PHYSICS 210A : EQUILIBRIUM STATISTICAL PHYSICS
HW ASSIGNMENT #4 SOLUTIONS
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(1) Consider a three dimensional gas of particles with dispersion e(k) = ¢,(ka)*/#, where

€y and a are microscopic energy and length scales, respectively.

(a) Find the density of states per unit volume g(¢). You may assume there are no internal
degeneracies.

(b) Find an expression for the expansion coefficients C;(T") defined in eqn. 5.33 of the
lecture notes.

(c) Find the virial coefficients B,(T) up through j = 5. Itis convenient to use the Mathematica
function InverseSeries. For guidance, see example problem 5.13.

Solution :

(a) For the general power law dispersion ¢(k) = ¢,(ka)” we have

1/o
k(e) = l(i) , K (e) = 1 561/0 c—1=(1/0)
a\g, oa
From g(¢) = k*(¢) k' (¢) /472 we then obtain
(3/0)—1
€
9(€) = ———7
47T2aa3€g/0

(b) We have

Cy(T) = (17! / de g(e) e /M T = (£1) 173 3/
0

where we define A\, through

M= 47r20a3< €0 )3/0

(c) With o = % we have % = 2 and thus for bosons we have

AL =2 42730 24370 B g
5p)\?% _ z+2—(3o*1+1)z2 +3—(3a*1+1)Z3 +4—(3o*1+1)z4 +o.

With o = % we have g = 2. We now use the handy Mathematica function InverseSeries



to obtain

In[1]= y = InverseSeries|[z + 2z72/272 + 2°3/3°2 + 2z°4/4°2 + z°5/572 + O[z] 6]

x~3 x4 31x°5
LI + 0[x1°6
72 576 86 400

"2
Out[1]l= x - XT +

In[2]= w=y + y~2/273 + y"3/37"3 + y~4/4°3 + y~5/573
"2 5x73 "4 2069x75

OQut[2]= x - re_ X0 xR LPIES O[x]-"6
8 432 384 2592000

We may now read off the bosonic virial coefficients. For the fermionic case, we reverse the
sign of the even coefficients. Thus

By(T) = $% Ny By(T) = —45@ Ao Bu(T) = :Fﬁ Np o Bs(T) = _% v

(2) In our derivation of the low temperature phase of an ideal Bose condensate, we split
off the lowest energy state ¢, but treated the remainder as a continuum, taking p = 0 in
all expressions relating to the overcondensate. Under what conditions is this justified? ILe.
why are we not obligated to separately consider the contributions from the first excited
state, etc.?

Solution :

In the condensed phase, there is an extensive population N, of the lowest single particle
energy state, and the chemical potential takes the value ;1 = ¢, — %, where g, is the
C

degeneracy of the single particle ground state. Let ¢, be the energy of the first excited state
and g; its degeneracy. Then the number of bosons in the first excited state is

N, — g1 ~ gikpT
1 e(al_”)/kBT -1 £ — U )

assuming ¢, — pu < k1. Now

k,T
90No

e —p=I(g—n) + (e —g) = + (g1 — o) -

So we need to ask about the energy difference Ae; = ¢, — ¢,. If Ag; o V77, assuming
0 < r < 1, then the number of particles in the first excited state will be subextensive, and
the corresponding density n; = N;/V oc V"~! will vanish in the thermodynamic limit. In
this case, we are justified in singling out only the single particle ground state as having



an extensive occupancy. For a ballistic dispersion and periodic boundary conditions, the
quantized single particle plane wave energies are given by

n2 [ oml, N2 f2ml, N2 2ml, N
E(lmﬂlwlz):%{([/m) +<Ly> +<Lz> s
. Therefore r = 2 and the occupancy of the first excited state is

and thus ¢, « V~%/3

subextensive.

(3) Consider a three-dimensional Bose gas of particles which have two internal polariza-
tion states, labeled by o = £1. The single particle energies are given by

2
e(po) =2 4 oA,

2m
where A > 0.
(a) Find the density of states per unit volume g(¢).

(b) Find an implicit expression for the condensation temperature 7,(n, A). When A — oo,
your expression should reduce to the familiar one derived in class.

(c) When A = oo, the condensation temperature should agree with the familiar result for
three-dimensional Bose condensation. Assuming A > k,T,(n, A = o0), find analytically
the leading order difference T,.(n,A) — T.(n, A = c0).

Solution :

(a) Let gy(¢) be the DOS per unit volume for the case A = 0. Then

B kK2 dk 1 /2m\/?
90(e) de = @n)P ~ 2n2 = gle) = 2 <ﬁ> 2 0(e) .

For finite A, the single particle energies are shifted uniformly by +A for the 0 = +1 states,
hence
9(e) = gole + ) + go(e = A)..

(b) For Bose statistics, we have in the uncondensed phase,

_ O
"= / e TR T
_ Lig/z(e(N+A)/kBT) AP+ Liz (e(u—A)/kBT) A7

In the condensed phase, u = —A — O(N 1) is pinned just below the lowest single particle
energy, which occurs for k = p/h = 0 and ¢ = —1. We then have

n =g+ ((3/2) A\p® + Lig o (e 24/78T) A73 .



To find the critical temperature, set n, = 0 and p = —A:

n=((3/2) \p° + Lig (e728/kaTe) A72

C

This is a nonlinear and implicit equation for 7, (n, A). When A = oo, we have

ke, T2 (n) = 2%712 (%)2/3 .

(c) For finite A, we still have the implicit nonlinear equation to solve, but in the limit
A > k,T., we can expand T,(A) = T° + 0T,(A). We may then set T, (n, A) to T°(n) in
the second term of our nonlinear implicit equation, move this term to the LHS, whence

C(3/2) A7 = n — Liy)p (e23/4eT) A2

C

which is a simple algebraic equation for 7;.(n, A). The second term on the RHS is tiny since
A > kT2, We then find

T(n, &) = T2(n) {1~ § e 22700 1 (e 18/mTm)

(4) A branch of excitations for a three-dimensional system has a dispersion (k) = A |k|?/3.
The excitations are bosonic and are not conserved; they therefore obey photon statistics.

(a) Find the single excitation density of states per unit volume, g(¢). You may assume that
there is no internal degeneracy for this excitation branch.

(b) Find the heat capacity Cy, (T, V).
(c) Find the ratio E/pV.

(d) If the particles are bosons with number conservation, find the critical temperature T,
for Bose-Einstein condensation.

Solution:
(a) We have, for three-dimensional systems,

1 K2 3
L k73
9€) = 52 Tjak ~ A

Inverting the dispersion to give k(c) = (¢/A)3/2, we obtain

3 67/2

g(E) = m A9/2



(b) The energy is then

oo

€
0

3V (k,T)'1/2
= =0 (3)E) =5

OF 3V k. T\%/?
Cy = <O—T>V = 2 L(5) AF) ks < Y )

Thus,

(c) The pressure is

oo

2 -
p=-—y = —kBT/d&?g(E) In(1-e 6/kBT)
0
i 3 2 —e/kgT
:_kBT dgmmln(l—ee/B)

0

LoTV/2 T
— _4—73r2 (ksT) 7~ ‘3149)/2 /ds s7/? 1n (1-¢7)
0

3V (k,T)1/?
= =16 F) =
Thus,
E_T(E) _,
pvoor(g) 7

(d) To find T, for BEC, we set z = 1 (i.e. u = 0) and n, = 0, and obtain

n:/dag(s) °

ea/kBTC -1
0

Substituting in our form for g(e), we obtain

and therefore



