Quantum Magnetism From the Iron Age to the Present

D. P. Arovas, UCSD

Magnetism in Antiquity

Lodestone : mostly magnetite $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$
Thales (c. 620 BCE - c. 546 BCE) : first theory of magnetism!

"Thales...says that a [lodestone] has a soul because it causes movement to iron." - Aristotle (4th c. BCE)

Thales of Miletus

"The lodestone attracts iron."

- Wang Xu (4th c. BCE)

Compass : 2nd c. BCE-1st c. CE in China Initially used for divination (Feng Shui), and eventually for navigation.

"south pointing spoon"

Han dynasty

Jesus

Roman empire

Islam

Charlemagne

Viking conquests

Crusades

Bubonic plague

Columbus

Shakespeare

Newton

Beethoven

American revolution

Meiji restoration

World War I

The Ising Model (Lenz, 1920)

$$
H=-\sum_{i<j} J_{i j} \sigma_{i} \sigma_{j} \quad \text { with } \quad \sigma_{i}= \pm 1
$$

ferromagnetic: $J_{i j}>0\left|\uparrow_{i} \uparrow_{j}\right\rangle$; $\underline{\text { antiferromagnetic }: ~} J_{i j}<0\left|\uparrow_{i} \downarrow_{j}\right\rangle$
Global symmetry group $\mathbb{Z}_{2}: \sigma_{i} \rightarrow \varepsilon \sigma_{i}$ with $\varepsilon \in\{-1,+1\}$
Other common global symmetries:
p-state clock :

group :
\mathbb{Z}_{p}
discrete

$\mathrm{O}(2)$
continuous

Heisenberg:

$$
\hat{\boldsymbol{n}}=\left(n_{1}, \ldots, n_{N}\right)
$$

$\mathrm{O}(N)$
continuous

Spontaneous symmetry breaking

Below a critical temperature T_{c}, long-ranged order develops :

Up through the 1980s, work on magnetism focused either on ordered phases of classical/quantum models (and their defects), or on special features of quantum models in one space dimension (solvable by Bethe's Ansatz).

four sublattice Néel state

$\boldsymbol{Q}_{1}=\frac{\pi}{a} \hat{\boldsymbol{x}} \quad, \quad \boldsymbol{Q}_{2}=\frac{\pi}{a} \hat{\boldsymbol{y}}$

Frustration "You can't always get what you want."

Discrete symmetry : Ising model

$$
H=|J|\left(\sigma_{1} \sigma_{2}+\sigma_{2} \sigma_{3}+\sigma_{3} \sigma_{1}\right)
$$

ground state entropy : $S_{0} / N \geq \frac{1}{3} \ln 2=0.2310$

$$
S_{0} / N=\frac{3}{\pi} k_{\mathrm{B}} \int_{0}^{\pi / 6} d \omega \ln (2 \cos \omega) \simeq 0.3231
$$

Classical vs. quantum

Heisenberg interaction: $H=J \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j}$
Redefining $\boldsymbol{S}_{j} \rightarrow-\boldsymbol{S}_{j}$ sends $J \rightarrow-J$

OK for classical spins on bipartite lattices! FM = AFM !!
STOP NOT OK FOR QUANTUM SPINS! $\left[S^{x}, S^{y}\right]=i \hbar S^{z}$
$S=\frac{1}{2}$ pair:
$J>0\left\{\begin{array}{l}\left.+\frac{1}{4}| | \right\rvert\, \xlongequal{|T\rangle} \\ -\frac{3}{\left.\left|\frac{3}{\mid}\right| J \right\rvert\,}\end{array}\right.$

$$
\left.\begin{array}{l}
\frac{|S\rangle}{\frac{|T\rangle}{4}|J|}-\frac{1}{4}|J|
\end{array}\right\} J<0
$$

Néel states

$$
|\mathbf{N}\rangle=\left\{\begin{array}{l}
|\uparrow \downarrow\rangle \\
|\downarrow \uparrow\rangle
\end{array}\right.
$$

not in spectrum!

Heisenberg interaction and ground states

Classical/ quantum FM: $|F\rangle=\left|\begin{array}{cccc}\uparrow & \uparrow & \uparrow & \uparrow \\ \hat{1} & 1 & \uparrow \\ \hat{1} & 1 & \uparrow \\ \hat{\imath} & \uparrow & \uparrow & \uparrow\end{array}\right\rangle \quad S_{i}^{+} S_{j}^{-}|\uparrow \uparrow\rangle=0$
Classical Néel state: $|\mathrm{CN}\rangle=\left|\begin{array}{lllll}\downarrow & \uparrow & \downarrow & \uparrow \\ \vdots & \downarrow & \downarrow \\ \downarrow & \uparrow & \downarrow \\ \vdots & \downarrow & \uparrow \\ \uparrow & \downarrow & \uparrow & \downarrow\end{array}\right\rangle \begin{gathered}\text { selected by } S_{i}^{z} S_{j}^{z} \\ \text { (A/B sublatice) }\end{gathered}$

$$
m=S-1
$$

Quantum Néel state: $|\mathrm{QN}\rangle=\left|\begin{array}{llll}\downarrow & \uparrow & \downarrow & \uparrow \\ \uparrow & \downarrow & \uparrow \\ \downarrow & \downarrow \\ \imath & \downarrow & \uparrow \\ \imath & \downarrow & \imath\end{array}\right\rangle-\frac{1}{4(z-1) S}$

$S=\frac{1}{2}$ antiferromagnetic Heisenberg chain

$$
H=+J \sum_{n} \boldsymbol{S}_{n} \cdot \boldsymbol{S}_{n+1}
$$

1931 : general form of eigenfunctions ("Bethe's Ansatz")
1938 : ground state energy (Hulthén) $E_{0} / N J=\frac{1}{4}-\ln 2>-\frac{3}{4}$

1962: $S=1$ excitation spectrum (des Cloiseaux and Pearson)

1981: $S=1 / 2$ excitation spectrum by Faddeev and Takhtajan

1998 : exact asymptotic correlation (Affleck) $\left\langle S_{0}^{\alpha} S_{r}^{\beta}\right\rangle \sim(-1)^{r} \delta^{\alpha \beta} \sqrt{\ln r} /\left[(2 \pi)^{3 / 2} r\right]$

Triplet $(S=1)$ excitation branch:

Up to an overall factor $\pi / 2$, this is the same as the spectrum from spin wave theory!

$$
\varepsilon(q)=\frac{1}{2} \pi J|\sin (q a)|
$$

However, these are composite excitations.

The true elementary excitations are $S=1 / 2$ doublets, which are kinks, with

$$
\varepsilon(q)=\frac{1}{2} \pi J \sin (q a) ; \quad 0 \leq q \leq \frac{\pi}{a}
$$

$$
\begin{gathered}
E_{-}(q) \leq \hbar \omega \leq E_{+}(q) \\
E_{-}(q)=\varepsilon(q)+\varepsilon(0)=\frac{1}{2} \pi J|\sin (q a)| \\
E_{+}(q)=\varepsilon\left(\frac{1}{2} q\right)+\varepsilon\left(\frac{1}{2} q\right)=\pi J\left|\sin \left(\frac{1}{2} q a\right)\right|
\end{gathered}
$$

$$
\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\left(\mathrm{NO}_{3}\right)_{2} \equiv \mathrm{CuPzN} \quad J=0.9 \mathrm{meV}
$$

$S=1$ antiferromagnetic Heisenberg chain

$$
H=J \sum_{n} \overbrace{\boldsymbol{S}_{n} \cdot \boldsymbol{S}_{n+1}}^{\text {exchange intercation }}+D \sum_{n} \overbrace{\left(S_{n}^{z}\right)^{2}}^{\text {anisotrop: prefers }}
$$

The elementary excitation is a triplet $(S=1)$ with dispersion $\omega(\mathbf{q})$, with an excitation gap at $\mathbf{q}=\pi$, i.e. the Haldane gap.

$$
\left\langle\boldsymbol{S}_{l} \cdot \boldsymbol{S}_{l+n}\right\rangle \sim(-1)^{n}|n|^{-1 / 2} \exp (-|n| a / \xi)
$$

F. D. M. Haldane, Phys. Lett. 93A, 464 (1983)
elementary magnon / multimagnon continuua
S. Ma et al., PRL 69, 3571 (1992)

$$
\text { filling fraction: } \nu \equiv \frac{\text { total } \mathrm{U}(1) \text { charge }}{\text { number of unit cells }}
$$

"At fractional filling v, a unique, gapped, featureless, insulating ground state is impossible."

$v \notin \mathbb{Z}$	unique	gapped	featureless	insulator	EXAMPLE
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	NOT POSSIBLE
\checkmark	\checkmark	X	\checkmark	\mathbf{X}	METALLIC
\checkmark	\checkmark	\checkmark	X	\checkmark	DENSITY WAVE
\checkmark	\checkmark	X	\checkmark	\checkmark	SPIN-CHARGE SEPARATION
\checkmark	X	\checkmark	\checkmark	\checkmark	TOPOLOGICAL ORDER
\mathbf{X}	\checkmark	\checkmark	\checkmark	\checkmark	BAND INSULATOR

One-dimensional Hubbard model : $v=\#$ electrons per cell per spin DOF
$v \in \mathbb{Z}$: adiabatic connection to band insulator $v \in \mathbb{Z}+1 / 2$: Mott phase preserves all symmetries, but with no adiabatic connection to band insulator
LSM theorem : flows from action of twist operator $U=\exp \left(\frac{2 \pi i}{N} \sum_{j=1}^{N} j Q_{j}\right)$ which changes crystal momentum of ground state:

$$
\begin{aligned}
t\left|\Psi_{0}\right\rangle & =e^{i K_{0}}\left|\Psi_{0}\right\rangle \quad \text { and } \quad\left|\Psi_{1}\right\rangle=U\left|\Psi_{0}\right\rangle \\
\Rightarrow \quad t\left|\Psi_{1}\right\rangle & =e^{i K_{1}}\left|\Psi_{1}\right\rangle \quad \text { where } \quad \boldsymbol{K}_{1}-\boldsymbol{K}_{0}=-2 \pi \nu
\end{aligned}
$$

The LSM argument works only in $d=1$ because

$$
\left\langle\Psi_{0}\right| U^{\dagger} H U\left|\Psi_{0}\right\rangle=E_{0}+\frac{2 \pi^{2}}{N^{2}}\left\langle\Psi_{0}\right| H_{\perp}^{\mathrm{local}}\left|\Psi_{0}\right\rangle=E_{0}+\mathcal{O}\left(N^{d-2}\right)
$$

\Rightarrow gapless excitations or degenerate ground state for $S=1 / 2$ HAFM

Oshikawa (2000) extended this argument to higher dimensions by considering the consequences of adiabatic flux threading. Place the system on a d dimensional torus, and thread $\mathrm{U}(1)$ flux ϕ through one of its cycles, resulting in a translationally-
 invariant $H(\phi)$.
$[H(\phi), t]=0 \Rightarrow$ crystal momentum of $\left|\Psi_{0}(\phi)\right\rangle$ remains fixed!

$$
\begin{aligned}
\left|\Psi_{1}\right\rangle \equiv U^{\dagger}\left|\Psi_{0}(2 \pi)\right\rangle & \text { "pullback" from Hilbert space of } H(\phi=2 \pi) \text { to } \\
& \text { that of } H(\phi=0) \text { - "large gauge transformation" }
\end{aligned}
$$

The difference in crystal momentum is then $\boldsymbol{K}_{1}-\boldsymbol{K}_{0}=2 \pi N_{\perp} \nu \hat{\mathbf{e}}$, where N_{\perp} is the number of sites in a hyperplane transverse to $\hat{\mathbf{e}}$.
ΔK not a reciprocal lattice vector $\Rightarrow\left\langle\Psi_{0} \mid \Psi_{1}\right\rangle=0$
With $v=p / q$ this requires $\left(N_{\perp}, q\right)$ relatively prime, but not $d=1$!

Example : next-nearest neighbor Heisenberg chain

For $g \leq g_{\mathrm{c}} \simeq 0.2411$, the spectrum is gapless.
For $g>g_{\mathrm{c}}$, the system is in a spin-Peierls phase (doubly degenerate ground state with excitation gap).

At MG point $(g=0.5)$,

$$
\text { total spin } 1 / 2
$$

$|\mathrm{A}\rangle=\left|\longmapsto \underset{2 n \quad 2_{2 n+1}}{\bullet} \longmapsto \bullet\right\rangle \quad|\mathrm{A}\rangle \pm|\mathrm{B}\rangle$ has crystal

$$
|\mathrm{B}\rangle=\mid \rightarrow \bullet \bullet \longrightarrow_{2 n}^{\bullet} \underset{2 n+1}{\bullet} \bullet \bullet \bullet \bullet
$$

Historical interlude

F. D. M. Haldane (1983) argued that AFM Heisenberg chains with $S=0,1,2, \ldots$ should exhibit an excitation gap, while those with $S=1 / 2,3 / 2, \ldots$ are gapless. He derived the $O(3)$ nonlinear sigma model continuum field theory in the large S limit, based on classical equations of motion, and noted that the integer and half-odd-integer cases differed in their quantization.

Throughout the 1980s, this scenario, and gap for integer S, was called the "Haldane conjecture". But the real question should always have been why the half-odd-integer chains were gapless. Bethe's solution and wrongheaded notions of "quasi-LRO" misled many to presume that gaplessness was the natural state of affairs. Prior to Berry's seminal paper on geometric phases (1984), the essential differences between integer and half-odd-integer S chains at the quantum level were not widely appreciated, though Haldane clearly anticipated this distinction.

One aspect which gave Haldane pause was the existence of exactly solvable gapless integer S chains with bilinear-biquadratic interactions of the form

$$
H_{n, n+1}=\cos \theta \boldsymbol{S}_{n} \cdot \boldsymbol{S}_{n+1}+\sin \theta\left(\boldsymbol{S}_{n} \cdot \boldsymbol{S}_{n+1}\right)^{2}
$$

$\theta=0$: Heisenberg model
$\theta=+\pi / 4$: Lai-Sutherland model (1975), gapless, $\mathbf{S U (3)}$ symmetric
$\theta=-\pi / 4$: Takhtajan-Babujian model (1982), gapless
$\theta=-\pi / 2$: Barber-Batchelor model (1989), gapped, dimerized

Sólyom (1987)
Läuchli, Schmid, Treibst (2006)

Haldane correctly reasoned that the sizable biquadratic terms must be responsible for the gap collapse. Of particular importance was the construction of a model at $\tan (\theta)=1 / 3$ by Affleck, Kennedy, Lieb, and Tasaki (1987). Though nonintegrable, it has a solvable ground state which demonstrably exhibits exponentially decaying correlations. AKLT's model would pave the way to matrix product states and to symmetryprotected topological phases.

AKLT models for valence bond solids

Spin S from symmetrized product of $2 S$ spin- $1 / 2$ quanta :

$$
S=1: \quad \frac{1}{2} \otimes \frac{1}{2}=0 \oplus 1 \quad \bigcirc=\text { symmetrizer }
$$

Let $P_{2}(n, n+1)$ be the projector onto total spin $J_{n, n+1}=2$.
Then $P_{2}(n, n+1)\left|\Psi_{0}\right\rangle=0$ for every n, so $H\left|\Psi_{0}\right\rangle=0$ with

$$
H=\sum_{n} P_{2}(n, n+1)=\frac{1}{2} \sum_{n}\left[\boldsymbol{S}_{n} \cdot \boldsymbol{S}_{n+1}+\frac{1}{3}\left(\boldsymbol{S}_{n} \cdot \boldsymbol{S}_{n+1}\right)^{2}\right]+\frac{1}{3} N
$$

General construction: $\left|\Psi_{0}(\mathcal{L}, M)\right\rangle=\prod\left(a_{i}^{\dagger} b_{j}^{\dagger}-b_{i}^{\dagger} a_{j}^{\dagger}\right)^{M}|0\rangle$

$$
S=\frac{1}{2} M z, \quad J_{\max }=2 S-M
$$

Finding a Hamiltonian $(S=1)$:

$$
\left|\Psi_{0}\right\rangle=\mid \cdots>
$$

Let $P_{2}(n, n+1)$ be the projector onto total spin $J_{n, n+1}=2$.
Then $P_{2}(n, n+1)\left|\Psi_{0}\right\rangle=0$ for every n, so $H\left|\Psi_{0}\right\rangle=0$ with

$$
H=\sum_{n} P_{2}(n, n+1)=\frac{1}{2} \sum_{n}\left[\boldsymbol{S}_{n} \cdot \boldsymbol{S}_{n+1}+\frac{1}{3}\left(\boldsymbol{S}_{n} \cdot \boldsymbol{S}_{n+1}\right)^{2}\right]+\frac{1}{3} N
$$

General construction: Schwinger boson representation of su(2)

$$
\left|\Psi_{0}(\mathcal{L}, M)\right\rangle=\prod_{\langle i j\rangle \in \mathcal{L}}\left(a_{i}^{\dagger} b_{j}^{\dagger}-b_{i}^{\dagger} a_{j}^{\dagger}\right)^{M}|0\rangle
$$

- $S=\frac{1}{2} M z$ where z is number of neighbors
- $J_{\max }=2 S-M$ is maximum spin on each link

$$
S=2
$$

$S=1 / 2$ edge states of the $S=1$ AKLT chain

T. Kennedy (1990) : exact diagonalization of open $S=1$ bilinear-biquadratic chains for $-\pi / 4<\theta<\pi / 4$. Found that for $-\pi / 4<\theta<\theta_{\text {AKLT }}$ the spectrum consisted of four low-lying states separated by a gap from the continuum, split into singlet and triplet :

$$
N \text { even } \quad N \text { odd }
$$

with gap $\delta \sim J \exp (-N / \xi)$, the signature of interacting $S=1 / 2$ edge states! These edge states were experimentally observed in INS and ESR studies of $\mathrm{Y}_{2} \mathrm{BaNi}_{1-x} \mathrm{Mg}_{x} \mathrm{O}_{5}$.

ESR: Yoshida et al. (2005)

Away from AKLT point, ground state is a linear superposition:

Equivalent to "topological protection of edge states" for odd S.
Pollman et al. (2010)

$$
S=2
$$

For an AFM spin chain with $\operatorname{SU}(2)$ symmetry and a singlet ground state, the entanglement eigenstates may be classified by total spin :

$$
|\Psi\rangle=\sum_{S} \sum_{p=1}^{N_{S}} e^{-\frac{1}{2} \xi_{S, p}} \sum_{m=-S}^{S}(-1)^{S-m}\left|\psi_{S, m, p}^{\mathrm{A}}\right\rangle \otimes\left|\psi_{S,-m, p}^{\mathrm{B}}\right\rangle
$$

levels descend from $\xi=\infty$

$S=1$ Heisenberg

$\xi\left[J_{\text {biquad }} / J_{\text {quad }}=1 / 3, S_{\text {Sot }}{ }^{2}=1\right]$	$\xi\left[\int_{\text {biquad }} / J_{\text {quad }}=0.3333, S_{\text {tot }}=1\right]$	$\xi\left[J_{\text {biquad }} / J_{\text {quad }}=0.333, S_{\text {tot }}{ }^{2}=1\right]$	$\xi\left[J_{\text {biquad }} / J_{\text {guad }}=0.33, S_{\text {oto }}=1\right]$	Thomale, 2010
14		14 ${ }^{\text {a }}$	14	
12	12	12	12.	--
10	10	10	10	-
8	8	8	8	
6.	6	6	6	
4.	4.	4.	4.	
2.	2.	2	2	
0	$\ldots S_{A}^{2} \quad 0 \ldots \ldots .$.		$\cdots S_{A}^{2} 0$	$\cdots S_{A}^{2}$

Hidden order and $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ symmetry

Before projection, each link is a linear combination $|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle$:

Write as $|\Psi\rangle=\sum_{\vec{m}} A_{m_{1} \cdots m_{N}}\left|m_{1}, \ldots, m_{N}\right\rangle$ with $m_{j}=+1,0,-1$

$$
+-+000000-0000+-+0
$$

$$
00-000+0-00+-0000+
$$

$$
0+00000+000-000-0+
$$

Perfect antiferromagnetic order among the $+/-$ states once the 0 states are removed! The system has a "string order parameter",

$$
C(n) \equiv\left\langle S_{0}^{z} S_{n}^{z}\right\rangle=\frac{4}{3}\left(-\frac{1}{3}\right)^{|n|} \quad, \quad \widetilde{C}(n) \equiv\left\langle S_{0}^{z} \prod_{j=1}^{n-1} e^{i \pi S_{j}^{z}} S_{n}^{z}\right\rangle=-\frac{4}{9}
$$

first derived by den Nijs and Rommelse (1989) in the context of classical models of the preroughening transition.

(a)

(b)

(c)

RSOS flat disordered flat RSOS rough
General S AKLT chains: $Q\left[n, n^{\prime}\right]=\sum_{j=n}^{n^{\prime}} S_{j}^{z}=\ell_{n-1}-\ell_{n^{\prime}}$ with $l_{j} \in\{0, \ldots, S\}$ "Charge" Q is bounded : $-S \leq Q \leq S \quad$ DPA and Girvin (1989)

Kennedy-Tasaki-Oshikawa nonlocal unitary transformation :

$$
U=\prod_{j<k} e^{i \pi S_{j}^{z} S_{k}^{x}}: H \rightarrow \widetilde{H}=U H U^{\dagger}
$$

If H is the $S=1$ Heisenberg Hamiltonian with open boundaries,

$$
\widetilde{H}=\sum_{n}\left[S_{n}^{x} e^{i \pi S_{n+1}^{z}} S_{n+1}^{x}+S_{n}^{y} e^{i \pi\left(S_{n}^{z}+S_{n+1}^{z}\right)} S_{n+1}^{y}+S_{n}^{z} e^{i \pi S_{n+1}^{z} S_{n}^{z}}\right] \text { ssill local! }
$$

This model has a $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ symmetry, i.e. global rotations by π about the x, y, or z axis (symmetry group D_{2}) which is realized nonlocally on H. The string operator transforms as

$$
U\left(S_{j}^{z} e^{i \pi \sum_{l=j}^{k-1} S_{l}^{z}} S_{k}^{z}\right) U^{\dagger}=S_{j}^{z} S_{k}^{z}
$$

Spontaneous breaking of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ symmetry then entails a fourfold ground state degeneracy for both \widetilde{H} and H. The "hidden" string order for H is realized as bulk ferromagnetism for \widetilde{H}, where the moment points along $\pm \hat{\boldsymbol{x}} \pm \hat{\boldsymbol{z}}$.

AKLT chain as a symmetry protected topological phase

 Big question : how to distinguish different phases of matter?Conventional answer : Ordered phases of matter are classified by their patterns of spontaneous symmetry breaking. Disordered phases (liquid, gas) are essentially equivalent.

What about quantum $(T=0)$ phases? Same story?
Modern perspective : "beyond the Landau paradigm" Hastings and Wen (2005) Chen, Gu, and Wen (2010)

Two gapped quantum phases are distinct if their WFs are adiabatically disconnected. A quantum phase which cannot be adiabatically connected, by some sequence of local unitary transformations, to a (trivial) product state is topologically ordered.

Examples : FQHE states, Kitaev toric code (\mathbb{Z}_{2} spin liquid)

For local Hamiltonians in $d=1$, the ground state is always adiabatically connected to a trivial product state. Verstrate (2005)

However, imposing a symmetry G can result in an obstruction to this adiabatic connection. In this case, either:

- SSB : ground state $\left|\Psi_{0}\right\rangle$ state breaks G.
- G remains unbroken, and $\left|\Psi_{0}\right\rangle$ adiabatically connected to trivial product state by local G-preserving unitaries.
- G remains unbroken, but $\left|\Psi_{0}\right\rangle$ adiabatically disconnected from a trivial product state via local G-preserving unitaries. $\left|\Psi_{0}\right\rangle$ is then a symmetry-protected topological (SPT) phase.

Back to $S=1$ chain :

$$
H=J \sum_{n} \boldsymbol{S}_{n} \cdot \boldsymbol{S}_{n+1}+\dot{D} \sum_{n}\left(S_{n}^{z}\right)^{2}
$$

PHYSICAL REVIEW B 81, 064439 (2010)
Entanglement spectrum of a topological phase in one dimension Pollmann, Turner, Berg, and Oshikawa

Haldane phase is an SPT protected by any of :
(i) time-reversal, (ii) space inversion, or (iii) broken $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ symmetry

Explicit symmetry-breaking adiabatic trivialization

 Schwinger boson representation of $S=1$ AKLT chain :$$
\begin{gathered}
\left|\Psi_{0}\right\rangle=\prod_{j}\left(a_{j}^{\dagger} b_{j+1}^{\dagger}-b_{j}^{\dagger} a_{j+1}^{\dagger}\right)|0\rangle \\
\downarrow \\
\left|\Psi_{0}\right\rangle=\prod_{n}\left(\cos \theta a_{n}^{\dagger} b_{n+1}^{\dagger}-\sin \theta b_{n}^{\dagger} a_{n+1}^{\dagger}\right)|0\rangle \\
\downarrow \\
\left|\Psi_{0}\right\rangle=\prod_{n}\left(\cos \theta_{\mathrm{e}} a_{2 n}^{\dagger} b_{2 n+1}^{\dagger}-\sin \theta_{\mathrm{e}} b_{2 n}^{\dagger} a_{2 n+1}^{\dagger}\right)\left(\cos \theta_{\mathrm{o}} a_{2 n+1}^{\dagger} b_{2 n+2}^{\dagger}-\sin \theta_{\mathrm{o}} b_{2 n+1}^{\dagger} a_{2 n+2}^{\dagger}\right)|0\rangle
\end{gathered}
$$

$$
\begin{aligned}
& \text { AKLT }:\left|\Psi_{0}\right\rangle=|\cdots \bigodot \bigodot \odot\rangle, \quad \theta_{\mathrm{e}}=\frac{\pi}{4}, \quad \theta_{\mathrm{o}}=\frac{\pi}{4} \\
& D=\infty:\left|\Psi_{0}\right\rangle=|\cdots 00000 \cdots\rangle, \quad \theta_{\mathrm{e}}=0, \quad \theta_{\mathrm{o}}=0 \\
& D=-\infty:\left|\Psi_{0}\right\rangle=|\cdots+-+-\cdots\rangle, \quad \theta_{\mathrm{e}}=0, \quad \theta_{\mathrm{o}}=\frac{\pi}{2}
\end{aligned}
$$

$S=2$ AKLT chain : adiabatically connected to large- D state not topologically protected! Pollmann et al. (2012)

Continuum field theories of quantum magnetism

Using spin coherent state path integral, one can derive :
Quantum ferromagnet (naive continuum limit of CSPI) : Read and Sachdev (1995)

$$
\mathcal{S}=\int d^{d} x \int d t\left[\underset{\substack{\text { magnetization } \\ \text { density }}}{\left[-\hbar M_{0}\right.} \underset{\nabla}{\boldsymbol{\nabla}} \mathbf{A}(\hat{\boldsymbol{\Omega}}) \cdot \frac{\partial \hat{\boldsymbol{\Omega}}}{\partial t}-\frac{1}{2} \rho_{\substack{\text { spin } \\ \text { stiffness }}}|\nabla \hat{\boldsymbol{\Omega}}|^{2}\right]
$$

Quantum antiferromagnet (requires some work): $\begin{gathered}\text { Haldane (1983, 1988) } \\ \text { Affleck (1985) }\end{gathered}$

Goldstone's theorem precludes SSB for $(\mathrm{d}+1) \leq 2$, but expect mass gap with exponential decay of correlations. How to understand $S=1 / 2$ chain?

Berry phase in $d=1$: spin liquid vs. Haldane gap

$$
\begin{aligned}
\mathcal{S}_{\text {Berry }} / \hbar & =-S \int d t \sum_{j}(-1)^{j} \omega\left[\hat{\boldsymbol{n}}_{j}\right] \\
& =\frac{1}{2} S \int d x \int d t \hat{\boldsymbol{n}} \cdot \frac{\partial \hat{\boldsymbol{n}}}{\partial t} \times \frac{\partial \hat{\boldsymbol{n}}}{\partial x}=2 \pi S Q_{t x}
\end{aligned}
$$

$Q_{t x}$ is an integer topological invariant (Pontrjagin number)

$$
e^{i \mathcal{S}_{\text {Berry }} / \hbar}=e^{2 \pi i S Q_{t x}}
$$

2 S even : topological term is invisible conventional NLoM Haldane gap, exponential decay of correlations all Heisenberg chains with $2 S$ even qualitatively the same

2 odd : destructive interference between topological sectors spin liquid behavior, "quasi-LRO", power law decays all Heisenberg chains with 2 S odd qualitatively the same

Quantum AFM in $d>2$: Néel order vs. quantum disorder

Euclidean action functional of the Néel field :

$$
\frac{1}{\hbar} \mathcal{S}_{\mathrm{E}}=\frac{1}{2 g} \int d^{d} x \int_{0}^{L_{\tau}} d x_{\substack{0 \\ x^{0}=c \tau}}\left(\partial_{\mu} n^{a}\right)^{2}
$$

Chakravarty, Halperin, Nelson (1988) DPA and Auerbach (1988)
Read and Sachdev (1989)
Sachdev (1999)
quantum parameter:

$$
g=\hbar c / \rho_{\mathrm{s}}
$$

Berry phase term cancels for smooth Néel field configurations.
QM in d dimensions \leftrightarrow statistical mechanics in $(d+1)$ dimensions

$T=0$: $(d+1)$-dimensional NLoM $\quad g<g_{c}$: Néel order with "temperature" g.

On all $d=2$ Bravais lattices, even for "best case" $S=1 / 2$, the nearest neighbor Heisenberg antiferromagnet possesses Néel order at $T=0$.

What do we need to get a quantum disordered ground state?

- Extension to different algebras of quantum spin:

$$
\operatorname{SU}(N), \operatorname{Sp}(N), \ldots
$$

- Reduction to space of local singlet coverings:
- Further neighbor couplings, frustrated lattices
geometrical frustration
depleted lattices

Misguich and Lhuillier (2003)
Moessner (2001)
e.g. $\mathrm{CaVa}_{4} \mathrm{O}_{9}, \mathrm{SrCu}_{2}\left(\mathrm{BO}_{3}\right)_{2}$

Taniguchi et al., (1995)
Kageyama et al. (1999)

- Models with gauge symmetries:

Large N extensions of $\mathrm{SU}(2)$

Schwinger representation of $\mathrm{SU}(2)$:

$$
\begin{array}{ll}
S^{+}=a^{\dagger} b & S^{z}=\frac{1}{2}\left(n_{a}-n_{b}\right) \\
S^{-}=a b^{\dagger} & 2 S=n_{a}+n_{b}
\end{array}
$$

Heisenberg interaction:

$$
\begin{gathered}
\boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j}=S^{2}-\frac{1}{2} \mathcal{A}_{i j}^{\dagger} \mathcal{A}_{i j} \\
\mathcal{A}_{i j}=a_{i} b_{j}-b_{i} a_{j} \\
\downarrow \text { copies } \\
\mathcal{A}_{i j}=\sum_{m=1}^{N}\left(a_{i m} b_{j m}-b_{i m} a_{j m}\right) \\
n_{\mathrm{c}}=\sum_{m=1}^{N}\left(a_{i m}^{\dagger} a_{i m}+b_{i m}^{\dagger} b_{i m}\right) \equiv \kappa N
\end{gathered}
$$

$n_{b} \quad$ schwinger bosons for $\operatorname{SU}(2)$

which is the $\operatorname{Sp}(N)$ extension

$$
\mathrm{SU}(2) \cong \mathrm{Sp}(1) \quad \Rightarrow \quad \kappa=S
$$

Original large- N model (AA 1988, RS 1989) :

$$
\begin{aligned}
& \stackrel{\mathrm{A}}{\square} \times \stackrel{\mathrm{B}}{日^{\prime}}=\bullet \oplus \square \quad \text { bipartite lattice : } \\
& \text { fundamental } \times \text { antifundamental } \\
& \text { yields singlet + adjoint } \\
& \text { representations }
\end{aligned}
$$

$\mathcal{A}_{i j}=\sum_{\mu=1}^{N} b_{i \mu} b_{j \mu}, \quad n_{\mathrm{c}}=\sum_{\mu=1}^{N} b_{i \mu}^{\dagger} b_{i \mu} \equiv \kappa N$

$$
H=-\frac{1}{2 N} \sum_{i<j} J_{i j} \mathcal{A}_{i j}^{\dagger} \mathcal{A}_{i j}
$$

Harada, Kawashima, and Troyer (2003):
$\mathrm{SU}(N)$ antiferromagnet with $n_{\mathrm{c}}=1$ (square lattice) via quantum Monte Carlo method.
$N \leq 4$: Néel order
$N \geq 5$: quantum disorder
(columnar valence bond crystal)

Spin liquids

1992 : surprisingly difficult to avoid magnetic order via frustration
2017 : embarrassment of riches! several experimental candidates! trivial to elicit model spin liquids via Kitaev constructions

What is a spin liquid? No precise definition, but general desiderata:

- quantum disordered ground state
- no broken lattice translational symmetries
- half-odd integer spin per unit cell

Three broad classes :
topological : gapped, local singlets, short-ranged correlations FQHE, $J_{1,2,3}$ kagome, triangular lattice QDM, toric code
$\mathrm{U}(1)$ gapless : gapless charged fermions + gauge field - Heisenberg kagome? or gapped charges + gapless photon - quantum spin ice
\mathbb{Z}_{2} gapless : gapless Majorana fermions, local spin correlations Kitaev honeycomb and generalizations

Kagome lattice antiferromagnet

Classical kagome HAFM has infinite number of soft modes Kagome QAFM @ $T=0$: nonmagnetic, $\left\langle S_{0} \cdot S_{\mathrm{r}}\right\rangle$ short-ranged Number of low-lying singlet excitations $\sim \exp (0.14 \cdot N)$ Early experiments on quasi-kagome QAFM showed:

kagome = "basket weave" No long-ranged magnetic order down to 50 mK Heat capacity $C_{V} \propto T^{2}$: gapless excitations <0.1 Weak dependence of C_{V} on field H (singlets!) $S=1 / 2$ material : herbertsmithite $\mathrm{ZnCu}_{3}(\mathrm{OH})_{6} \mathrm{Cl}_{2}$

Ramirez et al. (2000) : SrCr $_{9 p} \mathrm{Ga}_{12-9 p} \mathrm{O}_{19}$

Kitaev's models

Toric code (2003):

$$
\mathcal{H}=-J_{\mathrm{E}} \sum_{+} \sigma_{a}^{z} \sigma_{b}^{z} \sigma_{c}^{z} \sigma_{d}^{z}-J_{\mathrm{M}} \sum_{\square} \sigma_{i}^{x} \sigma_{j}^{x} \sigma_{k}^{x} \sigma_{l}^{x}
$$

Topologically degenerate ground state ($4 x$ on torus) with gap to electric (e) and magnetic (m) excitations that have nontrivial mutual statistics and form composite (e-m) fermions.

Honeycomb lattice model (2006):

$$
\mathcal{H}=J_{1} \sum_{\langle i j\rangle}^{\prime} \sigma_{i}^{x} \sigma_{j}^{x}+J_{2} \sum_{\langle i j\rangle}^{\prime} \sigma_{i}^{y} \sigma_{j}^{y}+J_{3} \sum_{\langle i j\rangle}^{\prime} \sigma_{i}^{z} \sigma_{j}^{z}
$$

