PHYSICS 140B : STATISTICAL PHYSICS MIDTERM EXAMINATION

(1) Consider the single particle density of states

$$g(\varepsilon) = A \varepsilon \Theta(\varepsilon) + B \Theta(\varepsilon - \Delta) = \begin{cases} A \varepsilon & \text{if } 0 \le \varepsilon < \Delta \\ A \varepsilon + B & \text{if } \varepsilon \ge \Delta \end{cases}.$$

Here, *A*, *B*, and Δ are positive constants. The following integrals may be useful:

$$\int_{0}^{\infty} d\varepsilon \, \frac{\varepsilon^{\alpha}}{z^{-1} \, e^{\varepsilon/k_{\mathrm{B}}T} - 1} = (k_{\mathrm{B}}T)^{1+\alpha} \, \mathrm{Li}_{1+\alpha}(z) \quad , \quad \int_{0}^{\infty} d\varepsilon \, \varepsilon^{\alpha} \ln \left[1 - z \, e^{-\varepsilon/k_{\mathrm{B}}T}\right] = -(k_{\mathrm{B}}T)^{1+\alpha} \, \mathrm{Li}_{2+\alpha}(z)$$

where $\operatorname{Li}_{s}(z) = \sum_{m=1}^{\infty} z^{m}/m^{s}$. Note $\operatorname{Li}_{1}(z) = -\ln(1-z)$.

(a) Assuming the particles have photon statistics, find an expression for the number density n(T). [10 points]

(b) Assuming the particles are bosons, find an equation which relates the critical temperature T_c for Bose condensation to the number density n. [10 points]

(c) For $T>T_{\rm c\prime}$ find a closed form expression for n(T,z), where $z=\exp(\mu/k_{\rm B}T)$ is the fugacity. [10 points]

(d) For $T < T_c$, find an expression for $n(T, n_0)$, where n_0 is the condensate number density. [10 points]

(e) For $T < T_{c'}$ find p(T). [10 points]

(f) For $T > T_c$, find an expression for p(T, n). [50 quatloos extra credit]

(2) Consider $S = \frac{1}{2}$ fermions with the relativistic dispersion

$$\varepsilon(\boldsymbol{p}) = \sqrt{c^2 p^2 + m^2 c^4}$$

in d = 2 space dimensions, where $p = \hbar k$ is the momentum.

(a) Find the density of states $g(\varepsilon)$. Don't forget to include the appropriate step function to indicate the energy below which $g(\varepsilon)$ vanishes. [10 points]

(b) Find the Fermi momentum $p_{\rm F}(n)$. [10 points]

(c) Find the second virial coefficient $B_2(T)$. [15 points]

The following integral may be useful: $\int_{a}^{\infty} dx \ x \ e^{-x} = (1+a) \ e^{-a}$.

(d) Find the chemical potential $\mu(T, n)$, valid to order T^2 . [15 points]

(e) Find n(T, z). [50 quatloos extra credit]