PHYSICS 140B : STATISTICAL PHYSICS
 HW ASSIGNMENT \#3 SOLUTIONS

(1) Consider a two-dimensional gas of fermions which obey the dispersion relation

$$
\varepsilon(\boldsymbol{k})=\varepsilon_{0}\left(\left(k_{x}^{2}+k_{y}^{2}\right) a^{2}+\frac{1}{2}\left(k_{x}^{4}+k_{y}^{4}\right) a^{4}\right) .
$$

Sketch, on the same plot, the Fermi surfaces for $\varepsilon_{\mathrm{F}}=0.1 \varepsilon_{0}, \varepsilon_{\mathrm{F}}=\varepsilon_{0}$, and $\varepsilon_{\mathrm{F}}=10 \varepsilon_{0}$.
It is convenient to adimensionalize, writing

$$
x \equiv k_{x} a \quad, \quad y \equiv k_{y} a \quad, \quad \nu \equiv \frac{\varepsilon}{\varepsilon_{0}} .
$$

Then the equation for the Fermi surface becomes

$$
x^{2}+y^{2}+\frac{1}{2} x^{4}+\frac{1}{2} y^{4}=\nu .
$$

In other words, we are interested in the level sets of the function $\nu(x, y) \equiv x^{2}+y^{2}+\frac{1}{2} x^{4}+\frac{1}{2} y^{4}$. When ν is small, we can ignore the quartic terms, and we have an isotropic dispersion, with $\nu=x^{2}+y^{2}$. I.e. we can write $x=\nu^{1 / 2} \cos \theta$ and $y=\nu^{1 / 2} \sin \theta$. The quartic terms give a contribution of order ν^{4}, which is vanishingly small compared with the quadratic term in the $\nu \rightarrow 0$ limit. When $\nu \sim \mathcal{O}(1)$, the quadratic and quartic terms in the dispersion are of the same order of magnitude, and the continuous $\mathrm{O}(2)$ symmetry, namely the symmetry under rotation by any angle, is replaced by a discrete symmetry group, which is the group of the square, known as $C_{4 v}$ in group theory parlance. This group has eight elements:

$$
\left\{\mathbb{I}, R, R^{2}, R^{3}, \sigma, \sigma R, \sigma R^{2}, \sigma R^{3}\right\}
$$

Here R is the operation of counterclockwise rotation by 90°, sending (x, y) to $(-y, x)$, and σ is reflection in the y-axis, which sends (x, y) to $(-x, y)$. One can check that the function $\nu(x, y)$ is invariant under any of these eight operations from $C_{4 v}$.

Explicitly, we can set $y=0$ and solve the resulting quadratic equation in x^{2} to obtain the maximum value of x, which we call $a(\nu)$. One finds

$$
\frac{1}{2} x^{4}+x^{2}-\nu=0 \quad \Longrightarrow \quad a=\sqrt{\sqrt{1+2 \nu}-1}
$$

So long as $x \in\{-a, a\}$, we can solve for $y(x)$:

$$
y(x)= \pm \sqrt{\sqrt{1+2 \nu-2 x^{2}-x^{4}}-1} .
$$

A sketch of the level sets, showing the evolution from an isotropic (i.e. circular) Fermi surface at small ν, to surfaces with discrete symmetries, is shown in fig. 1 .

Figure 1: Level sets of the function $\nu(x, y)=x^{2}+y^{2}+\frac{1}{2} x^{4}+\frac{1}{2} y^{4}$ for $\nu=\left(\frac{1}{2} n\right)^{4}$, with positive integer n.
(2) Using the Sommerfeld expansion, compute the heat capacity for a two-dimensional electron gas, to lowest nontrivial order in the temperature T.

In the notes, in section 4.7.6, we obtained the result

$$
\frac{E}{V}=\int_{-\infty}^{\varepsilon_{\mathrm{F}}} d \varepsilon g(\varepsilon) \varepsilon+\frac{\pi^{2}}{6}\left(k_{\mathrm{B}} T\right)^{2} g\left(\varepsilon_{\mathrm{F}}\right)+\mathcal{O}\left(T^{4}\right) .
$$

This entails a heat capacity of $C_{V, N}=V \cdot \frac{1}{3} \pi^{2} k_{\mathrm{B}} g\left(\varepsilon_{\mathrm{F}}\right) \cdot k_{\mathrm{B}} T$. The density of states at the Fermi level, $g\left(\varepsilon_{\mathrm{F}}\right)$, is easily found to be

$$
g\left(\varepsilon_{\mathrm{F}}\right)=\frac{d}{2} \cdot \frac{n}{\varepsilon_{\mathrm{F}}} .
$$

Thus,

$$
C_{V, N}=N \cdot \frac{d \pi^{2}}{6} k_{\mathrm{B}} \cdot\left(\frac{k_{\mathrm{B}} T}{\varepsilon_{\mathrm{F}}}\right),
$$

a form which is valid in any spatial dimension d.
(3) ${ }^{3} \mathrm{He}$ atoms consist of an odd number of fermions (two electrons, two protons, and one neutron), and hence is itself a fermion. Consider a kilomole of ${ }^{3} \mathrm{He}$ atoms at standard temperature and pressure ($T=293, \mathrm{~K}, p=1 \mathrm{~atm}$).
(a) What is the Fermi temperature of the gas? Assume $z \ll 1$ and justify this in part (b).

Assuming the gas is essentially classical (this will be justified shortly), we find the gas density using the ideal gas law:

$$
n=\frac{p}{k_{\mathrm{B}} T}=\frac{1.013 \times 10^{5} \mathrm{~Pa}}{\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(293 \mathrm{~K})}=2.51 \times 10^{25} \mathrm{~m}^{-3} .
$$

It is convenient to compute the rest energy of a ${ }^{3} \mathrm{He}$ atom. The mass is 3.016 amu (look it up on Google), hence

$$
m_{3} c^{2}=3.016 \cdot(931.5 \mathrm{MeV})=2.809 \mathrm{GeV}
$$

For the conversion of amu to MeV / c^{2}, again try googling. We'll then need $\hbar c=1973 \mathrm{eV} \cdot \AA$. (I remember 1973 because that was the summer I won third prize in an archery contest at Camp Mahakeno.) Thus,

$$
\begin{aligned}
\varepsilon_{\mathrm{F}} & =\frac{(\hbar c)^{2}}{2 m_{3} c^{2}} \cdot\left(3 \pi^{2} n\right)^{2 / 3}=\frac{\left(1973 \mathrm{eV} \cdot 10^{-10} \mathrm{~m}\right)^{2}}{2.809 \times 10^{9} \mathrm{eV}} \cdot\left(3 \pi^{2} \cdot 2.51 \times 10^{25} \mathrm{~m}^{-3}\right)^{2 / 3} \\
& =1.14 \times 10^{-5} \mathrm{eV}
\end{aligned}
$$

Now with $k_{\mathrm{B}}=86.2 \mu \mathrm{eV} / \mathrm{K}$, we have $T_{\mathrm{F}}=\varepsilon_{\mathrm{F}} / k_{\mathrm{B}}=0.13 \mathrm{~K}$.
(b) Calculate $\mu / k_{\mathrm{B}} T$ and $z=\exp \left(\mu / k_{\mathrm{B}} T\right)$.

Within the GCE, the fugacity is given by $z=n \lambda_{T}^{3}$. The thermal wavelength is

$$
\lambda_{T}=\left(\frac{2 \pi \hbar^{2}}{m k_{\mathrm{B}} T}\right)^{1 / 2}=\left(\frac{2 \pi \cdot(1973 \mathrm{eV} \cdot \AA)^{2}}{\left(2.809 \times 10^{9} \mathrm{eV}\right) \cdot\left(86.2 \times 10^{-6} \mathrm{eV} / \mathrm{K}\right) \cdot(293 \mathrm{~K})}\right)^{1 / 2}=0.587 \AA
$$

hence

$$
z=n \lambda_{T}^{3}=\left(2.51 \times 10^{-5} \AA^{-3}\right) \cdot(0.587 \AA)^{3}=5.08 \times 10^{-6}
$$

Thus,

$$
\frac{\mu}{k_{\mathrm{B}} T}=\ln z=-12.2 \quad, \quad z=e^{\mu / k_{\mathrm{B}} T}=5.08 \times 10^{-6}
$$

(c) Find the average occupancy $n(\varepsilon)$ of a single particle state with energy $\frac{3}{2} k_{\mathrm{B}} T$.

To find the occupancy $f(\varepsilon-\mu)$, we note $\varepsilon-\mu=\left[\frac{3}{2}-(-12.2)\right] k_{\mathrm{B}} T=13.7 k_{\mathrm{B}} T$, in which case

$$
n(\varepsilon)=\frac{1}{e^{(\varepsilon-\mu) / k_{\mathrm{B}} T}+1}=\frac{1}{e^{13.7}+1}=1.12 \times 10^{-6}
$$

(4) For ideal Fermi gases in $d=1,2$, and 3 dimensions, compute at $T=0$ the average energy per particle E / N in terms of the Fermi energy ε_{F}.

The number of particles is

$$
N=\mathrm{g} V \int \frac{d^{d} k}{(2 \pi)^{d}} \Theta\left(k_{\mathrm{F}}-k\right)=V \cdot \frac{\mathrm{~g} \Omega_{d}}{(2 \pi)^{d}} \frac{k_{\mathrm{F}}^{d}}{d},
$$

where g is the internal degeneracy and Ω_{d} is the surface area of a sphere in d dimensions. The total energy is

$$
E=\mathrm{g} V \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\hbar^{2} k^{2}}{2 m} \Theta\left(k_{\mathrm{F}}-k\right)=V \cdot \frac{\mathrm{~g} \Omega_{d}}{(2 \pi)^{d}} \frac{k_{\mathrm{F}}^{d}}{d+2} \cdot \frac{\hbar^{2} k_{\mathrm{F}}^{2}}{2 m} .
$$

Therefore,

$$
\frac{E}{N}=\frac{d}{d+2} \varepsilon_{\mathrm{F}}
$$

(5) Obtain numerical estimates for the Fermi energy (in eV) and the Fermi temperature (in Kelvins) for the following systems:
(a) conduction electrons in silver, lead, and aluminum

The Fermi energy for ballistic dispersion is given by

$$
\varepsilon_{\mathrm{F}}=\frac{\hbar^{2}}{2 m^{*}}\left(3 \pi^{2} n\right)^{2 / 3},
$$

where m^{*} is the effective mass, which one can assume is the electron mass $m=9.11 \times$ $10^{-28} \mathrm{~g}$. The electron density is given by the number of valence electrons of the atom divided by the volume of the unit cell. A typical unit cell volume is on the order of $30 \AA^{3}$, and if we assume one valence electron per atom we obtain a Fermi energy of $\varepsilon_{\mathrm{F}}=3.8 \mathrm{eV}$, and hence a Fermi temperature of $3.8 \mathrm{eV} /\left(86.2 \times 10^{-6} \mathrm{eV} / \mathrm{K}\right)=4.4 \times 10^{4} \mathrm{~K}$. This sets the overall scale. For detailed numbers, one can examine table 2.1 in Solid State Physics by Ashcroft and Mermin. One finds

$$
T_{\mathrm{F}}(\mathrm{Ag})=6.38 \times 10^{4} \mathrm{~K} \quad ; \quad T_{\mathrm{F}}(\mathrm{~Pb})=11.0 \times 10^{4} \mathrm{~K} \quad ; \quad T_{\mathrm{F}}(\mathrm{Al})=13.6 \times 10^{4} \mathrm{~K} .
$$

(b) nucleons in a heavy nucleus, such as ${ }^{200} \mathrm{Hg}$

Nuclear densities are of course much higher. In the literature one finds the relation $R \sim$ $A^{1 / 3} r_{0}$, where R is the nuclear radius, A is the number of nucleons (i.e. the atomic mass number), and $r_{0} \simeq 1.2 \mathrm{fm}=1.2 \times 10^{-15} \mathrm{~m}$ Under these conditions, the nuclear density is on the order of $n \sim 3 A / 4 \pi R^{3}=3 / 4 \pi r_{0}^{3}=1.4 \times 10^{44} \mathrm{~m}^{-3}$. With the mass of the proton $m_{\mathrm{p}}=938 \mathrm{MeV} / c^{2}$ we find $\varepsilon_{\mathrm{F}} \sim 30 \mathrm{MeV}$ for the nucleus, corresponding to a temperature of roughly $T_{\mathrm{F}} \sim 3.5 \times 10^{11} \mathrm{~K}$.

