
and the z component of this part of the field is 

2 iz;[(3~(firl)/r;) f (6/r-f )(T/T)~' exp(-~r,? 
1 

The total Ez is given by the sum of (8) and (9). The effects of any number of 
lattices may be added. 

APPENDIX C: QUANTIZATION OF ELASTIC WAVES: PHONONS 

Phonor~s were introduced in Chapter 4 as quantized elastic waves. How do 
we quantize an elastic wave? As a simple model of phonons in a crystal, con- 
sider the vibrations of a linear lattice of particles connected by springs. We can 
quantize the particle motion exactly as for a harmonic oscillator or set of cou- 
pled harmonic oscillators. To do this we make a transformation from particle 
coordinates to phonon coordinates, also called wave coordinates because they 
represent a traveling wave. 

Let N particles of mass M be conncctcd by springs of force constant C and 
length a. To fix the boundary conditions, let the particles form a circular ring. 
We consider the tra~lsverse displacements of the particles out of the plane of 
the ring. The displacement of particle s is q, and its momentum is P ,~ .  The 
Hamiltonian of the system is 

The Hamiltonian of a harmonic oscillator is 

and the energy eigcnvalues are, where n = 0 , 1 , 2 , 3 ,  . . . , 

The eigenvalue problem is also exactly solvable for a chain with the diffrrent 
Hamiltonian (1). 

To solve (1) we make a Fourier transformation from the coordinates p,, q, 
to the coordinates Pk, Qk, which arc known as phonon coordinates. 
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Phonon Coordinates 

The transformation from the particle coordinates q, to the phonon coordi- 
nates Qn is used in all periodic lattice problems. We let 

consistent with the inversc transformation 

Qk = N-'/' z q, exp(-iksa) . ( 5 )  

Here the N values of the wavcvector k allowed by the ~er iodic  boundary con- 
dition q, = y,,, are given by: 

1% need the transformation from the particle momentum p, to the momen- 
turn Yk that is canonically conjugate to the coordmate Qk. The transformation is 

This is not quite what onc wonld obtain by the naive substitution of p for y and 
P for Q in (4) and (S), hecause k and -k have been interchanged between (4) 
and (7). 

LVe verify that our choice of P I  and Qk satisfies the quantum commutation 
relation for canonical variables. We lorm the commutator 

Because the operators q, p are conjugate, they satisb the commutation relation 

[q,,p,l = ifiS(r, s) , (9) 

where S(r,s) is the Kronecker delta symbol. 
Thus (8) hecomes 

[Qk,Pk,] = N-I i'z exp[-i(k - kf)ra] = ih3(k, k') , (10) 

so that Q,, Pk also are conjugate variables. Here we have evaluated the summa- 
tion as 

z exp-i(k - k')ml = 2 exp[-i2v(n - nl)rlN] 
(11) 

= N6(n, n' )  = NS(k, k') , 

where we have used (6) and a standard result for the finite series in (11). 



We carry out the transformations (7) and (4) on the hamiltonian (I) ,  and 
make use of the sum~nation (11): 

X exp(ikkss)[exp(ik'a) - 11 = 2 ~ Q ~ Q - ~ ( I  - cos ka) . (13) 
k 

Thus the hamiltonian (1) becomes, in phonon coordinates, 

If we introduce the symbol wk defined by 

wk = ( 2 ~ / ~ ) ~ ' ~ ( 1 -  cos ka)In , 

we have the phonon hamiltonian in the form 

1 
PkP-k + - M6.J: QkQ-k . 

k 2 1 (16) 

The equation or  motion of the phonon coordinate operator Qk is found hy 
the standard prescription of quantum mechanics: 

ifii), = [Q,, H] = ifiP-klhl , (17) 

with H given by (14). Further, using the co~n~nutator (17), 

i h ~ ~  = [ Q ~ ,  H] = M-'[Y-~,H] = ihw:~, , (18) 

so that 

Q~ + wiQk=O . (19) 

This is the equation of motion of a harmonic oscillator with the frequency wk. 
The energy eigenvalues of a quantum harmonic oscillator are 

where the quantum number nk = 0, 1, 2, . . . . The energy of the entire system 
of all phonons is 

o=Z(nk+;)f iy k (21) 

This resnlt demonstrates the quantization of the energy of elastic waves on 
a line. 
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Creation and Aaaihilation Operators 

It is helpful in advanced work to transform the phonon hamiltonian (16) 
into the form of a set of harmonic oscillators: 

Here a:, ak are harmonic oscillator operators, also called creation and destruc- 
tion operators or bosun operators. The transformation is derived below. 

The bosori creation operator a+  which "creates a phonon" is defined by 
the property 

when acting on a harmonic oscillator state of quantum number n, and the boson 
annihilation operator a which "destroys a phonon" is defined by the property 

a j n ) = n m l r ~ - l )  . (24) 

It follows that 

a+aln) = a+nl"ln - 1) = nln) , (25) 

so that In) is an eigenstate of the operator a+u with the integral eigenvalue n, 
called the quantum number or occupancy of the oscillator. When the phonon 
mode k is in the eigenstate labeled by nk, we may say that there are nk phonons 
in the mode. The eigenvalues of (22) are U = Z (nk + ;)nok, in agreement 
with (21). 

Because 

the commutator of the boson wave operators a: and ak satisfies the relation 

[a ,aS]=aa+-a ta= 1 . (27) 

We still have to prove that the hamiltonian (16) can be expressed as (19) in 
terms of the phonon operators a:, uk. This can be done by the transformation 

The inverse relations are 

Qk = (fi/2~@J~)'"(U~+ UZk)  ; 

Pk = i(fiM0~/2)~"(u~- 

By (4), ( 5 ) ,  and (29) the particle position operator becomes 



This equation relates the particle dlsplacemcnt operator to the phonon cre- 
ation and annihilation operators. 

To obtain (29) horn ( 2 8 ) ,  we use the properties 

QIk = Q ,  ; Pkf = P-k ( 3 3 )  

which follow from ( 5 )  and (7) by use of the quantum mechanical requirement 
that y, and p ,  be hermitian operators: 

% = y :  ; p s = p :  . ( 3 4 )  

Then (28 )  follows from the transformations (4), ( 5 ) ,  and (7) .  We verify tlrat the 
commutation relation (33) is satisfied by the operators defined by (28 )  and (29 ) :  

[ak, a i l  = ( 2 f L ) ~ - ' ( ~ ~ k [ ~ k ,  Q - k l  - i[Qk,pkl + i[P-k,Q-kl 

+ [P-k,PkI/MWk) . ( 3 5 )  

By use of [QkrPk'] = ilid(k,k') from (10 )  we have 

[ak,  a;] = 6(k ,  k ' )  . (36 )  

It remains to show that the versions of ( 1 6 )  and (22 )  of thc phonon hamil- 
tonian are identical. Sie note that wk = mk from ( I S ) ,  and we form 

This e h b i t s  thc cqt~ivalence of the two expressions (14 )  and ( 2 2 )  for H .  l i e  
identify wk = (2C/M)'"(l - cos ka)"' in (15) with the classical frequency of 
the oscillator mode of wavevector k. 

The Fermi-Dirac distribution function' may bc derived in several steps by 
use of a modem approach to statistical mechanics. We outline the argument 
here. Thc notation is such that conventional entropy S is related to the funda- 
mental entropy cr by S = k , ~ ,  and the Kelvin temperature T is related to the 
fundamental temperature T by T = kBT, where k B  is the Boltzmann constant 
with the value 1.38066 X 10 2 3  J K. 

The leading quantities are the entropy, the temperature, the Boltzmann fac- 
tor, the che~nical potential, the Gibbs factor, and thc distribution functions. The 

'This appendix follows closely the introduction to C. Kitlel and H. Krue~r~er. T h r m l  
Physics, 2nd ed., Freeman, 1980. 




