
PHYSICS 140B : STATISTICAL PHYSICS

HW ASSIGNMENT #5 SOLUTIONS

(1) DC Comics superhero Clusterman and his naughty dog Henry are shown in fig. 1.
Clusterman, as his name connotes, is a connected diagram, but the diagram for Henry
contains some disconnected pieces.

(a) Interpreting the diagrams as arising from the Mayer cluster expansion, compute the
symmetry factor sγ for Clusterman.

(b) What is the total symmetry factor for Henry and his disconnected pieces? What would
the answer be if, unfortunately, another disconnected piece of the same composition were
to be found?

(c) What is the lowest order virial coefficient to which Clusterman contributes?

Figure 1: Mayer expansion diagrams for Clusterman and his dog Henry.

First of all, this is really disgusting and you should all be ashamed that you had anything
to do with this problem.

(a) Clusterman’s head gives a factor of 6 because the upper three vertices can be permuted
among themselves in any of 3! = 6 ways. Each of his hands gives a factor of 2 because
each hand can be rotated by π about its corresponding arm. The arms themselves can be
interchanged, by rotating his shoulders by π about his body axis (Clusterman finds this
invigorating). Finally, the analysis for the hands and arms applies just as well to the feet
and legs, so we conclude

sγ = 6 ·
(

22 · 2
)2

= 3 · 27 = 384 .

Note that an arm cannot be exchanged with a leg, because the two lower vertices on Clus-
terman’s torso are not equivalent. Plus, that would be a really mean thing to do to Clus-
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terman.

(b) Henry himself has no symmetries. The little pieces each have s△ = 3!, and more-
over they can be exchanged, yielding another factor of 2. So the total symmetry factor for

Henry plus disconnected pieces is s△△ = 2! · (3!)2 = 72. Were another little piece of the

same. . . er. . . consistency to be found, the symmetry factor would be s△△△ = 3! · (3!)3 =

24 · 34 = 1296, since we get a factor of 3! from each of the △ pieces, and a fourth factor of 3!
from the permutations among the △s.

(c) There are 18 vertices in Clusterman, hence he will first appear in B18.

(2) Find an expression for the screened potential of a test charge Q in a two-dimensional
system using an appropriate generalization of Debye-Hückel theory. The unscreened in-
terparticle potential is v(r, r′) = −2qq′ ln

(

|r − r
′|/a

)

, where a is a constant. Assume two
species of charge, with q = ±e, for the plasma. Show that at asymptotically large distances
the test charged is perfectly screened.

Debye-Hückel theory gives

∇2φ = 8πen∞ sinh

(

eφ

k
B
T

)

− 4πρext .

Assume |eφ| ≪ k
B
T , in which case

∇2φ = κ2
D
φ− 4πρext ,

with κ
D
= (8πn∞e2/k

B
T )1/2. Note that e2 has dimensions of energy in two space dimen-

sions. Solving by Fourier transform, we have

φ(r) =

∫

d2k

(2π)2
4πρ̂ext(k) e

ik·r

k2 + κ2
D

.

With ρext = Qδ(r), we have
φ(r) = 2QK0(κD

r) ,

where K0(z) is the modified Bessel function of order zero. As z → 0, one has K0(z) ∼
− ln z, corresponding to an unscreened two-dimensional Coulomb potential. As z → ∞,
K0(z) ∼

√

π
2z e

−z , and the potential is screened, with perfect screening overall. I.e. the
charge in the screening cloud, integrated over all space, exactly compensates the external
charge.

(3) Consider the equation of state

p
√

v2 − b2 = RT exp

(

− a

RTv2

)

.

(a) Find the critical point (vc, Tc, pc).
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(b) Defining p̄ = p/pc , v̄ = v/vc , and T̄ = T/Tc, write the equation of state in dimension-
less form p̄ = p̄(v̄, T̄ ).

(c) Expanding p̄ = 1 + π , v̄ = 1 + ǫ, and T̄ = 1 + t, find ǫliq(t) and ǫgas(t) for −1 ≪ t < 0.

(a) We write

p(T, v) =
RT√
v2 − b2

e−a/RTv2 ⇒
(

∂p

∂v

)

T

=

(

2a

RTv3
− v

v2 − b2

)

p .

Thus, setting
( ∂p
∂v

)

T
= 0 yields the equation

2a

b2RT
=

u4

u2 − 1
≡ ϕ(u) ,

where u ≡ v/b. Differentiating ϕ(u), we find it has a unique minimum at u∗ =
√
2, where

ϕ(u∗) = 4. Thus,

Tc =
a

2b2R
, vc =

√
2 b , pc =

a

2eb2
.

(b) In terms of p̄, v̄, and T̄ , we have the universal equation of state

p̄ =
T̄√

2v̄2 − 1
exp

(

1− 1

T̄ v̄2

)

.

(c) With p̄ = 1 + π, v̄ = 1 + ǫ, and T̄ = 1 + t, we have from eqn. 7.30 of the Lecture Notes,

ǫL,G = ∓
(

6πǫt
πǫǫǫ

)1/2

(−t)1/2 +O(t) .

From Mathematica we find πǫt = −2 and πǫǫǫ = −16, hence

ǫL,G = ∓
√
3
2
(−t)1/2 +O(t) .
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