Contents

Contents i
List of Figures i
List of Tables i
17 Quadratic Hamiltonians 1
17.1 Bosonic Models 1
17.1.1 Bogoliubov equations 2
17.1.2 Ground state 3
17.1.3 A final note on the boson problem 4
17.2 Fermionic Models 5
17.2.1 Ground state 7
17.3 Majorana Fermion Models 7
17.3.1 Majorana chain 8
17.4 Jordan-Wigner Transformation 11
17.4.1 Anisotropic XY model 12
17.4.2 Majorana representation of the JW transformation 15

List of Figures

List of Tables

Chapter 17

Quadratic Hamiltonians

17.1 Bosonic Models

The general noninteracting bosonic Hamiltonian is written

$$
\begin{equation*}
\hat{H}=\frac{1}{2} \Psi_{r}^{\dagger} \mathcal{H}_{r s} \Psi_{s} \tag{17.1}
\end{equation*}
$$

where Ψ is a rank- $2 N$ column vector whose Hermitian conjugate is the row vector

$$
\begin{equation*}
\Psi^{\dagger}=\left(\psi_{1}^{\dagger}, \cdots, \psi_{N}^{\dagger}, \psi_{1}, \cdots, \psi_{N}\right) \tag{17.2}
\end{equation*}
$$

Since $\left[\psi_{i}, \psi_{j}^{\dagger}\right]=\delta_{i j}$, we have

$$
\left[\Psi_{r}, \Psi_{s}^{\dagger}\right]=\Sigma_{r s} \quad, \quad \Sigma=\left(\begin{array}{cc}
\mathbb{I}_{N \times N} & 0 \tag{17.3}\\
0 & -\mathbb{I}_{N \times N}
\end{array}\right)
$$

with \mathbb{I} the identity matrix. Note that the indices r and s run from 1 to $2 N$, while i and j run from 1 to N. The matrix \mathcal{H} is of the form

$$
\mathcal{H}=\left(\begin{array}{cc}
A & B \tag{17.4}\\
B^{*} & A^{*}
\end{array}\right)
$$

where $A=A^{\dagger}$ is Hermitian and $B=B^{\mathrm{t}}$ is symmetric.
The Hamiltonian is brought to diagonal form by a canonical transformation:

$$
\binom{\psi}{\psi^{\dagger}}=\overbrace{\left(\begin{array}{cc}
U & V^{*} \tag{17.5}\\
V & U^{*}
\end{array}\right)}^{\mathcal{S}}\binom{\phi}{\phi^{\dagger}}
$$

which is to say $\Psi=\mathcal{S} \Phi$, or in component form

$$
\begin{align*}
\psi_{i} & =U_{i a} \phi_{a}+V_{i a}^{*} \phi_{a}^{\dagger} \\
\psi_{i}^{\dagger} & =V_{i a} \phi_{a}+U_{i a}^{*} \phi_{a}^{\dagger} \tag{17.6}
\end{align*}
$$

where a, like i, runs from 1 to N. In order that the transformation be canonical, we must preserve the commutation relations, meaning $\left[\phi_{a}, \phi_{b}^{\dagger}\right]=\delta_{a b}$, i.e.

$$
\begin{equation*}
\left[\Phi_{r}, \Phi_{s}^{\dagger}\right]=\Sigma_{r s} \tag{17.7}
\end{equation*}
$$

This then requires

$$
\begin{equation*}
\mathcal{S} \Sigma \mathcal{S}^{\dagger}=\mathcal{S}^{\dagger} \Sigma \mathcal{S}=\Sigma \tag{17.8}
\end{equation*}
$$

which entails

$$
\begin{align*}
U^{\dagger} U-V^{\dagger} V & =\mathbb{I} & U^{\mathrm{t}} V-V^{\mathrm{t}} U & =0 \tag{17.9}\\
U U^{\dagger}-V^{*} V^{\mathrm{t}} & =\mathbb{I} & U^{*} V^{\mathrm{t}}-V U^{\dagger} & =0 \tag{17.10}
\end{align*} .
$$

Note that $\Sigma^{2}=\mathcal{I}$, where $\mathcal{I}=\left(\begin{array}{ll}\mathbb{I} & 0 \\ 0 & \mathbb{I}\end{array}\right)$, hence

$$
\mathcal{S}^{-1}=\Sigma \mathcal{S}^{\dagger} \Sigma=\left(\begin{array}{cc}
U^{\dagger} & -V^{\dagger} \tag{17.11}\\
-V^{\mathrm{t}} & U^{\mathrm{t}}
\end{array}\right)
$$

Thus, the inverse relation between the Ψ and Φ operators is $\Phi=\mathcal{S}^{-1} \Psi=\Sigma \mathcal{S}^{\dagger} \Sigma \Psi$, or

$$
\begin{align*}
& \phi_{a}=U_{i a}^{*} \psi_{i}-V_{i a}^{*} \psi_{i}^{\dagger} \tag{17.12}\\
& \phi_{a}^{\dagger}=-V_{i a} \psi_{i}+U_{i a} \psi_{i}^{\dagger},
\end{align*}
$$

17.1.1 Bogoliubov equations

We are now in the position to demand

$$
\mathcal{S}^{\dagger} \mathcal{H S}=\mathcal{E}=\left(\begin{array}{ll}
E & 0 \tag{17.13}\\
0 & E
\end{array}\right)
$$

where E is a diagonal $N \times N$ matrix. Thus,

$$
\begin{equation*}
\mathcal{H} \mathcal{S}=\mathcal{S}^{\dagger-1} \mathcal{E}=\Sigma \mathcal{S} \Sigma \mathcal{E} \tag{17.14}
\end{equation*}
$$

which is to say

$$
\left(\begin{array}{cc}
A & B \tag{17.15}\\
B^{*} & A
\end{array}\right)\left(\begin{array}{cc}
U & V^{*} \\
V & U^{*}
\end{array}\right)=\left(\begin{array}{cc}
U & -V^{*} \\
-V & U^{*}
\end{array}\right)\left(\begin{array}{cc}
E & 0 \\
0 & E
\end{array}\right)
$$

If the bosonic system is stable, each of the eigenvalues E_{a} is nonnegative. In component form, this yields the Bogoliubov equations,

$$
\begin{align*}
& A_{i j} U_{j a}+B_{i j} V_{j a}=+U_{i a} E_{a} \\
& B_{i j}^{*} U_{j a}+A_{i j}^{*} V_{j a}=-V_{i a} E_{a} \tag{17.16}
\end{align*}
$$

with no implied sum on a on either RHS. The Hamiltonian is then

$$
\begin{equation*}
\hat{H}=\sum_{a} E_{a}\left(\phi_{a}^{\dagger} \phi_{a}+\frac{1}{2}\right) \tag{17.17}
\end{equation*}
$$

At temperature T, we have

$$
\begin{equation*}
\left\langle\phi_{a}^{\dagger} \phi_{b}\right\rangle=n\left(E_{a}\right) \delta_{a b} \tag{17.18}
\end{equation*}
$$

where

$$
\begin{equation*}
n(E)=\frac{1}{\exp \left(E / k_{\mathrm{B}} T\right)-1} \tag{17.19}
\end{equation*}
$$

is the Bose distribution. The anomalous correlators all vanish, e.g. $\left\langle\phi_{a} \phi_{b}\right\rangle=0$. The finite temperature two-point correlation functions are then

$$
\begin{align*}
\left\langle\psi_{i}^{\dagger} \psi_{j}\right\rangle & =\sum_{a}\left\{n_{a} U_{i a}^{*} U_{j a}+\left(1+n_{a}\right) V_{i a} V_{j a}^{*}\right\} \tag{17.20}\\
\left\langle\psi_{i} \psi_{j}\right\rangle & =\sum_{a}\left\{n_{a} V_{i a}^{*} U_{j a}+\left(1+n_{a}\right) U_{i a} V_{j a}^{*}\right\} \tag{17.21}
\end{align*}
$$

where $n_{a} \equiv n\left(E_{a}\right)$.

17.1.2 Ground state

We have found

$$
\begin{equation*}
\Phi=\mathcal{S}^{-1} \Psi=\Sigma \mathcal{S}^{\dagger} \Sigma \Psi \tag{17.22}
\end{equation*}
$$

hence

$$
\begin{align*}
\phi_{a} & =U_{a i}^{\dagger} \psi_{i}-V_{a i}^{\dagger} \psi_{i}^{\dagger} \\
& =\psi_{i} U_{i a}^{*}-\psi_{i}^{\dagger} V_{i a}^{*} . \tag{17.23}
\end{align*}
$$

We assume the following Bogoliubov form for the ground state of \hat{H} :

$$
\begin{equation*}
|\mathrm{G}\rangle=C \exp \left(\frac{1}{2} Q_{i j} \psi_{i}^{\dagger} \psi_{j}^{\dagger}\right)|0\rangle \tag{17.24}
\end{equation*}
$$

where C is a normalization constant, Q is a symmetric matrix, and $|0\rangle$ is the vacuum for the ψ bosons: $\psi_{i}|0\rangle=0$. We now demand that $|\mathrm{G}\rangle$ be the vacuum for the ϕ bosons: $\phi_{a}|\mathrm{G}\rangle \equiv 0$. This means

$$
\begin{equation*}
\phi_{a} e^{\hat{Q}}|0\rangle=e^{\hat{Q}}\left(e^{-\hat{Q}} \phi_{a} e^{\hat{Q}}\right)|0\rangle, \tag{17.25}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{Q} \equiv \frac{1}{2} Q_{i j} \psi_{i}^{\dagger} \psi_{j}^{\dagger} \tag{17.26}
\end{equation*}
$$

We now define

$$
\begin{equation*}
\psi_{i}(x) \equiv e^{-x \hat{Q}} \psi_{i} e^{x \hat{Q}} \tag{17.27}
\end{equation*}
$$

and we find

$$
\begin{equation*}
\frac{d \psi_{i}(x)}{d x}=e^{-x \hat{Q}}\left[\psi_{i}, \hat{Q}\right] e^{x \hat{Q}}=Q_{i j} \psi_{j}^{\dagger} \tag{17.28}
\end{equation*}
$$

and integrating ${ }^{1}$ we obtain

$$
\begin{equation*}
\psi_{i}(x) \equiv e^{-x \hat{Q}} \psi_{i} e^{x \hat{Q}}=\psi_{i}(x)+x Q_{i j} \psi_{j}^{\dagger} \tag{17.29}
\end{equation*}
$$

We may now write

$$
\begin{equation*}
e^{-\hat{Q}} \phi_{a} e^{\hat{Q}}=U_{a i}^{\dagger} \psi_{i}+\left(U_{a i}^{\dagger} Q_{i j}-V_{a j}^{\dagger}\right) \psi_{j}^{\dagger} \tag{17.30}
\end{equation*}
$$

and we demand that the coefficient of ψ_{j}^{\dagger} vanish for all a, which yields

$$
\begin{equation*}
Q=\left(U^{\dagger}\right)^{-1} V^{\dagger} \tag{17.31}
\end{equation*}
$$

or, equivalently, $Q^{\dagger}=V U^{-1}$. Note that $Q^{\mathrm{t}}=V^{*}\left(U^{*}\right)^{-1}=Q$ since $U^{\dagger} V^{*}=V^{\dagger} U^{*}$.

17.1.3 A final note on the boson problem

Note that $\mathcal{S}^{\dagger} \mathcal{H S}$ has the same eigenvalues as \mathcal{H} only if $\mathcal{S}^{\dagger}=\mathcal{S}^{-1}$, i.e. only if \mathcal{S} is Hermitian. We have $\mathcal{S}^{\dagger}=\Sigma \mathcal{S}^{-1} \Sigma$ and therefore

$$
\begin{equation*}
\mathcal{S}^{\dagger} \mathcal{H} \mathcal{S}=\Sigma \mathcal{S}^{-1} \Sigma \mathcal{H} \mathcal{S} \tag{17.32}
\end{equation*}
$$

Now

$$
\Sigma \mathcal{H}=\left(\begin{array}{cc}
A & B \tag{17.33}\\
-B^{*} & -A^{*}
\end{array}\right)
$$

Consider the characteristic polynomial $P(E)=\operatorname{det}(E-\Sigma \mathcal{H})$. Since $\operatorname{det}(M)=\operatorname{det}\left(M^{\mathrm{t}}\right)$ for any matrix M, we consider

$$
(\Sigma \mathcal{H})^{\mathrm{t}}=\left(\begin{array}{ll}
A^{\mathrm{t}} & -B^{\dagger} \tag{17.34}\\
B^{\mathrm{t}} & -A^{\dagger}
\end{array}\right)=\left(\begin{array}{cc}
A^{*} & -B^{*} \\
B & -A
\end{array}\right)=-\mathcal{J}^{-1}(\Sigma \mathcal{H}) \mathcal{J}
$$

where

$$
\mathcal{J}=\left(\begin{array}{cc}
0 & \mathbb{I} \tag{17.35}\\
-\mathbb{I} & 0
\end{array}\right)
$$

[^0]and $\mathcal{J}^{-1}=-\mathcal{J}$, i.e. $\mathcal{J}^{2}=-\mathcal{I}$. But then we have
\[

$$
\begin{equation*}
P(E)=\operatorname{det}(E-\Sigma \mathcal{H})=\operatorname{det}\left(E+\mathcal{J}^{-1} \Sigma \mathcal{H} \mathcal{J}\right)=\operatorname{det}(E+\Sigma \mathcal{H})=P(-E) \tag{17.36}
\end{equation*}
$$

\]

We conclude that the eigenvalues of $\Sigma \mathcal{H}$ come in $(+E,-E)$ pairs. To obtain the eigenenergies for the bosonic Hamiltonian \hat{H}, however, as per eqn. 17.32, we must multiply $\mathcal{S}^{-1} \Sigma \mathcal{H} \mathcal{S}$ on the left by Σ, which reverses the sign of the negative eigenvalues, resulting in a nonnegative definite spectrum of bosonic eigenoperators (for stable bosonic systems).

17.2 Fermionic Models

The general noninteracting fermionic Hamiltonian is written

$$
\begin{equation*}
\hat{H}=\frac{1}{2} \Psi_{r}^{\dagger} \mathcal{H}_{r s} \Psi_{s} \tag{17.37}
\end{equation*}
$$

where once again Ψ is a rank- $2 N$ column vector whose Hermitian conjugate is the row vector

$$
\begin{equation*}
\Psi^{\dagger}=\left(\psi_{1}^{\dagger}, \cdots, \psi_{N}^{\dagger}, \psi_{1}, \cdots, \psi_{N}\right) \tag{17.38}
\end{equation*}
$$

In contrast to the bosonic case, we now have $\left\{\psi_{i}, \psi_{j}^{\dagger}\right\}=\delta_{i j}$ with the anticommutator, hence

$$
\begin{equation*}
\left\{\Psi_{r}, \Psi_{s}^{\dagger}\right\}=\delta_{r s} \tag{17.39}
\end{equation*}
$$

The matrix \mathcal{H} is of the form

$$
\mathcal{H}=\left(\begin{array}{cc}
A & B \tag{17.40}\\
-B^{*} & -A^{*}
\end{array}\right)
$$

where $A=A^{\dagger}$ is Hermitian and $B=-B^{\mathrm{t}}$ is antisymmetric. Since this is of the same form as eqn. 17.33, we conclude that the eigenvalues of \mathcal{H} come in $(+E,-E)$ pairs ${ }^{2}$.
As with the bosonic case, the Hamiltonian is brought to diagonal form by a canonical transformation:

$$
\binom{\psi}{\psi^{\dagger}}=\overbrace{\left(\begin{array}{cc}
U & V^{*} \tag{17.41}\\
V & U^{*}
\end{array}\right)}^{\mathcal{S}}\binom{\phi}{\phi^{\dagger}}
$$

which is to say $\Psi=\mathcal{S} \Phi$, or in component form

$$
\begin{align*}
\psi_{i} & =U_{i a} \phi_{a}+V_{i a}^{*} \phi_{a}^{\dagger} \\
\psi_{i}^{\dagger} & =V_{i a} \phi_{a}+U_{i a}^{*} \phi_{a}^{\dagger} \tag{17.42}
\end{align*}
$$

${ }^{2}$ This is true even though B in eqn. 17.33 is symmetric rather than antisymmetric. In proving the evenness of the characteristic polynomial $P(E)=P(-E)$, we did not appeal to the symmetry or antisymmetry of B.

In order that the transformation be canonical, we must preserve the anticommutation relations, i.e. $\left\{\phi_{a}, \phi_{b}^{\dagger}\right\}=\delta_{a b}$, meaning

$$
\begin{equation*}
\left\{\Phi_{r}, \Phi_{s}^{\dagger}\right\}=\delta_{r s} \tag{17.43}
\end{equation*}
$$

which requires that \mathcal{S} is unitary:

$$
\begin{equation*}
\mathcal{S}^{\dagger} \mathcal{S}=\mathcal{S} \mathcal{S}^{\dagger}=\mathcal{I} \tag{17.44}
\end{equation*}
$$

where \mathcal{I} is again the identity matrix of rank $2 N$. Thus,

$$
\begin{align*}
U^{\dagger} U+V^{\dagger} V & =\mathbb{I} & U^{\mathrm{t}} V+V^{\mathrm{t}} U & =0 \tag{17.45}\\
U U^{\dagger}+V^{*} V^{\mathrm{t}} & =\mathbb{I} & U^{*} V^{\mathrm{t}}+V U^{\dagger} & =0 \tag{17.46}
\end{align*}
$$

The inverse relation between the operators follows from $\Phi=\mathcal{S}^{-1} \Psi=\mathcal{S}^{\dagger} \Psi$:

$$
\begin{align*}
& \phi_{a}=U_{i a}^{*} \psi_{i}+V_{i a}^{*} \psi_{i}^{\dagger} \tag{17.47}\\
& \phi_{a}^{\dagger}=V_{i a} \psi_{i}+U_{i a} \psi_{i}^{\dagger}
\end{align*}
$$

The transformed Hamiltonian matrix is

$$
\mathcal{S}^{\dagger} \mathcal{H} \mathcal{S}=\mathcal{E} \equiv\left(\begin{array}{cc}
E & 0 \tag{17.48}\\
0 & -E
\end{array}\right)
$$

Without loss of generality, we may take E to be a diagonal matrix with nonnegative entries. In component notation, the eigenvalue equations are

$$
\begin{align*}
A_{i j} U_{j a}+B_{i j} V_{j a} & =U_{i a} E_{a} \\
-B_{i j}^{*} U_{j a}-A_{i j}^{*} V_{j a} & =V_{i a} E_{a} \tag{17.49}
\end{align*}
$$

The Hamiltonian then takes the form

$$
\begin{equation*}
\hat{H}=\sum_{a} E_{a}\left(\phi_{a}^{\dagger} \phi_{a}-\frac{1}{2}\right) \tag{17.50}
\end{equation*}
$$

At temperature T, we have

$$
\begin{equation*}
\left\langle\phi_{a}^{\dagger} \phi_{b}\right\rangle=f\left(E_{a}\right) \delta_{a b} \tag{17.51}
\end{equation*}
$$

where

$$
\begin{equation*}
f(E)=\frac{1}{\exp \left(E / k_{\mathrm{B}} T\right)+1} \tag{17.52}
\end{equation*}
$$

is the Fermi distribution. As for bosons, the anomalous correlators all vanish: $\left\langle\phi_{a} \phi_{b}\right\rangle=0$. The finite temperature two-point correlation functions are then

$$
\begin{align*}
& \left\langle\psi_{i}^{\dagger} \psi_{j}\right\rangle=\sum_{a}\left\{f_{a} U_{i a}^{*} U_{j a}+\left(1-f_{a}\right) V_{i a} V_{j a}^{*}\right\} \tag{17.53}\\
& \left\langle\psi_{i} \psi_{j}\right\rangle=\sum_{a}\left\{f_{a} V_{i a}^{*} U_{j a}+\left(1-f_{a}\right) U_{i a} V_{j a}^{*}\right\}
\end{align*}
$$

where $f_{a}=f\left(E_{a}\right)$.

17.2.1 Ground state

We write

$$
\begin{equation*}
|\mathrm{G}\rangle=C \exp \left(\frac{1}{2} Q_{i j} \psi_{i}^{\dagger} \psi_{j}^{\dagger}\right)|0\rangle \tag{17.54}
\end{equation*}
$$

with $Q=-Q^{\mathrm{t}}$, and we demand, as in the bosonic case, that $\phi_{a}|\mathrm{G}\rangle \equiv 0$. Again we define $\hat{Q}=\frac{1}{2} Q_{i j} \psi_{i}^{\dagger} \psi_{j}^{\dagger}$, and

$$
\begin{equation*}
\psi_{i}(x)=e^{-x \hat{Q}} \psi_{i} e^{x \hat{Q}} \tag{17.55}
\end{equation*}
$$

We then have

$$
\begin{equation*}
\frac{d \psi_{i}(x)}{d x}=e^{-x \hat{Q}}\left[\psi_{i}, \hat{Q}\right] e^{x \hat{Q}}=Q_{i j} \psi_{j}^{\dagger} \quad \Rightarrow \quad \psi_{i}(x)=\psi_{i}+x Q_{i j} \psi_{j}^{\dagger} \tag{17.56}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
e^{-\hat{Q}} \phi_{a} e^{\hat{Q}}=U_{a i}^{\dagger} \psi_{i}+\left(V_{a j}^{\dagger}+U_{a i}^{\dagger} Q_{i j}\right) \psi_{j}^{\dagger}, \tag{17.57}
\end{equation*}
$$

from which we obtain

$$
\begin{equation*}
Q=-\left(U^{\dagger}\right)^{-1} V^{\dagger} \tag{17.58}
\end{equation*}
$$

Since $U^{\dagger} V^{*}+V^{\dagger} U^{*}=0$, we recover $Q=-Q^{\mathrm{t}}$.

17.3 Majorana Fermion Models

Majorana fermions satisfy the anticommutation relations $\left\{\theta_{i}, \theta_{j}\right\}=2 \delta_{i j}$. Thus, $\left(\theta_{i}\right)^{2}=1$ for every i. We also have $\theta_{i}^{\dagger}=\theta_{i}$ and for this reason they are sometimes called 'real' fermions. If c is the annihilator for a Dirac particle, with $\left\{c, c^{\dagger}\right\}=1$, we may define Majorana fermions η and $\widetilde{\eta}$ as follows:

$$
\begin{align*}
\eta & =c+c^{\dagger} & c & =\frac{1}{2}\left(\eta-i \eta^{\prime}\right) \tag{17.59}\\
\widetilde{\eta} & =i\left(c-c^{\dagger}\right) & c^{\dagger} & =\frac{1}{2}(\eta+i \widetilde{\eta}) .
\end{align*}
$$

The most general noninteracting Majorana Hamiltonian is of the form

$$
\begin{equation*}
\hat{H}=\frac{i}{4} M_{i j} \theta_{i} \theta_{j} \tag{17.61}
\end{equation*}
$$

where $M=-M^{\mathrm{t}}=M^{*}$ is a real antisymmetric matrix of even dimension $2 N$. This is brought to canonical form by a real orthogonal transformation,

$$
\begin{equation*}
\theta_{i}=\mathcal{R}_{i a} \xi_{a} \tag{17.62}
\end{equation*}
$$

where $\mathcal{R}^{\mathrm{t}} \mathcal{R}=\mathcal{I}$, and where $\left\{\xi_{a}, \xi_{b}\right\}=2 \delta_{a b}$. We have

$$
\mathcal{R}^{\mathrm{t}} \mathcal{M} \mathcal{R}=E \otimes i \sigma^{y}=\left(\begin{array}{ccccc}
0 & -E_{1} & 0 & 0 & \cdots \tag{17.63}\\
E_{1} & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & -E_{2} & \cdots \\
0 & 0 & E_{2} & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Thus,

$$
\begin{equation*}
\hat{H}=-\frac{i}{2} \sum_{a=1}^{N} E_{a} \xi_{2 a-1} \xi_{2 a}=\sum_{a} E_{a}\left(c_{a}^{\dagger} c_{a}-\frac{1}{2}\right) \tag{17.64}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{a} \equiv \frac{1}{2}\left(\xi_{2 a-1}-i \xi_{2 a}\right) \quad, \quad c_{a}^{\dagger} \equiv \frac{1}{2}\left(\xi_{2 a-1}+i \xi_{2 a}\right) \tag{17.65}
\end{equation*}
$$

17.3.1 Majorana chain

Consider the Hamiltonian

$$
\begin{equation*}
\hat{H}=-i \sum_{n=1}^{N} \sigma_{n} \alpha_{n} \alpha_{n+1} \tag{17.66}
\end{equation*}
$$

where $\sigma_{n}= \pm 1$ is a \mathbb{Z}_{2} gauge field and $\left\{\alpha_{m}, \alpha_{n}\right\}=2 \delta_{m n}$ is the Majorana fermion anticommutator. Periodic boundary conditions are assumed, i.e. $\alpha_{N+1}=\alpha_{1}$. We now make a gauge transformation to a new set of Majorana fermions,

$$
\begin{equation*}
\theta_{1} \equiv \alpha_{1} \quad, \quad \theta_{2} \equiv \sigma_{1} \alpha_{2} \quad, \quad \theta_{3} \equiv \sigma_{1} \sigma_{2} \alpha_{3} \quad, \quad \ldots \quad, \quad \theta_{N} \equiv \sigma_{1} \sigma_{2} \cdots \sigma_{N-1} \alpha_{N} \tag{17.67}
\end{equation*}
$$

The Hamiltonian may now be written as

$$
\begin{equation*}
\hat{H}=-i \sum_{n=1}^{N} \theta_{n} \theta_{n+1} \tag{17.68}
\end{equation*}
$$

where $\theta_{N+1}=\sigma \theta_{1}$, with $\sigma=\prod_{j=1}^{N} \sigma_{j}$. So the boundary conditions on the θ Majoranas are either periodic $(\sigma=+1)$ or antiperiodic $(\sigma=-1)$. We now switch to crystal momentum space, defining

$$
\begin{equation*}
\hat{\theta}_{k}=\frac{1}{\sqrt{N}} \sum_{n=1}^{N} e^{-i k n} \theta_{n} \quad, \quad \theta_{n}=\frac{1}{\sqrt{N}} \sum_{k} e^{i k n} \hat{\theta}_{k} \tag{17.69}
\end{equation*}
$$

The k-values are quantized according to $e^{i k N}=\sigma$. The anticommutators are

$$
\begin{equation*}
\left\{\theta_{m}, \theta_{n}\right\}=2 \delta_{m-n, 0 \bmod N} \quad, \quad\left\{\hat{\theta}_{k}, \hat{\theta}_{p}\right\}=2 \delta_{k+p, 0 \bmod 2 \pi} \tag{17.70}
\end{equation*}
$$

There are four cases to consider:
Case I : $\sigma=+1, N$ even. We have $e^{i k N}=+1$, and the N allowed k values are

$$
\begin{equation*}
k \in \pm \frac{2 \pi}{N} \times\left\{1, \ldots, \frac{1}{2} N-1\right\} \quad, \quad k=0 \quad, \quad k=\pi . \tag{17.71}
\end{equation*}
$$

Note that the allowed crystal momenta all occur in $\{+k,-k\}$ pairs, with the exception of $k=0$ and $k=\pi$, which are unpaired.
Case II : $\sigma=+1, N$ odd. We have $e^{i k N}=+1$, and the N allowed k values are

$$
\begin{equation*}
k \in \pm \frac{2 \pi}{N} \times\left\{1, \ldots, \frac{1}{2}(N-1)\right\} \quad, \quad k=0 \tag{17.72}
\end{equation*}
$$

Only $k=0$ is unpaired.
Case III : $\sigma=1, N$ even. We have $e^{i k N}=-1$, and the N allowed k values are

$$
\begin{equation*}
k \in \pm \frac{2 \pi}{N} \times\left\{\frac{1}{2}, \ldots, \frac{1}{2}(N-1)\right\} \tag{17.73}
\end{equation*}
$$

All the crystal momenta are paired.
Case IV : $\sigma=1, N$ odd. We have $e^{i k N}=-1$, and the N allowed k values are

$$
\begin{equation*}
k \in \pm \frac{2 \pi}{N} \times\left\{\frac{1}{2}, \ldots, \frac{1}{2} N-1\right\} \quad, \quad k=\pi \tag{17.74}
\end{equation*}
$$

Only $k=\pi$ is unpaired.
We may now write

$$
\begin{align*}
\hat{H} & =-i \sum_{k} e^{-i k} \hat{\theta}_{k} \hat{\theta}_{-k} \\
& =-i \sum_{k \in(0, \pi)}\left(e^{i k} \hat{\theta}_{-k} \hat{\theta}_{k}+e^{-i k} \hat{\theta}_{k} \hat{\theta}_{-k}\right)-i \sum_{k \in \mathrm{U}} e^{-i k} \hat{\theta}_{k}^{2} \tag{17.75}\\
& =\sum_{k \in(0, \pi)} 2 \sin k \hat{\theta}_{-k} \hat{\theta}_{k}-2 i \sum_{k \in(0, \pi)} e^{-i k}-i \sum_{k \in \mathrm{U}} e^{-i k} .
\end{align*}
$$

where U denotes the set of unpaired (or self-paired) crystal momenta, i.e. the set of k for which $e^{i k}=e^{-i k}$. Note that $\left\{\hat{\theta}_{-k}, \hat{\theta}_{k^{\prime}}\right\}=2 \delta_{k, k^{\prime}}$ and $\hat{\theta}_{-k}=\hat{\theta}_{k}^{\dagger}$, so we may define $\hat{\theta}_{-k} \equiv \sqrt{2} c_{k}^{\dagger}$ and $\hat{\theta}_{k} \equiv \sqrt{2} c_{k}$, where c_{k} is a complex fermion. Thus, we have

$$
\begin{equation*}
\hat{H}=\sum_{k \in(0, \pi)} 4 \sin k c_{k}^{\dagger} c_{k}+E_{0} \tag{17.76}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{0}=-2 i \sum_{k \in(0, \pi)} e^{-i k}-i \sum_{k \in \mathrm{U}} e^{-i k} \tag{17.77}
\end{equation*}
$$

We now proceed to evaluate E_{0} for our four cases.
Case I : Since $\mathrm{U}=\{0, \pi\}$, we have $\sum_{k \in \mathrm{U}} e^{-i k}=0$. For $k \in(0, \pi)$ we may write $k=2 \pi \ell / N$ with $\ell \in\left\{1, \ldots, \frac{1}{2} N-1\right\}$. We then have

$$
\begin{equation*}
E_{0}^{(\mathrm{I})}=-2 i \sum_{\ell=1}^{\frac{N}{2}-1} e^{-2 \pi i \ell / N}=-2 \operatorname{ctn}\left(\frac{\pi}{N}\right) \tag{17.78}
\end{equation*}
$$

Note that we have used the identity

$$
\begin{equation*}
\sum_{\ell=1}^{J-1} x^{\ell}=\frac{x-x^{J}}{1-x} \tag{17.79}
\end{equation*}
$$

Case II : We have $\mathrm{U}=\{0\}$. For the main set $k \in(0, \pi)$ we may write $k=2 \pi \ell / N$ with $\ell \in$ $\left\{1, \ldots, \frac{1}{2}(N-1)\right\}$. We then have

$$
\begin{equation*}
E_{0}^{(\mathrm{II})}=-2 i \sum_{\ell=1}^{\frac{N+1}{2}-1} e^{-2 \pi i \ell / N}-i=-2 i\left(\frac{e^{-2 \pi i / N}+e^{-i \pi / N}}{1-e^{-2 \pi i / N}}\right)-i=-\operatorname{ctn}\left(\frac{\pi}{2 N}\right) \tag{17.80}
\end{equation*}
$$

Case III : We have $\mathrm{U}=\{\emptyset\}$. For $k \in(0, \pi)$ we may write $k=2 \pi \ell / N+\pi / N$ with $\ell \in$ $\left.\overline{\{0, \ldots}, \frac{1}{2} N-1\right\}$. Then

$$
\begin{equation*}
E_{0}^{(\mathrm{III})}=-2 i e^{-i \pi / N} \sum_{\ell=0}^{\frac{N}{2}-1} e^{-2 \pi \ell / N}=-2 \csc \left(\frac{\pi}{N}\right) \tag{17.81}
\end{equation*}
$$

Case IV : We have $\mathrm{U}=\{\pi\}$. For $k \in(0, \pi)$ we may write $k=2 \pi \ell / N-\pi / N$ with $\ell \in$ $\left\{1, \ldots, \frac{1}{2}(N-1)\right\}$. Thus,

$$
\begin{equation*}
E_{0}^{(\mathrm{IV})}=-2 i e^{i \pi / N} \sum_{\ell=1}^{\frac{N+1}{2}-1} e^{-2 \pi i \ell / N}+i=-2 i\left(\frac{e^{-i \pi / N}+1}{1-e^{-2 \pi i / N}}\right)+i=-\operatorname{ctn}\left(\frac{\pi}{2 N}\right) \tag{17.82}
\end{equation*}
$$

Note that in the $N \rightarrow \infty$ limit, in all four cases we have $E_{0}=2 N / \pi+\mathcal{O}(1)$.

17.4 Jordan-Wigner Transformation

The Jordan-Wigner transformation is an equivalence, in one-dimensional lattice systems, between the $S=\frac{1}{2} \operatorname{SU}(2)$ algebra and the algebra of spinless fermions. Explicitly, we have

$$
\begin{align*}
& S_{n}^{+}=\exp \left(i \pi \sum_{j=1}^{n-1} c_{j}^{\dagger} c_{j}\right) c_{n}^{\dagger} \\
& S_{n}^{-}=\exp \left(i \pi \sum_{j=1}^{n-1} c_{j}^{\dagger} c_{j}\right) c_{n} \tag{17.83}\\
& S_{n}^{z}=c_{n}^{\dagger} c_{n}-\frac{1}{2}
\end{align*}
$$

The inverse is then

$$
\begin{align*}
& c_{n}^{\dagger}=\exp \left(i \pi \sum_{j=1}^{n-1}\left(S_{j}^{z}+\frac{1}{2}\right)\right) S_{n}^{+} \\
& c_{n}=\exp \left(i \pi \sum_{j=1}^{n-1}\left(S_{j}^{z}+\frac{1}{2}\right)\right) S_{n}^{-} . \tag{17.84}
\end{align*}
$$

Note that $e^{i \pi c^{\dagger} c}$ has eigenvalues ± 1, and that

$$
\begin{equation*}
c e^{i \pi c^{\dagger} c}=-c \quad, \quad c^{\dagger} e^{i \pi c^{\dagger} c}=c^{\dagger} . \tag{17.85}
\end{equation*}
$$

Taking the Hermitian conjugate,

$$
\begin{equation*}
e^{i \pi c^{\dagger} c} c^{\dagger}=-c^{\dagger} \quad, \quad e^{i \pi c^{\dagger} c} c=c \tag{17.86}
\end{equation*}
$$

The expression

$$
\begin{equation*}
\exp \left(i \pi \sum_{j=1}^{n-1}\left(S_{j}^{z}+\frac{1}{2}\right)\right)=\prod_{j=1}^{n-1} \exp \left(i \pi\left(S_{j}^{z}+\frac{1}{2}\right)\right) \tag{17.87}
\end{equation*}
$$

is known as a Jordan-Wigner string.
The nearest-neighbor bilinear transverse spin interaction terms are

$$
\begin{align*}
& S_{n}^{+} S_{n+1}^{-}=c_{n}^{\dagger} e^{i \pi c_{n}^{\dagger} c_{n}} c_{n+1}=c_{n}^{\dagger} c_{n+1} \\
& S_{n}^{-} S_{n+1}^{+}=c_{n} e^{i \pi c_{n}^{\dagger} c_{n}} c_{n+1}^{\dagger}=c_{n+1}^{\dagger} c_{n} \\
& S_{n}^{+} S_{n+1}^{+}=c_{n}^{\dagger} e^{i \pi c_{n}^{\dagger} c_{n}} c_{n+1}^{\dagger}=c_{n}^{\dagger} c_{n+1}^{\dagger} \tag{17.88}\\
& S_{n}^{-} S_{n+1}^{+}=c_{n} e^{i \pi c_{n}^{\dagger} c_{n}} c_{n+1}=c_{n+1} c_{n} .
\end{align*}
$$

On an N-site ring, however, on the 'last' link, which connects site N back to site 1 , yields

$$
\begin{align*}
S_{N}^{+} S_{1}^{-} & =-e^{i \pi \hat{M}} c_{N}^{\dagger} c_{1} \\
S_{N}^{-} S_{1}^{+} & =-e^{i \pi \hat{M}} c_{1}^{\dagger} c_{N} \tag{17.89}\\
S_{N}^{+} S_{1}^{+} & =-e^{i \pi \hat{M}} c_{N}^{\dagger} c_{1}^{\dagger} \\
S_{N}^{-} S_{1}^{+} & =-e^{i \pi \hat{M}} c_{1} c_{N} .
\end{align*}
$$

where

$$
\begin{equation*}
\hat{M}=\sum_{j=1}^{N} c_{j}^{\dagger} c_{j} \tag{17.90}
\end{equation*}
$$

Note that $e^{i \pi \hat{M}}=(-1)^{\hat{M}}$ must commute with every possible term we could write, since fermion number parity must be conserved.

17.4.1 Anisotropic $X Y$ model

Consider the anisotropic $X Y$ model in a perpendicular field on an N-site chain ${ }^{3}$, with

$$
\begin{align*}
\hat{H}_{\text {chain }} & =\sum_{n=1}^{N-1}\left\{J_{x} S_{n}^{x} S_{n+1}^{x}+J_{y} S_{n}^{y} S_{n+1}^{y}\right\}+h \sum_{n=1}^{N} S_{n}^{z} \tag{17.91}\\
& =\frac{1}{2} \sum_{n=1}^{N-1}\left\{J_{+}\left(c_{n}^{\dagger} c_{n+1}+c_{n+1}^{\dagger} c_{n}\right)+J_{-}\left(c_{n}^{\dagger} c_{n+1}^{\dagger}+c_{n+1} c_{n}\right)\right\}+h \sum_{n=1}^{N}\left(c_{n}^{\dagger} c_{n}-\frac{1}{2}\right)
\end{align*}
$$

where $J_{ \pm}=\frac{1}{2}\left(J_{x} \pm J_{y}\right)$. On an N-site ring, we add the term

$$
\begin{align*}
\Delta H & =J_{x} S_{N}^{x} S_{1}^{x}+J_{y} S_{N}^{y} S_{1}^{y} \\
& =-\frac{1}{2} e^{i \pi \hat{M}}\left\{J_{+}\left(c_{N}^{\dagger} c_{1}+c_{1}^{\dagger} c_{N}\right)+J_{-}\left(c_{N}^{\dagger} c_{1}^{\dagger}+c_{1} c_{N}\right)\right\} . \tag{17.92}
\end{align*}
$$

Since $e^{i \pi \hat{M}}$ commutes with $\hat{H}_{\text {chain }}$ and with all fermion bilinears (hence with ΔH as well), we can specify the eigenvalues as $\eta \equiv e^{i \pi \hat{M}}= \pm 1$, which are the even and odd fermion number sectors, respectively. We then define

$$
c_{1} \equiv \begin{cases}-c_{N+1} & \text { if } \eta=+1 \tag{17.93}\\ +c_{N+1} & \text { if } \eta=-1\end{cases}
$$

If we write

$$
\begin{equation*}
c_{n}=\frac{1}{\sqrt{N}} \sum_{k} e^{i k n} c_{k} \tag{17.94}
\end{equation*}
$$

[^1]where the index n refers to real space and k to momentum space, we have the wave vector quantization rule $e^{i k N}=-\eta$, i.e. for even and odd sectors
\[

k_{j}= $$
\begin{cases}2 \pi\left(j+\frac{1}{2}\right) / N & \text { if } \eta=+1 \tag{17.95}\\ 2 \pi j / N & \text { if } \eta=-1\end{cases}
$$
\]

Thus, the Hamiltonian becomes

$$
\begin{align*}
\hat{H}_{\text {ring }} & =\sum_{k}\left\{\left(J_{+} \cos k+h\right) c_{k}^{\dagger} c_{k}+\frac{1}{2} J_{-} e^{i k} c_{k}^{\dagger} c_{-k}^{\dagger}+\frac{1}{2} J_{-} e^{-i k} c_{-k} c_{k}\right\}+\frac{1}{2} N h \\
& =\sum_{k>0}\left(\begin{array}{cc}
c_{k}^{\dagger} & c_{-k}
\end{array}\right) \overbrace{\left(\begin{array}{cc}
\omega_{k} & \Delta_{k} \\
\Delta_{k}^{*} & -\omega_{k}
\end{array}\right)}^{H_{k}}\binom{c_{k}}{c_{-k}^{\dagger}} \tag{17.96}
\end{align*}
$$

where

$$
\begin{equation*}
\omega_{k}=J_{+} \cos k+h \quad . \quad \Delta_{k}=i J_{-} \sin k \tag{17.97}
\end{equation*}
$$

Diagonalizing via a unitary transformation, we obtain

$$
\begin{equation*}
\hat{H}_{\mathrm{ring}}=\sum_{k} E_{k}\left(\gamma_{k}^{\dagger} \gamma_{k}-\frac{1}{2}\right) \tag{17.98}
\end{equation*}
$$

where the dispersion relation is

$$
\begin{equation*}
E_{k}=\sqrt{\omega_{k}^{2}+\left|\Delta_{k}\right|^{2}}=\sqrt{\left(J_{+} \cos k+h\right)^{2}+J_{-}^{2} \sin ^{2} k} \tag{17.99}
\end{equation*}
$$

Note that $S_{k}^{\dagger} H_{k} S_{k}=\operatorname{diag}\left(E_{k},-E_{k}\right)$, where

$$
S_{k}=\left(\begin{array}{cc}
u_{k} & -v_{k}^{*} \tag{17.100}\\
v_{k} & u_{k}
\end{array}\right)
$$

where

$$
\begin{equation*}
u_{k}=\frac{E_{k}+\omega_{k}}{\sqrt{2 E_{k}\left(E_{k}+\omega_{k}\right)}} \quad, \quad v_{k}=\frac{\Delta_{k}^{*}}{\sqrt{2 E_{k}\left(E_{k}+\omega_{k}\right)}} \tag{17.101}
\end{equation*}
$$

Thus,

$$
\begin{align*}
\gamma_{k} & =u_{k} c_{k}-v_{k}^{*} c_{-k}^{\dagger} \\
\gamma_{k}^{\dagger} & =-v_{k} c_{-k}+u_{k} c_{k}^{\dagger} \tag{17.102}
\end{align*}
$$

Note that $u_{-k}=u_{k}=u_{k}^{*}$ while $v_{-k}=-v_{k}=v_{k}^{*}$, and that

$$
\begin{align*}
& c_{k}=u_{k} \gamma_{k}+v_{k}^{*} \gamma_{-k}^{\dagger} \\
& c_{k}^{\dagger}=v_{k} \gamma_{-k}+u_{k} \gamma_{k}^{\dagger} \tag{17.103}
\end{align*}
$$

When we compute correlation functions, we use the fact that

$$
\begin{equation*}
e^{i \pi c^{\dagger} c}=\left(c^{\dagger}+c\right)\left(c^{\dagger}-c\right)=-\left(c^{\dagger}-c\right)\left(c^{\dagger}+c\right) \tag{17.104}
\end{equation*}
$$

and, defining $A_{j} \equiv c_{j}^{\dagger}+c_{j}$ and $B_{j} \equiv c_{j}^{\dagger}-c_{j}$, Then the correlation functions are

$$
\begin{align*}
& \rho_{x}(\ell)=\left\langle S_{n}^{x} S_{n+\ell}^{x}\right\rangle=\frac{1}{4}\left\langle B_{n} A_{n+1} B_{n+1} \cdots A_{n+\ell-1} B_{n+\ell-1} A_{n+\ell}\right\rangle \\
& \rho_{y}(\ell)=\left\langle S_{n}^{y} S_{n+\ell}^{y}\right\rangle=\frac{1}{4}(-1)^{\ell}\left\langle A_{n} B_{n+1} A_{n+1} \cdots B_{n+\ell-1} A_{n+\ell-1} B_{n+\ell}\right\rangle \tag{17.105}\\
& \rho_{z}(\ell)=\left\langle S_{n}^{z} S_{n+\ell}^{z}\right\rangle=\frac{1}{4}\left\langle A_{n} B_{n} A_{n+\ell} B_{n+\ell}\right\rangle,
\end{align*}
$$

where, without loss of generality, we presume $\ell>0$. These expressions may be evaluated using Wick's theorem,

$$
\begin{equation*}
\left\langle\mathcal{O}_{1} \mathcal{O}_{2} \cdots \mathcal{O}_{2 m}\right\rangle=\sum_{\sigma \in \mathcal{C}_{2 r}}(-1)^{\sigma}\left\langle\mathcal{O}_{\sigma(1)} \mathcal{O}_{\sigma(2)}\right\rangle \cdots\left\langle\mathcal{O}_{\sigma(2 r-1)} \mathcal{O}_{\sigma(2 r)}\right\rangle \tag{17.106}
\end{equation*}
$$

where σ is one of a special set of permutations $\mathcal{C}_{2 r}$ of the set $\{1, \ldots, 2 r\}$ called contractions, which are arrangements of the $2 r$ indices into r pairs. Exchanging any two pairs, or exchanging the indices within a pair results in the same contraction, so the number of such contractions is $\left|\mathcal{C}_{2 r}\right|=(2 r)!/\left(2^{r} \cdot r!\right)$. Here $(-1)^{\sigma}$ is the sign of the permutation σ. As an example, for $r=2$ there are $4!/(4 \cdot 2)=3$ contractions. We then have

$$
\begin{equation*}
\rho_{z}(\ell)=\frac{1}{4}\left\langle A_{n} B_{n}\right\rangle\left\langle A_{n+\ell} B_{n+\ell}\right\rangle-\frac{1}{4}\left\langle A_{n} A_{n+\ell}\right\rangle\left\langle B_{n} B_{n+\ell}\right\rangle+\frac{1}{4}\left\langle A_{n} B_{n+\ell}\right\rangle\left\langle B_{n} A_{n+\ell}\right\rangle . \tag{17.107}
\end{equation*}
$$

Now we need the following:

$$
\begin{equation*}
\left\langle A_{n} A_{n^{\prime}}\right\rangle=\delta_{n n^{\prime}} \quad, \quad\left\langle B_{n} B_{n^{\prime}}\right\rangle=-\delta_{n n^{\prime}} \quad, \quad\left\langle A_{n} B_{n^{\prime}}\right\rangle \equiv G\left(n^{\prime}-n\right) \tag{17.108}
\end{equation*}
$$

The first two of these relations follow by inversion symmetry, i.e.

$$
\begin{equation*}
\left\langle A_{n} A_{n^{\prime}}\right\rangle=\left\langle A_{n^{\prime}} A_{n}\right\rangle \quad \Rightarrow \quad\left\langle A_{n} A_{n^{\prime}}\right\rangle=\frac{1}{2}\left\langle\left\{A_{n}, A_{n^{\prime}}\right\}\right\rangle=\delta_{n n^{\prime}} \tag{17.109}
\end{equation*}
$$

with a corresponding argument showing $\left\langle B_{n} B_{n^{\prime}}\right\rangle=-\delta_{n n^{\prime}}$. We then have

$$
\begin{align*}
G\left(n^{\prime}-n\right) & =\left\langle\left(c_{n}^{\dagger}+c_{n}\right)\left(c_{n^{\prime}}^{\dagger}-c_{n^{\prime}}\right)\right\rangle \\
& =\frac{1}{N} \sum_{k, k^{\prime}}\left(\left\langle c_{k}^{\dagger} c_{k^{\prime}}^{\dagger}\right\rangle-\left\langle c_{-k} c_{k^{\prime}}\right\rangle+\left\langle c_{-k} c_{-k}^{\dagger}\right\rangle-\left\langle c_{k}^{\dagger} c_{k}\right\rangle\right) e^{i k\left(n^{\prime}-n\right)} \tag{17.110}\\
& =\frac{1}{N} \sum_{k}\left(u_{k}^{2}-\left|v_{k}\right|^{2}+2 u_{k} v_{k}\right) e^{-i k n} e^{i k^{\prime} n^{\prime}}=\frac{1}{N} \sum_{k}\left(\frac{\omega_{k}+\Delta_{k}}{E_{k}}\right) e^{i k\left(n^{\prime}-n\right)}
\end{align*}
$$

for $n \neq n^{\prime}$, and at $T=0$. Note that $\left\langle B_{n^{\prime}} A_{n}\right\rangle=-G\left(n-n^{\prime}\right)$ for $n \neq n^{\prime}$ and that $G(0)=1-2 \nu$ where $\nu=\left\langle c_{j}^{\dagger} c_{j}\right\rangle$ is the fermion occupation per site, which is translationally invariant. Thus, we have

$$
\begin{equation*}
\rho_{z}(\ell)=\frac{1}{4} G^{2}(0)-\frac{1}{4} G(\ell) G(-\ell) \tag{17.111}
\end{equation*}
$$

The transverse spin correlations may be expressed as determinants, viz.

$$
\rho_{x}(\ell)=\operatorname{det}\left(\begin{array}{cccc}
G(1) & G(2) & \cdots & G(\ell) \tag{17.112}\\
G(0) & G(1) & \cdots & G(\ell-1) \\
\vdots & \vdots & \ddots & \vdots \\
G(2-\ell) & G(3-\ell) & \cdots & G(1)
\end{array}\right)
$$

and

$$
\rho_{y}(\ell)=\operatorname{det}\left(\begin{array}{cccc}
G(-1) & G(0) & \cdots & G(\ell-2) \tag{17.113}\\
G(-2) & G(-1) & \cdots & G(\ell-3) \\
\vdots & \vdots & \ddots & \vdots \\
G(-\ell) & G(1-\ell) & \cdots & G(-1)
\end{array}\right)
$$

Matrices like these which are constant along the diagonals are called Toeplitz matrices. A matrix M is Toeplitz if $M_{i, j}=M_{i+1, j+1}=m(i-j)$.

17.4.2 Majorana representation of the JW transformation

With Eqn. 17.65, which describes how one can write a single Dirac fermion with operators c and c^{\dagger} in terms of two Majorana fermions α and β, i.e. $\alpha=c+c^{\dagger}$ and $\beta=i\left(c-c^{\dagger}\right)$, we can write the JW transformation as follows:

$$
\begin{align*}
X_{n} & =\left(i \alpha_{1} \beta_{1}\right)\left(i \alpha_{2} \beta_{2}\right) \cdots\left(i \alpha_{n-1} \beta_{n-1}\right) \alpha_{n} \\
Y_{n} & =\left(i \alpha_{1} \beta_{1}\right)\left(i \alpha_{2} \beta_{2}\right) \cdots\left(i \alpha_{n-1} \beta_{n-1}\right) \beta_{n} \tag{17.114}\\
Z_{n} & =-i \alpha_{n} \beta_{n}
\end{align*}
$$

Here we write $\left(X_{n}, Y_{n}, Z_{n}\right)$ for the Pauli matrices $\left(\sigma_{n}^{x}, \sigma_{n}^{y}, \sigma_{n}^{z}\right)=\left(2 S_{n}^{x}, 2 S_{n}^{y}, 2 S_{n}^{z}\right)$. Note that $X_{n} Y_{n}=i Z_{n}$. Thus, we have written the N spin operators along the chain in terms of $2 N$ Majorana fermions $\left\{\alpha_{1}, \beta_{1}, \ldots, \alpha_{N}, \beta_{N}\right\}$, and, through the relations $\alpha_{n}=c_{n}+c_{n}^{\dagger}$ and $\beta_{n}=i\left(c_{n}-c_{n}^{\dagger}\right)$, in terms of N Dirac fermions $\left\{\left(c_{1}, c_{1}^{\dagger}\right), \ldots,\left(c_{N}, c_{N}^{\dagger}\right)\right\}$. Note that

$$
\begin{equation*}
i \alpha_{n} \beta_{n}=-Z_{n}=\exp \left(i \pi c_{n}^{\dagger} c_{n}\right)=1-2 c_{n}^{\dagger} c_{n} \tag{17.115}
\end{equation*}
$$

and we thereby recover Eqn. 17.84.

[^0]: $\overline{{ }^{1} \text { Note that } e^{-x \hat{Q}} \psi_{i}^{\dagger} e^{x \hat{Q}}=\psi_{i}^{\dagger} \text { since }\left[\psi_{i}^{\dagger}, \hat{Q}\right]=0 .}$

[^1]: ${ }^{3}$ See E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. 16, 407 (1961).

