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Chapter 15

Spins, Coherent States, Path Integrals, and
Applications

15.1 The Coherent State Path Integral

15.1.1 Feynman path integral

The path integral formulation of quantum mechanics is both beautiful and powerful. It is use-
ful in elucidating the quantum-classical correspondence and the semiclassical approximation,
in accounting for interference effects, in treatments of tunneling problems via the method of
instantons, etc. Our goal is to derive and to apply a path integral method for quantum spin. We
begin by briefly reviewing the derivation of the usual Feynman path integral.

Consider the propagator K(xi, xf , T ), which is the probability amplitude that a particle located

at x = xi at time t = 0 will be located at x = xf at time t = T . We may write

K(xi, xf , T ) =
〈
xf
∣
∣ e−iHT/~

∣
∣ xi
〉

=
〈
xN
∣
∣ e−iǫH/~ 1 e−iǫH/~ 1 · · · 1 e−iǫH/~

∣
∣ x0

〉 (15.1)

where ǫ = T/N , and where we have defined x0 ≡ xi and xN ≡ xf . We are interested in the limit
N → ∞. Inserting (N − 1) resolutions of the identity of the form

1 =

∞∫

−∞

dxj
∣
∣ xj

〉〈
xj
∣
∣ , (15.2)

1



2 CHAPTER 15. SPINS, COHERENT STATES, PATH INTEGRALS, AND APPLICATIONS

we find that we must evaluate matrix elements of the form

〈
xj+1

∣
∣ e−iHǫ/~

∣
∣ xj

〉
≈

∞∫

−∞

dpj
〈
xj+1

∣
∣ pj
〉 〈

pj
∣
∣ e−iT ǫ/~ e−iV ǫ/~

∣
∣ xj

〉

=

∞∫

−∞

dpj e
ipj(xj+1−xj) e−iǫp

2
j/2m~ e−iǫV (xj)/~ .

(15.3)

The propagator may now be written as

〈
xN
∣
∣ e−iHT/~

∣
∣ x0

〉
≈

∞∫

−∞

>
N−1∏

j=1

dxj

∞∫

−∞

N−1∏

k=0

dpk exp

{

i
N−1∑

k=0

[

pk(xk+1 − xk)−
ǫ

2m~
p2k −

ǫ

~
V (xk)

]}

=

(
2π~m

iǫ

)N
∞∫

−∞

N−1∏

j=1

dxj exp

{

iǫ

~

N−1∑

k=1

[

1
2
m
(xj+1 − xj

ǫ

)2

− V (xj)

]}

≡
∫

x(0)=x
i

x(T )=x
f

Dx(t) exp
{

i

~

T∫

0

dt

[

1
2
mẋ2 − V (x)

]}

, (15.4)

where we absorb the prefactor into the measure Dx(t). Note the boundary conditions on the
path integral at t = 0 and t = T . In the semiclassical approximation, we assume that the path
integral is dominated by trajectories x(t) which extremize the argument of the exponential in
the last term above. This quantity is (somewhat incorrectly) identified as the classical action,
S, and the action-extremizing equations are of course the Euler-Lagrange equations. Setting
δS = 0 yields Newton’s second law, mẍ = −∂V/∂x, which is to be solved subject to the two
boundary conditions.

The ‘imaginary time’ version, which yields the ‘thermal propagator’, is obtained by writing
T = −i~β and t = −iτ , in which case

〈
xf
∣
∣ e−βH

∣
∣xi
〉
=

∫

x(0)=x
i

x(~β)=x
f

Dx(τ) exp
{

− 1

~

‘Euclidean action’ SE
︷ ︸︸ ︷

~β∫

0

dτ

[

1
2
mẋ2 + V (x)

] }

. (15.5)

The partition function is the trace of the thermal propagator, viz.

Z = Tr e−βH =

∞∫

−∞

dx
〈
x
∣
∣ e−βH

∣
∣ x
〉
=

∫

x(0)=x(~β)

Dx(τ) exp
(
− SE[x(τ)]/~

)
(15.6)
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The equations of motion derived from SE are mẍ = +∂V/∂x, corresponding to motion in the
‘inverted potential’.

15.1.2 Coherent state path integral for the ‘Heisenberg-Weyl’ hroup

We now turn to the method of coherent state path integration. In order to discuss this, we
must first introduce the notion of coherent states. This is most simply done by appealing to the
one-dimensional simple harmonic oscillator,

H =
p2

2m
+ 1

2
mω2

0x
2 = ~ω0 (a

†a + 1
2
) , (15.7)

where a and a† are ladder operators,

a = ℓ ∂x +
x

2ℓ
, a† = −ℓ ∂x +

x

2ℓ
(15.8)

with ℓ ≡
√

~/2mω0. Exercise: Check that [a, a†] = 1.

The ground state satisfies aψ0(x) = 0, which yields

ψ0(x) = (2πℓ2)−1/4 exp(−x2/4ℓ2) . (15.9)

The normalized coherent state
∣
∣ z
〉

is defined as

∣
∣ z
〉
= e−

1
2
|z|2 eza

†∣
∣ 0
〉
= e−

1
2
|z|2

∞∑

n=0

zn√
n!

∣
∣n
〉

. (15.10)

The coherent state is an eigenstate of the annihilation operator a:

a
∣
∣ z
〉
= z

∣
∣ z
〉

⇐⇒
〈
z
∣
∣ a† =

〈
z
∣
∣ z̄ . (15.11)

The overlap of coherent states is given by

〈
z1
∣
∣ z2
〉
= e−

1
2
|z1|2 e−

1
2
|z2|2 ez̄1z2 , (15.12)

hence different coherent states are not orthogonal. Despite this nonorthogonality, the coherent
states allow a simple resolution of the identity,

1 =

∫
d2z

2πi

∣
∣ z
〉〈
z
∣
∣ ,

d2z

2πi
≡ dRe z d Im z

π
(15.13)

which is straightforward to establish.
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To gain some physical intuition about the coherent states, define

z ≡ Q

2ℓ
+
iℓP

~
. (15.14)

One finds (exercise!)

ψP,Q(x) =
〈
x
∣
∣ z
〉
= (2πℓ2)−1/4 e−iPQ/2~ eiPx/~ e−(x−Q)2/4ℓ2 , (15.15)

hence the coherent state ψP,Q(x) is a wavepacket Gaussianly localized about x = Q, but oscil-
lating with momentum P . Exercise: Compute 〈(q −Q)2〉 and 〈(p− P )2〉.
Now we derive the imaginary time path integral. We write

〈
zf
∣
∣ e−βH

∣
∣ zi
〉
=
〈
zN
∣
∣ e−ǫH/~ 1 e−ǫH/~ · · · 1 e−ǫH/~

∣
∣ z0
〉

, (15.16)

inserting resolutions of the identity at N − 1 points, as before. We next evaluate the matrix
element

〈
zj
∣
∣ e−ǫH/~

∣
∣ zj−1

〉
=
〈
zj
∣
∣ zj−1

〉
·
{

1− ǫ

~

〈
zj
∣
∣H
∣
∣ zj−1

〉

〈
zj
∣
∣ zj−1

〉 + . . .

}

≃
〈
zj
∣
∣ zj−1

〉
exp

{

− ǫ

~
H(z̄j|zj−1)

} (15.17)

where

H(z̄|w) ≡
〈
z
∣
∣H
∣
∣w
〉

〈
z
∣
∣w
〉 = e−z̄w

〈
0
∣
∣ ez̄aH(a†, a) ewa

† ∣
∣ 0
〉

. (15.18)

This last equation is extremely handy. It says, upon invoking eqn. 15.11, that if H(a, a†) is
normal ordered such that all creation operators a† appear to the left of all destruction operators
a, then H(z̄|w) is obtained from H(a†, a) simply by sending a† → z̄ and a → w. This is because
a acting to the right on

∣
∣w
〉

yields its eigenvalue w, while a† acting to the left on
〈
z
∣
∣ generates

z̄. Note that the function H(z̄|w) is holomorphic in w and in z̄, but is completely independent
of their complex conjugates w̄ and z.

The overlap between coherent states at consecutive time slices may be written

〈
zj
∣
∣ zj−1

〉
= exp

{

− 1
2

[

z̄j(zj − zj−1)− zj−1(z̄j − z̄j−1)
]}

, (15.19)

hence

〈
zN
∣
∣ zN−1

〉
· · ·
〈
z1
∣
∣ z0
〉
= exp

{

1
2

N−1∑

j=1

[

zj(z̄j+1 − z̄j)− z̄j(zj − zj−1)

]}

× exp

{

1
2
z0(z̄1 − z̄0)− 1

2
z̄N(zN − zN−1)

}

,

(15.20)



15.1. THE COHERENT STATE PATH INTEGRAL 5

which allows us to write down the path integral expression for the propagator,

〈
zf
∣
∣ e−βH

∣
∣ zi
〉
=

∫ N−1∏

j=1

d2zj
2πi

exp
(

− SE[{zj , z̄j}]/~
)

SE[{zj , z̄j}]/~ =

N−1∑

j=1

[

1
2
z̄j(zj − zj−1)− 1

2
zj(z̄j+1 − z̄j)

]

+
ǫ

~

N∑

j=1

H(z̄j |zj−1)

+ 1
2
z̄f
(
zf − zN−1

)
− 1

2
zi
(
z̄1 − z̄i

)
.

(15.21)

In the limit N → ∞, we identify the continuum Euclidean action

SE[{z(τ), z̄(τ)}]/~ =

~β∫

0

dτ

{

1

2

(

z̄
∂z

∂τ
− z

∂z̄

∂τ

)

+
1

~
H(z̄|z)

}

+ 1
2
z̄f
[
zf − z(~β)

]
− 1

2
zi
[
z̄(0)− z̄i

]
,

(15.22)

and write the continuum expression for the path integral,

〈
zf
∣
∣ e−βH

∣
∣ zi
〉
=

∫

D[z(τ), z̄(τ)] e−SE[{z(τ),z̄(τ)}]/~ . (15.23)

The continuum limit is in a sense justified by examining the discrete equations of motion,

1

~

∂SE

∂zk
= z̄k − z̄k+1 +

ǫ

~

∂H(z̄k+1|zk)
∂zk

1

~

∂SE

∂z̄k
= zk − zk−1 +

ǫ

~

∂H(z̄k|zk−1)

∂z̄k
,

(15.24)

which have the sensible continuum limit

~
∂z̄

∂τ
=
∂H(z̄|z)
∂z

, ~
∂z

∂τ
= −∂H(z̄|z)

∂z̄
(15.25)

with boundary conditions z̄(~β) = z̄f and z(0) = zi. Note that there are only two boundary
conditions – one on z(0) and the other on z̄(~β). The function z(τ) (or its discrete version zj)

is evolved forward from initial data zi, while z̄(τ) (or z̄j) is evolved backward from final data

z̄f . This is the proper number of boundary conditions to place on two first order differential (or
finite difference) equations. It is noteworthy that the action of eqn. 15.21 or eqn. 15.22 imposes
only a finite penalty on discontinuous paths.1 Nevertheless, the paths which extremize the action

are continuous throughout the interval τ ∈ (0, ~β). As z(τ) is integrated forward from zi, its

1In the Feynman path integral, discontinuous paths contribute an infinite amount to the action, and are therefore
suppressed.
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final value z(~β) will in general be different from zf . Similarly, z̄(τ) integrated backward from z̄f
will in general yield an endpoint value z̄(0) which differs from z̄i. The differences z(~β)−zf and

z̄(0)− z̄i are often identified as path discontinuities, but the fact is that the equations of motion

know nothing about either zf or z̄i. These difference terms do enter in a careful accounting of
the action formulae of eqns. 15.21 and 15.22, however.

The importance of the boundary terms is nicely illustrated in a computation of the semiclas-
sical imaginary time propagator for the harmonic oscillator. With H = ~ω0 a

†a (dropping the
constant term for convenience), we have

〈
zf
∣
∣ exp(−β~ω0 a

†a)
∣
∣ zi
〉
= e−

1
2
|zf |2−

1
2
|zi|2

∞∑

m,n=0

z̄mf zni√
m!n!

〈
m
∣
∣ exp(−β~ω0 a

†a)
∣
∣n
〉

= exp

{

− 1
2
|zf |2 − 1

2
|zi|2 + z̄fzi e

−β~ω0

}

.

(15.26)

The Euclidean action is LE = 1
2
~(z̄ż − z ˙̄z) + ~ω0 z̄z, so the equations of motion are

~ ˙̄z =
∂H

∂z
= ~ω0 z̄ , ~ż = −∂H

∂z̄
= −~ω0 z (15.27)

subject to boundary conditions z(0) = zi, z̄(~β) = z̄f . The solution is

z(τ) = zi e
−ω0τ , z̄(τ) = z̄f e

ω0(τ−~β) . (15.28)

Along the ‘classical path’ the Euclidean Lagrangian vanishes: LE = 0. The entire contribution
to the action therefore comes from the boundary terms:

Scl
E/~ = 0 + 1

2
z̄f(zf − zi e

−β~ω0)− 1
2
zi(z̄f e

−β~ω0 − z̄i)

= 1
2
|zf |2 + 1

2
|zi|2 − z̄fzi e

−β~ω0 ,

(15.29)

What remains is to compute the fluctuation determinant. We write

zj = zclj + ηj , z̄j = z̄clj + η̄j , (15.30)

and expand the action as

SE[{zj , z̄j}] = SE[{zclj , z̄clj }] +
∂2SE

∂z̄i∂zj
η̄iηj +

1

2

∂2SE

∂zi∂zj
ηiηj +

1

2

∂2SE

∂z̄i∂z̄j
η̄iη̄j + . . .

≡ Scl
E +

~

2

(
z̄i zi

)
(
Aij Bij

Cij At
ij

)(
zj
z̄j

)

+ . . . .

(15.31)
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For general H , we obtain

Aij = δij − δi,j+1 +
ǫ

~

∂2H(z̄i|zj)
∂z̄i ∂zj

δi,j+1

Bij =
ǫ

~

∂2H(z̄i|zi−1)

∂z̄2i
δi,j

Cij =
ǫ

~

∂2H(z̄i+1|zi)
∂z2i

δi,j .

(15.32)

with i and j running from 1 to N − 1. The contribution of the fluctuation determinant to the
matrix element is then

∫ N−1∏

j=1

d2ηi
2πi

exp

{

−1

2

(
Re ηk Im ηk

)
(

1 1
−i i

)(
Akl Bkl

Ckl Alk

)(
1 i
1 −i

)(
Re ηl
Im ηl

)}

= det−1/2

(
A B
C At

)

.

(15.33)
In the case of the harmonic oscillator discussed above, we have Bij = Cij = 0, and since Aij
has no elements above its diagonal and Aii = 1 for all i, we simply have that the determinant
contribution is unity.

15.2 Coherent States for Spin

For the pros: A. Perelomov, Generalized Coherent States and their Applications (Springer-
Verlag, NY, 1986).

A spin-coherent state
∣
∣ Ω̂
〉

is simply a rotation of the ‘highest weight’ state
∣
∣m = +S

〉
, such

that the spin is maximally polarized along Ω̂, i.e.

Ω̂ · S
∣
∣ Ω̂
〉
= +S

∣
∣ Ω̂
〉

. (15.34)

Note that
∣
∣m = +S

〉
is itself a coherent state with Ω̂ = ẑ. We can effect this rotation by means

of an element R of the group SU(2):

R ≡ exp(iψSz) exp(iθSy) exp(iφSz)
∣
∣ Ω̂
〉
= R† ∣∣ ẑ

〉
.

(15.35)

To define and manipulate the spin coherent states, it is useful to introduce the Schwinger rep-
resentation of quantum spin. You are probably already familiar with the Holstein-Primakoff
transformation,

S+ = h† (2S − h†h)1/2 , S− = (2S − h†h)1/2 h , Sz = h†h− S , (15.36)



8 CHAPTER 15. SPINS, COHERENT STATES, PATH INTEGRALS, AND APPLICATIONS

with 0 ≤ h†h ≤ 2S. by which a quantum spin can be represented by a single boson. Note that

the eigenvalues of the boson number operator nh = h†h range over the nonnegative integers.
There are thus an infinite number of allowed states, but only a finite number (2S+1) of states in
the Hilbert space for spin. But the factor

√
2S − h†h in S+ annihilates the state of maximal po-

larization,
∣
∣m = +S

〉
, and thus for any Hamiltonian which can be written in terms of the spin

algebra operators, the infinite-dimensional boson Hilbert space is effectively divided into two

parts. The ‘physical’ states all have 0 ≤ nh ≤ 2S, and there are no matrix elements connecting

this subspace to the ‘unphysical’ one where nh > 2S.

The square roots are unwieldy, however, and in practice one expands them in powers of (nh/2S),
viz.

(2S − h†h)1/2 =
√
2S ·

{

1− 1

2

(h†h

2S

)

+
1

8

(h†h

2S

)2

+ . . .

}

. (15.37)

This expansion forms the basis of spin wave theory. Hence, within spin wave theory, unphys-
ical states are allowed. For example, an interaction like S+

i S
−
j between spins on sites i and j

takes the form 2S h†i hj within the spin wave expansion. But such a term knows nothing of the

border lying at nh = 2S separating physical from unphysical states.

In the Schwinger representation, two bosons are used, and the constraint is a holonomic one
(i.e. one which can be written as an equality):

S+ = a† b , S− = a b† , Sz = 1
2
(a†a− b†b) , (15.38)

and subject to the constraint a†a + b†b = 2S. The constraint simply says na + nb = 2S, i.e. there
are a total of 2S bosons present. Note that the operators S± change the number of a and b

bosons, but preserve the total na + nb, hence they commute with the constraint.

Exercise: Verify that [S+, S−] = 2Sz and [Sz, S±] = ±S± for both the Holstein-Primakoff and
Schwinger representations.

A shorthand way of rendering the spin operators in the Schwinger representation is

S = 1
2

(
a† b†

)
σ

(
a
b

)

. (15.39)

We now investigate the action of the SU(2) rotation R on the Schwinger bosons. We wish to
evaluate the expression

R†
(
a
b

)

R = e−iφS
z

e−iθS
y

e−iψS
z

(
a
b

)

eiψS
z

eiθS
y

eiφS
z

. (15.40)

Let’s work this out:

• Rotation about the ẑ-axis:

e−iψS
z

(
a
b

)

eiψS
z

= e−i
ψ

2
a†aei

ψ

2
b†b

(
a
b

)

e−i
ψ

2
b†bei

ψ

2
a†a =

(

e+i
ψ

2 a

e−i
ψ

2 b

)

. (15.41)
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• Rotation about the ŷ axis:

e−iθS
y

(
a
b

)

eiθS
y

= e
θ
2
(ab†−a†b)

(
a
b

)

e−
θ
2
(ab†−a†b) =

(
cos(θ/2) a+ sin(θ/2) b
− sin(θ/2) a+ cos(θ/2) b

)

. (15.42)

We are also licensed to make an additional rotation U = exp(iξS), where S = 1
2
(a†a + b†b). The

final result of the combined transformation RU is

(
ã

b̃

)

≡ U †R†
(
a
b

)

RU = eiξ/2
(
ū v
−v̄ u

)(
a
b

)

(15.43)

where u and v are spinor coordinates,

u = e−iψ/2 e−iφ/2 cos
(
1
2
θ
)

v = e−iψ/2 e+iφ/2 sin
(
1
2
θ
)

.
(15.44)

The phase ξ is unphysical, and without loss of generality we are free to define ξ ≡ −(φ+ ψ), in
which case (

ã

b̃

)

=

(
cos(1

2
θ) sin(1

2
θ) eiψ

− sin(1
2
θ) eiφ cos(1

2
θ) e−i(φ+ψ)

)(
a
b

)

. (15.45)

Now that we know how the Schwinger bosons themselves transform under SU(2), we investi-
gate the transformation properties of the spin operators Sα, which are bilinear in the Schwinger
bosons. We find

R† Sz R =
(
a† b†

)
(
u −v̄
v ū

)(
1 0
0 −1

)(
ū v̄
−v u

)(
a
b

)

= 1
2

(
a† b†

)
(

cos θ sin θ e−iφ

sin θ eiφ − cos θ

)(
a
b

)

= sin θ cos φSx + sin θ sinφSz + cos θ Sz ,

hence R†SzR = Ω̂ · S, and

S
∣
∣ Ω̂
〉
= R†Sz

∣
∣ ẑ
〉
= (R†SzR)R†∣∣ ẑ

〉
= Ω̂ · S

∣
∣ Ω̂
〉

. (15.46)

Explicitly, then,

∣
∣ Ω̂
〉
=
[
(2S)!

]−1/2
(ua† + vb†)2S

∣
∣ 0
〉
=

2S∑

k=0

(
2S

k

)1/2

uk v2S−k
∣
∣ k − S

〉
. (15.47)

Example: S = 1
2
, θ = 1

2
π, φ = 1

2
π gives

∣
∣ Ω̂
〉
= 1√

2
|↑〉+ i√

2
|↓〉 =

∣
∣ ŷ
〉
.
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A useful property of the coherent states: if

∣
∣ψ
〉
= f(a†, b†)

∣
∣ 0
〉
≡

2S∑

k=0

fk (a
†)k (b†)2S−k

∣
∣ 0
〉

, (15.48)

then
〈
Ω̂
∣
∣ψ
〉
=
√

(2S)! f(ū, v̄) , (15.49)

i.e. replace a† → ū and b† → v̄ as arguments of f . The overlap of the coherent states is
〈
Ω̂
∣
∣ Ω̂′ 〉 = (ūu′ + v̄v′)2S

=
[
1
2
(1 + Ω̂ · Ω̂′)

]S

eiSγ(Ω̂,Ω̂
′)

(15.50)

where

γ(Ω̂, Ω̂′) ≡ 2 arg (ūu′ + v̄v′) (15.51)

= 2 tan−1

[
sin 1

2
θ sin 1

2
θ′ sin(φ′ − φ)

cos 1
2
θ cos 1

2
θ′ + sin 1

2
θ sin 1

2
θ′ cos(φ′ − φ)

]

Perhaps the most important result, for our purposes, is the resolution of the identity:

1 =
2S + 1

4π

∫

dΩ
∣
∣ Ω̂
〉〈

Ω̂
∣
∣ . (15.52)

As with the case of coherent states for the harmonic oscillator, the spin coherent states permit
a simple resolution of the identity despite their nonorthogonality.

The last step, before we tackle the derivation of the spin path integral, is to compute matrix
elements in the coherent state basis. We assume that the Hamiltonian commutes with the con-
straint, i.e. it preserves total spin. The most general such Hamiltonian may be written

H =
∑

m,n,j

Cmnj (a†)m (b†)n (a)m+j (b)n−j , (15.53)

and its matrix elements may be evaluated using

〈
Ω̂1

∣
∣

preserves total S
︷ ︸︸ ︷

(a†)m (b†)n (a)m+j (b)n−j
∣
∣ Ω̂2

〉
=

(2S)!

(2S −m− n)!
(ū1u2 + v̄1v2)

2S−m−n ūm1 v̄
n
1 u

m+j
2 vn−j2 .

(15.54)
Note that the above operator product must be normal-ordered, with annihilation operators a, b
appearing to the right of creation operators a†, b†.

Exercise: Verify eqn. 15.54 by finding the O
(
z̄2S1 z2S2

)
term of the matrix element in the (unnor-

malized) generalized coherent state
∣
∣ z, Ω̂

〉
≡ ezua

†

ezvb
†∣
∣ 0
〉

, (15.55)
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where z is a complex number. Show that a | z, Ω̂ 〉 = zu
∣
∣ z, Ω̂

〉
, b
∣
∣ z, Ω̂

〉
= zv | z, Ω̂ 〉, and

〈
z, Ω̂

∣
∣ z′, Ω̂′ 〉 = exp

[
z̄z′(ūu′ + v̄v′)

]
. (15.56)

Use these results to verify eqn. 15.54.

As with the case of the coherent state path integral for the Heisenberg-Weyl group, only diag-
onal matrix elements are needed. In this case the expression eqn. 15.54 simplifies to

〈
Ω̂
∣
∣ (a†)m(b†)n(a)m+j(b)n−j

∣
∣ Ω̂
〉
=

(2S)!

(2S −m− n)!
ūm v̄n um+j vn−j . (15.57)

Two examples of matrix element computation:

• O = S+ = a†b. Here, (m,n, j) = (1, 0,−1), so

〈
Ω̂
∣
∣ a†b

∣
∣ Ω̂
〉
= 2S ūv = S sin θ eiφ . (15.58)

• O = (Sx)
2. First we normal order:

S2
x =

(
a†b+ ab†

2

)2

= 1
4

(

a†b a†b+ a b†a b† + a†b b†a + a b†a†b
)

= 1
4

(
(2,0,−2)
︷ ︸︸ ︷

a†a† b b +

(0,2,2)
︷ ︸︸ ︷

b†b†a a +

(1,1,0)
︷ ︸︸ ︷

2 a†b†a b +

(1,0,0)
︷︸︸︷

a†a +

(0,1,0)
︷︸︸︷

b†b
)

,

(15.59)

which, following the rules in Eqn. 15.57, yields

〈 Ω̂ |S2
z | Ω̂ 〉 = 1

4
(2S)(2S − 1)(ū2v2 + v̄2u2 + 2ūv̄uv) + 1

4
(2S)(ūu+ v̄v)

= S(S − 1
2
)(sin θ cosφ)2 + 1

2
S .

(15.60)

Exercise: Prove that

〈
Ω̂
∣
∣SαSβ

∣
∣ Ω̂
〉
= S(S − 1

2
)ΩαΩβ + 1

2
S δαβ +

i

2
S ǫαβγ Ω

γ . (15.61)

15.2.1 Coherent state wavefunctions

Consider a state
∣
∣Ψ
〉
= 1√

2S !
Ψ(a†, b†)

∣
∣ 0
〉

, (15.62)
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where Ψ (a†, b†) is homogeneous of degree 2S. Then

〈
Ω̂
∣
∣Ψ
〉
= Ψ(ū, v̄) , (15.63)

where Ψ(ū, v̄) is obtained from Ψ(a†, b†) simply by substituting a† → ū and b† → v̄.

Now suppose we wish to calculate the matrix element of some operator Â between states
∣
∣Ψ
〉

and
∣
∣Φ
〉
. We assume that Â preserves total spin, in which case it may be written

Â =
∑

k,l,j

Aklj T̂klj

T̂klj = (a)k (b)l (a†)k+j (b†)l−j .

(15.64)

Note here that we have written Â in normal-ordered form, but this time with the creation
operators appearing to the right. One then has

〈
Ψ
∣
∣ Â
∣
∣Φ
〉
=

2S + 1

4π

∫

dΩ
〈
Ψ
∣
∣ Ω̂
〉〈

Ω̂
∣
∣ Â
∣
∣Φ
〉

. (15.65)

It can further be shown that

〈
Ω̂
∣
∣ T̂klj

∣
∣Φ
〉
=

(
∂

∂ū

)k (
∂

∂v̄

)l

ūk+j v̄l−j Φ(ū, v̄) (15.66)

and that

〈
Ψ
∣
∣ T̂klj

∣
∣Φ
〉
=

(2S + k + l + 1)!

(2S)!
·
∫
dΩ

4π
Ψ∗(u, v) uk vl ūk+j v̄l−j Φ(ū, v̄) . (15.67)

15.2.2 Valence bond states

The operator A†
ij ≡ a†ib

†
j − b†ia

†
j creates a singlet ‘valence bond’ between sites i and j.

Exercise: Show that A†
ij transforms as an SU(2) singlet, i.e. R† A†

ijR = A†
ij .

Now consider the valence bond solid (VBS) state

∣
∣Ψ(L, m)

〉
≡
∏

〈ij〉∈L
(a†ib

†
j − b†ia

†
j)
m
∣
∣ 0
〉

, (15.68)

where
∣
∣ 0
〉

is the Schwinger boson vacuum. Here, the product is over all links 〈ij〉 of some
regular lattice L. The state

∣
∣Ψ(L, m)

〉
possesses the following properties:

•
∣
∣Ψ(L, m)

〉
is a singlet, i.e. it has total spin zero.
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• For every site i, we have (a†i ai + b†i bi)
∣
∣Ψ(L, m)

〉
= mz

∣
∣Ψ(L, m)

〉
, where z is the coordi-

nation number of L. I.e. there is a quantum spin S = 1
2
mz at every site.

• The maximum eigenvalue of the total link spin Jij ≡ Si + Sj is Jmax
ij = 2S − m. This

is significant because with two spin-S objects the total spin will in general range from 0
to 2S. What is special about the VBS states is that they have zero weight in the sector
Jij > 2S −m for every link.

Consequently,
∣
∣Ψ(L, m)

〉
is annihilated by any link spin projection operator PJ

S (ij), so long as
J > 2S −m. The projector PJ

S (ij) may be written as an order 2S polynomial in Si · Sj , viz.

PJ
S (ij) =

2S∏

k=0
(k 6=J)

Si · Sj + S(S + 1)− 1
2
k(k + 1)

1
2
J(J + 1)− 1

2
k(k + 1)

. (15.69)

Therefore, if one writes a Hamiltonian of the form

H =
∑

〈ij〉

2S∑

J=2S−m+1

λJ PJ
S (ij) (15.70)

with each λJ > 0, then H
∣
∣Ψ(L, m)

〉
= 0 and

∣
∣Ψ(L, m)

〉
is an exact, zero energy ground state

for H .2

The simplest example is for the S = 1 linear chain, where

PJ=1

S=
1
2

(ij) = 1
6
(Si · Sj)2 + 1

2
Si · Sj + 1

3
. (15.71)

We conclude that the bilinear-biquadratic S = 1 chain with Hamiltonian

H = J
∑

n

[

Sn · Sn+1 +
1
3
(Sn · Sn+1)

2
]

(15.72)

has as its exact ground state
∣
∣Ψ(L, m = 1)

〉
, where L is the linear chain. The energy per site is

−2
3
J .

The states
∣
∣Ψ (L, m)

〉
are easily generalized to ones of broken translational or lattice point group

symmetry, even while maintaining the constraint that zm link operators A†
ij are associated with

each site i (with different values of j). 3

2If every λJ is nonnegative, then it is simple to prove that H itself can have no negative eigenvalues.
3Were this not the case, then some sites would have different total spin than others. It is perfectly sensible from
a mathematical point of view to consider models where the total spin varies from site to site. Most (but by no
means all) models of physical interest, however, have one value of S for each magnetic site.
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For example, on the honeycomb lattice, where we have links oriented along 0◦, 120◦, and 240◦,
we can define the state

∣
∣Ψ(m,m′, m′′)

〉
≡
∏

〈ij〉∈0◦
(A†

ij)
m
∏

〈kl〉∈120◦
(A†

kl)
m′
∏

〈rs〉∈240◦
(A†

rs)
m′′ ∣
∣ 0
〉

. (15.73)

This state therefore has S = 1
2
(m+m′+m′′) on each site, but it breaks the point group symmetry

of the underlying triangular Bravais lattice. Similarly, one can define ‘columnar’ states on the
square lattice which break both translational and point group symmetry, e.g.

∣
∣ΨA

〉
=
∏

m,n

(a†m,nb
†
m+1,n − b†m,na

†
m+1,n)

∣
∣ 0
〉

∣
∣ΨB

〉
=
∏

j,n

(a†2j,nb
†
2j+1,n − b†2j,na

†
2j+1,n)

2
∣
∣ 0
〉

.
(15.74)

Exercise: Compare and contrast the states
∣
∣ΨA

〉
and

∣
∣ΨB

〉
.

15.2.3 Derivation of spin path integral

Let us compute the real time propagator in the coherent state basis. We begin, as usual, by
writing

〈
Ω̂N

∣
∣ e−iHT/~

∣
∣ Ω̂0

〉
=
〈
Ω̂N

∣
∣ e−iǫH/~ 1 e−iǫH/~ 1 · · ·1 e−iǫH/~

∣
∣ Ω̂0

〉
, (15.75)

where each symbol 1 stands for an insertion of the resolution of the identity, eqn. 15.52. We
next compute

〈
Ω̂j

∣
∣ e−iǫH/~

∣
∣ Ω̂j−1

〉
=
〈
Ω̂j

∣
∣ Ω̂j−1

〉
·
{

1− iǫ

~

〈
Ω̂j

∣
∣H
∣
∣ Ω̂j−1

〉

〈
Ω̂j

∣
∣ Ω̂j−1

〉 +O(ǫ2)

}

≃
〈
Ω̂j

∣
∣ Ω̂j−1

〉
exp

(

− iǫH(Ω̂j | Ω̂j−1)/~
)

,

(15.76)

where the Hamiltonian is replaced by its coherent state matrix element,

H(Ω̂j | Ω̂j−1) =

〈
Ω̂j

∣
∣H
∣
∣ Ω̂j−1

〉

〈
Ω̂j

∣
∣ Ω̂j−1

〉 . (15.77)

Exercise: Show that H(Ω̂j | Ω̂j−1) = H(ūj, v̄j | uj−1, vj−1) is a holomorphic function of its argu-
ments.

We therefore have

〈
Ω̂N

∣
∣ e−iHT/~

∣
∣ Ω̂0

〉
=
(2S + 1

4π

)N−1
∫

dΩ1 · · ·
∫

dΩN−1 e
iA[{Ω̂j}] , (15.78)
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where A ≡ S/~ is given by

A = −i
N∑

j=1

ln
〈
Ω̂j

∣
∣ Ω̂j−1

〉
− ǫ

~

N∑

j=1

H(Ω̂j | Ω̂j−1) . (15.79)

Expanding in the difference between Ω̂j and Ω̂j−1, we may write

ln
〈
Ω̂j

∣
∣ Ω̂j−1

〉
= 2S ln

{

1− ūj(uj − uj−1)− v̄j(vj − vj−1)
}

= −2S ǫ

{

ūj

(uj − uj−1

ǫ

)

− v̄j

(vj − vj−1

ǫ

)

+ . . .

}

≃ −2S ǫ (ūju̇j + v̄j v̇j) +O
(
(Ω̂j − Ω̂j−1)

2
)

.

(15.80)

The continuum limit is

A[Ω̂(t)] =

T∫

0

dt

{

2iS(ūu̇+ v̄v̇)− 1

~
H(Ω̂)

}

, (15.81)

where H(Ω̂) ≡ H(Ω̂ | Ω̂). Substituting u = cos(θ/2) and v = sin(θ/2) exp(iφ), we obtain

ūu̇+ v̄v̇ = i sin2(θ/2) φ̇ =
i

2
(1− cos θ) φ̇ =

i

2
ω̇ (15.82)

where dω = (1 − cos θ) dφ is the differential element of solid angle. We may now, finally, write
the spin path integral as

〈
Ω̂f

∣
∣ e−iHT/~

∣
∣ Ω̂i

〉
=

∫

w(0)=w
i

w̄(T )=w̄
f

DΩ̂(t) exp

{

− i

T∫

0

dt
[

S
dω

dt
+

1

~
H(Ω̂)

]
}

·
〈
Ω̂f

∣
∣ Ω̂(T )

〉 〈
Ω̂(0)

∣
∣ Ω̂i

〉
(15.83)

where w ≡ v/u = tan(θ/2) exp(iφ) is the stereographic projection of the spinor coordinates
(u, v) onto the complex plane.

The inclusion of the overlap terms inside the path integral is necessary if we are to allow for
the possibility of so-called discontinuous paths. Within the semiclassical approximation, u(t)
and v(t) are integrated forward from initial data ui and vi while ū(t) and v̄(t) are integrated
backward from final data ūf and v̄f .

4 We encountered an analogous situation with the coherent
state path integral for the Heisenberg-Weyl group, where z(t) was integrated forward from
initial data zi and z̄(t) integrated backward from final data z̄f . In fact, these paths are perfectly
continuous; there simply is no reason why z(T ) should have any resemblance to zf , or z̄(0) to
z̄i, since the equations of motion know nothing about either zf or z̄i.

4The equations of motion may also be written in terms of the stereographic coordinate w = v/u, in which case

w(t) is integrated forward from initial data w
i

and w̄(t) is integrated backward from final data w̄
f
.
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The thermal, or imaginary time, propagator in the coherent state representation is

〈
Ω̂f

∣
∣ e−βH

∣
∣ Ω̂i

〉
=

∫

w(0)=w
i

w̄(T )=w̄
f

DΩ̂(τ) exp

{

−
~β∫

0

dτ
[

iS
dω

dτ
+
1

~
H(Ω̂)

]}

·
〈
Ω̂f

∣
∣ Ω̂(~β)

〉 〈
Ω̂(0)

∣
∣ Ω̂i

〉
. (15.84)

15.2.4 Gauge field and geometric phase

The solid angle functional ω[Ω̂(t)] may be written

ω[Ω̂(t)] =

T∫

0

dtA(Ω̂) · dΩ̂
dt

(15.85)

for any A(Ω̂) which satisfies ∇×A = Ω̂, i.e.

Ωa = ǫabc
∂

∂Ωb
Ac(Ω̂) (15.86)

(To see this, use Stokes’ theorem.) We now derive a useful result:

δω[Ω̂(t)] =

∫

dt

{
∂Ab

∂Ωa

dΩb

dt
δΩa + Aa

d

dt
δΩa

}

=

∫

dt

(
∂Ab

∂Ωa
− ∂Aa

∂Ωb

)
dΩb

dt
δΩa

=

∫

dt δΩa ǫabcΩ̇
bΩc =

∫

dt δΩ̂ · ∂Ω̂
∂t

× Ω̂ ,

(15.87)

and hence the functional derivative is

δω[Ω̂]

δΩ̂(t)
=
∂Ω̂

∂t
× Ω̂ . (15.88)

15.2.5 Semiclassical dynamics

We begin with the action functional,

Ã[Ω̂(t), λ(t)] ≡ A[Ω̂(t)] +

T∫

0

dt λ(t)
(
Ω̂2(t)− 1

)
. (15.89)



15.2. COHERENT STATES FOR SPIN 17

Here, λ(t) is a Lagrange multiplier field which enforces the constraint Ω̂(t) · Ω̂(t) = 1 at all
times. We next vary with respect to Ω̂(t) and λ(t):

δÃ
δΩ̂(t)

= −S ∂Ω̂
∂t

× Ω̂ − 1

~

∂H

∂Ω̂
+ 2 λ Ω̂

δÃ
δλ(t)

= Ω̂2(t)− 1 .

(15.90)

Setting these variations to zero, we solve for λ(t) by taking the dot product of the first equation
with Ω̂(t) and then substituting Ω̂2(t) = 1. In this manner, we find

λ =
1

2~

∂H

∂Ω̂
· Ω̂ , (15.91)

The effect of this is to render all terms on the RHS of eqn. 15.90 orthogonal to Ω̂, thereby effec-
tively projecting ∂H/∂Ω̂ onto this orthogonal subspace. It is then easy to obtain the equations
of motion

~S
∂Ω̂

∂t
=
∂H

∂Ω̂
× Ω̂ . (15.92)

If we write the equations of motion in terms of the spinor coordinates {u, v, ū, v̄} themselves,
it is important to recognize that they must satisfy the constraint uū + vv̄ = 1. A Lagrange
multiplier field λ is invoked to impose this constraint at every value of the time t. This results
in the equations of motion

2i~Su̇ =
∂H

∂ū
+ λu 2i~Sv̇ =

∂H

∂v̄
+ λv (15.93)

−2i~S ˙̄u =
∂H

∂u
+ λū −2i~S ˙̄v =

∂H

∂v
+ λv̄ . (15.94)

Varying the action with respect to the Lagrange multiplier field of course yields the constraint
equation. We are then left with five equations in the five unknowns {u, v, ū, v̄, λ}, along with
the four boundary conditions,

u(0) = ui , ū(T ) = ūf , v(0) = vi , v̄(T ) = v̄f . (15.95)

Implementing the constraint, one obtains an expression for λ,

λ = 2iS(ūu̇+ v̄v̇)− ū
∂H

∂ū
− v̄

∂H

∂v̄
(15.96)

= −2iS(u ˙̄u+ v ˙̄v)− u
∂H

∂u
− v

∂H

∂v
. (15.97)

Note that for real θ and φ that eqns. 15.93 and eqn. 15.94 are related by complex conjugation.
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15.3 Other Useful Representations of the Spin Path Integral

15.3.1 Stereographic representation

In the stereographic representation, we write

w ≡ v

u
= tan(θ/2) eiφ . (15.98)

One then finds
w̄ẇ

1 + w̄w
= ūu̇+ v̄v̇ − d

dt
ln u . (15.99)

From the differential

dw = 1
2
sec2

(
θ/2) eiφ dθ + i tan(θ/2) eiφ dφ , (15.100)

we obtain
dw ∧ dw̄
(1 + w̄w)2

=
1

2i
sin θ dθ ∧ dφ . (15.101)

The Hamiltonian matrix elements may be recast in terms of w and w̄. For example,

S+ = a†b −→ 2S ūv =
2S w

1 + w̄w

Sz = 1
2
(a†a− b†b) −→ S (ūu− v̄v) = S

1− w̄w

1 + w̄w
.

(15.102)

Thus, the real and imaginary time path integrals are given by

〈
Ω̂f

∣
∣ e−iHT/~

∣
∣ Ω̂i

〉
=

∫

D[w̄(t), w(t)] exp

{

− i

T∫

0

dt
[

− iS
w̄ẇ − ˙̄ww

1 + w̄w
+

1

~
H(w̄, w)

]
}

(15.103)

and

〈
Ω̂f

∣
∣ e−HT/~

∣
∣ Ω̂i

〉
=

∫

D[w̄(t), w(t)] exp

{

−
T∫

0

dt
[

S
w̄ẇ − ˙̄ww

1 + w̄w
+

1

~
H(w̄, w)

]
}

, (15.104)

respectively. In these above expressions, the metric D[w̄, w] includes the (1 + w̄w)−2 factor at
each time step, and the Hamiltonian H(w̄, w) is the coherent state diagonal matrix element
expressed in terms of the stereographic coordinate w and its conjugate w̄. These expressions
are incomplete, however, in that we’ve omitted the boundary overlap factors at t = 0 and t = T .

Exercise: Complete the expression in eqns. 15.103 and 15.104, adding the boundary terms.
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15.3.2 Recovery of spin wave theory

To recover spin wave theory and the Holstein-Primakoff transformation, define z ≡ uv̄/|v| =
cos(θ/2) exp(−iφ). Then |z|2 = |u|2 and

dz = −1
2
sin(θ/2) e−iφ dθ − i cos(θ/2) e−iφ dφ . (15.105)

We then obtain

dz ∧ dz̄ = 1

2i
sin θ dθ ∧ dφ . (15.106)

The geometrical phase, which is responsible for the ω[Ω̂(t)] term in the action functional, is
obtained using

z̄ż =
i

2
(1− cos θ) dφ− i dφ+ d cos2(θ/2) (15.107)

which, after dropping the total time derivatives, yields (i/2) dω. As for the Hamiltonian, we
have

S+ = a†b −→ 2S ūv = 2S z̄
√
1− z̄z

Sz = 1
2
(a†a− b†b) −→ S (ūu− v̄v) = 2S (z̄z − 1

2
) .

(15.108)

This is equivalent to Holstein-Primakoff, with h ≡
√
2S z as the HP boson. We therefore obtain

〈
Ω̂f

∣
∣ e−iHT/~

∣
∣ Ω̂i

〉
=

∫

D[h̄(t), h(t)] exp

{

− i

T∫

0

dt
[

h̄ḣ+
1

~
H(h̄, h)

]
}

, (15.109)

where the functional integration is over a disk of area 2πS for each time t.

15.4 Quantum Tunneling of Spin

15.4.1 Model Hamiltonian

The theory of quantum spin tunneling has been developed largely by E. Chudnovsky, A. Garg,
D. Loss, and others. Consider the following model Hamiltonian,

H = K1S
2
z +K2S

2
y − γHSz , (15.110)

where K1 > K2 > 0. This describes a spin-S particle with an easy axis along x̂ and a hard
axis along ẑ. To treat this problem by the coherent state path integral, we need to compute the
diagonal matrix element of H in the coherent state basis. One finds,

E(θ, φ) =
〈
Ω̂
∣
∣H
∣
∣ Ω̂
〉
= k1 cos2 θ + k2 sin2(θ) sin2(φ)− h cos(θ) , (15.111)

where ki = S(S − 1
2
)Ki (i = 1, 2), h = γSH , and where we have dropped an unimportant

constant. In weak fields h, the energy function E(θ, φ) has the following features:
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• E(θ, φ) has two degenerate minima with θ0 = cos−1(h/2k1) at φ = 0 and at φ = π. The
minimum energy is Ecl

0 = −h2/4k1.

• There is a global maximum with Emax = k1+h located (assuming h > 0) at the South Pole
(θ = π), and a local maximum with E ′

max = k1 − h located at the North Pole (θ = 0).

• There are two saddle points, located at θx = cos−1(h/2
(
k1 − k2)

)
, with φ = ±1

2
π. The

energy of the saddle points is Esaddle = k2 − 1
4
h2/(k1 − k2).

We therefore expect to find two low-lying states which are linear combinations of the coher-
ent states

∣
∣ θ = θ0, φ = 0

〉
and

∣
∣ θ = θ0, φ = π

〉
. Let us abbreviate these two states

∣
∣ 0
〉

and
∣
∣ π
〉
,

respectively. The eigenstates of the system should be symmetric and antisymmetric combina-

tions of these states:
∣
∣ ±

〉
= 2−1/2

{∣
∣ 0
〉
±
∣
∣ π
〉}

. The tunnel splitting ∆ = E0 may be obtained

by examining the matrix elements,

〈
+
∣
∣ e−βH

∣
∣ +

〉
=
〈
0
∣
∣ e−βH

∣
∣ 0
〉
+
〈
0
∣
∣ e−βH

∣
∣π
〉
= e−βE0

〈
−
∣
∣ e−βH

∣
∣ −

〉
=
〈
0
∣
∣ e−βH

∣
∣ 0
〉
−
〈
0
∣
∣ e−βH

∣
∣ π
〉
= e−β(E0+∆) ,

(15.112)

where E0 differs from Ecl
0 due to ‘zero-point energy’, i.e. quantum fluctuations. In reality, there

is no reason why the states
∣
∣ ±

〉
should necessarily be eigenstates of H . What is important,

though, is that the antisymmetric combination projects out all of the ground state. By taking
the β → ∞ limit, the contribution from admixtures of higher-lying eigenstates to

∣
∣ ±

〉
can be

suppressed. What this means is that we can calculate the exact tunnel splitting by the formula,

∆ = lim
β→∞

1

β
ln

{〈
0
∣
∣ e−βH

∣
∣ 0
〉
+
〈
0
∣
∣ e−βH

∣
∣π
〉

〈
0
∣
∣ e−βH

∣
∣ 0
〉
−
〈
0
∣
∣ e−βH

∣
∣ π
〉

}

. (15.113)

Another way, of course, to compute the tunnel splitting is to simply numerically diagonalize
the rank-(2J + 1) Hamiltonian matrix. This works without fail, but it is not particularly in-
structive in elucidating the physics of spin tunneling. Moreover, it may be that an instanton
calculation, which we shall presently describe, yields certain analytic results which are useful
and in general impossible to obtain numerically.

15.4.2 Instantons and tunnel splittings

The essence of the instanton approach to quantum tunneling is described in a beautiful article
by Sidney Coleman, entitled “The Uses of Instantons”. We write the imaginary time matrix
element

〈
Pf

∣
∣ exp(−βH)

∣
∣Pi

〉
between points P1 and P2 as a path integral. In our case, each

P labels a spin orientation Ω̂, and each state
∣
∣P
〉

is a spin coherent state. We extremize the
action, applying the method of stationary phase. This involves solving the classical equations
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of motion, subject to boundary conditions which we shall not fully specify, save to say that the

most naı̈ve boundary conditions are simply Ω̂(0) = Ω̂i an Ω̂(~β) = Ω̂f .
5

There may be several instanton paths connecting P1 and P2. Associated with each such instan-
ton α is a characteristic time τα, a classical action Yα + iφα, written in units of ~ and separating
real and imaginary parts, and also a ‘fluctuation determinant’ prefactor Dα arising from inte-
grating over Gaussian fluctuations about the classical instanton trajectory. If we write

ξα = Dα e
iφα e−Yα , (15.114)

then the diagonal matrix element can be written in the ‘dilute instanton gas’ approximation as

〈
P1

∣
∣ e−βH

∣
∣P1

〉
=

∞∑

n=0

∑

{αk ,ᾱk}

~β∫

0

dτ1 · · ·
~β∫

τ2n−1

dτ2n ξα1 ξᾱ1 · · · ξᾱn

= cosh
(

~β
∣
∣
∣

∑

α

ξα

∣
∣
∣

)

.

(15.115)

Here we denote the return instantons from P2 to P1 with the index ᾱ. Since the return path is a
time-reversed one, we have ξᾱ = ξα, i.e. the return paths have opposite phase.

The off-diagonal matrix element, in which paths must begin at P1 and end at P2 requires an
odd number of instanton events, and is given by

〈
P2

∣
∣ e−βH

∣
∣P1

〉
=

∞∑

n=0

∑

{αk ,ᾱk}

~β∫

0

dτ1 · · ·
~β∫

τ2n

dτ2n+1 ξα1 ξᾱ1 · · · ξᾱn ξαn+1

=

∑

α ξα∣
∣
∣
∑

α ξα

∣
∣
∣

· sinh
(

~β
∣
∣
∣

∑

α

ξα

∣
∣
∣

)

.

(15.116)

If
∑

α ξα is real, then we can read off the tunnel splitting:

∆ = 2~
∑

α

Dα e
iφα e−Yα . (15.117)

15.4.3 Garg’s calculation (1993)

Starting from the Euclidean Lagrangian,

LE = i~S(1− cos θ) φ̇+ E(θ, φ) , (15.118)

5In fact, the proper boundary conditions are u(0) = u
i
, v(0) = v

i
, ū(~β) = ū

f
, and v̄(~β) = v̄

f
, as derived above.
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one derives the Euler-Lagrange equations of motion,

∂LE

∂θ
− d

dt

∂LE

∂θ̇
= 0 =

1

~

∂E

∂θ
+ iS sin(θ) φ̇

∂LE

∂φ
− d

dt

∂LE

∂φ̇
= 0 =

1

~

∂E

∂φ
− iS sin(θ) θ̇ .

(15.119)

Note that
dE

dt
= θ̇

∂E

∂θ
+ φ̇

∂E

∂φ
= 0 , (15.120)

which says that the energy E(θ, φ) is conserved along the classical trajectories. One can use
this result to finesse the instanton calculation and solve directly for θ as a function of φ. Energy
conservation provides a quadratic equation in cos(θ),

E0 = − h2

4k1
= k1 cos2(θ) + k2 sin2(θ) sin2 φ− h cos(θ) , (15.121)

the solution of which is written (Garg, 1993),

u(φ) =
u0 + i

√
λ sinφ

√

1− u20 − λ sin2φ

1− λ sin2φ
(15.122)

where u ≡ cos(θ), u0 = h/2k1 ≡ h/hc, and λ = k2/k1. Note that u = cos θ is complex along the

instanton path. Nevertheless, the path obeys the boundary condition that u = u0 at φ = 0 and
φ = π. The dimensionless instanton action is

A = Y + iφ = βE0 + iS

±π∫

0

dφ
{
1− u(φ)

}
, (15.123)

whence

φ = Im A = ±S
π∫

0

dφ
{

1− u0

1− λ sin2φ

}

= ±πS
{

1− u0√
1− λ2

}

. (15.124)

Thus, there are two instantons connecting (θ, φ) = (θ0, 0) and (θ, φ) = (θ0, π) which wind
around the sphere in opposite directions. The tunnel splitting, according to eqn. 15.117, is

∆ = 4D e−Y cos
(

πS
[

1− h

2
√

k21 − k22

])

. (15.125)

The tunnel splitting therefore vanishes at a set of dimensionless field strengths hm, where

hm = 2
√

k21 − k22

{

1− m+ 1
2

S

}

. (15.126)
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Note that for h = 0 the splitting vanishes whenever S = m + 1
2
, which is to say whenever the

ground state is a Kramers doublet.

In Fe8 clusters, where S = 10, this predicts ten values of h > 0 where ∆ vanishes. In fact,
experiments by Wernsdorfer and Sessoli see only four such vanishings. The reason for this is
that the effective Hamiltonian for the experimental molecule includes a term proportional to
J4
+ + J4

− which is not included in the Hamiltonian of eqn. 15.110. This new term allows for two
additional instanton solutions. Moreover, the new solutions exhibit discontinuities in Ω̂(τ) at
the boundaries τ = 0 and τ = ~β. This very interesting result was obtained by Keçecioǧlu and
Garg (2002).

15.5 Haldane’s Mapping to the Nonlinear Sigma Model

The many-spin dimensionless action is

A = −S
∑

i

ω[Ω̂i(t)]−
1

~

T∫

0

dtH
(
{Ω̂i(t)}

)
, (15.127)

where the Hamiltonian is that of a Heisenberg antiferromagnet, with diagonal coherent state
matrix elements given by

H
(
{Ω̂i(t)}

)
= 1

2
S2
∑

i,j

Jij Ω̂i · Ω̂j , (15.128)

where Jij = J
(
|Rij|

)
with Rij = Ri − Rj is a function of the distance between sites i and j in

the lattice. The spin coherent state at site i is polarized along the direction

Ω̂i = ηi n̂i

√

1−
(v0 Li

~S

)2

+
v0
~S

Li , (15.129)

where n̂i · Li = 0. Here, n̂i is the local Néel field, which varies slowly once the sublattice
modulation ηi extracted from the spin field Ω̂i, Li describes ferromagnetic fluctuations about

the local Néel order; v0 is the unit cell volume. Note that

~S
∑

i

Ω̂i = v0
∑

i

Li =

∫

ddxL(x) , (15.130)

where the RHS is obtained after taking the continuum limit.
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15.5.1 Hamiltonian

We now expand the Heisenberg interaction Ω̂i · Ω̂j in the slowly varying quantities n̂i− n̂j and
Li. Since n̂i is a unit vector, we may write

n̂i · n̂j = 1− 1
2
(n̂i − n̂j) · (n̂i − n̂j) . (15.131)

We then have

Ω̂i · Ω̂j = ηi ηj

{

1− 1
2
(n̂i − n̂j) · (n̂i − n̂j)

}{

1− 1
2

( v0
~S

)(
L2
i + L2

j

)
+ . . .

}

+
v0
~S

ηi n̂i · (Lj − Li) +
v0
~S

ηj n̂j · (Li − Lj)

+ 1
2

( v0
~S

)2{

L2
i + L2

j − (Li − Lj)
2
}

.

(15.132)

Lattice differences may now be expanded in derivatives, as

f(Rj)− f(Ri) = (Rµ
j − Rµ

i )
∂f(Ri)

∂Rµ
i

+ 1
2
(Rµ

j − Rµ
i ) (R

ν
j − Rν

i )
∂2f(Ri)

∂Rµ
i ∂R

ν
i

+ . . . (15.133)

Expanding to Gaussian order in the fields n̂ and L and their gradients, we find

Ω̂i · Ω̂j = ηi ηj

{

1− 1
2
(Rµ

j − Rµ
i ) (R

ν
j − Rν

i ) (∂µn
a
i ) (∂νn

a
i ) + . . .

}

(15.134)

+ 1
2

( v0
~S

)2{

(1− ηi ηj)(L
2
i + L2

j)− (Rµ
j −Rµ

i ) (R
ν
j −Rν

i ) (∂µL
a
i ) (∂νL

a
i ) + . . .

}

+
v0
~S

ηi n
a
i (R

µ
j − Rµ

i ) (∂µL
a
i )−

v0
~S

ηj n
a
j (R

µ
j − Rµ

i ) (∂µL
a
j ) + . . . .

Upon performing the double sum over lattice sites i and j, the terms on the last line vanish,
and we are left with

H = Hn̂ +HL + E0 (15.135)

where the classical energy E0 is given by

E0 =
1
2
S2
∑

i,j

Jij ηi ηj . (15.136)

The Hamiltonian also contains contributions due to gradients in the Néel field,

Hn̂ = − S2

4dN v0

∑

i,j

Jij ηi ηj
∣
∣Ri −Rj

∣
∣
2 ·
∫

ddx (∂µn
a)2 (15.137)
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where d is the dimensionality of the (presumed hypercubic) lattice and N is the number of
lattice sites, and from ferromagnetic fluctuations,

HL =
v0

2N~2

∑

i,j

Jij (1− ηi ηj) ·
∫

ddxL2(x)− v0
4dN~2

∑

i,j

Jij
∣
∣Ri −Rj

∣
∣
2 ·
∫

ddx (∂µL
a)2 . (15.138)

Retaining only terms of order L2 – and hence dropping terms of order (∇L)2 – we obtain the
Hamiltonian,

H =

∫

ddx
{

1
2
ρs(~∇n̂)2 + 1

2
χ−1L2

}

(15.139)

where the spin stiffness is given by

ρs ≡ − S2

2dN v0

∑

i,j

Jij ηi ηj
∣
∣Ri −Rj

∣
∣2 (15.140)

and the inverse susceptibility is given by

χ−1 ≡ v0
N~2

∑

ij

Jij (1− ηi ηj) =
v0
~2

[

Ĵ(0)− Ĵ(Q)
]

, (15.141)

where Q ≡ (π/a, π/a, . . . .π/a) is the zone corner wavevector. The dimensions of ρs and χ are:

[ρs] = E · L2−d ; [χ] = E · T 2 · L−d . (15.142)

15.5.2 Geometric phase

The geometric phase contribution to the dimensionless action is written

AB = −S
∑

i

ω[Ω̂i(t)] = −S
∑

i

ηiω
[

n̂i(t) + ηi
v0
~S

Li(t)
]

. (15.143)

We now expand in the notionally small quantity linear in Li, using the result of eqn. 15.88:

AB = −S
∑

i

ηi ω[n̂i]− S

∫

dt
∑

i

( v0
~S

)

Li ·
∂n̂i
∂t

× n̂i

= −S
∑

i

ηi ω[n̂i]−
1

~

∫

ddx

∫

dt
∂n̂

∂t
× n̂ · L .

(15.144)
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15.5.3 Emergence of the nonlinear sigma model

Let’s start with the quantum action obtained thus far,

A = −1

~

∫

ddx

∫

dt

{

1
2
ρs(~∇n̂)2 +

L2

2χ
+ L · ∂n̂

∂t
× n̂

+
g0µB

~S
Hu · L+

~g0µB

v0
Hs · n̂

}

− S
∑

i

ηi ω[n̂i] .
(15.145)

We have included here an external field H(x, t) which has uniform (k ≈ 0) and staggered
(k ≈ Q) components Hu and Hs, respectively. Now let us integrate out L. In order to do so, we
must introduce a Lagrange multiplier field λ(x, t) which enforces the local constraint n̂ ·L = 0.
At each position x, we must evaluate the functional integral

I ≡
∫

Dλ(t)
∫

DL(t) exp

{

− i

~

∫

ddx

∫

dt

[
L2

2χ
+ L ·

(

λn̂+
∂n̂

∂t
× n̂+

g0µB

~S
Hu

)]
}

= I0

∫

Dλ(t) exp
{

iχ

2~

∫

ddx

∫

dt
(

λn̂+
∂n̂

∂t
× n̂+

g0µB

~S
Hu

)2
}

(15.146)

= Ĩ0 exp

{

i

~

∫

ddx

∫

dt

[

1
2
χ
(∂n̂

∂t

)2

+
g0µB

χ

~S
Hu ·

∂n̂

∂t
× n̂+ 1

2
χ
(g0µB

~S

)2

(Hu × n̂)2
]}

where I0 and Ĩ0 are independent of Hu and n̂, and where we have suppressed the x coordinate.
The complete action functional, including the geometric phase term, is then

A =
1

~

∫

ddx

∫

dt

{

1
2
χ
(∂n̂

∂t

)2

− 1
2
ρs(~∇n̂)2 +

g0µBχ

~S
Hu ·

∂n̂

∂t
× n̂

+ 1
2
χ
(g0µB

~S

)2

(Hu × n̂)2 − g0µB

v0
Hs · n̂

}

− S
∑

i

ηi ω[n̂i] .
(15.147)

Dimensional analysis reveals the spin wave velocity c =
√

ρs/χ. Defining x0 = ct, we find that
the quantum field theoretic action, excluding the geometric phase term, is

A =
ρs
2~c

∫

dd+1x

{

(∂µn
a)(∂µna) +

2g0µB

~cS
Hu ·

∂n̂

∂x0
× n̂

+
(g0µB

~cS

)2

(Hu × n̂)2 − 2g0µB

ρsv0
Hs · n̂

}

− S
∑

i

ηi ω[n̂i] .

where we adopt a Minkowski (+,−, . . . ,−) metric. The Euclidean version is

AE =
ρs
2~c

∫

dd+1x

{

(∂µn
a)(∂µn

a) +
2ig0µB

~cS
Hu ·

∂n̂

∂x0
× n̂

−
(g0µB

~cS

)2

(Hu × n̂)2 +
2g0µB

ρsv0
Hs · n̂

}

+ iS
∑

i

ηi ω[n̂i] .
(15.148)
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Notice the factor of i in the coefficient of the second term. To maximize the weight exp(−AE),
the third term inside the brackets should be as large as possible. This favors a spin flop in which
the Néel vector lies perpendicular to the (uniform) applied magnetic field Hu.

The coupling constant for the nonlinear sigma model is defined to be

g =
~c

ρs
=

~√
ρsχ

=

√
2d v0
aS

( ∑

i,j Jij (1− ηiηj)
∑

i,j Jij (−ηiηj) |Ri −Rj |2/a2

)1/2

. (15.149)

For a nearest neighbor model on a d-dimensional cubic lattice, we have6

g =
2
√
d ad−1

S
. (15.150)

15.5.4 Continuum limit of the geometric phase: d = 1

In one space dimension, we have

∑

j

(−1)j ω[n̂j] = ω[n̂0]− ω[n̂1] + ω[n̂2]− . . . = 1
2

L∫

0

dx
∂ω

∂x
. (15.151)

We now invoke eqn. 15.88, which says

δω =

T∫

0

dt ǫabc ṅ
b nc δna , (15.152)

to obtain the beautiful result,

AB = −S
∑

j

(−1)j ω[n̂j] =
1
2
S

∫

dx

∫

dt n̂ · ∂n̂
∂t

× ∂n̂

∂x
≡ 2πS Qtx , (15.153)

where Qtx is an integer topological invariant, known as the Pontrjagin index of the field n̂(x, t):

Qtx =
1

8π

∫

d2x ǫµν ǫabc n
a ∂µn

b ∂νn
c , (15.154)

where x0 = ct as before. Qtx measures the winding of the field n̂(x, t) over the unit sphere. To
see it is an integer, change variables from local coordinates (nb, nc) to (ξ0, ξ1) in the vicinity of
n̂. The differential surface area element projected along na is

dΣa =
1
2
ǫµν ǫabc

∂nb

∂ξµ
∂nc

∂ξν
d2ξ (15.155)

6Take care not to confuse the coupling g with the g-factor g0.
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and changing variables from (x0, x1) to (ξ0, ξ1), we obtain

Qtx =
1

4π

∫

S2
int

d2ξ , (15.156)

which is manifestly an integer.

Put another way, think of n̂(x, t) as a rubber band draped over the surface of a sphere. As time
evolves from 0 to T , the configuration of the rubber band changes, but if the configuration itself
is periodic, i.e. n̂(x, 0) = n̂(x, T ), The Pontrjagin index measures the number of times the rubber
band winds around the sphere. Configurations of n̂(x, t) which yield a nonzero value of Qtx

are known as skyrmions. An example of a skyrmion configuration on the two-dimensional (x, y)
(or (x, t)) plane is obtained by identifying the vector n̂(x, y) with the (inverse) stereographically
projected position (x, y). Put another way, we set

v

u
= tan(θ/2) eiφ ≡ (x+ iy)/a , (15.157)

where a is an arbitrary length scale. This (exercise!) is equivalent to

nx =
2ax

a2 + x2 + y2
, ny =

2ay

a2 + x2 + y2
, nz =

a2 − x2 − y2

a2 + x2 + y2
. (15.158)

This skyrmion has Pontrjagin index Qxy = 1.

Thermodynamic properties are derived from the Euclidean action,

AE

d=1 = 2πiS Qtx +
ρs
2~c

∫

d2x (~∇n̂)2 . (15.159)

The effect of the geometric phase term, then, is quite simple and in fact discrete:

e2πiS Qtx =

{

+1 if S ∈ Z

(−1)Qtx it S ∈ Z + 1
2

.
(15.160)

Thus, for integer S, the geometric phase term always contributes a factor of unity, and the
full quantum field theoretic action is that of the two-dimensional O(3) model, also called the
nonlinear sigma model. For half-odd integer S, space-time configurations with even and odd
Pontrjagin index destructively interfere with each other.

What have we learned? First of all, we conclude that antiferromagnetic Heisenberg chains
generically fall into two classes: those with integer spin and those with half-odd integer spin.
The field theory for the first class is simply that of the classical O(3) model in two dimensions.
The Hohenberg-Mermin-Wagner theorem precludes any spontaneous breaking of the contin-
uous O(3) symmetry in d = 2 at any finite value of ρs. The system has a gap, and correlation
functions decay exponentially, up to power law corrections, viz.

〈
Ψ0

∣
∣S0 · Sj

∣
∣Ψ0

〉
≃ (−1)j |j|−1/2 exp(−|j|/ξ) , (15.161)
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where the correlation length ξ, in units of the lattice spacing a, is a function of the dimensionless
quantity ρs/~c.

For the second class – the half-odd integer antiferromagnetic chains – the field theory includes
the so-called ‘θ-term’,

Aθ =
θ

4π

∫

dx

∫

dt n̂ · ∂n̂
∂t

× ∂n̂

∂x
, (15.162)

with θ = 2πS = π mod 2π. While no exact solution to the field theory with the θ-term is
yet known, we nonetheless conclude that all half-odd integer antiferromagnetic chains behave
equivalently, since they all map onto the same model. Since the S = 1

2
Heisenberg antifer-

romagnetic chain is known, from Bethe’s Ansatz, to possess a disordered ground state with
gapless excitations and power law correlations, 〈S0 · Sj〉 ∼ (−1)j/|j| (up to logarithmic correc-
tions), we conclude that the same is true for the S = 3

2
, 5
2
, etc. spin chains.

15.5.5 The geometric phase in higher dimensions

So long as the Néel field n̂(x, t) is a smooth function of space and time, there are no interesting
topological terms in the field theory in more than one space dimension. The reason is trivial.
Consider a d-dimensional system as a network of parallel one-dimensional chains. Call the

longitudinal (chain) coordinate x. For each set of transverse coordinates R⊥, one can define the

integer Pontrjagin index Qtx(R⊥). The geometric phase term in the action is then given by

AB = S
∑

i

ηi ω[n̂i] = S
∑

R⊥

ηR⊥
Qtx(R⊥) = 0 , (15.163)

where the last equality follows from the assumed smoothness of n̂(x, t), which requires that

Qtx(R⊥) be independent of R⊥, since a smooth integer-valued function must be a constant!

When the smoothness constraint is relaxed, however, the geometric phase term can play an im-
portant role. For a two-dimensional antiferromagnet, there exist topology-changing instanton
for which ∆Qxy = ±1. Such field configurations are called ‘hedgehogs’, because the direction
of the field n̂(t, x, y) points radially outward from the center of the hedgehog. For quantum-
disordered two-dimensional antiferromagnets (i.e. small ρs), Haldane argued that geometrical
phase considerations associated with the presence of hedgehogs would distinguish not only
between integer and half-odd integer S on the square lattice, but between even and odd inte-
ger S as well.

15.6 Large-N Techniques

The basic idea behind large-N approaches is to extend the global symmetry group of some
physical model from e.g. O(3), SU(2), etc. to a larger group, such as O(N), SU(N), or Sp(N). If the
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extension is done in a certain way, the resultant model can be solved exactly in theN → ∞ limit.
N plays the role of 1/~, so N → ∞ is a classical limit of sorts, with no quantum fluctuations.
Furthermore, one can derive a systematic diagrammatic expansion in powers of 1/N , which
can be used to investigate properties at finite N .

We shall barely scratch the surface of this subject. My aim here is to guide you through a
large-N calculation for the nonlinear sigma model.

15.6.1 1/N expansion for an integral

To begin, consider the one-dimensional integral,

I =

∞∫

−∞

dx e−Nf(x) , (15.164)

where f(x) is some function and N is large. Clearly the integral is dominated by values of x
near the minimum of f(x). Suppose a unique global minimum exists at x = xc. We can then
write

I = e−Nf(xc)
∞∫

−∞

du e−
1
2
Nf ′′(xc)u2 e−

1
6
Nf ′′′(xc)u3 e−

1
24
Nf ′′′′(xc) u4 · · ·

= e−Nf(xc)
∞∫

−∞

du e−
1
2
Nf ′′(xc)u2

{

1− 1
6
Nf ′′′(xc) u

3 − 1
24
Nf ′′′′(xc) u

4 + . . .
}

=

(
2π

Nf ′′(xc)

)1/2

e−Nf(xc)
{

1− 1
24
Nf ′′′′(xc)〈u4〉+ . . .

}

.

(15.165)

Thus, we have derived a 1/N expansion for the integral:

− ln I =

O(N1)
︷ ︸︸ ︷

Nf(xc) +

O(N0)
︷ ︸︸ ︷

1
2
ln
(Nf ′′(xc)

2π

)

+

O(N−1)
corrections
︷ ︸︸ ︷

1

8N

f ′′′′(xc)
[
f ′′(xc)

]2 +O(N−2) . (15.166)

15.6.2 Large-N theory of the nonlinear sigma model

Recall the Euclidean action for the O(3) nonlinear sigma model,

AE =
ρs
2~c

∫

ddx

L0∫

0

dx0 (∂µn
a)2 , (15.167)



15.6. LARGE-N TECHNIQUES 31

where n̂ = (nx, ny, nz) is a three-component unit vector and L0 = ~c/kBT . In the case of Hal-
dane’s derivation of the sigma model action for quantum antiferromagnets, n̂(x) is physically
the Néel field, which varies slowly from site to site even though the local magnetization it-
self oscillates from one sublattice to the next.7 It should be emphasized, though, that the D-
dimensional nonlinear sigma model also describes the finite temperature phase transition of
an isotropic D-dimensional ferromagnet.

Quantum mechanics is irrelevant at finite temperature, since the imaginary time variable is
bounded: 0 ≤ τ ≤ ~β. At a critical point, the spatial correlation length diverges as ξ(T ) ∼
|T − Tc|−ν , and the temporal correlation length (or correlation time) diverges along with ξ, as
ξτ ∼ ξz. Here, ν is the correlation length exponent and z the dynamic critical exponent. With
~β finite, however, sufficiently close to Tc the correlation time exceeds the thickness ~β of the
temporal ‘slab’, hence the degrees of freedom at a particular location in space are ‘locked’ as
a function of imaginary time. Finite T second order transitions of a d-dimensional quantum
system are therefore described by a d-dimensional action.8 At zero temperature, though, the
temporal slab is infinitely thick, and one cannot ignore temporal fluctuations. The action is
then for a (d+ 1)-dimensional system.

It is perhaps worth emphasizing that the continuum effective action for the Heisenberg ferro-
magnet is given by

AFM =

∫

ddx

~β∫

0

dτ

{

iS v−1
0 A(n̂) · ∂n̂

∂τ
+ 1

2
ρs (~∇n̂)2

}

(15.168)

where v0 is the unit cell volume, and

ρs =
S2

4dv0

∑

R

J(R)R2 . (15.169)

Note the difference between this and the effective action of the antiferromagnet, in which space
and time appear symmetrically. The effective (low-energy) theory for the antiferromagnet pos-
sesses a ‘Lorentz invariance’ where the speed of light is replaced by the spin wave velocity

c =
√

ρs/χ.

Returning to the nonlinear sigma model, the partition function is given by the functional inte-
gral

Z = e−F/kBT =

∫

n̂2=1

Dn̂(x) e−AE[n̂] . (15.170)

7The notation I adopt here is that (d+ 1)-dimensional vectors are denoted as x ≡ (x0,x).
8Note that this does not say that quantum mechanics has no effect whatsoever at finite temperature. Indeed, the
partition function for the quantum and classical Heisenberg models will be different. What is true is that the
critical properties at a finite temperature second order transition are not affected by quantum mechanics.
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The extension of the O(3) model to one with an O(N) symmetry is trivial. Simply replace the

3-component unit vector (nx, ny, nz) by an N-component one, n = (n1, n2, . . . , nN). How do we
generalize the unit length constraint to general N? Let us write the constraint as n2(x) = qN ,
where the parameter q is as yet undetermined. We can envisage two natural extensions to
general N :

• Maintain n2 = 1, i.e. take q = N−1.

• Fix q and let N vary. The length of n then increases with N .

It turns out that it is the second of these schemes which generates a proper 1/N expansion, as
we shall soon see.

To enforce the length constraint, we insert into the functional integral a δ-function δ(n̂2 − qN)
at every space-time point. We write the δ-function as

δ(y) =

i∞∫

−i∞

dλ e−λy , (15.171)

where the integration contour runs along the imaginary axis, from −i∞ to +i∞. The partition
function is then expressed as a double functional integral over the fields n̂(x) and λ(x),

Z =

∫

D[n(x), λ(x)] e−ÃE[n,λ] , (15.172)

where

ÃE =

∫

dd+1x

{
1

2g
(∂µn

a)2 + λ (n2 − qN)

}

. (15.173)

For convenience we have defined the coupling

g ≡ ~c

ρs
=

~√
χρs

. (15.174)

The dimensions of g are [g] = Ld−1.

We now integrate out the na(x) fields, which are quadratic in ÃE. Writing

ÃE = 1
2

∫

dd+1x

∫

dd+1x′ na(x)K(x, x′)na(x′)− qN

∫

dd+1xλ(x) (15.175)

with

K(x, x′) = − ρs
~c

∂

∂xµ
δ(x− x′)

∂

∂x′µ
+ 2λ δ(x− x′) , (15.176)
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the partition function can be written in terms of an effective free energy which is a function of
the field λ(x) alone:

Z =

∫

Dλ(x) e−NFeff [λ]/kBT (15.177)

where

e−NFeff [λ]/kBT =

∫

Dn(x) e−ÃE[n(x),λ(x)]

= (det K)−N exp

{

qN

∫

dd+1xλ(x)

}

.

(15.178)

Thus, the effective free energy is

Feff [λ]/kB
T = ln det K − q

∫

dd+1xλ(x) , (15.179)

where the determinant of the integral operator K is, as always, defined by the product of its
eigenvalues,

ln det K =
∏

n

ζn . (15.180)

The eigenvalue equation is

∫

dd+1x′K(x, x′)ψn(x
′) = ζn ψn(x) . (15.181)

We can now see why keeping q finite as N → ∞ generates a true 1/N expansion. Had we

instead taken n2 = 1, we would have q = 1/N and the effective free energy Feff [λ] would not
be independent of N .

Solution of the N → ∞ theory

WhenN → ∞ the functional integral is dominated by the saddle point in the action. Before we
solve for this saddle point, let us slightly extend our model to include a coupling to a magnetic
field. The augmented action is then

ÃE =

∫

dd+1x

{
1

2g
(∂µn

a)2 + λ (nana − qN)−
√
N ha na

}

. (15.182)

The
√
N factor preceding h · n ensures that the action will be proportional to N when |h| is

of O(N0). In the case of the antiferromagnet, where n̂ is the Néel field, h corresponds to the
q = π/a (zone corner) component of the physical magnetic field, i.e.a sublattice-staggered mag-
netic field. This is of course quite unphysical, however our purpose in introducing h is not to
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investigate the effects of an external field per se, but rather as an artifice by which we can couple
to any condensate, as we shall see presently.

To find the saddle point of Feff [λ], we should set its functional variation with respect to λ(x)
to zero. We will assume that the saddle point occurs for real, constant λ. We will justify this

by presenting such a solution to the equation δFeff = 0. Note that the saddle point lies off the
integration contour for λ(x), which runs along the imaginary axis.

When λ is constant, the model may be solved by Fourier transform. We write

na(x) =
1√
L0V

∑

k

n̂a(k) eik·x (15.183)

with

L0 = β~c , V = L1 · · ·Ld , k =
(2πj0
L0

,
2πj1
L1

, . . . ,
2πjd
Ld

)

. (15.184)

Expressed in terms of the Fourier modes,

{
na(x)

ha(x)

}

≡ 1
√
V L0

∑

k

{
n̂a(h)

ĥa(k)

}

eik·x , (15.185)

the Euclidean action is

ÃE =
N∑

a=1

∑

k

{(

λ+
k2

2g

)∣
∣n̂a(k)

∣
∣2 −

√
N ĥ∗a(k) n̂

a(k)

}

− qNV L0 λ . (15.186)

We now integrate out the {n̂a(k)}, yielding an effective free energy function Feff(λ):

f(λ) ≡ Feff(λ)

N~cV
= −qλ +

1

2L0V

∑

k

ln
(

λ+
k2

2g

)

− 1

2L0V

∑

k

ĥa(k) ĥa(−k)
(
λ+ k2

2g

) . (15.187)

The order parameter m, which is the static Néel field in the case of the antiferromagnet and
the static magnetization in the case of the ferromagnet, is obtained by differentiating the free

energy with respect to the q = 0 Fourier component of the field ĥa(k). We therefore obtain

m =
〈n〉√
N

= − 1

NL0V

∂(NFeff/kBT )

∂h
= −∂f

∂h
=

h

2λ
, (15.188)

since ĥ(0) =
√
L0V h.

To find the saddle point in λ, we set ∂f/∂λ = 0, yielding

q = m2 +
g

L0V

∑

k

1

k2 + 2gλ
. (15.189)
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In the absence of an external field, we also have The second mean field equation,

2λm = h = 0 . (15.190)

This requires either (i) λ = 0 or (ii) m = 0.

We now explore the solution to these equations as we vary dimensionality and temperature.

• d = 1, T = 0: In this case the integral is infrared divergent when λ = 0. The mean field
equation can always be solved with m = 0 for some finite λ:

q =

Λ∫
d2k

(2π)2
1

2λ+ k2

g

=
g

4π
ln
(

1 +
Λ2

2gλ

)

, (15.191)

yielding

λ(g) =
Λ2/2g

exp(4πq/g)− 1
, (15.192)

which monotonically decreases on g ∈ [0.∞] from λ(0) = Λ2/8πq to λ(∞) = 0.

• d > 1, T = 0: In this case there exists a quantum critical point at g = gc. The gap λ
vanishes for g ≤ gc. To find gc, set

q = gc

Λ∫
dd+1k

(2π)d+1

1

k2
=

gc
(2π)d+1

· Λ
d−1

d− 1
·
{

Ωd+1 scheme I

πΩd scheme II ,
(15.193)

where Ωd is the area of the d-dimensional unit sphere:

Ωd =
2πd/2

Γ
(
d
2

) . (15.194)

The cutoff is taken to be isotropic in both frequency and momentum (scheme I) or isotropic
in momentum only (scheme II). In scheme II, the integral over the frequency component
k0 extends over the range (−∞,∞), which is appropriate since the imaginary time vari-
able is not quantized on a lattice. This gives us an equation for the critical coupling gc.
The cutoff Λ is proportional to a−1, and it is convenient to write Λ = ζπ/a, where ζ is a
dimensionless constant and a is the lattice spacing.

Recall that Haldane’s mapping for the cubic lattice Heisenberg model resulted in an O(3)

nonlinear sigma model with coupling g = 2
√
d ad−1/S. The critical value for the spin

quantum number Sc is then found to be

Sc =

√
d

d− 1
· ζ

d−1

2dπ2q
·
{

Ωd+1 scheme I

πΩd scheme II ,
(15.195)
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For d = 2 and q = N−1 = 1
3
, one finds Sc = 1.35 ζ (scheme I) or Sc = 2.12 ζ (scheme II).

Depending on the value of ζ , then, the critical S may be either smaller or greater than the
smallest value permitted by quantum mechanics, i.e. S = 1

2
. If Sc <

1
2
, then we conclude

the model is Néel-ordered at zero temperature. Indeed numerical work convincingly
shows that the ground state for S = 1

2
is Néel-ordered, and rigorous proofs exist which

show that long-ranged Néel order exists for S ≥ 1.

One might suspect, given eqn. 15.149, that by extending the range of the interactions
one can push g above gc and obtain a quantum-disordered ‘spin-liquid’ ground state for
the S = 1

2
antiferromagnet on a square lattice. For example, if one includes next-nearest

neighbor antiferromagnetic coupling J2 as well as nearest neghibor antiferromagnetic
coupling J1, one has

g =
2
√
d ad−1

S
· 1
√

1− 2J2/J1
, (15.196)

which is increased above its value when J2 = 0. In fact, the search for spin liquid states
has been an arduous one. On the square lattice, one generally finds that frustrating
further-neighbor couplings push the system into another ordered state, for example one
with four sublattice antiferromagnetic order. On lattices which are highly geometrically
frustrated, such as the Kagomé and pyrochlore lattices, the S = 1

2
antiferromagnet is gen-

erally believed to have a quantum-disordered spin liquid ground state, i.e. the ground
state has no long-ranged order and breaks no lattice translation or point group symme-
tries.

• d > 2, T > 0: In this case there is a finite temperature phase transition. Defining the
Matsubara wavevectors κn ≡ 2πn/L0, we use the result

1

L0

∑

κn

H(−iκn) =
H(0)

L0
+

∞∫

−∞

dκ

π

Im H(κ+ i0+)

exp(κL0)− 1
(15.197)

to obtain the finite temperature mean field equation,

q = m2 + g

Λ∫
ddk

(2π)d

{

2/L0

k2 + 2gλ
+

ctnh (1
2
L0

√

k2 + 2gλ)
√

k2 + 2gλ

}

(15.198)

The equation for Tc is obtained by setting λ = m2 = 0:

q = g

Λ∫
ddk

(2π)d

{
2

L0 k2
+

1

k
ctnh (1

2
kL0,c)

}

, (15.199)

which is to be solved for Tc = ~c/kBL0.c, assuming g < gc, i.e. that the T = 0 (ground) state
is ordered.
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15.6.3 Correlation functions

The correlation functions are obtained via

〈n̂a(k) n̂b(−k)〉c = −L0V
∂2f

∂ĥa(−k) ∂ĥb(k)
=

g

k2 + 2gλ
δab (15.200)

hence the full correlator is given by

Cab(x) ≡ 〈na(0)nb(x)〉 = mamb +
g

L0V

∑

k

eik·x

k2 + 2gλ
δab

= mamb + g

∞∫

−∞

dk0
2π

eik0x
0

Λ∫
ddk

(2π)d
eik·x

k20 + k2 + 2gλ
,

(15.201)

where in the second line we take the thermodynamic limit, set T → 0, and adopt cutoff scheme
II, appropriate for lattice systems. In the latter case, at large distances we obtain the Ornstein-
Zernike form,

Cab(x)− Cab(∞) ∼ e−|x|/ξ

|x|d/2 δ
ab , (15.202)

with ξ = (2gλ)−1/2. At the quantum critical point, where λ vanishes, one finds C(x) ∼ |x|1−d.
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