular U(R(eX)) =1 —ieJ, and U(R(ey)) = 1 — ieJ,. Then
Jalu) = (2 1)l = { L0~ V(R (1 - VR ) bl

= é{ +[1 - U(R(eY))] — i +iU(R(e)) }u) € V

by definition of V and vector spaces. Since Ji acting on |u) is a linear combi-
nation of rotations acting on |u) and this is in V, we sce that (J1)? acting on
|u) is again some other linear combination of rotations acting on |u) and hence
is also in V. So in general, we see that (J1)"|u) is again in V.

By definition of V', we may write (since j is fixed)

juy = D [jm)(mlu) =Y [m)(m|u)
= [m)(mlu) + [m + 1) + u) + - + [5) (Gluw)

where T is simply the smallest value of m for which (m|u) # 0 (and not all
of the terms up to (j|u) are necessarily nonzero). Acting on this with J; we
obtain (leaving off the constant factors and noting that J.|j) = 0)

Jiu) ~ [m 4 1) mlu) + [m+ 2)m + 1u) + -+ [5) {5 — 1u) € V.

Since (m|u) # 0 by assumption, it follows that [z + 1) € V.

We can continue to act on |u) with J. a total of j — 7 times at which point
we will have shown that [ + j —m) = |5) := |5j) € V. Now we can apply J_
25 4 1 times to |jj) to conclude that the 25 4+ 1 vectors |jm) all belong to v,
and thus V = V. (This is because we have really just applied the combination
of rotations (J_)?*1(J;)7~™ to |u), and each step along the way is just some
vector in V) i

Now suppose that we have two angular momenta J; and Jo with [J1,J2] = 0.
Then J12, J22, Ji. and Ja, all commute, and hence we can construct simultane-
ous eigenstates which we write as |j1j1mims). Furthermore, with J = Jq + Jo
it follows that J2,J.,J;% and J5° all commute, and hence we can also con-
struct the simultaneous eigenstates |j1j27m). However, J? does not commute
with either Ji, or Jo., so if we specify J2, then we are only free to also specify
J. = J1. + J2, and not Jy, or Jy, individually.

Since j; and js are fixed, there are 2j; + 1 possible values for my, and 272+ 1
possible values of my for a total of (251 4+ 1)(2j2 + 1) linearly independent states
of the form |j1j2mims), which must be the same as the number of states of the
form |j1j2jm). The maximum possible value of m = mj + mao is j1 + j2. But
the next value j; + jo — 1 can be due to either m1 = j; and my = j2 — 1, or due
to my = j1 — 1 and mo = j3. And as we go to lower values of m, there will be

o1



even more possible choices. Since the largest m value is j; + jo, there must be a
state of total j = j1 + jo2, and a multiplet of 2(j; + j2) + 1 states corresponding
to this value of j. But this j = j; + jo state only accounts for one of the states
with m = j; +j2 — 1, and hence there must be another state with j = j1 +j2—1
and its corresponding multiplet of 2(j; + j2 — 1) + 1 states |j1j2im).

We can continue to consider states with lower and lower j values and corre-
sponding multiplets of 2j + 1 possible m values. However, the total number of
states must equal (21 + 1)(2j2 + 1), and hence we have the relation

Ji+j1
D2 +1=(2h+1)(2j2+1)
J=N

where N is to be determined. Using the formula (which you can check)

no . 1
> 5= 5na—ni+1)(na +m1)

Jj=n1

it takes a little bit of elementary algebra to show that N? = (j; — j2)? and

therefore the minimum value of j is |j1 — j2l, i.e., |j1 — j2] < j < j1 + Jo.
What else can we say about the angular momentum states |jijomime)?

These are really direct product states and are written in the equivalent forms

[71j2mims) = [jim1) ® |jame) = |j1ma)|jame).

(Remark: You may recall from linear algebra that given two vector spaces V'
and V', we may define a bilinear map V x V' — V ® V' that takes ordered
pairs (v,v') € V x V'’ and gives a new vector denoted by v ® v'. Since this
map is bilinear by definition, if we have the linear combinations v = Y z;v;
and v = ) y;vi then v @ v' = > ;y;(v; ® vj). In particular, if V' has basis
{ei} and V' has basis {€}, then {e; ® €/} is a basis for V @ V' which is then
of dimension (dim V')(dim V’) and called the direct (or tensor) product of
V and V’. Then, if we are given two operators A € L(V) and B € L(V'),
the direct product of A and B is the operator A ® B defined on V ® V' by
(A B)(v®@v') := A(v) @ B(v').)
When we write (j1jamims]|jijamimb) we really mean

((Grma| @ (jama])(lj1m1) ® [jyma)) = (iimaljimy) (jama|jams)
so that by equation (99) we have
<]1]2m1m2|]i]ém/lm/2> = 6j1j{ 6j2jé 5m1m’1 5m2m’2 (102)
We point out that a special case of this result is
<jlj2mlm2|jlj2m/1m/2> = 6m1m’16m2m/2
As we will see below, the matrix elements (jjajm|j1jamims) will be very

important to us. Now consider the expression J, = Ji,+J5,. What the operator
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on the right really stands for is Ji, ® I + I ® Jo,. Then on the one hand we
have

(Jrjegm|Jz|jrjamama) = (jijagm|(Ji. @ I + 1 ® Joo)(|j1m1) @ |jama))
= (j1jogm|(Jiz|jim1) @ |jama) + |jim1) @ Jaz|jama))
= (my1 +m2)(j1jagm|([jim1) ® [jam2))

= (m1 +m2)(j1j23m|j1j2mima)
while acting to the left with J, we have
(Jrg2gml|Jz|j1jamima) = m(jijajm|jijamima).
Comparing these last two results shows that
(J1j2im|j1jamimse) =0 unless m = my + mo. (103)

We also see that for i = 1,2 we can let .J;? act either to the right or left also
and we have

(31 7b3m| T3 j1jamame) = §i(3: + 1) (1 455m|17amims)
= ji(Ji + 1) (j1jagml|jijamima)
so that
(7175ml|j1jzmame) = 0 unless j; = j1 and jy = ja. (104)

In a similar manner, by letting the operator act to both the right and left we
can consider the matrix elements of J12, J22, J? and J, to show that (compare
with equation (102))

(31923 M |G1720m) = 614,041,320 Omrm (105)

Since both of the sets {|j1jomim2)} and {|j1j2jm)} are complete (i.e., they
form a basis for the two particle angular momentum states where j; and jo are
fixed), we can write either set as a function of the other:

jedm) = Y |jijamama)(jijamamsl|jijaim) (106)
my,m2
(m1+mao=m)

or
rjamama) = > |jujeim) (rjzimljijamame). (107)

(m=m1+m2)

The matrix elements (j1jojm|j1jamims) are called Clebsch-Gordan coeffi-
cients, and may always be taken to be real (see below). Note that the Clebsch-
Gordan coefficients are nothing more than the matrix elements of the transition
matrix that changes between the |j1j2jm) basis and the |j1jamims) basis. In
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fact, since both bases are orthonormal, the Clebsch-Gordan coefficients define a
unitary transformation matrix.

That the Clebsch-Gordan coefficients may be taken as real is the so-called
“Condon-Shortley convention.” It follows from the fact that the maximum
values of j and m are jmax = j1 + Jj2 = Mmax 80 that (leaving out the fixed j;
and jo labels of the two particles so as not to be too confusing)

|jmaxmmax> - Z |m1m2><m1m2|jmaxmmax>

mi1+ma=Mmax

|j1j2> <j1j2 |jmaxmmax>-
But then

<jmaxmmax|jmaxmmax> = <jmaxmmax|jlj2><jlj2|j1j2><j1j2|jmaxmmax>

or (since (jm|jm) = (mimalmims) = 1)

1= | <jmaxmmax|j1j2> |2

Therefore we take as our (Condon-Shortley) convention (jmaxMmax|j1j2) = +1,
and this forces the rest of the Clebsch-Gordan coefficients to be real also since
they are constructed by repeated application of the operator J_ = J;_ + Jo_
to the [jm) and [mimsz) states starting at the top.

Let us see what we can say about the rotation operator that acts on com-
posite angular momentum states. The corresponding rotation operator is

o100 _ —i0-T1 g —i0-Ty _ —i0-0y —i0-

where the last equality is just a commonly used shorthand notation. Writing
the rotation operator as the direct product U(R) = U;(R) ® U2(R), its action
is defined by

[U1(R) @ Ua(R)][j1j2mimz) = [U1(R) @ Ua(R)](|j1m1) ® |jama))
= Ul(R)|j1m1> & U2(R)|j2m2>'

Applying equation (100) we can now write

[U1(R) ® Us(R)]|j1jamimz) = Ur(R)|j1m1) @ Us(R)|jamz)

Yo limh) @ Lamb) 250, ()72 (9)

mym}
= > liemim) 2 (0)75:) () (108)
myms
which implies
(jjammb| UL (R) @ Us(R) | jajormims) = 241 (0)757) (6). (109)
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We regard the left side of this equation as the m/|m}, mims matrix element of a
[(241 +1)(2j2+1) x (241 + 1)(2j2 + 1)]-dimensional matrix called the direct (or
Kronecker) product of 201)(0) and 202)(8) and written 2U1)(0)® 202)(8).
In other words
[29(0) © 292 (O) sy mims = Dot (O) 7512 (6).

The double subscripts make the direct product of two matrices look confusing,
but the result really isn’t if we just use the definitions carefully. So to understand
this, we need to take another small linear algebra detour.

If we have a vector space V with basis {e1,...,e,} and another space V’
with basis {e],...,e;,}, then we have the space V ® V' with the basis {e; @ €/}
which we take to have the ordering

/ / / / / / /
{e1®el,e1®e),...,e1@€),,,e2R€],...,ea0¢€,,,....,6,Q€],...,enRe }.

Given the operators A € L(V) and B € L(V’), the matrix representations of A
and B are defined by Ae; =, exap; and Be;- = >, e;byj, and thus the matrix
representation of A ® B is also defined in the same way by

(A® B)(e; ® €}) = Ae; ® Be; = Z(ek ® €))akibi; = Z(ek ®€))(A® B)giij-
Kl Kl

But Ae; is just the ith column of the matrix (a;;), and now we have each row
and column labeled by a double subscript so that, e.g., the (1,1)th column of
the matrix representation of A ® B is given relative to the above ordered basis
by

(A®B)(e1 @ €})

= Z(ek ® e))ak1bi

il
= {ai1bi1,a11b21, ..., a11bm1, a21b11, . .., a210m1, - .o, Gn1b11, oo Anibm )

Since this is really a column vector, we see by careful inspection that it is just
a11 times the first column of B followed by as; times the first column of B, and
so on down to a,; times the first column of B. And in general, the matrix of
A ® B is given in block matrix form by

allB algB cee alnB

am B appB - apnB

There is another basic result from linear algebra that we should review before
treating U(R). Suppose we have an operator T € L(V), and let W be an
invariant subspace of V. By this we mean that T (W) C W. Let {e1,...,emn}

95



be a basis for W, and extend this to a basis {e1,...,em,emi1,...,en} for V.
By definition of invariant subspace, for any 1 < i < m the effect of T on e; is
given by

m
Tei:Zejaji 1§Z§m
j=1

for appropriate scalars aj;. Compare this to

m n
Tei=Zejbji+ Z €;Cjj m+1<i1<n
J=1 Fr—)

for some scalars bj; and c;; where we have assumed that the subspace spanned
by {€m+1;--.,€n} is not an invariant subspace itself. Since the ith column of
[T] = (aij) is given by Te;, a moments thought should convince you that the
matrix representation for 7" will be of the block matrix form

o ¢

If it turns out that {€,,11, ..., e, } also spans an invariant subspace W', then
for m+1 <i<n we will have Te; = Z?:mﬂ ejcj; and the representation of

T will look like
A 0
0o C|°

In this case we have V. =W & W’ (the direct sum) and we write T = Ty & Ty
where Ty is the restriction of T' to W and Ty is the restriction of T to W'.
(As a reminder, we say that V is the direct sum of subspaces Wy,..., W,
if the union of bases for the W; is a basis for V', and in this case we write
V=W &---®W,. If each of these W; is also an invariant subspace with
respect to some operator 7', then we write T'= Ty, @ --- @ Ty, and its matrix
representation with respect to this basis will be block diagonal.)

Now let’s go back to the rotation operator U(R) = U;(R) ® Uz(R). When
we say that a representation is reducible, we mean there exists a basis for the
state space relative to which the matrix representation of all relevant operators
is block diagonal. We now want to show that the set of direct product matrices
is reducible, and thus in the |j1j2jm) basis the matrix representation of the
direct product takes the form
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where each block represents the (25 +1) x (25 4+ 1) matrix 2() () for each value
of j =j1+j2,51 +j2—1,...,]j1 — j2|. Symbolically we write this as

201(0) @ 2192)(0) = 21172 (9) ¢ 9tz (9) ¢ - .. @ 2111 7721(9)  (110)

The idea here is just a somewhat complicated version of the usual result from
linear algebra dealing with the matrix representation of a linear operator under
a change of basis. So let’s first review that topic.

Given an operator T, its representation A = (a;;) := [T']e on a basis {e;} is
defined by Te; = 3, ejaj;. If we want to change to a new basis {e;}, then we
first define the transition matrix P by e; = > e;p;i. Then on the one hand we

have the representation A’ = (a;;) := [T]e given by

Te, = Z ehal, = Z Z erDj@j;
J ik
while on the other hand we have

Te;=T ( >, ejpji) = (Teppyi =YD exarpji
7k

J J

Equating these last two results and using the fact that the {e;} are a basis (and
hence linearly independent) we have

!
E Prjaj; = g AkjPji
J J

which in matrix notation is just PA’ = AP. The transition matrix P must be
nonsingular because either basis can be written in terms of the other, so we are
left with the fundamental result

A = P7TAP.

Furthermore, if both bases are orthonormal, then P will be unitary so that
P~! = Pt = P*T and we have A’ = PTAP. In terms of components this is

al; =Y Phi ki plj- (111)
kl

Now let’s go back and prove equation (110). We first insert complete sets of
the states [jm) into the left side of equation (109) to obtain (again leaving out
the j; and jo for neatness)

(mmb U (R)lmams) = > (mhmb|j'm’) (§'m’ |U (R) | jm) (jm|mims)
Jjg
= 3" mimblg'm) (myma| jm) 2, (0)8:;
j/m/
jm

= 3 (mhmbli'm! Y mimal'm)2) (0)  (112)

7'm'm
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where the second line follows from equations (98), (101) and the fact that the
Clebsch-Gordan coefficients are real. From equation (109) we then have (after
relabeling the dummy index j — j)

g (0)@02) () = Z <m'1m’2|jm/><m1m2|]m>.@7§i/)m(0) (113)

’ ’
mim; mhmsa
jm’'m

where the sum is over |j1 — ja| < j < j1+j2. Equation (113) is sometimes called

the Clebsch-Gordan series. Also note that there is no real sum over m’ and

m in this equation because we must have m’ = m/ + m} and m = m; + ma.
Analogous to the ag; in equation (111), we write equation (112) as

<m/1m/2|U1(R) ® U2(R)|m1m2> = Rm’lm’z,mlmg

= 3 (mimb]i'm) (mymalj'm) 25 ().

j'm’'m

From equation (106) we have the (real) transition matrix elements which we
write as
Pmyms jm = (mama|jm).

Defining the analogue of a;; in equation (111) by

R,

g'm’,gm

= (j'm! U (R)|jm)
we then have

Gm|UR)|jm) = Y (mamo|j'm') Raymy mymy, (M| jm)

= (mamalj'm' ) (mma|"m!") (i mb " m")

x 29 (8) (i) jm).

But
Z (J'm/[mama) (mamali"m”) = (j'm’|;"m") = &1 j b
m1msa
and
> G m mhmb) (mimb|jm) = ("'m” |jm) = 60 ;6mmm

= oy !
m1m2

so we are left with
<]’m'|U(R)|jm> == Z 5j’j”5m’m”5j”j5ﬁz”m@g:l,zﬁ” (0) == @gz)m(e)ég’]

j//m//m//

(114)
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If on the two particle angular momentum space we take our ordered basis
{lim)} to be

{171 4 J2, Jr+g2), i+ J2. v + 2 = 1), 1+ d2, — (1 + ),
ji+d2—Lji+je—1),....[01 +j2 — 1, —(j1 +j2 — 1)),
7||jl _.72|7|.71_32|>77||]1_32|7_|]1_32|>}

then equation (114) is just equation (110) in terms of components.

Of course, had we just started with U(R) = e~*"J and used equations (99)
and (100) we would have again had

Gm! [U(R)|jm) = 3 (G'm|jm"y29),,..(0) = 7)., (8)31;.

m'’

But this doesn’t show that in fact the matrix (112) can be put into the block
diagonal form (110). In other words, the operator e %7 acts on the states |jm)
in a manifestly block diagonal manner (due to equation (100)), whereas the
operator e~ 0 J1 @ e~10J2 acts on the states |mims) in the complicated manner
of equation (108), and we had to show that this could in fact be put into block
diagonal form by the appropriate change of basis.

10 Lorentz Invariance and Spin

Before turning to another derivation of the Dirac equation, we need to take
a more careful look at the inhomogeneous Lorentz group, also called the
Poincaré group. These are transformations of the form

Th = A" " + ot (115)

where we are using the metric

and A satisfies
ATgh =g or Gu Ao N g = gag. (116)

(This is a consequence of requiring that W%, = ="z, where T# = A*, 2”.) We
will refer to the transformation (115) as simply a “Lorentz transformation,” and
sometimes abbreviate it by simply LT. If we compose two successive transfor-
mations (115) we obtain
7' =7\, 7 +a
=N (N oz + a¥) +a*
= A" A )z + (A e +a) (117)

99



which is just another LT, and hence the set of transformations (115) forms a
group called the “Poincaré group” as claimed.

From ATgA = g we see that (det A)2 = 1 so that det A = +1. Since the
identity transformation has determinant equal to +1, we restrict ourselves to
the case det A = +1 because we will want to look at transformations that differ
infinitesimally from the identity transformation. It also follows from equation
(116) that g, A*oAYg =1 or (A%)* =14 ",(A%)? > 1 so that

AOQ 2 1 or AOQ S —1.

Since only the case A% > 1 can be used for an infinitesimal transformation,
we will restrict ourselves from now on to the set of proper, orthochronous
Lorentz transformations. However, note that the set of all Lorentz transfor-
mations can be divided into four classes given by det A = +1 and either A%, > 1
or A% < —1.

Our goal is to relate this to quantum mechanics and the description of quan-
tum mechanical states, so to each transformation (115) we shall associate a uni-
tary operator on the (infinite-dimensional) Hilbert space of all physical state
vectors, denoted by U(a, A). The effect of this operator is defined by

Ula, N)y(z) := ¢ (Ax + a).
From equation (115) we have
U(a,A) =U(a,1)U(0,A) :=U(a)U(A). (118)
Then using equation (117) we have the multiplication law
Ua',N)U(a,A) =U(Na+d,A'A) (119)
and therefore, in particular

U(a"\U(a) =U(d’ + a) (120a)
UN)U(A) =U(ANA). (120Db)

For an infinitesimal transformation
Aty =gt + Wty (121)
we have from equation (116)

Jop = (9" + wua)(gyﬁ +wg) g = (9" + wua)(guﬁ + wus)
= Yop T Wpa + Wap

and therefore
Wap = —Wia-
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Then we write our operators in the form
Ula) = e (122a)
U(A) = ezem M (122b)

where the generators P* and M*” remain to be specified. (This is just expo-
nentiating the general form of an infinitesimal transformation. Note also that
we have included a factor of ¢ in the definition of U(A) (as compared to equation
(92)) because we are now talking about quantum mechanical operators.)

Before proceeding, let us define just what is meant when we say that an
operator transforms as a vector. Recall from linear algebra (yet again) that
under a rotation R : v — v/ we have Rv = R(v'e;) = v'Re; = Uieszi. But
Rv=v = v'je;- so that v = RJ;v’ defines how the components of a vector
transform. In quantum mechanics we require that the expectation values of an
operator transform in the same way. Thus, if [¢)) — |¢)') = U(R)|+) where U(R)
is the unitary quantum mechanical operator corresponding to the rotation R,
then an operator A is defined to be a vector operator if

(WA = B (| A7 ]p).
Using |[¢') = U(R)|v¥) and the fact that |¢) is arbitary, this yields
U'(R)A'U(R) = R'; AV (123)

where (R';) is a real, orthogonal matrix that represents rotations in R?.

If we require that the expectation value of a rotated operator in the original
state be the same as the expectation value of the original operator in the rotated
state, then (|A’[) = (1 |A[o) = (W|UT(R)AU(R)[) so that

A" =UYR)A'U(R) = R'; AV

which shows the meaning of equation (123). (This is just the difference between
active and passive transformations.) In addition, we can multiply both sides
of equation (123) by (R~1)*, and sum to write UT(R)(R™1)¥, A'U(R) = A¥ so
that (since UT = U~1)

U(R)A*U Y(R) = (R™1)* A (124)

3

which we take as an equivalent definition of a vector operator.

The only difference between this rotational case and our present purposes
is that now we are using a Lorentz transformation A*, instead of the rotation
matrix RY;, but otherwise everything is exactly the same since A is also an
orthogonal transformation. (In fact, this is the same as we saw earlier with
equation (31) describing why the Dirac gamma matrices are said to transform
as vectors.)

(It should be pointed out that what we have done is not the same as
changing between “pictures” such as the Schrodinger and Heisenberg repre-
sentations. In that case, we require that the expectation value of an oper-
ator in the Schrédinger picture in a Schrodinger state be the same as the
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expectation value of a Heisenberg operator in a Heisenberg state. In other
words, (Ys|Aslys) == (YulAr|vm), and if [Yr) = Ut)lps)(= eF"Flys)),
then <1/)H|AH|1/}H> e <1/)5|UT(t)AHU(t)|1/)S> so that Ag = U(t)AsUT(t). Note
that the U(t) and UT(t) are reversed from what they are in equation (123).)

Another point that we should discuss is the commutation relation between
vector operators and the generator of rotations, i.e., the angular momentum
operators. These will serve to help classify certain operators. So, recall from
classical mechanics that a vector v undergoing a rotation d@ changes by an
amount dv as shown in the figure below.

de
-y v +dv
dv
@ v
We have ||dv| = ||v]|sina ||d@] in the direction shown (i.e., perpendicular to

the plane defined by v and d@) so that dv = d@ x v and v — v + dv.
But we just saw above that under a rotation R we have v — R?;v7 so that
(using (d@ x v)* = £¥*df;v;, and then relabeling)
vt =0 = R0l = ot dv' =o'+ eTRdOup = (69 + £ dB v,

which shows that to first order we have (where in this case there is no difference
between upper and lower indices since in R3 with cartesian coordinates we have

gij = d;j anyway) , . ,
le = 51j — aljdek. (125)

Next, expand the left side of (123) to first order using U(R) = e~*0J to yield
(1+id6 - J)A'(1 —idf - J) = A" —ido;[ A", J7].

Finally, using equation (125) in (123) we obtain [A?, J/] = ie¥* A}, which we can
write as

[Ji, AT] = ic¥k Ay (126)

This then is the commutation relation of a vector operator with the generator
of angular momentum.

Now back to where we were. To define the Poincaré algebra, we need to
obtain the commutation relations for the generators. Since [A, B] = 0 implies
edeP = eATB | we see from equations (120a) and (122a) that

[P*,P"] = 0. (127)
Now put equation (118) into (119) and use (120b):

U(d)UAN)U(a)U(A) = U(a')U(Na)U(A)U(A)
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so that
UNU(a)UHN) =U(Na)

or (dropping the prime on A)
U(A)eiP U (A) = eitn" o,
To first order this is
U(A)(1+ia,P*)UH(A) =1+iP"A, a,,
and hence
UANPFU Y (A) = PYAM = (A H* PY (128)

so that comparison with equation (124) shows that the operator P* transforms
as a 4-vector.
An equivalent way of writing equation (128) is

UY(A)P*U(A) = A*, P”. (129)

It is worth pointing out the physical meaning of this equation. Suppose we have
an eigenstate of P*:
PHW,) = pH(0y,).

Then acting on |¥,) with U(A) results in a state with eigenvalue p'* = A#,p¥
because

PHU(M)|W,)] = UM)[UTH(A)PHU(N)][8,) = U(A)[A",p"]|T,)
= AP [UAN)[Wp)]. (130)

In other words, U(A) boosts a state with eigenvalue p to a state with eigenvalue
Ap. Alternatively, we can say that the expectation value of the operator P* in
the boosted state is the same as the expectation value of the boosted operator
AP in the original state.

Next we want to find the commutation relations for the generators M*”.
Using equation (122b) for infinitesimal wy,, together with equation (121) in
(128) we have

Z’ v 6% Z Lo @ @
(L+ 5w MM )P (L= 5w MP7) = (97 — w5) P?

or

(14 g M) (P = Lupg PYMP7) = P* — %5 PP

so that (to first order as usual)

P — %W}LVPQM#U =+ %W#UM#UPQ =P” _wﬂtﬁpﬁ =pr _ga#w#l’PV

1 1% av
=P* - §WHV(QOWP — g P")
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where in the last line we antisymmetrized over the indices p and v. Canceling
P* and equating the coefficients of wy,,, (which is just some arbitrary number)
we are left with

(M, P7) = (g™ — Pgh). (131)

It will be important to us later to realize that this result applies to any 4-
vector, and not just P*. This is because equation (128) applies to any 4-vector
by definition.

Since wy,, is antisymmetric, we may just as well assume that A" is too, so
let us define the quantities (essentially the same as we did in Section 8)

1 .
Ki = MiO and Jl = EgijkM]k' (132)

In order to find the commutation relations for the .J; and K;, we need those for
the M*¥. To obtain these, we perform the following manipulations.
First note that

UMNUHA) =1=UMA) =UN)ULN
and therefore
U YA =UAY.

(This is really just a special case of the general result from group theory that
if ¢ : G — G’ is a homomorphism of groups, then for any ¢ € G we have

e = p(e) = ¢(g97") = ¢(g)p(g™") so that ¢(g)~" = ¢(g~"). In this case, the
operator U(A) is the image of the group element A under the homomorphism
U:A — U(A). We are also writing U~!(A) rather than the more correct
U(A)~, but this is common practice.) Next we have

UNUMN)YUHA) = UANATY
which we want to evaluate for infinitesimal transformations. In a symbolic
notation, if we have A’ = 1 4+ w’ so that AAA~' =14+ Aw/A~! := 1+ @, then
G = A wog (A7 (A7, wis-
Therefore
i

UAANAY =1+ %&WM“” = 1+ S(AT) (AT wl M. (133)

m

But
UMM (A) = U(A)(1+ %w;ﬁMaﬁ)Ufl(A)
=1+ %w;ﬁU(A)M“ﬁU*(A) (134)

so that equating equations (133) and (134) yields

UAN)MPUTHA) = (A1) (A™HP M+, (135)

m
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This equation shows (by definition) that M#** transforms as a second rank tensor
operator.

Using (A~1)® — w®, in equation (135) we have

— 4x
=9

i v [e3 Z 14 o [e3% v
(14 S0 MP)MOP (L= 200 M) = (9%, = ™) (6", — 7, )M

which to first order expands to

(63 7/ (63 v Z v (&3 (63 ov [e3
MeF 5w M By 4 @ MMM B=M*P — P, M — w*, MHP

or _
%W,uu [M*H, Maﬁ] =M, — M"Pu®,.

Antisymmetrizing over 4 and v we can write the two terms on the right side of
this equation as

1
Mowwﬁu _ Mal/wuyguﬁ _ §wMU(MauguB o Mauguﬁ)

and
1
MVB = MVB, ,Mug#a _ 5 7MU(Muﬁgua Z\['U‘ﬁgya),

Using these, we finally obtain the commutation relation for the generators M*
(M M) = (Mg 4 Mg — MotgUS — MESg) (136)

Equations (127), (131) and (136) define the Poincaré algebra. An explicit
example of the generators is provided by the matrix X*” defined in equation
(46). You should be able to see the reason for this.

(Technically, one says that these generators define the Lie algebra of the
Poincaré group, so let me briefly explain what is going on. The Poincaré (or
inhomogeneous Lorentz) group consists of translations (in four directions), ro-
tations (with three degrees of freedom) and boosts (in three directions), each of
which is specified by some set of parameters. In other words, we can think of
each group element as a point in a (in this case) 10-dimensional space. To each
point in this space we associate an operator U(a,A) = U(a)U(A) and hence a
matrix. We expand these operators in a neighborhood of the identity, and as
each group parameter is varied, a curve is traced out in the differentiable man-
ifold that defines the group space. The derivative of this coordinate curve with
respect to its parameter is the tangent vector to the curve at that point. The
generators are then the tangent vectors to each coordinate curve at the identity,
and the vector space spanned by the generators is the Lie algebra (which is
then the tangent space at the identity). (In general, an algebra is a vector
space on which we have also defined the vector product of two vectors. In this
case, the product is the commutator (or Lie bracket).) In other words, the
generators are a basis for the tangent space at the identity (the Lie algebra). Tt
can be shown that by exponentiating the Lie algebra, one can construct every
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group element (i.e., the operators U(a,A)) at least in a neighborhood of the
identity. The question of whether or not we can get to every group element by
exponentiating the Lie algebra is a nontrivial one, and the answer depends on
the topology of the group in question.)

At last we are ready to find the commutation relations for the generators J
and K. Remember that now we are doing this calculation in R? with the metric
gij = 0;; as discussed following equations (93). Furthermore, £;; is just the
permutation symbol so it doesn’t carry spacetime (tensor) indices. Then using

gijre™™ = 0107 — 6" 8%
or the equivalent form
€ijkEkim = 01i0mj — Omillj

we have

1
[Ji7 ']J] = Zsilmgjrs[Mlmv MTS]

)
_ Zsilmsjrs (Mrmgsl + Mmsglr _ Mrlgsm o Mlsgmr)
=1 SilmastMrmgSl =1 eilmaj”M””
= —igjrclimM"™" = —i(0;i0rm — Ojm0ri) M™™
=iM"

where M"™§,.., = M = 0 since M"™ is antisymmetric. But we can invert the
equation

1 .
Ji = Eé‘ijkMJk

to write

1 . 1 B 1
€imidi = §€zmi€ijkMJk = 5(5lj5mk — 81k ) MIF = §(Mlm - M™) =M™

and therefore

[Ji, Jj] = igij . (137a)

Similarly, we find
[Ji, K] = iciju K (137b)
(K, K] = —igqjiJy (137¢)

It should be clear that J generates rotations and K generates boosts. It is
also important to note that comparing equations (137b) and (126) we see that
K is a polar (or true) vector, whereas J is an axial (or pseudo) vector. This is
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because letting J — —J, the left side of (137a) does not change sign, whereas
the right side does. This is also a consequence of the fact that J is essentially
the angular momentum operator r x p which, because of the cross product,
depends on the chosen orientation of the coordinate system for its definition.
Indeed, under the parity operation x — —x, the boost generators M defined
in Section 8 will change sign because we would have 8 — —f3, but the spatial
rotation generators M* will not change sign. (This is essentially because under
a rotation d@ we have dv = d@ x v and this doesn’t change sign if both d€ and
v change sign.)
Now let’s write out the term

(AJHVMHV = 2(4]01'1\40Z + wijM” = 2wu K; + wijaiijk

so that we may write

U(A) = edem M = emiadHib K (138)
Define ) )
A= 5(.] +iK) and B = §(J —iK) (139)
or, equivalently,
J=A+B and K=—-i(A-B). (140)

The reason for this is that now A and B satisfy the simple commutation relations

[As, Aj] = ieiju Ak (141a)
[Bi, Bj] = i€iji By (141b)

so they are commuting angular momentum generators. (These are just what we
had in equations (95).)
Using equation (140) in (138) we have (by (141c) also)

U(A) _ eA-(b—ia)e—Bv(b-i-ia) (142)

and we have (again) decomposed our Lorentz transformation into a product of
two rotations, i.e., a direct product. It is also worth pointing out that the U(A)
of equation (142) is unitary if and only if b = 0, i.e., only for a rotation.

Because of equations (141), the generators A and B are represented by
(2A + 1)- and (2B + 1)-dimensional angular momentum matrices respectively.
Treating A and B as independent variables, we then describe a particle of spin
J = A + B. We thus define the [(24 + 1) x (2B + 1)]-dimensional irreducible
representation (A4, B) for any integer values of 24 and 2B by

(a'V|Alab) = 6,3 and  (a'V/|Blab) = 64ad)) (143)
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where a = —A,..., A, b= —B,..., B and the states are really |ab) = |a) ® |b).

The operators are really A ® I and I ® B so that Jg’éa) = (a’|Ala) and similarly
for B. In other words, the operators JU) are the usual (2j + 1)-dimensional
representation of the rotation group, i.e.,

<jU/|Jz ljo) = dor00

and

(o'lJeljo) = Vil +1) = o(0 + 1)3gr 011
Although the representation (A, B) is in general reducible, as shown previously
it is reducible for rotations alone. In other words, it is the product of (24 + 1)-
and (2B + 1)-dimensional representations.

Now note that under space inversion (i.e., parity) we have J — +J (it’s an
axial vector), while K — —K (it’s a polar vector). But then under space inver-
sion we have A — B and B — A so the representation (A, B) — (B, A). There-
fore, if we want to construct a wave function that has space-innversion sym-
metry, it must transform under a representation of the form (7, j) or, we must
double the number of components and have them transform under (j,0)® (0, ).
The representations are often denoted by D) (A). The (4,0) representation
corresponds to A = J and B = 0, and the (25 + 1)-dimensional matrix repre-
senting a finite Lorentz transformation we be denoted by DU)(A). Similarly, the
(0, 7) representation corresponds to A = 0 and B = J and will be denoted by

D J)(A). From equation (142) we see that the two representations are related
by ‘

DO (A) =DV (A1), (144)

Let us now see how to describe the action of a Lorentz transformation on

the states. Using equations (127) and (131) it is easy to verify that the operator

M* = P, P" (145)

commutes with all of the generators. (You will find it very helpful to use the
general identity [ab, c] = a[b, c] + [a, c]b.) We may thus classify the irreducible
representations of the group by the value of this invariant operator. Since the
P* all commute, they may be simultaneously diagonalized, and hence we define
the states |p) such that

Ptlp) = p"[p).
To interpret this, let’s look at translations as they are described in the
Schrodinger theory. If we consider a displacement x — x’ = x + a, then

PY(x) — ¢P(x') = ¢ (x + a) or Y'(x) = (x —a). Expanding the infinitesi-
mal case with |lal| < 1 we have

U(x) =1(x —a) =(x) —a- Vi(x) = [l —ia- Pl(x)

where P = —iV is the momentum operator. For a finite displacement we
exponentiate as usual to write

U (x) = e Py(x).
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Now, the effect of U(a) (which generates translations by definition) acting
on a state |p) is given by

Ula)lp) = e " |p) = e#?" |p) = €' |p)

so that comparing this with the Schrédinger theory, we identify P* as the 4-
momentum of the system. It is now clear that equation (145) represents the
square of the system’s mass.

Until further notice, all of what follows is based on the assumption that we
are dealing with particles of nonzero rest mass.

From experience, we know that one-particle states are also characterized by
their spin, i.e., the angular momentum in the rest frame of the particle. We now
seek the invariant operator that describes spin. Such an operator is

1
Wo = =5 Cpe M* PP (146)

which is called the Pauli-Lubanski spin vector. (We will discuss the represen-
tations of the Lorentz group in more detail below, and provide some motivation
for this definition when we define the little group.) Note that for a system at rest
we have P = 0 and hence W, = —(1/2)e,,0,M"* P°. Therefore, for a system
at rest we have Wy = 0 and W; = —(1/2)e,,0,M"" P° = —(1/2)e0ip M* P° =
—(1/2)eijM7*P° so that from equation (132) we see that W; = —mJ;. We
also clearly have

WeP? =0 (147)

and from equation (131) it also follows that
(W,, P*] = 0. (148)

Since W, is a 4-vector by construction, it must also have the same commu-
tation relation with M** that P, does (see the comment immediately following
equation (131)), and hence

[(Myuws Wol = =i(Wigvo = Wi Guo)- (149)
Then equations (148) and (149) may be used to easily prove
(Wa, Wg] = teagu WHPY (150)
and
(M., W,W°] = 0. (151)

Thus, like .#? = P,P", equations (148) and (151) show that .2 = W, W¢°
commutes with all of the generators. These two invariants are called Casimir
operators, and they are the only such operators for the Poincaré group. (It
is a nontrivial theorem that the number of Casimir operators of a Lie group is
equal to the rank of the group.)

We now have two operators which may be used to label the irreducible
representations. To find the eigenvalues of W, W7 we go to the rest frame. Let
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L(p) be the Lorentz transformation which takes the 4-vector (m,0) to p*. If
|W,) is the state vector for a system with 4-momentum p*, then this system at
rest is obtained by operating on |¥,) with U(L™!(p)), i.e.,

|Trest) = U(L™H(0))]).
Then we have
WoW | Wres) = Wo WU (L™ (p)|¥p) = U(L™H(p)) W, W'7T,)  (152)
where the operator in the rest frame is given by
Wo = U(L(p))WoU " (L(p))

and we used the fact that U(L~!(p)) = U~ Y(L(p)). Since W, is a 4-vector, we
use equation (128) to conclude that

Wo = (L7 ()" W,

or
W = (L7 ()7, W

It is also easy to show directly that W.W'? = W,W?. Indeed, we have
WoW' = (L7} (p))o" (L1 (0))7 sWaW? = L(p)* ,(L7)7 sWa WP = W W
or alternatively
WoW' = U(L(p)Wo U™ (L(p))U (L(p)) WU~ (L(p))
= U(L(p)We WU (L(p))
=W, W?
because .2 = W, W? commutes with all of the generators, and hence with any

Ul(a, A).
It is also worth noting that (since U(L(p)) is unitary)

<\I/rcst|WdWU|‘IJrcst> - <\I/p|U(L(p))WdWUU71(L(p))|\1}p> - <\IJP|WUWU|\PP>
and therefore we have the equivalent expectation values

<\Ijrest|W(;W/U|\I]rest> = <\I]rest|WaWU|\I]rest> = <\I]p|WaWU|\IJp>
= <\IJP|W¢;W/U|\IJP>'

The reason for pointing this out is that while they are all mathematically equiv-
alent, we will show below that the operator W.W'? is just —m?S? which we
think of as measuring the spin of the particle. Since spin is just the angular
momentum in the rest frame, the comments following equation (123) suggest
that from an intuitive viewpoint we want to consider the expectation value
<\I/rcst|W0WU|\I/rcst> - <\I/;D|W<;W/U|\I/;D>-
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Now recall that equation (51) gives the pure boost A*, where a'* = A", 2
and z is the lab frame while 2’ is the moving (or rest) frame. In other words,
this A*, boosts from the frame with momentum p to the rest frame.

g -6 —762 —763
e 1+<zg)é><61)2 T 662 W 158
N T @2 26280 1+ 95207 Rt
—’753 ﬁ)2 5351 %_);5352 1+ (vﬁ ;)(63)2

To boost from the rest frame to the lab frame we have x#

(A7, = (AT, = A# == (L(p))*,. Then (L7} (p))",

) a’V where

= (A”
(L(p))" = Ak,

7

NOW we use the relativistic expressions E, = ym, p' = ymf* and p? =
EZ —m? = (Ep —m)(Ep +m) to write
E , i
y=-=2 and — 6" = v (153)
m m

along with (since (38)? = p?/7?m?)

(7 — 1)ﬁiﬁj _ (Ep/m — 1) pipj _ Ep — mpipj _ Pipj
(8)? (p?/7*m?) y*m?  mp? m(Ep +m)’
Then in block matrix form we have
Ep/m ‘ —p'/m
(L~ )", = .
i i ‘p’
/M| 95+ wt
We can now write out the components of W7 as follows (note p’ = —p; and

P,W7 = E;W0 — p- W = 0):
W = (L7 (p)° W’ = (Bp/m)W® —p- W /m = (1/m)P,W’ =0

W' = (L7} (p))', W7 = (L7 (), WO + (L (), W

i ) i *Wj 7 . 7 W
:—p—WO—f—WZ— PDj :_p—WO‘i‘Wl—f— p(p )
m m(Ep +m) m m(Ep +m)
_Wl_p_[wo_ p :|_W’L_pW |:1_ P :|
m Ey +m m Ey,+m

i
—wi- L _wo.
Ey,+m
Since spin is the angular momentum in the rest frame, let us now define the
operators
1 .
Si=——W". (154)

m
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It can be shown, after a lot of algebra (see below for the details), that
[Si, Sj] = i€k Sk (155)

which is just the usual commutation relation for an angular momentum operator
S where the eigenvalues of S? are equal to s(s+1) with s = 0, %, 1, %, ... . Since
W' =0, we now have

W/ W/U — W/W/’L — _mQSQ
so that (see equation (152))
WoW | Wrest) = UL (p))Wo W7 |0,) = —m®s(s + 1)U (L™ (p))¥y)
or
WoW | Wrest) = —mZs(s + 1)|Wrest). (156)

In summary, the irreducible representations of the Poincaré group are char-
acterized by two invariants: mass and spin.
Now let’s go back and prove equation (155). This is equivalent to showing
that
(W], W]] = —ime;j W'*

because from the definition of S; we have S; = (—1/m)W'" = (+1/m)W/ so
that

[Wl-l, WJI] = mQ[SZ-, Sj] = mQZ'Eiijk = —imsijkwlk.
We start from i
W) =W, — =——W,
! E+m °

where now p; is a c-number since our states are eigenstates of FP,, and where
for simplicity we write E instead of Ep. Then using equations (146), (149) and
(147) we have (note that now €,,,, carries spacetime (tensor) indices because
of equation (146) where both sides are tensors)

W W =W, — =2 wew, — 2w,
[17 J] [ E+m 0, VVj E+m O]

V4
E+m

. __Pi .
[Wis Wol = 22— (1o, W

1 1 p;p”
__IWZ.P]\{U”/_ -9
2E pi?" (M J]+2E+m

= [Wi’ Wj] -

EHVm. [M,uuv WO]

L pip”

2E+m€ pj[M,uquO]

topip’

§Ej+m€# pi (Wugvo — Woguo)
1 pip?
2FE+m

7
= 55Wpipp(Wu9Vj —Wogus) —

EW/PJ' (W,ugvo - Wug,uO)

72



)
= S W =& W)
i pP

- §E+—m(pj€“0piWu = pjgo” piWo — pi"0pi Wy + pigg” ,;Wo)

) .opP
= 1e"jpip" Wy — i n m(pjf“omwu — pie”0pi W)

. Dy Pi
= ip"W* (Ewpi T g moeit EJF—mEquj)-

Note that this last line vanishes identically if i = j, so we now assume that
1 # j and expand the sums over p and p, keeping in mind that the £ symbols
restrict the possible values of the indices. For example, since ¢ # j we have
PPWHE,jpi = pPWOEij- —|—pPWkakjm- where there is no sum over k because it
must be either 1, 2 or 3 depending on what ¢ and j are. But now summing over
p we really don’t have any choices, so that p?Wte,;,; = p’C Woaoj;ﬂ- —i—pOWkaiji
where we stress that there is no sum over the repeated index k.

Continuing with this process we have (using the fact that p° = E and re-
membering that there is no sum over any of the indices 1, j, k)

Z.pppj
E+m
P’pi
E+m
VZ
E+m
Di
E+m

(Wi, Wi = ipPWPe0j0i + ipP W e jpi — (Wejopi + WPeropi)

+1

(Weiop; + Werop;)

= ic0jpip" WO +iEW ¥ epj0; — i (Wiejorip® + Whepojip’)

+1

(Wigion;p® + Wregoip?).

Now use the antisymmetry of ¢ and note that eg;;; is exactly the same as €,
to write

(W], W] = iesjn [WO F_wkrE

1 , 4 . .
+ ( T m) (Wipp* — Wrplp; + Wipip® — Whpip,)|.

Next look at the four terms in parenthesis. By adding and subtracting the
additional term W¥p,p* we can rewrite this term as

(W'pi + Wpj + Wrpp)p* — W*(p'pi + p/p; + p*pr)
= (Whp, — WOE)p* + Whp?
where we also used Z?:l plpr = — > p'p! = —p? But W#p, = 0, and recalling
that E? = p? + m? we finally have

1
E+m

(Wi, Wj] = ieijn |Wop" — WHE + ( )(—WOEp’“ + Wkp?)
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:is._k_Wopk_Wk(E_ p’ )_Wopk( E )
Y E+m E+m

I E? + mE — p? E
o w0k Tk 0k
= ey WO = WH () =W ()

) [ E
= €45k _Wopk — ka - Wopk (m—m)]

I E
= igijk Wopk(l — ﬁ) - ka:|

m
WO k
= iaijkm |:E1—|-—Pin’l, - Wk:|
= —imsijkwlk

which is what we wanted to show.

We still have to motivate the definition (146) of the Pauli-Lubanski spin
vector. This is based on what is called the “method of induced representations”
of the inhomogeneous Lorentz group.

Since all of the P* commute, we can describe our states as eigenstates of the
4-momentum. Let us label these states as |V, ,) where o stands for all other
degrees of freedom necessary to describe the state. Then by definition we have

PHy0) = pH|¥p0)-
From equation (122a) we see how these states transform under translations:
U(a)| o) = " [T, ;).

What we now need to figure out is how they transform under homogeneous
Lorentz transformations U (A).
Using equation (129) we see that

PHU(M)|Wp0)] = UN)[UHA)PHUM][Wp0) = UA) [N, P W,0)
= AHVPV[U(A”\IJP,G”

so that the state U(A)|¥, ) is an eigenstate of P* with eigenvalue A*,p” and
hence must be some linear combination of the states |¥s, ). Thus we write

UM ¥p0) =D Coro(A,9)[Yaper)- (157)

We think of the |¥,, ,) as forming a basis for the space carrying a representation
of the Poincaré group, and therefore in general the matrix Cy/ (A, p) will be
complicated. However, recall from basic linear algebra that we can diagonalize
a matrix by finding suitable linear combinations of the basis vectors (these will
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then form a basis of eigenvectors) relative to which the matrix is diagonal. But
if any eigenvalue has multiplicity greater than one, then all we can do is put the
matrix into block diagonal form where each block is an invariant subspace. In
our present situation, we will assume that by using suitable linear combinations
of the Cy/ s (A, p) it is possible to choose the labels o so that the matrix Cy/ (A, p)
will be block diagonal, and hence for ¢ in the appropriate range, each block will
form an irreducible representation of the Poincaré group. We will identify the
states of a specific type of particle with each of these irreducible representations.

To analyze the structure of the coefficients C,/,(A,p) in a particular irre-
ducible representation, first note that all proper orthochronous Lorentz trans-
formations leave both the quantity p,p" and the sign of p® invariant. Hence for
each value of p? and each sign of p°, we can choose a “standard” 4-momentum
p* and write any other p* in this same class as

P = L" (p)p” (158)

where L*,(p) is some standard Lorentz transformation that depends both on
p* and our reference p*. (The six classes are p? > 0 and p?> = 0 together with
each sign of p°, along with p?> < 0 and p* = 0. But only the three classes
p? > 0 with p° > 0, p? = 0 with p® > 0, and p* = 0 have any known physical
interpretation.) We then define the states |¥,, ,) by

Vp.o) = N(p)U(L(p)|¥s.0) (159)

where N(p) is a normalization factor to be determined.

Observe that p = L(p)p so that Ap = L(Ap)p where A is any homogeneous
Lorentz transformation. Then p = L™1(Ap)Ap = L= (Ap)AL(p)p so that the
transformation L=(Ap)AL(p) takes p back to p. This transformation then
belongs to the subgroup of the homogeneous Lorentz group consisting of those
transformations A#, that leave p invariant:

At = . (160)

This subgroup is called the little group.

For example, if we consider the class defined by p? > 0 and p° > 0, then
we can take pt = (m,0,0,0) so that p> = m? > 0 and p° = m > 0. Then
the little group is just SO(3) (the ordinary group of rotations in R? with posi-
tive determinant) because rotations are the only proper orthochronous Lorentz
transformations that leave at rest a particle with p = 0.

For an infinitesimal transformation 19\”,/ = g*, + w", we then must have

wh,p” =0 (161)
and a general expression for w,, that satisfies this is

° on o
Wy = E,uvpcrppn
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where n? is an arbitrary 4-vector. The corresponding unitary transformation
U(A) is then
: i, i . v
UA) =1+ gwwMW =1+ iaw,pgp”n”M“

or

o

UA) =1—in"W,

where .
Wy = §EWWM“”P”

is the Pauli-Lubanski spin vector. Note that we replaced p” by P? because U (A)
acts only on the states |¥p ). This is the motivation for equation (146) that
we were looking for.

Since Ap = p, we see from equation (157) that we may write

M) Tj.0) ZDU 10 (8)¥p,00) (162)
where the DU/U(JOX) form a representation of the little group. Indeed, for any

A, A’ we have

N Doro (M)W 00) = UNA) W) = UR)U(A)|T5,)
Z Do (M)W 501

= Z Da-//g(j\)Da"U” (‘/D\/)|\:[Jﬁv‘7l>

ool

which shows that

O'(T AA ZDU (7” O'”O'(/ox)

and hence that the D, U(A) are in fact a representation of the little group (i.e., a
homomorphism from the group of all such A to the group of matrices D, U(A))

Acting on equation (159) with an arbitrary U(A) we have (by inserting the
identity transformation appropriately)

UM)|[¥p,0) = N(p)U(MU(L(p)|¥s,0) = N(p)U(AL(P))[¥s,0)
= N(p)U(L(Ap)U (L™ (Ap)AL())[¥;.0).

Let us define the little group transformation known as the Wigner rotation

W(A,p) := L' (Ap)AL(p)
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(which was the original A used as an example to define the little group) so using
equation (162) this last equation becomes

UMW) = N(p)U(L(Ap)U(W (A, p))|¥s,0)
= N(p) Y Doro(W (A, p))U(L(AP))|¥,0)
or, using equations (159) and (158)

N(p;) > " Do (W(A, D) Tap.or). (163)

UM = Fr
Thus we see that, aside from determining the normalization factors, we have
reduced the problem of finding the coefficients C,/, in equation (157) to the
problem of finding the representations of the little group. This is the method
of induced representations. For our present purposes, this is as far as we
really need to go with this.

However, we can take a look at the normalization because it will give us two
important basic results that are of great use in quantum field theory. We first
want to show that when integrating over p “on the mass shell” (meaning that
p? = m?), the invariant volume element is

_dp
(2m)32wp

where wp = ++/p? + m?. (The numerical factors aren’t necessary for Lorentz
invariance.) To see this, first observe that

d*p

——2716(p* —m?)0

(27‘()4 Q (p m ) (pO)
is manifestly Lorentz invariant for proper orthochronous Lorentz transforma-
tions. (The step function is defined by 6(z) = 1 for x > 0 and 6(x) = 0 for
x < 0.) This is because with det A = 1 we have d*p’ = |9p’/dp|d*p = d*p, and
for timelike p* an orthochronous transformation can’t change the sign of p° so
the step function doesn’t change. Then we have

d'p 2 2 d'p
—271'6(]? -m )e(pO) - (27‘()3

(2m)*
_ d*p dpo
(2m)3
_ dpdpy 1

(27)3 2w, [6(po = wp) +6(po + wp )10 (po)

5(pg — wf))@(po)

d[(po — wp)(po + wp)]0(po)

_ dPpdpo 5

= M (po - wp)
_d’p

(2m)3 2wy,
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2 2

where the first line is because p?> — m? = pg — p*> — m? = p3 — wf); the third
line follows because integrating over all py gives contributions at both py = +wp
and py = —wp, and using 0(az) = (1/]al)d(z); the fourth line is because the
theta function restricts the range of integration to pg > 0 so §(pg + wp) always
vanishes; and the last line follows because we want to integrate a function over
d3p so integrating over py with the delta function just gives 1. This result is
really a shorthand notation for

3 4
il = L) (164)

Another way to see this is to write the integral of an arbitrary function

f(p) = f(po, p) as
/d”‘pé(p2 —m*)0(po) f(p) = /dgp dpo 6(pg — p* — m*)6(po) f (po. P)

= /dgp iKS(po — wp) f(Po, P)

= [ 22 5p)

2wp

which also shows that when integrating over the mass shell p? = m? the invariant
volume element is d*p/wp = d®*p//p? + m?.

The second result we want to show is that the invariant delta function
(2m)32wpd(p — q) is Lorentz invariant (where p?> = ¢> = m? and again the
numerical factors are not necessary). The easy way to see this is to use the
definition of the delta function to write

3

f(p)=/d3q5(p—q)f(q)=/;72[2wq5(p—q)]f(q)-

But d3q/2wq is Lorentz invariant, so 2wqd®(p — q) must also be invariant.
The hard way to see this is a brute force calculation which is a good illus-

tration of how to manipulate the delta function. Consider a boost in the ps

direction:

Pi=p1  py=p2  p3=7(ps+Lpo)

ie., p/, = p. and similarly for q. (These are the usual boost equations if you

remember that pg = p° while p; = —p’.) Now write

5(p—a)=d(pr —a1)d(ps — g3) = 6(p'L — dL)d(p3(ps) — ¢3)
= 0(p'. — a1 )d(f(ph))-
If p3 o is a zero of f(p3), then expanding to first order we have

d d
f5) = fp30) + d—g,g(pé,o)(pé —Psg) = d_;:/g(]?/a,o)(]?é —Ps0)
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and therefore

&

6(f(py)) = ’ 3(ps — P 0)-
dp’,

/
P30

To find the zero of f(pfs) we first expand
0= f(ps) =v(ps — Bro) — a3 = 7(1)’3 — /P + m2) — a3
2 2
= v(p’s =B\ P+ s +m2) - gs.
To solve this for p we rearrange it to write

a3 — 0 = =B\ P> + ps> + m?

and then square both sides:
a5 +7°py" — 2vgsply = B2 (P + 04" + m?).
Grouping the péQ terms and using 72(1 — 3?) = 1 we have
Py’ = 29qsph + gs® — 2 () +m?) =0

which is just a quadratic in pj. Using the quadratic formula we obtain

Pao =74+ \/"/"%2 — 52 + 7207 (p!” +m?)

= g3 £ 98\ a3% + P> + m?

where we used v2 — 1 = 7232,
Next we note that the factor 6(p, —q, ) in the expression for §(p —q) means
that we must have q; = p, = p/, so that (since p* = ¢*> = m?)
p/3,0 = vg3 £ vBqo
so we take p3 o = v(g3 + Bq0) = ¢5. Now we evaluate dps/dp; using p =

dps d , dpy, P3
— =75 — Bpy) =7 — VB =7 — 18—
g~ ap VP ) dp Pl
Yo / Po Wp
= (po = Pp3) = 7 = —.
p6( 0 3) p/o wp,
Finally, we put all of this together to find
d(p—q)=0d(pL —qL)0(p3 — g3)
1 1
=3P —d) 0(ps — 4s) = T o(p' —q)
s | py=qj s | ph=q}
Wp’ / ’
= —5 —
o (P —-d)
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and hence
wpd(p —q) = wpd(p’ — ') (165)

as claimed.

Let us now return to determining the normalization constants in equation
(163). To begin with, we could choose a different standard state p* from the
original one p* we chose (but still with p'> = p?). However, we choose our
standard states to have the normalization

<\Ijﬁ’70’|qjﬁ,0> = 5(10)/ - f))éa’a'

For arbitrary momentum p# and p’# (but still in the same irreducible represen-
tation with p'? = p? = p?) we then have (using equation (159) and the fact that
U is unitary)

(Wp o' [Vpo) = (Wpror [N (P)U (L ()| ¥,0)
= N@)U (L) o|Vp.0)
= NOUL )V ol ¥s0) (166)

From equation (163) we see that

UL (0) Py o) =

N(P) - /
N(ﬁ’) ; Da”o’(W(L 1(]?),]7 ))'q}ﬁ’70”>

where we have defined ' := L~(p)p’. Using the adjoint of this equation in
equation (166) we have

Wy [y ) = YON) S e (L1 (), 1)) (W o 950)

= NN S~ e (WL (0), )65 — B)dor

Because of the factor 6(p’ — p), the right side of this equation is nonzero only
for p’ = p, so we can take the constant N*(p’) to be the same as N*(p). But
from equation (159) it is clear that N(p) = 1 (since U(L(p)) = U(1) = 1) and
thus we are left with

(Wp o |Wp.0) = N(p)N*(p") D} or (W(L™ (p), p')S(D" — )

Since we have both p' = L=Y(p)p’ and p = L~1(p)p, we see that §(p’ — p)
must be proportional to §(p’ — p) (this is just the statement that d(ax) =
(1/]a])é(x)). Then the right side of the above equation vanishes for p’ # p, and
if p’ = p the Wigner rotation becomes simply
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because equation (158) applied to p is just p = L(p)p. But then
oo (W(L™ (D), p)) = door
and we can write
(Wpr o [Wp.0) = [N (D)[* 66— D)doro (167)

Lastly, we need to determine N(p). Since p is related to p by the same
Lorentz transformation that relates p’ to p/, we use equation (165) to write

p5(p" — p) =p"5(p" — p)

so that equation (167) becomes

0
p
(W oW, 0) = |N(p)]? @5(p/ —P)0oro.

Therefore, if we choose
N(p) = vp°/p°
we are left with our final result

(Up o' |Vpo) = 0(P" — P)dovo (168)

Now let us turn our attention to massless particles. Since there is no rest
frame for the particle, we can’t repeat the above procedure. In this case we take
our standard 4-momentum to be the light-like 4-vector p* = (1,0,0,1) so that
%2 = 0 and p° > 0. By definition we have Ap = p, so for the timelike 4-vector
t" = (1,0,0,0) we have

(At)(AL), = t't, =1 (169a)

and ) ) )
(At (Ap) = (At)'pp = t"pp = 1. (169b)

Any 4-vector (At)* satisfying equation (169b) is of the form
(Aty* = (1+¢,0,8,0)
so equation (169a) yields the relation
(=507 + ) (170)

Using equation (170), it is not hard to verify that

14¢ a B =
s, = 5 o 1 5 (ar)
¢ a g 1-¢
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is a Lorentz transformation (i.e., ST ¢S = g). Furthermore, it has the property
that (St)* = (At)* and (Sp)* = (Ap)*. This does not mean that S = A, but it
does mean that S~1A leaves the vector t* = (1,0,0,0) invariant so it represents
a pure rotation. In fact, it also leaves the vector p = (1,0,0,1) invariant, so it
must be a rotation about the 23-axis by some angle 6. In other words, we have

S~ (e, B)A = R(0)

where
1 0 0 0
0 cosf sinf 0
[T
R(O)", = 0 —sinf cosf 0 (172)
0 0 0 1
Thus the most general element of the little group is of the form
A(9, e, B) = S(av, B)R(6). (173)

Let us look at equation (173) for infinitesimal 0, «, 5. To first order we have
cosf = 1,sin6 = § and ¢ = 0, so multiplying the matrices from equations (171)
and (172) and keeping first order terms yields

1 o 0
Ao = | 0 T g
v 3 -0 1 -8 v v
0 a 1
where
0 « 6 0
o - 0 -0 «
Y Ty T g g 008
0 —a =06 0

(Note this satisfies w#,p” = 0 as required by equation (161).) The corresponding
unitary transformation is

U(AB, 0, B) =1+ %&WM“” —1+ %(dbol-MOi + i M 4 Gy M)

= 1+ 5 (M + BM" — aM" — BM*
—9M12—|—04M13—|—9M21+ﬁ]\/[23—aM31—ﬁMgz).

Using M* = —M"" along with the definitions

1 . .
Ji = gé‘ijijk and Ki = MiO = —Mlo
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(see equation (132)) we have

UAB, , B)) = 1 +ila(—J + K1) + B(J1 + Ko) — 0.J3]
= 1+iaA+ifB —0J3 (174)

where we have defined the Hermitian operators
A=—J+ K, and B=J + Ks.

Using the commutation relations in equations (137) we find

(A, J5] = —iB
(B, Js] = +iA
[A,B] = 0.

Since A, B and P,P" are commuting Hermitian operators, they may be
simultaneously diagonalized by states |¥j ) and we can write

Al ab) = a|lWs.ap)
BlWs.a) = b[Wsa)-

But now this is a problem which we can see as follows. For proper rotations, J
and K transform as ordinary vectors, and hence by equation (124) we have

UR)JUHR) = (R J"

with a similar result for K. (Here the matrix R’; consists of the 3 x 3 spatial
part of equation (172).) Then it is straightforward using equation (172) to show

that
U[R(O)]JAU'[R(#)] = Acosf — Bsinf
(175)
U[R(O)|BU[R()] = Asin® + B cos¥.

Defining the states
05 a0) = U R(O)][¥5,00)

we then have
AlE o) = A{UH(R(9))|¥p,0) }
= U RONURO)AU RO} p,a,)
= (acos —bsinO)U ' [R(0)]|V.a)
= (acos — bsin )|V, ;)
and similarly

B|‘I/f%,a,b> = (asinf + bcos 9)|‘I/f%,a,b>-
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In other words, for arbitrary ¢, the states |\Ij;93,a,b> are simultaneous eigenstates
of A and B. But massless particles are not observed to have any continuous
degree of freedom like 6, and therefore we are forced to require that physical
states be eigenvectors of A and B with eigenvalues a = b = 0.

Let us label our (physical) massless states |U ) so that A|¥p ,) = B|U; ;) =
0, and where the label o is the eigenvalue of the remaining generator J3 in equa-
tion (174):

J3|Vp0) = 0¥pq).

Since the spatial momentum p is in the 3-direction, this shows that o is the
component of angular momentum (spin) in the direction of motion. This is
called the helicity of the particle.

11 The Dirac Equation Again
Now that we have studied direct product groups and representations of the
Poincaré group, let us return to the Lorentz group decomposition (138):

A= e*ia-J+ib~K _ ,—(ia=b)-A—(ia+b) B _ 7(ia7b)-A67(ia+b)~B

€ €

where

A= %(J+iK) and B= %(J—z‘K)

and these commuting operators each satisfy the angular momentum commuta-
tion relations (141). This is exactly equivalent to the operator SU(2) @ SU(2)
that we described earlier, and hence we can label the representations by a pair
of angular momentum states (7, j’).

Let us label the (25 + 1)(2j’ + 1)-dimensional representations

A — e—i(a-’-ib)'A ® e—i(a—ib)-B (176)

by D(j’j/)(A), where j labels the value of A? and j' labels the value of B2. In
particular, we consider the 2-dimensional representations

D(A) := D(l/z,o)(A) and D(A) = D(O,1/2)(A)'

Recall from the theory of spin 1/2 particles in quantum mechanics that the
2-dimensional representation of SU(2) is just o/2 where the Pauli matrices are

given by
1 —1 1
o1 = 1 09 = i 03 = 1 .

Then we see that

For D(A) : B:O=>J:iK:>A:iK:%. (177a)

For D(A): A=0 = J=—iK — B:—iK:%. (177b)
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Each of these 2-dimensional representations acts on a 2-component spinor that
then transforms under either D(A) or D(A) where

D(A) _ e—i(a+ib)»o-/2 (178&)

and o
D(A) = e~i@mib)o/2, (178b)

Note that a gives the rotation angle, and b gives the boost parameters.

It is important to understand that the representations D and D are inequiv-
alent representations of the Lorentz group. In other words, there is no matrix
S such that S~'D(A)S = D(A) for all A. To see this, first note that using

0 ~ cosf + igg sin 6 i0_ sin 0
€7 =Tcosl+i(0-o)sinf = N N
104 sin 6 cos — if3sinf

(which follows from (6 - &) = 62 and where 6+ = 67 + i65) it is easy to
see that det D = det D = 1. Thus D and D are 2 x 2 complex matrices with
determinant equal to one. The set of all such matrices forms the group SL(2,C).
In general, a 2 x 2 complex matrix has eight independent components. But the
requirement that it have unit determinant amounts to two equations relating the
components, and hence an element of SL(2, C) has six independent parameters.
In the present case, these are the three boost parameters plus the three rotation
angles.
Next, by explicit calculation you can easily show that

0'20'*02 = —0.

Now define S = ioy so that S=! = —igy. Then writing D = €< for simplicity
we in fact have (using (02)? = 1 and inserting this between products of o*’s)

STID*S = 09 7 gy = o[l +¢* -0 + (1/2)(c* - 6*)2 + -0y
=1+c"- (020'*02) + (1/2)(C* . (020'*02))2 N
=1l-c'o+(1/2)(-c"-a)* +---

—e©7=D
since —c¢* = —(—i(a+1ib)/2)* = —i(a — ib)/2. In other words, D(A) is similar
to D(A)* but not to D(A). If D were equivalent to D, then this would mean
that D was equivalent to D*. That this cannot happen in general (in the present
case of the 2-dimensional representation of SL(2,C)) can be shown by a counter

example. Let M be a 2 x 2 matrix in SL(2,C), and let its eigenvalues be A and
A~ where |A| # 1 and Im X\ # 0. In other words, we can write

- "]
M= and M* = .
1/A /A"
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But any matrix similar to M (i.e., equivalent) will have the same eigenvalues
(since the characteristic polynomial doesn’t change under a similarity transfor-
mation), and hence if M* were equivalent to M we would have either \* = A
or \* = A7, Writing A = a + ib we have \* = a — ib and
1 a—ib
at b Jaff+ b

Clearly A\* is not equal to either A OL/\’l, and thus M can’t be similar to M*.
Therefore D can’t be equivalent to D as claimed.
In the particular case of a pure boost A = L(p), we have a = 0 so that

D(L(p)) = ePo/? and  D(L(p)) = e /2, (179)
If the boost is along the z-direction, then b = uz and hence
2 0 ew/2 0
= 4o /2 = U/ =
D(L(p3)) = €"7*/? = exp [ 0 —u/Z] [ 0 e“/Ql (180a)
and
_ —u/2 0 e w2 0
D(L(ps)) = e "72/? = = 180b
( (p3)) e exp l 0 u/2] [ 0 e71/2] ( )

where, by equations (53) and (54), the boost parameter u is defined by
coshu =~ and sinhu = ~vf.

Now what about the states of our system? In the last section we saw that the
two Casimir operators .#? = P,P" and .¥> = W, W* are the only operators
that commute with all of the generators of Lorentz transformations, so our par-
ticles (the irreducible representations) can be specified by the Lorentz invariant
eigenvalues m? and s(s + 1) of these operators. Since [P,,P,] = [P,,W,] =0
while [W,,, W, ] # 0, we can label our states by the eigenvalues of the commuting
operators P,, W, W" and one of the W,,, say W5. Thus we label our states by
|po) where p? = m? (so the spatial components of p, are independent) and o
is the eigenvalue of W3. (For simplicity we have suppressed the eigenvalue s of
2 i.e., we should really write |[pso).)

Next, in the case of a pure rotation A = R we have b = 0 so that R =
e~@J From equations (178) we then see that D(R) = D(R). Applying this to
the particular case of the Wigner rotation we then have D(L~1(Ap)AL(p)) =
D(L™*(Ap)AL(p)). Using the group property of the representations we can
write this out as a matrix product:

D(L™"(Ap)D(A)D(L(p)) = D(L™ (Ap)) D(A)D(L(p))- (181)

Let us define the two states

pol) = ZDM p))lpo’) ZDM p))lpo’)

lpo2) = ZD(TO' |pU ZDUU |p0/>
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where the sums are over the index values —1/2 and 1/2. We can invert both of
these to solve for [po’) and write

> Doror (L(p)lpo” 1) = |po’) =Y Dovor (L(p))lpa” 2).  (183)

Now put these back into the right side of equations (182) to obtain the coupled
equations

|p01 Z |p0ﬂ2 o'’o’ ( ( ))DG’U(L_I(p))

ol ol

_ (184)
|p02> = Z |p UN 1>Da“o/ (L(p))DU'U(Lil(p))'

To evaluate these matrix products, consider a boost in the z-direction. From
equations (180) along with D(L~1) = D~1(L) we have

o [ —u/2 0 1701 —u/2 0 1 —u
e e e
D(L(ps))D~ (L = =
(L(p3)) D™ (L(p3)) 0 eu 0 eu 0 e
— u/2 0 u/2 0 [ u 0 T
1 € e
D(L D (L = =
( (p3)) ( (p3)) 0 e_u/2 0 e_u/2 0 et
(185)
Now note the identities
e = coshu + sinhu =~ +~8 = @—i——
m m
e “ =coshu —sinhu =v—~f8 = bo_ Ps
m m
where we also used equations (153). Then we have
[e=v 0] [ po/m — ps/m ] Do b3 Do p-o
- Sy Ly
| 0 e“_ | po/m+p3/m_ m m m m
fo 01 Tpo/msps/m .
S I R o, Ps Do, PO
_O e | I po/m—p3/m_ m m m m
(186)
Combining equations (184), (185) and (186) yields
p-o
1) = 2 I——
pot) =Yl d (-2
(187)

Po
2) 25+ 2=
|po2) Z lpo’ ( +P - )UIU
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If we write

lp31)
lpl) = llp —%D]

so that [p1)” =[|p31) [p —41)] with a similar result for [p2), then equations
(187) can be written in matrix form as

p1)" = 1Ip 2>T(@I - g) and  [p2)T = [p1)T (@I+ &)
m m

m m

where the first row and column correspond to o = 1/2 and the second row and
column correspond to o = —1/2. Rearranging, these become

—mlp1)" +[p2)" (pol —p-o) =0

p1) (pol +p-0o) —m[p2)" =0

which can be combined into the form

pol —p-o —ml

—ml .o
Ip1)” |p2>TJ[ poTp ]—o.

Defining the row vector

(IpO) = [lp31) p-11) pl2) |p-12)]

(where ¢ = 1,...,4) we have

—mlI po+p-o
> Ip¢) l ; s 1 =0. (188)
C pO - p 4 -m CC/

Let |u) denote an arbitrary state and let (p(lu) = u¢(p). Noting (ulp¢) =

(p¢Ju)* and using the summation convention on the index (, equation (188)
becomes

—ml po+p-o )
u

T
—lp0<1 1>+p-<_0 ”)—m(l 1)1 ui(p) =0. (189)
¢'¢

Now define
1
v0—< ) and 7_< ") (190)
1 —o

and note y*T = 799440 50 that 4°T = 4% and 41 = —4’. (The representation
(190) is called the chiral (or Weyl) representation of the Dirac matrices, but be
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aware that different authors use different sign conventions.) Taking the complex
conjugate of equation (189) yields

0= (o7’ +p-v—mlup) = (py"" +p -~y —mIu(p)
or finally
(poy’ —p-v—mu(p) =0
i.e.,
(Y'pu —m)u(p) =0

which is the Dirac equation.
Let us write out the Dirac equation in the chiral basis as

—-m PO—U'P] le]O
Po+o-p —m YR

where we have written the 4-component Dirac spinor as a combination of two
2-component spinors, called Weyl spinors. We can put this into an even more
concise form by defining

ot =(1,0) and o' =(I,—0)

in which case we have

In the particular case of massless particles this becomes what are known as
the Weyl equations:

(po—0o-p)Yr=0 and  (po+o-p)ir =0.
Since in the massless case we have pg = |p|, these can be written
o-pYr=—vr and o -DPYr=1r

which shows that ¢; has helicity —1 and ¥pg has helicity +1. Therefore we
call ¢p a left-handed spinor and ¥p a right-handed spinor. Thus the
Weyl spinors are helicity eigenstates, which is the reason for choosing the Weyl
representation. Note also that in the Weyl representation we have

-1
v =1ty = [ 11
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so that

0 1
%(14—75): l 1] and %(1—75)—l 0]-

Applying these operators to the 4-component spinor we see that

UL 0 1 (43 (0
= and =(1—"5) =
(4 YR 2 VR 0
and hence the operators (1+7s5)/2 project out the right- and left-handed spinors.
I leave it as an easy exercise to show that an interaction term in the Lagrangian

of the form )
E”Y“ (T%> (0

1
—(1
2( +s5)

results in a current containing only left-handed spinors. Since we know that
PyHy) transforms as a vector and Yy*~y51 transforms as an axial vector, this is
called a “V — A interaction” (read “V minus A”), and is fundamental to the

description of the weak interactions.
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