PHYSICS 140B : STATISTICAL PHYSICS FINAL EXAMINATION

(1) Provide clear, accurate, and substantial answers for each of the following:

(a) For a fermionic system of number density n and with single particle dispersion $\varepsilon(\mathbf{k})$, where \mathbf{k} is the wavevector, what is the definition of the Fermi energy and the Fermi surface? [5 points]

(b) Write down the symmetric transfer matrix R for the one-dimensional spin-1 Ising Hamiltonian,

$$\hat{H} = -J\sum_{n} S_n S_{n+1} \quad ,$$

where each $S_n \in \{-1, 0, +1\}$. [5 points]

(c) For the cluster γ shown in Fig. 1, identify the symmetry factor s_{γ} , the lowest order virial coefficient B_j to which γ contributes, and write an expression for the cluster integral $b_{\gamma}(T)$ in terms of the Mayer function f(r). [5 points]

Figure 1: The connected cluster γ for problem 1c.

(d) Describe the physics of spinodal decomposition, phase separation, and the Maxwell construction. Include a sketch of p(v,T) versus v to illustrate your description. [5 points]

(e) What does it mean to say that for the Landau free energy density (with b > 0)

$$f(m) = \frac{1}{2}am^2 - \frac{1}{3}ym^3 + \frac{1}{4}bm^4 \quad ,$$

that "a first order transition preempts the second order transition"? [5 points]

(2) Consider the equation of state

$$p(T,v) = \frac{RT}{v-b} \exp\left(-\frac{a}{RTv^2}\right) ,$$

where v is the volume per mole.

- (a) Find v_c . [5 points]
- (b) Find $T_{\rm c}$. [5 points]
- (c) Find $p_{\rm c}$. [5 points]

(d) Defining the dimensionless quantities $\bar{p} \equiv p/p_c$, $\bar{T} \equiv T/T_c$, and $\bar{v} \equiv v/v_c$, write the equation of state $\bar{p} = \bar{p}(\bar{T}, \bar{v})$. Show that $\bar{p}(\bar{T} = 1, \bar{v} = 1) = 1$. [10 points]

(3) Consider a system consisting of mobile ions of charge +Ze > 0 and electrons of charge -e < 0. Let the ion mass be m_+ and the electron mass be m_- . The average number density of ions is n_+ .

(a) Let z_{\pm} be the fugacities for the ions (+) and electrons (-). Within Debye-Hückel theory, what is the formula for the charge density $\rho(\mathbf{r})$? *Hint: Your formula should involve the local potential* $\phi(\mathbf{r})$. [5 points]

(b) Assuming overall charge neutrality, what is the number density n_{-} of electrons? What is the relation between the number densities n_{\pm} , the fugacities z_{\pm} , and the masses m_{\pm} at temperature *T*? *Hint:* At $|\mathbf{r}| \to \infty$, take $\phi(\mathbf{r}) \to 0$. [5 points]

(c) What is the full nonlinear self-consistent equation for $\phi(r)$? [5 points]

(d) Assuming $|e\phi(\mathbf{r})| \ll k_{\rm B}T$, the linearized self-consistent equation for $\phi(\mathbf{r})$ in the presence of an external charge distribution $\rho_{\rm ext}(\mathbf{r}) = Q \,\delta(\mathbf{r})$ is

$$\nabla^2 \phi = \kappa_{\rm D}^2 \, \phi - 4 \pi Q \, \delta({\pmb r}) \quad , \label{eq:phi_eq}$$

where κ_{D} is the Debye screening wavevector. Find an expression for κ_{D} . [5 points]

(e) In d = 3 dimensions, again assuming $|e\phi(\mathbf{r})| \ll k_{\rm B}T$, what is the total charge distribution $\rho_{\rm tot}(\mathbf{r})$ in the presence of the external charge Q? [5 points]

(4) Consider a four-state Ising model on a cubic lattice with Hamiltonian

$$\hat{H} = -J \sum_{\langle ij \rangle} S_i S_j - H \sum_i S_i \quad ,$$

where each spin variable S_i takes on one of four possible values: $S_i \in \{-2, -1, +1, +2\}$, and the first sum is over all nearest-neighbor pairs of the lattice (*i.e.* over all unique links). Note there is no $S_i = 0$ state.

(a) What is the mean field Hamiltonian \hat{H}_{MF} ? [5 points]

(b) Find the mean field free energy per site $f(\theta, h, m)$, where $m = \langle S_i \rangle$, $\theta = k_{\rm B}T/zJ$, h = H/zJ, and f = F/NzJ. Here z is the lattice coordination number. [5 points]

(c) Find the mean field equation relating m, θ , and h. [5 points]

(d) Expand *f* to fourth order in *m*, retaining terms only to first order in *h*, and working to lowest order in $\theta - \theta_c$. What is θ_c ? [5 points]

(e) If $J/k_{\rm B} = 100$ K, what is the critical temperature $T_{\rm c}$? [5 points]