PHYSICS 210A : EQUILIBRIUM STATISTICAL PHYSICS HW ASSIGNMENT #4 SOLUTIONS

(1) Consider a three dimensional gas of particles with dispersion $\varepsilon(\mathbf{k}) = \varepsilon_0 (ka)^{3/2}$, where ε_0 and *a* are microscopic energy and length scales, respectively.

(a) Find the density of states per unit volume $g(\varepsilon)$. You may assume there are no internal degeneracies.

(b) Find an expression for the expansion coefficients $C_j(T)$ defined in eqn. 5.33 of the lecture notes.

(c) Find the virial coefficients $B_j(T)$ up through j = 5. It is convenient to use the Mathematica function InverseSeries. For guidance, see example problem 5.13.

Solution :

(a) For the general power law dispersion $\varepsilon(\mathbf{k}) = \varepsilon_0(ka)^{\sigma}$ we have

$$k(\varepsilon) = \frac{1}{a} \left(\frac{\varepsilon}{\varepsilon_0}\right)^{1/\sigma}$$
, $k'(\varepsilon) = \frac{1}{\sigma a} \varepsilon_0^{-1/\sigma} \varepsilon^{-1-(1/\sigma)}$

From $g(\varepsilon) = k^2(\varepsilon) k'(\varepsilon)/4\pi^2$ we then obtain

$$g(\varepsilon) = \frac{\varepsilon^{(3/\sigma)-1}}{4\pi^2 \sigma a^3 \varepsilon_0^{3/\sigma}} \quad .$$

(b) We have

$$C_j(T) = (\pm 1)^{j-1} \int_0^\infty d\varepsilon \ g(\varepsilon) \ e^{-j\varepsilon/k_{\rm B}T} = (\pm 1)^{j-1} \lambda_T^{-3} \ j^{-3/\sigma}$$

where we define λ_T through

$$\lambda_T^3 \equiv \frac{4\pi^2 \sigma a^3}{\Gamma(3/\sigma)} \left(\frac{\varepsilon_0}{k_{\rm B}T}\right)^{3/\sigma} \quad .$$

(c) With $\sigma = \frac{3}{2}$ we have $\frac{3}{\sigma} = 2$ and thus for bosons we have

$$n\lambda_T^3 = z + 2^{-3\sigma^{-1}}z^2 + 3^{-3\sigma^{-1}}z^3 + 4^{-3\sigma^{-1}}z^4 + \dots$$

$$\beta p\lambda_T^3 = z + 2^{-(3\sigma^{-1}+1)}z^2 + 3^{-(3\sigma^{-1}+1)}z^3 + 4^{-(3\sigma^{-1}+1)}z^4 + \dots$$

With $\sigma = \frac{3}{2}$ we have $\frac{3}{\sigma} = 2$. We now use the handy Mathematica function InverseSeries

to obtain

In[1]= y = InverseSeries [z + z²/2² + z³/3² + z⁴/4² + z⁵/5² + O[z]⁶]
Out[1]= x -
$$\frac{x^2}{4}$$
 + $\frac{x^3}{72}$ - $\frac{x^4}{576}$ - $\frac{31x^5}{86400}$ + O[x]⁶
In[2]= w = y + y²/2³ + y³/3³ + y⁴/4³ + y⁵/5³
Out[2]= x - $\frac{x^2}{8}$ - $\frac{5x^3}{432}$ - $\frac{x^4}{384}$ - $\frac{2069x^5}{2592000}$ + O[x]⁶

We may now read off the bosonic virial coefficients. For the fermionic case, we reverse the sign of the even coefficients. Thus

$$B_2(T) = \mp \frac{1}{8} \lambda_T^3 \quad , \quad B_3(T) = -\frac{5}{432} \lambda_T^6 \quad , \quad B_4(T) = \mp \frac{1}{384} \lambda_T^9 \quad , \quad B_5(T) = -\frac{2069}{2592000} \lambda_T^{12} \quad .$$

(2) In our derivation of the low temperature phase of an ideal Bose condensate, we split off the lowest energy state ε_0 but treated the remainder as a continuum, taking $\mu = 0$ in all expressions relating to the overcondensate. Under what conditions is this justified? *I.e.* why are we not obligated to separately consider the contributions from the first excited state, *etc.*?

Solution :

In the condensed phase, there is an extensive population N_0 of the lowest single particle energy state, and the chemical potential takes the value $\mu = \varepsilon_0 - \frac{k_{\rm B}T}{g_0 N_0}$, where g_0 is the degeneracy of the single particle ground state. Let ε_1 be the energy of the first excited state and g_1 its degeneracy. Then the number of bosons in the first excited state is

$$N_1 = \frac{\mathbf{g}_1}{e^{(\varepsilon_1 - \mu)/k_{\mathrm{B}}T} - 1} \approx \frac{\mathbf{g}_1 k_{\mathrm{B}}T}{\varepsilon_1 - \mu} \,,$$

assuming $\varepsilon_1 - \mu \ll k_{\rm B}T$. Now

$$\varepsilon_1 - \mu = (\varepsilon_0 - \mu) + (\varepsilon_1 - \varepsilon_0) = \frac{k_{\rm B}T}{g_0 N_0} + (\varepsilon_1 - \varepsilon_0) \; .$$

So we need to ask about the energy difference $\Delta \varepsilon_1 \equiv \varepsilon_1 - \varepsilon_0$. If $\Delta \varepsilon_1 \propto V^{-r}$, assuming 0 < r < 1, then the number of particles in the first excited state will be subextensive, and the corresponding density $n_1 = N_1/V \propto V^{r-1}$ will vanish in the thermodynamic limit. In this case, we are justified in singling out only the single particle ground state as having

an extensive occupancy. For a ballistic dispersion and periodic boundary conditions, the quantized single particle plane wave energies are given by

$$\varepsilon(l_x, l_y, l_z) = \frac{\hbar^2}{2m} \Biggl\{ \left(\frac{2\pi l_x}{L_x}\right)^2 + \left(\frac{2\pi l_y}{L_y}\right)^2 + \left(\frac{2\pi l_z}{L_z}\right)^2 \Biggr\}$$

and thus $\varepsilon_1 \propto V^{-2/3}$. Therefore $r = \frac{2}{3}$ and the occupancy of the first excited state is subextensive.

(3) Consider a three-dimensional Bose gas of particles which have two internal polarization states, labeled by $\sigma = \pm 1$. The single particle energies are given by

$$\varepsilon(\boldsymbol{p},\sigma) = \frac{\boldsymbol{p}^2}{2m} + \sigma\Delta \; ,$$

where $\Delta > 0$.

(a) Find the density of states per unit volume $g(\varepsilon)$.

(b) Find an implicit expression for the condensation temperature $T_c(n, \Delta)$. When $\Delta \to \infty$, your expression should reduce to the familiar one derived in class.

(c) When $\Delta = \infty$, the condensation temperature should agree with the familiar result for three-dimensional Bose condensation. Assuming $\Delta \gg k_{\rm B}T_{\rm c}(n, \Delta = \infty)$, find analytically the leading order difference $T_{\rm c}(n, \Delta) - T_{\rm c}(n, \Delta = \infty)$.

Solution :

(a) Let $g_0(\varepsilon)$ be the DOS per unit volume for the case $\Delta = 0$. Then

$$g_0(\varepsilon) \, d\varepsilon = \frac{d^3k}{(2\pi)^3} = \frac{k^2 \, dk}{2\pi^2} \quad \Rightarrow \quad g_0(\varepsilon) = \frac{1}{4\pi^2} \left(\frac{2m}{\hbar^2}\right)^{1/2} \varepsilon^{1/2} \, \Theta(\varepsilon) \; .$$

For finite Δ , the single particle energies are shifted uniformly by $\pm \Delta$ for the $\sigma = \pm 1$ states, hence

$$g(\varepsilon) = g_0(\varepsilon + \Delta) + g_0(\varepsilon - \Delta) \; .$$

(b) For Bose statistics, we have in the uncondensed phase,

$$\begin{split} n &= \int_{-\infty}^{\infty} d\varepsilon \, \frac{g(\varepsilon)}{e^{(\varepsilon-\mu)/k_{\rm B}T} - 1} \\ &= {\rm Li}_{3/2} \big(e^{(\mu+\Delta)/k_{\rm B}T} \big) \, \lambda_T^{-3} + {\rm Li}_{3/2} \big(e^{(\mu-\Delta)/k_{\rm B}T} \big) \, \lambda_T^{-3} \, . \end{split}$$

In the condensed phase, $\mu = -\Delta - O(N^{-1})$ is pinned just below the lowest single particle energy, which occurs for $\mathbf{k} = \mathbf{p}/\hbar = 0$ and $\sigma = -1$. We then have

$$n = n_0 + \zeta(3/2) \, \lambda_T^{-3} + \mathrm{Li}_{3/2} \big(e^{-2\Delta/k_\mathrm{B}T} \big) \, \lambda_T^{-3} \, .$$

To find the critical temperature, set $n_0 = 0$ and $\mu = -\Delta$:

$$n = \zeta(3/2) \, \lambda_{T_{\rm c}}^{-3} + {\rm Li}_{3/2} \big(e^{-2\Delta/k_{\rm B}T_{\rm c}} \big) \, \lambda_{T_{\rm c}}^{-3} \, . \label{eq:n_static}$$

This is a nonlinear and implicit equation for $T_{c}(n, \Delta)$. When $\Delta = \infty$, we have

$$k_{\rm B}T_{\rm c}^{\infty}(n) = \frac{2\pi\hbar^2}{m} \left(\frac{n}{\zeta(3/2)}\right)^{2/3}.$$

(c) For finite Δ , we still have the implicit nonlinear equation to solve, but in the limit $\Delta \gg k_{\rm B}T_{\rm c}$, we can expand $T_{\rm c}(\Delta) = T_{\rm c}^{\infty} + \delta T_{\rm c}(\Delta)$. We may then set $T_{\rm c}(n, \Delta)$ to $T_{\rm c}^{\infty}(n)$ in the second term of our nonlinear implicit equation, move this term to the LHS, whence

$$\zeta(3/2)\,\lambda_{T_{\rm c}}^{-3}\approx n-{\rm Li}_{3/2}\big(e^{-2\Delta/k_{\rm B}T_{\rm c}^\infty}\big)\,\lambda_{T_{\rm c}}^{-3}\ .$$

which is a simple algebraic equation for $T_c(n, \Delta)$. The second term on the RHS is tiny since $\Delta \gg k_B T_c^{\infty}$. We then find

$$T_{\rm c}(n,\Delta) = T_{\rm c}^{\infty}(n) \left\{ 1 - \frac{3}{2} e^{-2\Delta/k_{\rm B}T_{\rm c}^{\infty}(n)} + \mathcal{O}\left(e^{-4\Delta/k_{\rm B}T_{\rm c}^{\infty}(n)}\right) \right\}.$$

(4) A branch of excitations for a three-dimensional system has a dispersion $\varepsilon(\mathbf{k}) = A |\mathbf{k}|^{2/3}$. The excitations are bosonic and are not conserved; they therefore obey photon statistics.

(a) Find the single excitation density of states per unit volume, $g(\varepsilon)$. You may assume that there is no internal degeneracy for this excitation branch.

(b) Find the heat capacity $C_V(T, V)$.

(c) Find the ratio E/pV.

(d) If the particles are bosons with number conservation, find the critical temperature T_c for Bose-Einstein condensation.

Solution:

(a) We have, for three-dimensional systems,

$$g(arepsilon) = rac{1}{2\pi^2} rac{k^2}{darepsilon/dk} = rac{3}{4\pi^2 A} k^{7/3} \, .$$

Inverting the dispersion to give $k(\varepsilon) = (\varepsilon/A)^{3/2}$, we obtain

$$g(\varepsilon) = \frac{3}{4\pi^2} \frac{\varepsilon^{7/2}}{A^{9/2}}$$

(b) The energy is then

$$\begin{split} E &= V \!\!\int\limits_{0}^{\infty} \!\! d\varepsilon \; g(\varepsilon) \; \frac{\varepsilon}{e^{\varepsilon/k_{\rm B}T} - 1} \\ &= \frac{3V}{4\pi^2} \, \Gamma\!\left(\frac{11}{2}\right) \zeta\!\left(\frac{11}{2}\right) \frac{(k_{\rm B}T)^{11/2}}{A^{9/2}} \,. \end{split}$$

Thus,

$$C_V = \left(\frac{\partial E}{\partial T}\right)_V = \frac{3V}{4\pi^2} \Gamma\left(\frac{13}{2}\right) \zeta\left(\frac{11}{2}\right) k_{\rm B} \left(\frac{k_{\rm B}T}{A}\right)^{9/2}$$

(c) The pressure is

$$\begin{split} &= -\frac{\Omega}{V} = -k_{\rm B}T \int_{0}^{\infty} d\varepsilon \; g(\varepsilon) \; \ln\left(1 - e^{-\varepsilon/k_{\rm B}T}\right) \\ &= -k_{\rm B}T \int_{0}^{\infty} d\varepsilon \; \frac{3}{4\pi^2} \; \frac{\varepsilon^{7/2}}{A^{9/2}} \; \ln\left(1 - e^{-\varepsilon/k_{\rm B}T}\right) \\ &= -\frac{3}{4\pi^2} \; \frac{(k_{\rm B}T)^{11/2}}{A^{9/2}} \int_{0}^{\infty} ds \; s^{7/2} \; \ln\left(1 - e^{-s}\right) \\ &= \frac{3V}{4\pi^2} \; \Gamma\left(\frac{9}{2}\right) \zeta\left(\frac{11}{2}\right) \; \frac{(k_{\rm B}T)^{11/2}}{A^{9/2}} \; . \end{split}$$

Thus,

$$\frac{E}{pV} = \frac{\Gamma(\frac{11}{2})}{\Gamma(\frac{9}{2})} = \frac{9}{2}$$

(d) To find $T_{\rm c}$ for BEC, we set z=1 (i.e. $\mu=0)$ and $n_0=0,$ and obtain

$$n = \int_{0}^{\infty} d\varepsilon \ g(\varepsilon) \ \frac{\varepsilon}{e^{\varepsilon/k_{\rm B}T_{\rm c}} - 1}$$

Substituting in our form for $g(\varepsilon)$, we obtain

p

$$n = \frac{3}{4\pi^2} \Gamma\left(\frac{9}{2}\right) \zeta\left(\frac{9}{2}\right) \left(\frac{k_{\rm B}T}{A}\right)^{9/2},$$

and therefore

$$T_{\rm c} = \frac{A}{k_{\rm B}} \left(\frac{4\pi^2 n}{3\,\Gamma(\frac{9}{2})\,\zeta(\frac{9}{2})} \right)^{2/9}$$