and the z component of this part of the field is

$$
\begin{align*}
\sum_{l}\left\{z _ { l } ^ { 2 } \left[\left(3 F\left(\sqrt{\eta} r_{l}\right) / r_{l}^{5}\right)+\left(6 / r_{l}^{4}\right)(\eta / \pi)^{1 / 2}\right.\right. & \exp \left(-\boldsymbol{\eta} r_{l}^{2}\right) \\
\left.+\left(4 / r_{l}^{2}\right)\left(\eta^{3} / \pi\right)^{1 / 2} \exp \left(-\eta r_{l}^{2}\right)\right]- & {\left[\left(F\left(\sqrt{\boldsymbol{\eta}} r_{l}\right) / r_{l}^{3}\right)\right.} \tag{9}\\
+ & \left.\left.+\left(2 / r_{l}^{2}\right)(\boldsymbol{\eta} / \pi)^{1 / 2} \exp \left(-\eta r_{l}^{2}\right)\right]\right\}
\end{align*}
$$

The total E_{z} is given by the sum of (8) and (9). The effects of any number of lattices may be added.

appendix C: QUANTIZATION OF ELASTIC WAVES: PHONONS

Phonons were introduced in Chapter 4 as quantized elastic waves. How do we quantize an elastic wave? As a simple model of phonons in a crystal, consider the vibrations of a linear lattice of particles connected by springs. We can quantize the particle motion exactly as for a harmonic oscillator or set of coupled harmonic oscillators. To do this we make a transformation from particle coordinates to phonon coordinates, also called wave coordinates because they represent a traveling wave.

Let N particles of mass M be connected by springs of force constant C and length a. To fix the boundary conditions, let the particles form a circular ring. We consider the transverse displacements of the particles out of the plane of the ring. The displacement of particle s is q_{s} and its momentum is p_{s}. The Hamiltonian of the system is

$$
\begin{equation*}
H=\sum_{\mathrm{s}=1}^{n}\left\{\frac{1}{2 M} p_{s}^{2}+\frac{1}{2} C\left(q_{s+1}-q_{s}\right)^{2}\right\} . \tag{1}
\end{equation*}
$$

The Hamiltonian of a harmonic oscillator is

$$
\begin{equation*}
H=\frac{1}{2 M} p^{2}+\frac{1}{2} C x^{2}, \tag{2}
\end{equation*}
$$

and the energy eigenvalues are, where $n=0,1,2,3, \ldots$,

$$
\begin{equation*}
\epsilon_{n}=\left(n+\frac{1}{2}\right) \hbar \omega . \tag{3}
\end{equation*}
$$

The eigenvalue problem is also exactly solvable for a chain with the different Hamiltonian (1).

To solve (1) we make a Fourier transformation from the coordinates p_{s}, q_{s} to the coordinates P_{k}, Q_{k}, which arc known as phonon coordinates.

Phonon Coordinates

The transformation from the particle coordinates q_{s} to the phonon coordinates Q_{k} is used in all periodic lattice problems. We let

$$
\begin{equation*}
q_{s}=N^{-1 / 2} \sum_{k} Q_{k} \exp (i k s a), \tag{4}
\end{equation*}
$$

consistent with the inverse transformation

$$
\begin{equation*}
Q_{k}=N^{-1 / 2} \sum_{s} q_{s} \exp (-i k s a) \tag{5}
\end{equation*}
$$

Here the N values of the wavevector k allowed by the periodic boundary condition $q_{s}=q_{s+N}$ are given by:

$$
\begin{equation*}
k=2 \pi n / N a ; n=0, \pm 1, \pm 2, \ldots, \pm\left(\frac{1}{2} N-1\right), \frac{1}{2} N . \tag{6}
\end{equation*}
$$

We need the transformation from the particle momentum p_{s} to the momentum P_{k} that is canonically conjugate to the coordinate Q_{k}. The transformation is

$$
\begin{equation*}
p_{s}=N^{-1 / 2} \sum_{k} P_{k} \exp (-i k s a) ; \quad P_{k}=N^{-1 / 2} \sum_{z} p_{s} \exp (i k s a) \tag{7}
\end{equation*}
$$

This is not quite what onc would obtain by the naive substitution of p for q and P for Q in (4) and (5), because k and $-k$ have been interchanged between (4) and (7).

We verify that our choice of P_{k} and Q_{k} satisfies the quantum commutation relation for canonical variables. We form the commutator

$$
\begin{align*}
{\left[Q_{k}, P_{k^{\prime}}\right] } & =N^{-1}\left[\sum_{r} q_{r} \exp (-i k r a), \sum_{s} p_{s} \exp \left(i k^{\prime} s a\right)\right] \tag{8}\\
& =N^{-1} \sum_{r} \sum_{s}\left[q_{r}, p_{s}\right] \exp \left[-i\left(k r-k^{\prime} s\right) a\right]
\end{align*}
$$

Because the operators q, p are conjugate, they satisfy the commutation relation

$$
\begin{equation*}
\left[q_{r}, p_{s}\right]=i \hbar \delta(r, s), \tag{9}
\end{equation*}
$$

where $\delta(r, s)$ is the Kronecker delta symbol.
Thus (8) becomes

$$
\begin{equation*}
\left[Q_{k}, P_{k^{\prime}}\right]=N^{-1} i \hbar \sum_{r} \exp \left[-i\left(k-k^{\prime}\right) r a\right]=i \hbar \delta\left(k, k^{\prime}\right), \tag{10}
\end{equation*}
$$

so that Q_{k}, P_{k} also are conjugate variables. Here we have evaluated the summation as

$$
\begin{align*}
\sum_{r} \exp \left[-i\left(k-k^{\prime}\right) r a\right] & =\sum_{r} \exp \left[-i 2 \pi\left(n-n^{\prime}\right) r / N\right] \tag{11}\\
& =N \delta\left(n, n^{\prime}\right)=N \delta\left(k, k^{\prime}\right),
\end{align*}
$$

where we have used (6) and a standard result for the finite series in (11).

We carry out the transformations (7) and (4) on the hamiltonian (1), and make use of the summation (11):

$$
\begin{gather*}
\sum_{s} p_{s}^{2}=N^{-1} \sum_{s} \sum_{k} \sum_{k^{\prime}} P_{k} P_{k^{\prime}} \exp \left[-i\left(k+k^{\prime}\right) s a\right] \tag{12}\\
=\sum_{k} \sum_{k^{\prime}} P_{k} P_{k^{\prime}} \delta\left(-k, k^{\prime}\right)=\sum_{k} P_{k} P_{-k} ; \\
\sum_{s}\left(q_{s+1}-q_{s}\right)^{2}=N^{-1} \sum_{s} \sum_{k} \sum_{k^{\prime}} Q_{k} Q_{k^{\prime}} \exp (i k s a)[\exp (i k a)-1] \\
\times \exp \left(i k^{\prime} s a\right)\left[\exp \left(i k^{\prime} a\right)-1\right]=2 \sum_{k} Q_{k} Q_{-k}(1-\cos k a) \tag{13}
\end{gather*}
$$

Thus the hamiltonian (1) becomes, in phonon coordinates,

$$
\begin{equation*}
H=\sum_{k}\left\{\frac{1}{2 M} P_{k} P_{-k}+C Q_{k} Q_{-k}(1-\cos k a)\right\} \tag{14}
\end{equation*}
$$

If we introduce the symbol ω_{k} defined by

$$
\begin{equation*}
\omega_{k} \equiv(2 C / M)^{1 / 2}(1-\cos k a)^{1 / 2} \tag{15}
\end{equation*}
$$

we have the phonon hamiltonian in the form

$$
\begin{equation*}
H=\sum_{k}\left\{\frac{1}{2 M} P_{k} P_{-k}+\frac{1}{2} M \omega_{k}^{2} Q_{k} Q_{-k}\right\} \tag{16}
\end{equation*}
$$

The equation of motion of the phonon coordinate operator Q_{k} is found by the standard prescription of quantum mechanics:

$$
\begin{equation*}
i \hbar \dot{Q}_{k}=\left[Q_{k}, H\right]=i \hbar P_{-k} / M \tag{17}
\end{equation*}
$$

with H given by (14). Further, using the commutator (17),

$$
\begin{equation*}
i \hbar \ddot{Q}_{k}=\left[\dot{Q}_{k}, H\right]=M^{-1}\left[P_{-k}, H\right]=i \hbar \omega_{k}^{2} Q_{k}, \tag{18}
\end{equation*}
$$

so that

$$
\begin{equation*}
\ddot{Q}_{k}+\omega_{k}^{2} Q_{k}=0 \tag{19}
\end{equation*}
$$

This is the equation of motion of a harmonic oscillator with the frequency ω_{k}.
The energy eigenvalues of a quantum harmonic oscillator are

$$
\begin{equation*}
\epsilon_{k}=\left(n_{k}+\frac{1}{2}\right) \hbar \omega_{k} \tag{20}
\end{equation*}
$$

where the quantum number $n_{k}=0,1,2, \ldots$ The energy of the entire system of all phonons is

$$
\begin{equation*}
U=\sum_{k}\left(n_{k}+\frac{1}{2}\right) \hbar \omega_{k} \tag{21}
\end{equation*}
$$

This result demonstrates the quantization of the energy of elastic waves on a line.

Creation and Annihilation Operators

It is helpful in advanced work to transform the phonon hamiltonian (16) into the form of a set of harmonic oscillators:

$$
\begin{equation*}
H=\sum_{k} \hbar \omega_{k}\left(a_{k}^{+} a_{k}+\frac{1}{2}\right) \tag{22}
\end{equation*}
$$

Here a_{k}^{+}, a_{k} are harmonic oscillator operators, also called creation and destruction operators or boson operators. The transformation is derived below.

The boson creation operator a^{+}which "creates a phonon" is defined by the property

$$
\begin{equation*}
a^{+}|n\rangle=(n+1)^{1 / 2}|n+1\rangle, \tag{23}
\end{equation*}
$$

when acting on a harmonic oscillator state of quantum number n, and the boson annihilation operator a which "destroys a phonon" is defined by the property

$$
\begin{equation*}
a|n\rangle=n^{\nu / 2}|n-1\rangle \tag{24}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
a^{+} a|n\rangle=a^{+} n^{1 / 2}|n-1\rangle=n|n\rangle, \tag{25}
\end{equation*}
$$

so that $|n\rangle$ is an eigenstate of the operator $a^{+} a$ with the integral eigenvalue n, called the quantum number or occupancy of the oscillator. When the phonon mode k is in the eigenstate labeled by n_{k}, we may say that there are n_{k} phonons in the mode. The eigenvalues of (22) are $U=\Sigma\left(n_{k}+\frac{1}{2}\right) \hbar \omega_{k}$, in agreement with (21).

Because

$$
\begin{equation*}
a a^{+}|n\rangle=a(n+1)^{1 / 2}|n+1\rangle=\langle n+1)|n\rangle, \tag{26}
\end{equation*}
$$

the commutator of the boson wave operators a_{k}^{+}and a_{k} satisfies the relation

$$
\begin{equation*}
\left[a, a^{+}\right] \equiv a a^{+}-a^{+} a=1 \tag{27}
\end{equation*}
$$

We still have to prove that the hamiltonian (16) can be expressed as (19) in terms of the phonon operators a_{k}^{+}, a_{k}. This can be done by the transformation

$$
\begin{align*}
& a_{k}^{+}=(2 \hbar)^{-1 / 2}\left[\left(M \omega_{k}\right)^{1 / 2} Q_{-k}-i\left(M \omega_{k}\right)^{-1 / 2} P_{k}\right] ; \tag{28}\\
& a_{k}=(2 \hbar)^{-1 / 2}\left[\left(M \omega_{k}\right)^{1 / 2} Q_{k}+i\left(M \omega_{k}\right)^{-1 / 2} P_{-k}\right] . \tag{29}
\end{align*}
$$

The inverse relations are

$$
\begin{align*}
Q_{k} & =\left(\hbar / 2 M \omega_{k}\right)^{1 / 2}\left(a_{k}+a_{-k}^{+}\right) ; \tag{30}\\
P_{k} & =i\left(\hbar M \omega_{k} / 2\right)^{1 / 2}\left(a_{k}^{+}-a_{-k}\right) \tag{31}
\end{align*}
$$

By (4), (5), and (29) the particle position operator becomes

$$
\begin{equation*}
q_{s}=\sum_{k}\left(\hbar / 2 N M \omega_{k}\right)^{1 / 2}\left[a_{k} \exp (i k s)+a_{k}^{+} \exp (-i k s)\right] \tag{32}
\end{equation*}
$$

This equation relates the particle displacement operator to the phonon creation and annihilation operators.

To obtain (29) from (28), we use the properties

$$
\begin{equation*}
Q_{-k}^{+}=Q_{k} ; \quad P_{k}^{+}=P_{-k} \tag{33}
\end{equation*}
$$

which follow from (5) and (7) by use of the quantum mechanical requirement that q_{s} and p_{s} be hermitian operators:

$$
\begin{equation*}
q_{s}=q_{s}^{+} ; \quad p_{s}=p_{s}^{+} . \tag{34}
\end{equation*}
$$

Then (28) follows from the transformations (4), (5), and (7). We verify that the commutation relation (33) is satisfied by the operators defined by (28) and (29):

$$
\begin{gather*}
{\left[a_{k}, a_{k}^{+}\right]=(2 \hbar)^{-1}\left(M \omega_{k}\left[Q_{k}, Q_{-k}\right]-i\left[Q_{k}, P_{k}\right]+i\left[P_{-k}, Q_{-k}\right]\right.} \\
\left.+\left[P_{-k}, P_{k}\right] / M \omega_{k}\right) \tag{35}
\end{gather*}
$$

By use of $\left[Q_{k}, P_{k^{\prime}}\right]=i \hbar \delta\left(k, k^{\prime}\right)$ from (10) we have

$$
\begin{equation*}
\left[a_{k}, a_{k^{\prime}}^{+}\right]=\delta\left(k, k^{\prime}\right) \tag{36}
\end{equation*}
$$

It remains to show that the versions of (16) and (22) of the phonon hamiltonian are identical. We note that $\omega_{k}=\omega_{-k}$ from (15), and we form

$$
\hbar \omega_{k}\left(a_{k}^{+} a_{k}+a_{-k}^{+} a_{-k}\right)=\frac{1}{2 M}\left(P_{k} P_{-k}+P_{-k} P_{k}\right)+\frac{1}{2} M \omega_{k}^{2}\left(Q_{k} Q_{-k}+Q_{-k} Q_{k}\right) .
$$

This exhibits the equivalence of the two expressions (14) and (22) for H. We identify $\omega_{k}=(2 C / M)^{1 / 2}(1-\cos k a)^{1 / 2}$ in (15) with the classical frequency of the oscillator mode of wavevector k.

APPENDIX D: FERMI-DIRAC DISTRIBUTION FUNCTION ${ }^{1}$

The Fermi-Dirac distribution function ${ }^{1}$ may be derived in several steps by use of a modern approach to statistical mechanics. We outline the argument here. The notation is such that conventional entropy S is related to the fundamental entropy σ by $S=k_{B} \sigma$, and the Kelvin temperature T is related to the fundamental temperaturc τ by $\tau=k_{B} T$, where k_{B} is the Boltzmann constant with the value $1.38066 \times 10^{-23} \mathrm{~J} \mathrm{~K}$.

The leading quantities are the entropy, the temperature, the Boltzmann factor, the chemical potential, the Gibbs factor, and the distribution functions. The

[^0]
[^0]: ${ }^{1}$ This appendix follows closely the introduction to C. Kittel and H. Kroemer, Thermal Physics, 2nd ed., Freeman, 1980

