PHYSICS 140B : STATISTICAL PHYSICS HW ASSIGNMENT \#4 SOLUTIONS

(1) Consider the one-dimensional Ising model with next-nearest neighbor interactions,

$$
\hat{H}=-J \sum_{n} \sigma_{n} \sigma_{n+1}-K \sum_{n} \sigma_{n} \sigma_{n+2},
$$

on a ring with N sites, where N is even. By considering consecutive pairs of sites, show that the partition function may be written in the form $Z=\operatorname{Tr}\left(R^{N / 2}\right)$, where R is a 4×4 transfer matrix. Find R. Hint: It may be useful to think of the system as a railroad trestle, depicted in fig. 1, with Hamiltonian

$$
\hat{H}=-\sum_{j}\left[J \sigma_{j} \mu_{j}+J \mu_{j} \sigma_{j+1}+K \sigma_{j} \sigma_{j+1}+K \mu_{j} \mu_{j+1}\right]
$$

Then $R=R_{\left(\sigma_{j} \mu_{j}\right),\left(\sigma_{j+1} \mu_{j+1}\right)}$, with $(\sigma \mu)$ a composite index which takes one of four possible values $(++),(+-),(-+)$, or (--$)$.

Figure 1: Railroad trestle representation of next-nearest neighbor chain.
The transfer matrix can be read off from the Hamiltonian:

$$
R_{(\sigma \mu),\left(\sigma^{\prime} \mu^{\prime}\right)}=e^{\beta J \mu\left(\sigma+\sigma^{\prime}\right)} e^{\beta K\left(\sigma \sigma^{\prime}+\mu \mu^{\prime}\right)} .
$$

Expressed as a matrix of rank four, with rows and columns corresponding to $\{++,+-,-+,--\}$, we have

$$
R=\left(\begin{array}{cccc}
e^{2 \beta(J+K)} & e^{2 \beta J} & 1 & e^{-2 \beta K} \\
e^{-2 \beta J} & e^{-2 \beta(J-K)} & e^{-2 \beta K} & 1 \\
1 & e^{-2 \beta K} & e^{-2 \beta(J-K)} & e^{-2 \beta J} \\
e^{-2 \beta K} & 1 & e^{2 \beta J} & e^{2 \beta(J+K)}
\end{array}\right)
$$

Querying WolframAlpha for the eigenvalues, we find

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}\left[u v-\left(1+u^{-1}\right) \sqrt{u^{2} v^{2}-2 u v^{2}+4 u+v^{2}}+2 v^{-1}+u^{-1} v\right] \\
& \lambda_{2}=\frac{1}{2}\left[u v+\left(1+u^{-1}\right) \sqrt{u^{2} v^{2}-2 u v^{2}+4 u+v^{2}}+2 v^{-1}+u^{-1} v\right] \\
& \lambda_{3}=\frac{1}{2}\left[u v-\left(1-u^{-1}\right) \sqrt{u^{2} v^{2}+2 u v^{2}-4 u+v^{2}}-2 v^{-1}+u^{-1} v\right] \\
& \lambda_{4}=\frac{1}{2}\left[u v+\left(1-u^{-1}\right) \sqrt{u^{2} v^{2}+2 u v^{2}-4 u+v^{2}}-2 v^{-1}+u^{-1} v\right],
\end{aligned}
$$

where $u=e^{2 \beta J}$ and $v=e^{2 \beta K}$. The partition function on a ring of N sites, with N even, is

$$
Z=\operatorname{Tr}\left(R^{N / 2}\right)=\lambda_{1}^{N / 2}+\lambda_{2}^{N / 2}+\lambda_{3}^{N / 2}+\lambda_{4}^{N / 2} .
$$

(2) Compute the partition function for the one-dimensional Tonks gas of hard rods of length a on a ring of circumference L. This is slightly tricky, so here are some hints. Once again, assume a particular ordering so that $x_{1}<x_{2}<\cdots<x_{N}$. Due to translational invariance, we can define the positions of particles $\{2, \ldots, N\}$ relative to that of particle 1, which we initially place at $x_{1}=0$. Then periodicity means that $x_{N} \leq L-a$, and in general one then has

$$
x_{j-1}+a \leq x_{j} \leq L-(N-j+1) a .
$$

Now integrate over $\left\{x_{2}, \ldots, x_{N}\right\}$ subject to these constraints. Finally, one does the x_{1} integral, which is over the entire ring, but which must be corrected to eliminate overcounting from cyclic permutations. How many cyclic permutations are there?

There are N cyclic permutations, hence the last x_{1} integral yields L / N, and

$$
Z(T, L, N)=\lambda_{T}^{-N} \frac{L}{N} \int_{a}^{Y_{2}} d x_{2} \int_{x_{2}+a}^{Y_{3}} d x_{3} \cdots \int_{x_{N-1}+a}^{Y_{N}} d x_{N}=\frac{L(L-N a)^{N-1} \lambda_{T}^{-N}}{N!} .
$$

(3) For each of the cluster diagrams in Fig. 2, find the symmetry factor s_{γ} and write an expression for the cluster integral b_{γ}.

(a)

(b)

(c)

(d)

Figure 2: Cluster diagrams for problem 3.
Choose labels as in Fig. 3, and set $x_{n_{\gamma}} \equiv 0$ to cancel out the volume factor in the definition of b_{γ}.

Figure 3: Labeled cluster diagrams.
(a) The symmetry factor is $s_{\gamma}=2$, so

$$
b_{\gamma}=\frac{1}{2} \int d^{d} x_{1} \int d^{d} x_{2} \int d^{d} x_{3} \int d^{d} x_{4} f\left(r_{12}\right) f\left(r_{13}\right) f\left(r_{24}\right) f\left(r_{34}\right) f\left(r_{4}\right) .
$$

(b) Sites 1, 2, and 3 may be permuted in any way, so the symmetry factor is $s_{\gamma}=6$. We then have

$$
b_{\gamma}=\frac{1}{6} \int d^{d} x_{1} \int d^{d} x_{2} \int d^{d} x_{3} \int d^{d} x_{4} f\left(r_{12}\right) f\left(r_{13}\right) f\left(r_{24}\right) f\left(r_{34}\right) f\left(r_{14}\right) f\left(r_{23}\right) f\left(r_{4}\right) .
$$

(c) The diagram is symmetric under reflections in two axes, hence $s_{\gamma}=4$. We then have

$$
b_{\gamma}=\frac{1}{4} \int d^{d} x_{1} \int d^{d} x_{2} \int d^{d} x_{3} \int d^{d} x_{4} \int d^{d} x_{5} f\left(r_{12}\right) f\left(r_{13}\right) f\left(r_{24}\right) f\left(r_{34}\right) f\left(r_{35}\right) f\left(r_{4}\right) f\left(r_{5}\right) .
$$

(d) The diagram is symmetric with respect to the permutations (12), (34), (56), and (15)(26). Thus, $s_{\gamma}=2^{4}=16$. We then have

$$
b_{\gamma}=\frac{1}{16} \int d^{d} x_{1} \int d^{d} x_{2} \int d^{d} x_{3} \int d^{d} x_{4} \int d^{d} x_{5} f\left(r_{12}\right) f\left(r_{13}\right) f\left(r_{14}\right) f\left(r_{23}\right) f\left(r_{24}\right) f\left(r_{34}\right) f\left(r_{35}\right) f\left(r_{45}\right) f\left(r_{3}\right) f\left(r_{4}\right) f\left(r_{5}\right)
$$

