
PHYSICS 210A : EQUILIBRIUM STATISTICAL PHYSICS

HW ASSIGNMENT #4 SOLUTIONS

(1) Consider a three dimensional gas of particles with dispersion ε(k) = ε0(ka)
3/2, where

ε0 and a are microscopic energy and length scales, respectively.

(a) Find the density of states per unit volume g(ε). You may assume there are no internal
degeneracies.

(b) Find an expression for the expansion coefficients Cj(T ) defined in eqn. 5.33 of the
lecture notes.

(c) Find the virial coefficients Bj(T ) up through j = 5. It is convenient to use the Mathematica
function InverseSeries. For guidance, see example problem 5.13.

Solution :

(a) For the general power law dispersion ε(k) = ε0(ka)
σ we have

k(ε) =
1

a

(

ε

ε0

)1/σ

, k′(ε) =
1

σa
ε
−1/σ
0 ε−1−(1/σ) .

From g(ε) = k2(ε) k′(ε)/4π2 we then obtain

g(ε) =
ε(3/σ)−1

4π2σa3ε
3/σ
0

.

(b) We have

Cj(T ) = (±1)j−1

∞
∫

0

dε g(ε) e−jε/k
B
T = (±1)j−1λ−3

T j−3/σ

where we define λT through

λ3
T ≡

4π2σa3

Γ (3/σ)

(

ε0
k
B
T

)3/σ

.

(c) With σ = 3
2 we have 3

σ = 2 and thus for bosons we have

nλ3
T = z + 2−3σ−1

z2 + 3−3σ−1

z3 ++4−3σ−1

z4 + . . .

βpλ3
T = z + 2−(3σ−1+1)z2 + 3−(3σ−1+1)z3 + 4−(3σ−1+1)z4 + . . . .

With σ = 3
2 we have 3

σ = 2. We now use the handy Mathematica function InverseSeries
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to obtain

In[1]= y = InverseSeries [ z + z^2/2^2 + z^3/3^2 + z^4/4^2 + z^5/5^2 + O[z]^6 ]

Out[1]= x -
x^2

4
+

x^3

72
-

x^4

576
-

31 x^5

86 400
+ O[x]^6

In[2]= w = y + y^2/2^3 + y^3/3^3 + y^4/4^3 + y^5/5^3

Out[2]= x -
x^2

8
-

5 x^3

432
-

x^4

384
-

2069 x^5

2 592 000
+ O[x]^6

We may now read off the bosonic virial coefficients. For the fermionic case, we reverse the
sign of the even coefficients. Thus

B2(T ) = ∓1
8 λ

3
T , B3(T ) = − 5

432 λ
6
T , B4(T ) = ∓ 1

384 λ
9
T , B5(T ) = − 2069

2592000 λ
12
T .

(2) In our derivation of the low temperature phase of an ideal Bose condensate, we split
off the lowest energy state ε0 but treated the remainder as a continuum, taking µ = 0 in
all expressions relating to the overcondensate. Under what conditions is this justified? I.e.

why are we not obligated to separately consider the contributions from the first excited
state, etc.?

Solution :

In the condensed phase, there is an extensive population N0 of the lowest single particle

energy state, and the chemical potential takes the value µ = ε0 −
k
B
T

g
0
N

0

, where g0 is the

degeneracy of the single particle ground state. Let ε1 be the energy of the first excited state
and g1 its degeneracy. Then the number of bosons in the first excited state is

N1 =
g1

e(ε1−µ)/k
B
T − 1

≈
g1kB

T

ε1 − µ
,

assuming ε1 − µ ≪ k
B
T . Now

ε1 − µ = (ε0 − µ) + (ε1 − ε0) =
k
B
T

g0N0

+ (ε1 − ε0) .

So we need to ask about the energy difference ∆ε1 ≡ ε1 − ε0. If ∆ε1 ∝ V −r, assuming
0 < r < 1, then the number of particles in the first excited state will be subextensive, and
the corresponding density n1 = N1/V ∝ V r−1 will vanish in the thermodynamic limit. In
this case, we are justified in singling out only the single particle ground state as having
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an extensive occupancy. For a ballistic dispersion and periodic boundary conditions, the
quantized single particle plane wave energies are given by

ε(lx, ly, lz) =
~
2

2m

{

(

2πlx
Lx

)2

+

(

2πly
Ly

)2

+

(

2πlz
Lz

)2
}

,

and thus ε1 ∝ V −2/3. Therefore r = 2
3 and the occupancy of the first excited state is

subextensive.

(3) Consider a three-dimensional Bose gas of particles which have two internal polariza-
tion states, labeled by σ = ±1. The single particle energies are given by

ε(p, σ) =
p2

2m
+ σ∆ ,

where ∆ > 0.

(a) Find the density of states per unit volume g(ε).

(b) Find an implicit expression for the condensation temperature Tc(n,∆). When ∆ → ∞,
your expression should reduce to the familiar one derived in class.

(c) When ∆ = ∞, the condensation temperature should agree with the familiar result for
three-dimensional Bose condensation. Assuming ∆ ≫ k

B
Tc(n,∆ = ∞), find analytically

the leading order difference Tc(n,∆)− Tc(n,∆ = ∞).

Solution :

(a) Let g0(ε) be the DOS per unit volume for the case ∆ = 0. Then

g0(ε) dε =
d3k

(2π)3
=

k2 dk

2π2
⇒ g0(ε) =

1

4π2

(

2m

~2

)1/2

ε1/2 Θ(ε) .

For finite ∆, the single particle energies are shifted uniformly by ±∆ for the σ = ±1 states,
hence

g(ε) = g0(ε+∆) + g0(ε−∆) .

(b) For Bose statistics, we have in the uncondensed phase,

n =

∞
∫

−∞

dε
g(ε)

e(ε−µ)/k
B
T − 1

= Li3/2
(

e(µ+∆)/k
B
T
)

λ−3
T + Li3/2

(

e(µ−∆)/k
B
T
)

λ−3
T .

In the condensed phase, µ = −∆−O(N−1) is pinned just below the lowest single particle
energy, which occurs for k = p/~ = 0 and σ = −1. We then have

n = n0 + ζ(3/2)λ−3
T + Li3/2

(

e−2∆/k
B
T
)

λ−3
T .
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To find the critical temperature, set n0 = 0 and µ = −∆:

n = ζ(3/2)λ−3
Tc

+ Li3/2
(

e−2∆/k
B
Tc

)

λ−3
Tc

.

This is a nonlinear and implicit equation for Tc(n,∆). When ∆ = ∞, we have

k
B
T∞

c (n) =
2π~2

m

(

n

ζ(3/2)

)2/3

.

(c) For finite ∆, we still have the implicit nonlinear equation to solve, but in the limit
∆ ≫ k

B
Tc, we can expand Tc(∆) = T∞

c + δTc(∆). We may then set Tc(n,∆) to T∞

c (n) in
the second term of our nonlinear implicit equation, move this term to the LHS, whence

ζ(3/2)λ−3
Tc

≈ n− Li3/2
(

e−2∆/k
B
T∞

c

)

λ−3
T∞

c

.

which is a simple algebraic equation for Tc(n,∆). The second term on the RHS is tiny since
∆ ≫ k

B
T∞

c . We then find

Tc(n,∆) = T∞

c (n)
{

1− 3
2 e

−2∆/k
B
T∞

c (n) +O
(

e−4∆/k
B
T∞

c (n)
)

}

.

(4) A branch of excitations for a three-dimensional system has a dispersion ε(k) = A |k|2/3.
The excitations are bosonic and are not conserved; they therefore obey photon statistics.

(a) Find the single excitation density of states per unit volume, g(ε). You may assume that
there is no internal degeneracy for this excitation branch.

(b) Find the heat capacity CV (T, V ).

(c) Find the ratio E/pV .

(d) If the particles are bosons with number conservation, find the critical temperature Tc

for Bose-Einstein condensation.

Solution:

(a) We have, for three-dimensional systems,

g(ε) =
1

2π2

k2

dε/dk
=

3

4π2A
k7/3 .

Inverting the dispersion to give k(ε) = (ε/A)3/2, we obtain

g(ε) =
3

4π2

ε7/2

A9/2
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(b) The energy is then

E = V

∞
∫

0

dε g(ε)
ε

eε/kBT − 1

=
3V

4π2
Γ
(

11
2

)

ζ
(

11
2

) (k
B
T )11/2

A9/2
.

Thus,

CV =

(

∂E

∂T

)

V

=
3V

4π2
Γ
(

13
2

)

ζ
(

11
2

)

k
B

(

k
B
T

A

)9/2

(c) The pressure is

p = −
Ω

V
= −k

B
T

∞
∫

0

dε g(ε) ln
(

1− e−ε/k
B
T
)

= −k
B
T

∞
∫

0

dε
3

4π2

ε7/2

A9/2
ln
(

1− e−ε/k
B
T
)

= −
3

4π2

(k
B
T )11/2

A9/2

∞
∫

0

ds s7/2 ln
(

1− e−s
)

=
3V

4π2
Γ
(

9
2

)

ζ
(

11
2

) (k
B
T )11/2

A9/2
.

Thus,
E

pV
=

Γ
(

11
2

)

Γ
(

9
2

) = 9
2

(d) To find Tc for BEC, we set z = 1 (i.e. µ = 0) and n0 = 0, and obtain

n =

∞
∫

0

dε g(ε)
ε

eε/kBTc − 1

Substituting in our form for g(ε), we obtain

n =
3

4π2
Γ
(

9
2

)

ζ
(

9
2

)

(

k
B
T

A

)9/2

,

and therefore

Tc =
A

k
B

(

4π2n

3Γ
(

9
2

)

ζ
(

9
2

)

)2/9
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