
PHYSICS 140B : STATISTICAL PHYSICS

FINAL EXAMINATION SOLUTIONS

(1) Provide clear, accurate, and substantial answers for each of the following:

(a) For a fermionic system of number density n and with single particle dispersion ε(k),
where k is the wavevector, what is the definition of the Fermi energy and the Fermi sur-
face? [5 points]

(b) Write down the symmetric transfer matrix R for the one-dimensional spin-1 Ising
Hamiltonian,

Ĥ = −J
∑

n

SnSn+1 ,

where each Sn ∈ {−1, 0,+1}. [5 points]

(c) For the cluster γ shown in Fig. 1, identify the symmetry factor sγ , the lowest order virial
coefficient Bj to which γ contributes, and write an expression for the cluster integral bγ(T )
in terms of the Mayer function f(r). [5 points]

Figure 1: The connected cluster γ for problem 1c.

(d) Describe the physics of spinodal decomposition, phase separation, and the Maxwell
construction. Include a sketch of p(v, T ) versus v to illustrate your description. [5 points]

(e) What does it mean to say that for the Landau free energy density (with b > 0)

f(m) = 1
2
am2 − 1

3
ym3 + 1

4
bm4 ,

that “a first order transition preempts the second order transition”? [5 points]

(a) The Fermi energy ε
F
(n) is the the highest energy level achieved by occupying single

particle states consecutively, subject to the Pauli principle. Thus,

n =

ε
F

∫

−∞

dε g(ε) ,

where g(ε) is the single particle density of states. The Fermi energy is also the value of the

chemical potential at T = 0: µ(T = 0, n) = ε
F
(n). The Fermi surface is the locus of points

in k-space where ε(k) = εF.
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(b) The transfer matrix is 3× 3 and of the form

RSS′ = eJSS
′/k

B
T =





eJ/kBT 1 e−J/k
B
T

1 1 1

e−J/k
B
T 1 eJ/kBT



 ,

with β = 1/k
B
T . The rows and columns consecutively correspond to S = 1, S = 0, and

S = −1.

(c) The symmetry factor is 2!·2! = 4, because, consulting the right panel of Fig. 2, vertices
2 and 5 can be exchanged, and vertices 3 and 4 can be exchanged. There are five vertices,
hence the lowest order virial coefficient to which this cluster contributes is B5. The cluster
integral is

bγ =
1

4V

∫

ddx1

∫

ddx2

∫

ddx3

∫

ddx4

∫

ddx5 f12 f15 f23 f23 f25 f34 f35 f45

=
1

4

∫

ddx1

∫

ddx2

∫

ddx3

∫

ddx4 f12 f15 f23 f23 f25 f34 f35 f45 ,

where fij = exp
[

−u(rij)/kBT
]

− 1. See Fig. 2 for the labels.

Figure 2: The connected cluster γ for problem 1b and its labeled version.

(d) The Maxwell construction is a fix for the van der Waals system and other related phe-
nomenological equations of state p = p(T, v) in which, throughout a region of temperature
T , the pressure as a function of volume p(v) is nonmonotonic. This is unphysical since

the isothermal compressibility κT = −v−1(∂v/∂p)T becomes negative, which signals an
absolute thermal instability, known as spinodal decomposition. The regime of instability is
even larger than this, however, because of the possibility of phase separation into regions of
different bulk density. The situation is depicted in Fig. 3. To remedy these defects, one
replaces the unstable part of the p(v) curve with a flat line extending from v = v1 to v = v2
at each temperature T in the unstable region, such that the following two conditions hold:

(i) p(T, v1) = p(T, v2) , (ii)

v
2

∫

v
1

dv p(T, v) = (v2 − v1) p(T, v1) .
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Figure 3: The Maxwell construction corrects a nonmonotonic p(v) to include a flat section,
known as the coexistence region, which guarantees that the Helmholtz free energy of the
system is at a true minimum. The system is absolutely unstable between volumes vd and
ve. For v ∈ [va, vd] of v ∈ [ve, vc], the solution is unstable with respect to phase separation.

(e) Assuming y > 0, the minimum value of f(m) lies below f(0) = 0 provided that
a < ac ≡ 2y2/b. At this critical value of a ∝ T − Tc , the location of the minimum dis-
continuously jumps from m = 0 at a = a+c to m = 3a/y at a = a−c . Thus the coefficient
of the m2 term remains positive at this transition. As a is lowered further below ac, and
eventually becomes negative, the location of the minimum evolves smoothly.

(2) Consider the equation of state

p(T, v) =
RT

v − b
exp

(

−
a

RTv2

)

,

where v is the volume per mole.

(a) Find vc. [5 points]

(b) Find Tc. [5 points]

(c) Find pc. [5 points]

(d) Defining the dimensionless quantities p̄ ≡ p/pc , T̄ ≡ T/Tc , and v̄ ≡ v/vc , write the
equation of state p̄ = p̄(T̄ , v̄). Show that p̄(T̄ = 1, v̄ = 1) = 1. [10 points]

(a) We examine p(T, v) at fixed T and identify any temperature range where (∂p/∂v)T > 0,
which would indicate an absolute thermodynamic instability where κT < 0. It is conve-
nient to compute

1

p

∂p

∂v
=

∂ ln p

∂v
= −

1

v − b
+

2a

RTv3
.
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Setting the RHS to zero, and defining v ≡ bu, we obtain the equation

g(u) ≡
u3

u− 1
=

2a

RTb2
.

Clearly g(u) diverges as u → 1+ and as u → ∞. Setting g′(u) = 0 we find a single minimum
at u∗ = 3

2
, where g(3

2
). Thus, vc = u∗b = 3

2
b.

(b) Since g(u∗) = 27

4
is the minimum value, we identify Tc by setting

g(u∗) =
27

4
=

2a

RTc b
2

⇒ Tc =
8a

27R b2
.

(c) Now we plug vc and Tc into the equation of state to obtain

pc = p(Tc, vc) =
16a

27b3
exp

(

− 3
2

)

.

(d) Writing p̄ ≡ p/pc , T̄ ≡ T/Tc , and v̄ ≡ v/vc , we have

p̄(T̄ , v̄) =
T̄

3v̄ − 2
exp

(

3

2
−

2

2T̄ v̄2

)

.

Note that p̄(1, 1) = 1, which is equivalent to pc = p(Tc, vc).

(3) Consider a system consisting of mobile ions of charge +Ze > 0 and electrons of charge
−e < 0. Let the ion mass be m+ and the electron mass be m−. The average number density
of ions is n+.

(a) Let z± be the fugacities for the ions (+) and electrons (−). Within Debye-Hückel theory,
what is the formula for the charge density ρ(r)? Hint: Your formula should involve the
local potential φ(r). [5 points]

(b) Assuming overall charge neutrality, what is the number density n− of electrons? What
is the relation between the number densities n±, the fugacities z±, and the masses m± at
temperature T ? Hint: At |r| → ∞, take φ(r) → 0. [5 points]

(c) What is the full nonlinear self-consistent equation for φ(r)? [5 points]

(d) Assuming |eφ(r)| ≪ k
B
T , the linearized self-consistent equation for φ(r) in the pres-

ence of an external charge distribution ρext(r) = Qδ(r) is

∇2φ = κ2
D
φ− 4πQδ(r) ,

where κD is the Debye screening wavevector. Find an expression for κD. [5 points]

(e) In d = 3 dimensions, again assuming |eφ(r)| ≪ k
B
T , what is the total charge distribu-

tion ρtot(r) in the presence of the external charge Q? [5 points]
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(a) We have

ρ(r) = Ze z+ λ−d
+ exp

(

−
Zeφ(r)

k
B
T

)

− e z− λ−d
− exp

(

eφ(r)

k
B
T

)

,

where λ± = (2π~2/m±kB
T )1/2 and z± = exp(µ±/kB

T ).

(b) Charge neutrality entails

Zen+ − en− = 0 ⇒ n− = Zn+ .

The densities are n± = z± λ−d
± . Thus, Zz+λ

−d
+ = z−λ

−d
− .

(c) We have

∇2φ = −4πρ = 4πZen+

[

exp

(

eφ(r)

k
B
T

)

− exp

(

−
Zeφ(r)

k
B
T

)

]

,

where we have used n− = Zn+ .

(d) With |eφ| ≪ k
B
T , we expand the above nonlinear self-consistent Poisson equation,

including the external charge, to obtain

∇2φ =
4πZ(1 + Z)n+ e2

k
B
T

φ− 4πQδ(r) .

Thus we have

κ
D
=

(

4πZ(1 + Z)n+ e2

k
B
T

)1/2

.

(e) The potential is given by the Yukawa form,

φ(r) =
Q

r
exp(−κ

D
r) .

The total charge density is

ρtot(r) = ρext(r) + ρ(r)

= Qδ(r) −
Qκ2

D
exp(−κ

D
r)

4πr
.

Note that
∫

d3r ρtot(r) = 0 ,

which says that the external charge is completely screened.

(4) Consider a four-state Ising model on a cubic lattice with Hamiltonian

Ĥ = −J
∑

〈ij〉

SiSj −H
∑

i

Si ,
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where each spin variable Si takes on one of four possible values: Si ∈ {−2,−1,+1,+2},
and the first sum is over all nearest-neighbor pairs of the lattice (i.e. over all unique links).
Note there is no Si = 0 state.

(a) What is the mean field Hamiltonian Ĥ
MF

? [5 points]

(b) Find the mean field free energy per site f(θ, h,m), where m = 〈Si〉, θ = k
B
T/zJ ,

h = H/zJ , and f = F/NzJ . Here z is the lattice coordination number. [5 points]

(c) Find the mean field equation relating m, θ, and h. [5 points]

(d) Expand f to fourth order in m, retaining terms only to first order in h, and working to
lowest order in θ − θc. What is θc? [5 points]

(e) If J/k
B
= 100K, what is the critical temperature Tc? [5 points]

(a) The mean field is H
eff

= H + zJm where m = 〈Si〉. The mean field Hamiltonian is

Ĥ
MF

= 1

2
NzJm2 − (H + zJm)

∑

i

Si ,

where the square of the fluctuation terms on each site have been neglected.

(b) The partition function is Z
MF

= Tr exp(−Ĥ
MF

/k
B
T ) ≡ exp(−NzJf), with

f(θ, h,m) = 1
2
m2 − θ lnTr

S
exp

[

− (m+ h)S/θ
]

= 1

2
m2 − θ ln

[

2 cosh

(

m+ h

θ

)

+ 2cosh

(

2m+ 2h

θ

)

]

.

(c) Setting f ′(m) = 0, we obtain the mean field equation:

m =
sinh

(

m+h
θ

)

+ 2 sinh
(

2m+2h
θ

)

cosh
(

m+h
θ

)

+ cosh
(

2m+2h
θ

) .

(d) Isolating the contribution from the high temperature entropy, we have

f = 1
2
m2 − θ ln

[

1
2
cosh

(

m+ h

θ

)

+ 1
2
cosh

(

2m+ 2h

θ

)

]

− θ ln 4

Now we expand using cosh u = 1 + 1
2
u2 + 1

24
u4 +O(u6) and ln(1 + ε) = ε − 1

2
ε2 + O(ε3),
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where both u and ε are small. This yields, with u ≡ (m+ h)/θ,

f + θ ln 4 = 1
2
m2 − θ ln

[

1
2
+ 1

4
u2 + 1

48
u4 + . . .+ 1

2
+ 1

4
(2u)2 + 1

48
(2u)4 + . . .

]

= 1
2
m2 − θ ln

[

1 + 5
4
u2 + 17

48
u4 + . . .

]

= 1
2
m2 − θ

[

5
4
u2 + 17

48
u4 − 1

2

(

5
4
u2

)2
+ . . .

]

= 1

2
m2 −

5(m+ h)2

4θ
+

41(m+ h)4

96 θ3
+ . . .

=

(

1

2
−

5

4θ

)

m2 +
41

96 θ3
m4 −

5

2θ
hm+ . . . .

From this we find θc =
5

2
, and

f(θ, h,m) = −θ ln 4 + 1
5
(θ − θc)m

2 + 41
1500

m4 − hm .

(e) We have k
B
Tc = zJθc = 6× 5

2
× 100K = 1500K.
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