

Course Preview: the Big Picture

- We use a heck of a lot of energy
- primitive society uses $<100 \mathrm{~W}$ of power per person
- our modern society burns $10,000 \mathrm{~W}$ per person
- surely not in our homes! Where is this going on?
- Energy availability has enabled us to focus on higher-level issues as a society
- art
- science
- home shopping network
- Long ago, almost all of our energy came from food (delivering muscle power), and almost all our energy went into securing food for ourselves
- Enter the work animal, supplementing our muscle power and enabling larger-scale agriculture
- Next burn wood to run boilers, trains
- 150 years ago, muscular effort and firewood provided most of our energy - and today this is less than 1% of the story
- Today, much more energy goes into growing/harvesting food than comes out of food!
- Today in US 86% of our energy comes from fossil fuels (oil,natural gas, coal)

Fuzzy on the concept of energy?

- Don't worry - we'll cover that.

Figure 1.1 Various forms of energy consumed in the United States since 1850. This type of graph is called a semilogarithmic plot, an explanation of the scales is given in the Appendix. Sources: Historical Statistics of the United States, Colonial Times to 1970 U.S. Department of Commerce. Bureau of the Census, 1975; U.S. Energy Information U.S. Department of Commerce. Bureau of the (a) The wood data set from 1850 to 1970 Administration, Annual Energy Review, 2003. (a) The wood data set from 1850 to
is from the first source. (b) The wood data set from 1950 to 2003 is from the second is from the first source. (b) The wood data set from 1950 to 2003 is from the second
source; it includes wood, black liquor (a byproduct of the wood-based paper production process), and wood waste.

A note on graphs: log vs. linear

- Many graphs are on logarithmic scales; watch for this!
- This condenses wide-ranging information into a compact area
- Pay attention, because you could warp your intuition if you don't appreciate the scale
- Log scales work in factors of ten
- A given vertical span represents a constant ratio (e.g., factor of ten, factor of two, etc.)
- An exponential increase looks like a straight line on a logarithmic scale

Example Plots

Exponential plot is curved on linear scale, and straight on a logarithmic scale

A brief history of fossil fuels

- Here today, gone tomorrow
- What will our future hold?
- Will it be back to a simple life?
- Or will we find new ways to produce all the energy we want?
- Or will it be somewhere in the middle

Source	$\begin{gathered} 10^{18} \text { Joules/yr } \\ (\sim \text { QBtu/yr }) \end{gathered}$	Percent of Total	Global
Petroleum*	158	40.0	
Coal*	92	23.2	Energy:
Natural Gas*	89	22.5	
Hydroelectric*	28.7	7.2	
Nuclear Energy	26	6.6	Does it
Biomass (burning)*	1.6	0.4	Come
Geothermal	0.5	0.13	
Wind*	0.13	0.03	* Ultimately derived from our sun
Solar Direct*	0.03	0.008	
Sun Abs. by Earth*	2,000,000	then radiated away	(courcs David

-Net fossilituel electrical imports.
Figure 1.6 Energy flow in the United States in 2002 in units of QBtu, arranged to sep arate out useful energy from lost energy. (Source: Lawrence Livermore National Laboratory (2004) and United States Energy Information Administration, Annual Energy Review 2002.)

Figure 1.7 The total energy comsumption and production in the United States since 1947 in quadrillion British Thermal Units (QBtu) per year. (Source: Washington, D.C.: U.S. Department of Energy, Energy Information Administration, Annual Energy Review 1996.)

Why do we use so much energy?

Figure 1.3 The Gross Domestic Product (GDP) per capita in U.S. dollars is compared to the total energy consumed per capita in equivalent barrels of oil for several countries. The small quarter-circle at the lower left corner is discussed in the text. (Source: United Nations Statistical Yearbook; data January 2003.)

We live in a special time and place...

- We use almost 100 times the amount used by the rest of the world (by population)
- This phase has only lasted for the last century or so
- Most of our resources come from fossil fuels presently, and this has a short, finite lifetime
- Fossil fuels formed from solar energy over 300 million years, will be used up in a few centuries!

Energy: the capacity to do work

- This notion makes sense even in a colloquial context:
- hard to get work done when you're wiped out (low on energy)
- work makes you tired: you've used up energy
- But we can make this definition of energy much more precise by specifying exactly what we mean by work

Work =Energy: more than just unpleasant tasks

- In physics, the definition of work is the application of a force through a distance; Energy is needed to do it

$$
W=F \cdot d
$$

- W is the work done = energy used
- F is the force applied
- d is the distance through which the force acts
- Only the force that acts in the direction of motion counts towards work

Okay, what is Force, then

- Force is a pushing/pulling agent
- Examples:
- gravity exerts a downward force on you
- the floor exerts an upward force on a ball during its bounce
- a car seat exerts a forward force on your body when you accelerate forward from a stop
- the seat you're sitting in now is exerting an upward force on you (can you feel it?)
- you exert a sideways force on a couch that you slide across the floor
- a string exerts a centrally-directed (centripetal) force on a rock at the end of a string that you're twirling over your head
- the expanding gas in your car's cylinder exerts a force against the piston

Forces have Direction

- In all the previous examples, force had a direction associated with it
- If multiple forces act on an object, they could potentially add or cancel, depending on direction Total Force

When net force is not zero

- When an object experiences a non-zero net force, it must accelerate
- Newton's second law:

$$
F=m \cdot a \quad \text { Force }=\text { mass times acceleration }
$$

- The same force makes a small object accelerate more than it would a more massive object
- hit a golf ball and a bowling ball with a golf club and see what happens

Question

- A 150 lb person is standing still on the edge of a cliff. What is the total force on the person?
A. zero
B. 150 lb
C. Can't say from this info

Question

- A 150 lb person jumps (or was he pushed?) off a cliff and is falling to their death. What is the total force on the person?
\square A. zero
B. 150 lb
C. Can't say from this info

But what is acceleration?

- This is getting to be like the "hole in the bucket" song, but we're almost there...
- Acceleration is any change in velocity (speed and/or direction of motion)
- Measured as rate of change of velocity
- velocity is expressed in meters per second (m / s)
- acceleration is meters per second per second
- expressed as $\mathrm{m} / \mathrm{s}^{2}$ (meters per second-squared)

Putting it back together: Units of Energy

- Force is a mass times an acceleration
- mass has units of kilograms
- acceleration is $\mathrm{m} / \mathrm{s}^{2}$
- force is then $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$, which we call Newtons (N)
- Work is a force times a distance
- units are then $\left(\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}\right) \cdot \mathrm{m}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}=\mathrm{N} \cdot \mathrm{m}=\operatorname{Joules}(\mathrm{J})$
- One joule is one Newton of force acting through one meter
- Imperial units of force and distance are pounds and feet, so unit of energy is foot-pound, which equals 1.36 J
- Energy has the same units as work: Joules

A Zoo of Units

- The main metric unit of energy is the Joule, and most of the world uses this, but many others exist:
- The calorie is 4.184 Joules
- raise 1 gram (c.c.) of water one degree Celsius
- The Calorie (kilocalorie) is $4,184 \mathrm{~J}$ (used for food energy) - raise 1 kg (1 liter) of water one degree Celsius
- The Btu (British thermal unit) is $1,055 \mathrm{~J}$ (roughly 1 kJ) or about $1 / 4$ Calorie, or chemical energy of one match
- raise 1 pound of water one degree Fahrenheit
- The kilowatt-hour (kWh) is $3,600,000 \mathrm{~J}=3600 \mathrm{~kJ}$ or 860 Calories (used for electrical energy)
- one Watt (W) is one Joule per second
- a kWh is $1,000 \mathrm{~W}$ for one hour (3,600 seconds)
- Can also use "barrel of oil", "ton of coal", 1000 cubic feet of natural gas, gram of Uranium, or amount of any energy containing source, etc.
- Lots of forms of energy coming fast and furious, but to put it in perspective, here's a list of formulas:

Energy Form	Energy Formula
Work	$W=F \cdot d$ (Force times distance)
Kinetic Energy	K.E. $=1 / 2 m v^{2}$ (mass times velocity squared)
(Grav.) Potential Energy	$E=m g h$ (mass times height times $\left.10 m / s^{2}\right)$
Heat Energy	$\Delta E=c_{\mathrm{p}} m \Delta T$ (mass times change in temperature times heat capacity)
Mass energy	$E=m c^{2}$ (mass times speed of light squared)
Radiative energy flux	$F=\sigma T^{4}$ (temperature to the fourth power times a constant)
Power (rate of energy use)	$P=\Delta E / \Delta t$

Kinetic Energy

- Kinetic Energy: the energy of motion
- Moving things carry energy in the amount:

$$
\text { K.E. }=1 / 2 m v^{2}
$$

- Note the v^{2} dependence-this is why:
- a car at 60 mph is 4 times more dangerous than a car at 30 mph
- hurricane-force winds at 100 mph are much more destructive (4 times) than 50 mph gale-force winds
- a bullet shot from a gun is at least 100 times as destructive as a thrown bullet, even if you can throw it a tenth as fast as you could shoot it

Numerical examples of kinetic energy

- A baseball (mass is $0.145 \mathrm{~kg}=145 \mathrm{~g}$) moving at $30 \mathrm{~m} / \mathrm{s}$ (67 mph) has kinetic energy:

$$
\text { K.E. } \begin{aligned}
= & 1 / 2 \times(0.145 \mathrm{~kg}) \times(30 \mathrm{~m} / \mathrm{s})^{2} \\
= & 65.25 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2} \approx 65 \mathrm{~J}
\end{aligned}
$$

- A quarter (mass $=0.00567 \mathrm{~kg}=5.67 \mathrm{~g}$) flipped about four feet into the air has a speed on reaching your hand of about $5 \mathrm{~m} / \mathrm{s}$. The kinetic energy is:

$$
\begin{aligned}
\text { K.E. }= & 1 / 2 \times(0.00567 \mathrm{~kg}) \times(5 \mathrm{~m} / \mathrm{s})^{2} \\
& =0.07 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}=0.07 \mathrm{~J}
\end{aligned}
$$

More numerical examples

- A 1500 kg car moves down the freeway at $30 \mathrm{~m} / \mathrm{s}$ (67 mph)

$$
\text { K.E. } \begin{aligned}
=1 / 2 \times & (1500 \mathrm{~kg}) \times(30 \mathrm{~m} / \mathrm{s})^{2} \\
& =675,000 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}=675 \mathrm{~kJ}
\end{aligned}
$$

Convert to Calories: $4.184 \mathrm{~kJ}=1$ Calorie
$675 \mathrm{~kJ}(1$ Calorie/4.184 kJ) $=161$ Calorie

- A $2 \mathrm{~kg}(\sim 4.4 \mathrm{lb})$ fish jumps out of the water with a speed of $1 \mathrm{~m} / \mathrm{s}(2.2 \mathrm{mph})$

$$
\text { K.E. } \begin{array}{r}
=1 / 2 \times(2 \mathrm{~kg}) \times(1 \mathrm{~m} / \mathrm{s})^{2} \\
=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}=1 \mathrm{~J}
\end{array}
$$

Question
 $1 \mathrm{~m} / \mathrm{s}=2.2 \mathrm{mph}$

- Kinetic energy is $\mathrm{E}=\mathrm{I} / 2 \mathrm{~m} \mathrm{v}^{2}$. Which has more energy?
A. 10 kg object going $100 \mathrm{~m} / \mathrm{s}$
\square B. 100 kg object going $10 \mathrm{~m} / \mathrm{s}$

C. I kg object going $1000 \mathrm{~m} / \mathrm{s}$
D. 1000 kg object going $1 \mathrm{~m} / \mathrm{s}$

Question
 $1 \mathrm{~m} / \mathrm{s}=2.2 \mathrm{mph}$

- Potential energy is $\mathrm{E}=10 \mathrm{mh}$ (metric units). Which has more energy?
A. I ton of water at a height of 100 ftB. 100 tons of water at a height of I ftC. $200 \mathrm{lb}(\mathrm{I} / \mathrm{I} 0 \mathrm{ton})$ of water at 1000 ftD. All of the above have same energy
\square

First Example of Energy Exchange

- When the boulder falls off the cliff, it picks up speed, and therefore gains kinetic energy
- Where does this energy come from??
\Rightarrow from the gravitational potential energy
- The higher the cliff, the more kinetic energy the boulder will have when it reaches the ground

Energy is conserved, so
$1 / 2 m v^{2}=m g h$
Can even figure out v, since $v^{2}=2 g h$

Examples of Gravitational Potential Energy

- How much gravitational potential energy does a 70 kg high-diver have on the 10 meter platform?

$$
\begin{aligned}
m g h= & (70 \mathrm{~kg}) \times\left(10 \mathrm{~m} / \mathrm{s}^{2}\right) \times(10 \mathrm{~m}) \\
& =7,000 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}=7 \mathrm{~kJ}
\end{aligned}
$$

$7 \mathrm{~kJ}(1$ Calorie/4.182kJ) $=1.6$ Calories
This is amount of energy the diver used in climbing the stairs (actually more than this since some energy was wasted) They got that energy from the food they ate.

The Energy of Heat

- Hot things have more energy than their cold counterparts
- Heat is really just kinetic energy on microscopic scales: the vibration or otherwise fast motion of individual atoms/molecules
- Even though it's kinetic energy, it's hard to derive the same useful work out of it because the motions are random
- Heat is frequently quantified by calories (or Btu)
- One calorie (4.184 J) raises one gram of $\mathrm{H}_{2} \mathrm{O} 1^{\circ} \mathrm{C}$
- One Calorie (4184 J) raises one kilogram of $\mathrm{H}_{2} \mathrm{O} 1^{\circ} \mathrm{C}$
- One Btu (1055 J) raises one pound of $\mathrm{H}_{2} \mathrm{O} 1^{\circ} \mathrm{F}$

Energy of Heat, continued

- Food Calories are with the "big" C, or kilocalories (kcal)
- Since water has a density of one gram per cubic centimeter, 1 cal heats $1 \mathrm{c} . c$. of water $1^{\circ} \mathrm{C}$, and likewise, 1 kcal (Calorie) heats one liter of water $1^{\circ} \mathrm{C}$. In British Units, 1 Btu heats 1 pound of water 1 degree Fahrenheit.
- these are useful numbers to hang onto
- Example: to heat a 2 -liter bottle of Coke from the $5^{\circ} \mathrm{C}$ refrigerator temperature to $20^{\circ} \mathrm{C}$ room temperature requires 30 Calories, or 122.5 kJ
- Drink a pint (16 oz) of ice cold water (or coke). It weighs about 1 pound. To heat it to body temperature (98.6 degrees minus 32 degrees or change of 66.6 degrees. Takes about 67 Btu.
Convert to Calories: 1 Calorie $=1 \mathrm{~kJ}=4 \mathrm{Btu}$, so
67 Btu (1 Calorie $/ 4 \mathrm{Btu})=16.75$ Calories. Since 16 oz of coke has 210 Calories and about 17 Calories are used just heating to your body temp you get less calories drinking it cold! (or drinking quart of cold water "burns" 17 Calories).

The Physics of Energy Formula List	
Energy Form	Energy Formula
Work	W $=F \cdot d$ (Force times distance)
Kinetic Energy	K.E. $=1 / 2 m v^{2}$ (mass times velocity squared)
(Grav.) Potential Energy	$E=m g h($ mass times height times $\left.10 m / s^{2}\right)$
Heat Energy	$\Delta E=c_{\mathrm{p}} m \Delta T$ (mass times change in temperature times heat capacity)
Mass energy	$E=m c^{2}$ (mass times speed of light squared)
Radiative energy flux	$F=\sigma T^{4}$ (temperature to the fourth power times a constant)
Power (rate of energy use)	$P=\Delta E / \Delta t$

Heat Capacity

- Different materials have different capacities to hold heat
- Add the same energy to different materials, and you'll get different temperature rises
- Quantified as heat capacity
- Water is exceptional, with $4,184 \mathrm{~J} / \mathrm{kg} /{ }^{\circ} \mathrm{C}$
- Most materials are about $1,000 \mathrm{~J} / \mathrm{kg} /{ }^{\circ} \mathrm{C}$ (including wood, air, metals)
- Example: to add $10^{\circ} \mathrm{C}$ to a room 3 meters on a side (cubic), how much energy do we need?
air density is $1.3 \mathrm{~kg} / \mathrm{m}^{3}$, and we have $27 \mathrm{~m}^{3}$, so 35 kg of air; and we need 1000 J per kg per ${ }^{\circ} \mathrm{C}$, so we end up needing $350,000 \mathrm{~J}$ ($=83.6 \mathrm{Cal}$)
Important in designing solar heated houses! Also reason it is cooler near the coast than inland!

Question

- Power is Energy used per second. P= energy/time. Which highest power?
A. Using 100 Calories in 10 minutes

B. Using 1000 Calories in 100 minutes

C. Using 10 Calories in I minute
D. Using I Calorie in 6 seconds
E. All of the above are the same power usage

Wind Energy

- Wind can be used as a source of energy (windmills, sailing ships, etc.)
- Really just kinetic energy
- Example: wind passing through a square meter at 8 meters per second
- Each second we have 8 cubic meters
- Air has density of $1.3 \mathrm{~kg} / \mathrm{m}^{3}$, so $\left(8 \mathrm{~m}^{3}\right) \times\left(1.3 \mathrm{~kg} / \mathrm{m}^{3}\right)=10.4 \mathrm{~kg}$ of air each second
$-1 / 2 m v^{2}=1 / 2 \times(10.4 \mathrm{~kg}) \times(8 \mathrm{~m} / \mathrm{s})^{2}=333 \mathrm{~J}$
- 333 J every second $\rightarrow 333$ Watts of available power per square meter (but to get all of it, you'd have to stop the wind)
- Stronger winds \rightarrow more power (like v^{2})

Chemical Energy

- Electrostatic energy (associated with charged particles, like electrons) is stored in the chemical bonds of substances.
- Rearranging these bonds can release energy (some reactions require energy to be put in)
- Typical numbers are $100-200 \mathrm{~kJ}$ per mole
- a mole is 6.022×10^{23} molecules/particles
- typical molecules are tens of grams per mole \rightarrow works out to typical numbers like several thousand Joules per gram, or a few Calories per gram (remember, $1 \mathrm{Cal}=1$ $\mathrm{kcal}=4187 \mathrm{~J}$)

- Burning a wooden match releases about one Btu, or 1055 Joules (a match is about 0.3 grams), so this is $>3,000 \mathrm{~J} / \mathrm{g}$, nearly $1 \mathrm{Cal} / \mathrm{g}$
- Burning coal releases about 20 kJ per gram of chemical energy, or roughly $5 \mathrm{Cal} / \mathrm{g}$
- Burning gasoline yields about 39 kJ per gram, or just over $9 \mathrm{Cal} / \mathrm{g}$
- Very few substances over about $11 \mathrm{Cal} / \mathrm{g}$

Energy from Food

- We get the energy to do the things we do out of food (stored solar energy in the form of chemical energy).
- Energy sources recognized by our digestive systems:
- Carbohydrates: 4 Calories per gram
- Proteins: 4 Calories per gram
- Fats: 9 Calories per gram (like gasoline) (9 is more than 4 , so gain more weight eating same amount of fat than carbs or protein!)
- Roughly 3500 Calories/pound in your body fat! Less in your protein (muscle, skin, etc.)

Our Human Energy Budget

- A 2000 Calorie per day diet means $2000 \times 4184 \mathrm{~J}=$ 8,368,000 J per day
- 8.37 MJ in ($24 \mathrm{hr} /$ day $) \times$ $(60 \mathrm{~min} / \mathrm{hr}) \times(60 \mathrm{sec} / \mathrm{min})$ $=86,400 \mathrm{sec}$ corresponds to 97 Watts of power
- Even a couch-potato at $1500 \mathrm{Cal} /$ day burns 75 W
- More active lifestyles require greater Caloric intake (more energy)

Nutrition Labels

- Nutrition labels tell you about the energy content of food

- Note they use Calories with capitol C
- Conversions: Fat: $9 \mathrm{Cal} / \mathrm{g}$ Carbs: $4 \mathrm{Cal} / \mathrm{g}$ Protein: $4 \mathrm{Cal} / \mathrm{g}$
- This product has 72 Cal from fat, 48 Cal from carbohydrates, and 32 Cal from protein
- sum is 152 Calories: compare to label
- $152 \mathrm{Cal}=636 \mathrm{~kJ}$: enough to climb about 1000 meters (64 kg person)
- $1 \mathrm{kwh}=860 \mathrm{Cal}$ or about $1 / 4 \mathrm{lb}$ body fat
- 1 gal of gas has 31,000 Calories

Mass-energy

- Einstein's famous relation:

$$
E=m c^{2}
$$

relates mass to energy

- In effect, they are the same thing
- one can be transformed into the other
- physicists speak generally of mass-energy
- Seldom experienced in daily life directly
- Happens at large scale in the center of the sun, and in nuclear bombs and reactors
- Actually does happen at barely detectable level in all energy transactions, but the effect is tiny!

$E=m c^{2}$ Examples

- The energy equivalent of one gram of material (any composition!!) is $(0.001 \mathrm{~kg}) \times\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}$ $=9.0 \times 10^{13} \mathrm{~J}=90,000,000,000,000 \mathrm{~J}=90 \mathrm{TJ}$
- Man, that's big!
- Our global energy budget is equivalent to $1000 \mathrm{~kg} / \mathrm{yr}$ (that's about 1 ton per year)
- If one gram of material undergoes a chemical reaction, losing about $9,000 \mathrm{~J}$ of energy, how much mass does it lose?

$$
\begin{aligned}
9,000 \mathrm{~J} & =\Delta m c^{2}, \text { so } \Delta m=9,000 / c^{2}=9 \times 10^{3} / 9 \times 10^{16} \\
& \left.=10^{-13} \mathrm{~kg} \quad \text { (would we } \text { ever } \text { notice? }\right)
\end{aligned}
$$

Solar Energy is Nuclear, Using E $=m c^{2}$

- Thermonuclear fusion reactions in the sun's center
- Sun is 16 million degrees Celsius in its center
- Enough energy to ram protons together (despite mutual repulsion) and make deuterium, then helium
- Reaction per atom 20 million times more energetic than chemical reactions, in general

$E=m c^{2}$ in Sun

- Helium nucleus is lighter than the four protons!
- Mass difference is $4.029-4.0015=0.0276$ a.m.u.
- 1 a.m.u. (atomic mass unit) is $1.6605 \times 10^{-27} \mathrm{~kg}$
- difference of $4.58 \times 10^{-29} \mathrm{~kg}$
- multiply by c^{2} to get $4.12 \times 10^{-12} \mathrm{~J}$
-1 mole (6.022×10^{23} particles) of protons $\rightarrow 2.5 \times 10^{12} \mathrm{~J}$
- typical chemical reactions are $100-200 \mathrm{~kJ} /$ mole
- nuclear fusion is ~ 20 million times more potent stuff!
- Nuclear fusion is energy source of hydrogen bomb

Energy from Light

- The tremendous energy from the sun is released as light. So light carries energy.
- Light is one form of electromagnetic radiation: radio, microwave, infrared, visible light, ultra-violet, X-ray, gamma ray radiation
- Wiggling electrons create EM radiation: the faster the wiggling, the more energy and the higher the frequency
- Best way to get actual amount of energy in light is using "blackbody" radiation, or thermal radiation...
- All objects emit "light"
- The color and intensity of the emitted radiation depend on the object's temperature: hotter more radiation and color is "bluer"

Emitted Radiation's Color and Intensity depend on Temperature

Object	Temperature	Color
You	$\sim 30 \mathrm{C}$	Infrared (invisible)
Heat Lamp	$\sim 500 \mathrm{C}$	Dull red
Candle Flame	$\sim 1700 \mathrm{C}$	Dim orange
Bulb Filament	$\sim 2700 \mathrm{C}$	Yellow
Sun's Surface	$\sim 5500 \mathrm{C}$	Brilliant white
Neutron Star	\sim millions C	X-rays
Molecules in	$<-272 \mathrm{C}$	Microwave or radio

The hotter it gets, the "bluer" the emitted light The hotter it gets, the more intense the radiation (more energy)

Same thing, on logarithmic scale:

Sun peaks in visible band (0.5 microns), light bulbs at $1 \mu \mathrm{~m}$, we at $10 \mu \mathrm{~m}$. (note: $0^{\circ} \mathrm{C}=273^{\circ} \mathrm{K} ; 300^{\circ} \mathrm{K}=27^{\circ} \mathrm{C}=81^{\circ} \mathrm{F}$)

Okay, but how much energy?

- The power given off of a surface in the form of light is proportional to the fourth power of temperature!

$$
F=\sigma T^{4} \text { in Watts per square meter }
$$

- the constant, σ, is numerically $5.67 \times 10^{-8} \mathrm{~W} /{ }^{\circ} \mathrm{K}^{4} / \mathrm{m}^{2}$
- easy to remember constant: 5678
- temperature must be in Kelvin:
- ${ }^{\circ} \mathrm{K}={ }^{\circ} \mathrm{C}+273$
- ${ }^{\circ} \mathrm{C}=(5 / 9) \times\left({ }^{\circ} \mathrm{F}-32\right)$
- Example: radiation from your body:
$\left(5.67 \times 10^{-8}\right) \times(310)^{4}=523$ Watts per square meter
(if naked in the cold of space: don't let this happen to you!)

Radiant Energy, continued

- Example: The sun is $5800^{\circ} \mathrm{K}$ on its surface, so:
$F=\sigma T^{4}=\left(5.67 \times 10^{-8}\right) \times(5800)^{4}=6.4 \times 10^{7} \mathrm{~W} / \mathrm{m}^{2}$
Summing over entire surface area of sun gives $3.9 \times 10^{26} \mathrm{~W}$
- Compare to total capacity of energy production on earth: $3.3 \times 10^{12} \mathrm{~W}$
- Single power plant typically $0.5-1.0 \mathrm{GW}\left(10^{9} \mathrm{~W}\right)$
- In earthly situations, radiated power out partially balanced by radiated power in from other sources
- Not $523 \mathrm{~W} / \mathrm{m}^{2}$ in $70^{\circ} \mathrm{F}$ room, more like $100 \mathrm{~W} / \mathrm{m}^{2}$
- goes like $\sigma T_{\mathrm{h}}{ }^{4}-\sigma T_{\mathrm{c}}{ }^{4}$

Electrical Energy

- Opposite charges attract, so electrons are attracted to protons. This holds atoms together.
- It takes energy to pull electrons off their atoms.
- Electrons want to get back home to their protons. They can only travel through conductors like wires, not through insulators like plastic, paper or wood. They will go through miles of wire to get home to their protons!
- This is how electricity works. The electron's energy can be stolen as it goes home. Can be used in many, many ways.
- Note electricity is not a primary source of energy. Energy (from burning coal, nat gas, from hydro, wind, nuke or solar) is used to pull of electrons and that energy can be moved through wires and got back at will.

And those are the major players...

- We've now seen most of the major energy players:
- work as force times distance
- kinetic energy (wind, ocean currents)
- gravitational potential energy (hydroelectric, tidal)
- chemical energy (fossil fuels, batteries, food, biomass)
- heat energy (power plants, space heating)
- mass-energy (nuclear sources, sun's energy)
- radiant energy (solar energy)
- electrical energy (energy of electrons separated from their atoms)

Energy is Conserved

- Conservation of Energy is different from Energy Conservation, the latter being about using energy wisely
- Conservation of Energy means energy is neither created nor destroyed. The amount of energy in the Universe is constant!!
- Don't we create energy at a power plant?
- Oh that this were true-no, we simply transform energy at our power plants
- Doesn't the sun create energy?
- Nope-it exchanges mass for energy
- Don't batteries give us new energy?
- Nope, just convert stored chemical energy to electrical energy. Someone had to put that energy in there.

Energy Exchange

- Though the total energy of a system is constant, the form of the energy can change
- A simple example is that of a simple pendulum, in which a continual exchange goes on between kinetic and potential energy

Perpetual Motion

- Why won't the pendulum swing forever?
- It's hard to design a system free of energy paths
- The pendulum slows down by several mechanisms
- Friction at the contact point: requires force to oppose; force acts through distance \rightarrow work is done
- Air resistance: must push through air with a force (through a distance) \rightarrow work is done
- Gets some air swirling: puts kinetic energy into air (not really fair to separate these last two)
- Perpetual motion means no loss of energy
- solar system orbits come very close

Some Energy Chains:

- A coffee mug with some gravitational potential energy is dropped
- potential energy turns into kinetic energy
- kinetic energy of the mug goes into:
- ripping the mug apart (chemical: breaking bonds)
- sending the pieces flying (kinetic)
- into sound
- into heating the floor and pieces through friction as the pieces slide to a stop
- In the end, the room is slightly warmer (heated by exactly the number of Calories originally stored in the potential energy).

Gasoline Example

- Put gas in your car, containing $9 \mathrm{Cal} / \mathrm{g}$
- Combust gas, turning $9 \mathrm{Cal} / \mathrm{g}$ into kinetic energy of explosion
- Transfer kinetic energy of gas to piston to crankshaft to drive shaft to wheel to car as a whole
- That which doesn't go into kinetic energy of the car goes into heating the engine block (and radiator water and surrounding air), and friction of transmission system (heat), and noise of engine (heating the air), etc.
- Much of energy goes into stirring the air (ends up as heat)
- Apply the brakes and convert kinetic energy into heat
- It all ends up as waste heat, ultimately

Bouncing Ball

- Superball has gravitational potential energy
- Drop the ball and this becomes kinetic energy
- Ball hits ground and compresses (force times distance), storing energy in the spring
- Ball releases this mechanically stored energy and it goes back into kinetic form (bounces up)
- Inefficiencies in "spring" end up heating the ball and the floor, and stirring the air a bit
- In the end, all is heat

Why don't we get hotter and hotter

- If all these processes end up as heat, why aren't we continually getting hotter?
- If earth retained all its heat, we would get hotter
- All of earth's heat is radiated away

$$
F=\sigma T^{4}
$$

- If we dump more power, the temperature goes up, the radiated power increases dramatically
- comes to equilibrium: power dumped = power radiated
- stable against perturbation: T tracks power budget

Rough numbers

- How much power does the earth radiate?
- $F=\sigma T^{4}$ for $T=288^{\circ} \mathrm{K}=15^{\circ} \mathrm{C}$ is $390 \mathrm{~W} / \mathrm{m}^{2}$
- Summed over entire surface area $\left(4 \pi \mathrm{R}^{2}\right.$, where R $=6,378,000$ meters) is $2.0 \times 10^{17} \mathrm{~W}$
- Global production is $3 \times 10^{12} \mathrm{~W}$
- Solar radiation incident on earth is $1.8 \times 10^{17} \mathrm{~W}$
- just solar luminosity of $3.9 \times 10^{26} \mathrm{~W}$ divided by geometrical fraction that points at earth
- Amazing coincidence of numbers! (or is it...)

No Energy for Free

- No matter what, you can't create energy out of nothing: it has to come from somewhere
- We can transform energy from one form to another; we can store energy, we can utilize energy being conveyed from natural sources
- The net energy of the entire Universe is constant
- The best we can do is scrape up some useful crumbs

Examples

- Unit conversion:
- 100 Btu into Calories: 100 Btu $(1 \mathrm{Calorie} / 3.96 \mathrm{Btu})=25 \mathrm{Cal}$
- 100 Btu into Joules: 100Btu $(1055 \mathrm{~J} / 1 \mathrm{Btu})=105,500 \mathrm{~J}=1 \times 10^{5} \mathrm{~J}$
- 100 Btu into $\mathrm{kWh}: 100 \mathrm{Btu}(1 \mathrm{kWh} / 3413 \mathrm{Btu})=0.029 \mathrm{kWh}$
- 10 gallons of gasoline into $\mathrm{kWh}: 10$ gals $(132,000,000 \mathrm{~J} / 1 \mathrm{gal})(1$ $\mathrm{kWh} / 3,600,000 \mathrm{~J})=366 \mathrm{kWh}$
- How many calories per hour does 100 W bulb use? $100 \mathrm{~W}=100$ Joule $/ \mathrm{sec}(1 \mathrm{Cal} / 4184 \mathrm{~J})(60 \mathrm{sec} / 1 \mathrm{~min})(60 \mathrm{~min} / 1$ hour $)=86$ Calories/hour. About what average person eats!
- Gasoline is $\$ 3 /$ gal. Electricity if $\$ 0.15 / \mathrm{kWh}$. Which is more expensive? Convert $\$ 3 / \mathrm{gal}$ to $\$$ per kWh . $\$ 3 / \mathrm{gal}$ ($1 \mathrm{gal} / 36.6 \mathrm{kWh}$) $=\$ 0.08 / \mathrm{kWh}$ for gasoline. Gasoline is cheap in the USA!

Examples

- Power vs. Energy: $(\mathrm{P}=\mathrm{E} / \mathrm{time} ; \mathrm{E}=\mathrm{P} \mathrm{t} ; \mathrm{t}=\mathrm{E} / \mathrm{P})$
- Car goes 60 miles in one hour and uses 3 gal of gas. What was total power in Watts? $\mathrm{P}=\mathrm{E} / \mathrm{t}$, Power $=(3 \mathrm{gal} / 1 \mathrm{hour})=3 \mathrm{gal} / \mathrm{hr}$ $(36.6 \mathrm{kWhr} / 1 \mathrm{gal})=109 \mathrm{~kW}(1000 \mathrm{~W} / 1 \mathrm{~kW})=109,000 \mathrm{~W}$ [Alternative method: $3 \mathrm{gal} / \mathrm{hr}(132,000,000 \mathrm{~J} / 1 \mathrm{gal})(1 \mathrm{hr} / 3600$ sec) $=110,000 \mathrm{~J} / \mathrm{sec}=110,000 \mathrm{~W}$
- 1000 W space heater is on for 3 hours. How much does it cost if electricity is $\$.15 / \mathrm{kWh}$? $\mathrm{E}=\mathrm{Pt} . \mathrm{E}=(1000 \mathrm{~W})(3 \mathrm{hr})=3000 \mathrm{Whr}$ $(1 \mathrm{~kW} / 1000 \mathrm{~W})=3 \mathrm{kWh}(\$.15 / \mathrm{kWh})=\$.45$ [Alternative method: $\mathrm{E}=(1000 \mathrm{~W})(3 \mathrm{hr})(3600 \mathrm{sec} / 1 \mathrm{hr})=10,800,000 \mathrm{Ws}=10,800,000$ $\mathrm{J}(1 \mathrm{kWh} / 3,600,000 \mathrm{~J})=3 \mathrm{kWh}$. Again 45 cents.
- AAA Battery contains 3.3 Calories of chemical energy. How long can it run a 2 Watt light bulb? time $=\mathrm{E} / \mathrm{P}$. time $=3.3$ Calories $/ 2$ $\mathrm{W}=1.65 \mathrm{Cal} \mathrm{sec} / \mathrm{Joule}(4184 \mathrm{~J} / 1 \mathrm{Cal})=6,900$ seconds $(1$ $\mathrm{hr} / 3600 \mathrm{sec})=1.9$ hours

Question

- The U.S. uses about 7 Gbarrels of oil each year. This could be converted into which of the following units?
A. Joules
B. Watts
C. QBtu's
D. Dollars $\$$
E. Any of the above

Question

- If one barrel of oil contains 1700 kWh of energy, how many Watts is 7 Gbarrel/year
\square A. I 400 GW (Giga Watts)
\square B. 1.4 GWC. $11,900 \mathrm{~W}$D. II. 9 MWE. $I \times 10^{11} \mathrm{~W}$

Question

- If the total yearly oil use in the U.S. is about 1400 GW , how many 1000 MW nuclear reactors will need to be built to replace all oil use with electricity?
\square A. Only one will be needed
\square B. Around I4C. Around 140
\square D. Around 1400E. Can't convert Watts to reactors; power vs energy

More Power Examples

- How much power does it take to lift 10 kg up 2 meters in 2 seconds?

$$
m g h=(10 \mathrm{~kg}) \times\left(10 \mathrm{~m} / \mathrm{s}^{2}\right) \times(2 \mathrm{~m})=200 \mathrm{~J}
$$

200 J in 2 seconds $\rightarrow 100$ Watts

- If you want to heat the 3 m cubic room by $10^{\circ} \mathrm{C}$ with a 1000 W space heater, how long will it take?

We know from before that the room needs to have $360,000 \mathrm{~J}$ added to it, so at $1000 \mathrm{~W}=1000 \mathrm{~J} / \mathrm{s}$ this will take 360 seconds, or six minutes.
But: the walls need to be warmed up too, so it will actually take longer (and depends on quality of insulation, etc.)

A note on arithmetic of units

- You should carry units in your calculations and multiply and divide them as if they were numbers
- Example: the force of air drag is given by:
- \quad Fdrag $=1 / 2 \mathrm{c}_{\mathrm{D}} \mathrm{rAv}{ }^{2}$
- cD is a dimensionless drag coefficient
- r is the density of air, $1.3 \mathrm{~kg} / \mathrm{m}^{3}$
- A is the cross-sectional area of the body in m^{2}
- v is the velocity in m / s
- units: $\left(\mathrm{kg} / \mathrm{m}^{3}\right) \cdot\left(\mathrm{m}^{2}\right) \cdot(\mathrm{m} / \mathrm{s})^{2}=\left(\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{m} 3\right) \cdot\left(\mathrm{m}^{2} / \mathrm{s}^{2}\right)=$

$$
\frac{\mathrm{kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~m}^{2}}{\mathrm{~m}^{3} \cdot \mathrm{~s}^{2}}=\frac{\mathrm{kg} \cdot \mathrm{~m}^{4}}{\mathrm{~m}^{3} \cdot \mathrm{~s}^{2}}=\mathrm{kg} \cdot \mathrm{~m} / \mathrm{s}^{2}=\text { Newtons }
$$

