PHYSICS 140B : STATISTICAL PHYSICS
 MIDTERM EXAMINATION

(1) Consider the single particle density of states

$$
g(\varepsilon)=A \varepsilon \Theta(\varepsilon)+B \Theta(\varepsilon-\Delta)= \begin{cases}A \varepsilon & \text { if } 0 \leq \varepsilon<\Delta \\ A \varepsilon+B & \text { if } \varepsilon \geq \Delta\end{cases}
$$

Here, A, B, and Δ are positive constants. The following integrals may be useful:
$\int_{0}^{\infty} d \varepsilon \frac{\varepsilon^{\alpha}}{z^{-1} e^{\varepsilon / k_{\mathrm{B}} T}-1}=\left(k_{\mathrm{B}} T\right)^{1+\alpha} \mathrm{Li}_{1+\alpha}(z) \quad, \quad \int_{0}^{\infty} d \varepsilon \varepsilon^{\alpha} \ln \left[1-z e^{-\varepsilon / k_{\mathrm{B}} T}\right]=-\left(k_{\mathrm{B}} T\right)^{1+\alpha} \mathrm{Li}_{2+\alpha}(z)$
where $\mathrm{Li}_{s}(z)=\sum_{m=1}^{\infty} z^{m} / m^{s}$. Note $\mathrm{Li}_{1}(z)=-\ln (1-z)$.
(a) Assuming the particles have photon statistics, find an expression for the number density $n(T)$. [10 points]
(b) Assuming the particles are bosons, find an equation which relates the critical temperature T_{c} for Bose condensation to the number density n. [10 points]
(c) For $T>T_{\mathrm{c}}$, find a closed form expression for $n(T, z)$, where $z=\exp \left(\mu / k_{\mathrm{B}} T\right)$ is the fugacity. [10 points]
(d) For $T<T_{\mathrm{c}}$, find an expression for $n\left(T, n_{0}\right)$, where n_{0} is the condensate number density. [10 points]
(e) For $T<T_{\mathrm{c}}$, find $p(T)$. [10 points]
(f) For $T>T_{\mathrm{c}}$, find an expression for $p(T, n)$. [50 quatloos extra credit]
(2) Consider $S=\frac{1}{2}$ fermions with the relativistic dispersion

$$
\varepsilon(\boldsymbol{p})=\sqrt{c^{2} p^{2}+m^{2} c^{4}}
$$

in $d=2$ space dimensions, where $\boldsymbol{p}=\hbar \boldsymbol{k}$ is the momentum.
(a) Find the density of states $g(\varepsilon)$. Don't forget to include the appropriate step function to indicate the energy below which $g(\varepsilon)$ vanishes. [10 points]
(b) Find the Fermi momentum $p_{\mathrm{F}}(n)$. [10 points]
(c) Find the second virial coefficient $B_{2}(T)$. [15 points]

The following integral may be useful: $\int_{a}^{\infty} d x x e^{-x}=(1+a) e^{-a}$.
(d) Find the chemical potential $\mu(T, n)$, valid to order T^{2}. [15 points]
(e) Find $n(T, z)$. [50 quatloos extra credit]

