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Chapter 9

Landau Fermi Liquid Theory

9.1 Normal 3He Liquid

3He is a neutral atom consisting of two protons, one neutron, and two electrons. A composite
of five fermions, it behaves as a hard-sphere (radius a ≈ 1.35Å) fermion of (nuclear) spin I = 1

2

at energies below the scale of electronic transitions1. It exhibits a fairly rich phase diagram,
depicted in the left hand panel of Fig. 9.1. 3HeA and 3HeB are superfluid phases which differ
in the symmetry of their respective order parameters. 3HeN is a normal fluid which behaves
much like a free Fermi gas, but in which interaction effects play an essential role in its physical
properties. It is known as a Fermi liquid2 In a Fermi liquid, as in the noninteracting Fermi gas,
the low-temperature specific heat cV (T ) is linear in T and the magnetic susceptibility χ(T ) is
Pauli-like (χ ∝ T 0), as shown in Fig. 9.2. An important distinction between 3HeN and most
metals is that the mass of the 3He atom is about 6,000 times greater than that of the electron.
Thus at a typical density n = 1.64 × 1022 cm−3 and m3 = 5.01 × 10−24 g one obtains a Fermi
temperature

TF =
~
2

2mk
B

(3π2n)2/3 = 4.97K , (9.1)

which is much much smaller than TF(Cu) ≈ 81, 000K and TF(Al) ≈ 135, 000K. This explains
why one begins to see Curie-like behavior in the magnetic susceptibility, i.e. χ(T ) ≃ nµ2

0/kB
T , at

temperatures T >∼ 1K. Here µ0 = −10.746×10−27 J/T = −1.1574µ
B

is the 3He nuclear magnetic
moment, and µ

B
= e~/2mec is the Bohr magneton, with me the electron mass. Recall these basic

1E1 − E0 ≈ 20 eV, and the first ionization energy is 24.6 eV.
2The general theory of Fermi liquids was developed principally by the Russian physicist Lev Landau in the 1950s.

1



2 CHAPTER 9. LANDAU FERMI LIQUID THEORY

Figure 9.1: Phase diagrams of 3He (left) and 4He (right).

results for the free spin-1
2

Fermi gas with ballistic dispersion ε(k) = ~
2k2/2m :

Fermi wavevector : k
F
= (3π2n)1/3

density of states : g(ε
F
) =

mkF

π2~2

occupancy : f(ε) =

[
exp
(ε− µ

k
B
T

)
+ 1

]−1

specific heat : cV =
1

V

(
∂E

∂T

)

N,V

=
π2

3
g(ε

F
) k2

BT +O(T 3)

magnetic susceptibility : χ =

(
∂M

∂H

)

N,V

= µ2
0 g(εF

) +O(T 2)

compressibility : κ = n−2

(
∂n

∂µ

)

T

= n−2g(ε
F
) +O(T 2) .

(9.2)

Experimental data for cV (T ) and χ(T ) in 3He are shown in Fig. 9.2. Note that cV (T )/T and
χ(T ) are each pressure-dependent constants as T → 0. The same is true for the compress-
ibility κ(T ), which is obtained from measurements of the velocity of thermodynamic sound,
s = (m3nκ)

−1/2. In a noninteracting Fermi gas, all these quantities are proportional to the den-

sity of states g(εF), up to constant factors. We can define c0V (T, n), χ
0(T, n), and κ0(T, n) to be

the corresponding free Fermi gas expressions for a system of spin-1
2

fermions of mass m3 and
density n. One finds that the ratios cV /c

0
V , χ/χ0, and κ/κ0 all tend to different constants as

T → 0. Thus, it is impossible to reconcile the data by positing a phenomenological effective
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Figure 9.2: Left: cV (T )/RT for normal 3He. From D. S. Greywall, Phys. Rev. B 27, 2747
(1983). Numbers give the sample pressures in bars at T = 0.1K. Right: Normalized magnetic
susceptibility χ(T ) v0/Cm of normal 3He, where v0 is the molar volume and Cm ≡ limT→∞ Tχ(T )
is the Curie constant. From V. Goudon et al., J. Phys.: Conf. Ser. 150, 032024 (2009).

mass m∗, since that would require that these ratios all tend to the same value. Furthermore, the
T → 0 limits of these ratios are all pressure-dependent. Another issue is that the first correc-
tion to the low temperature linear specific heat in a Fermi gas go as T 3, whereas experiments
yield a co.rrection on the order of T 3 lnT We shall see below how Landau’s theory is capable
of reproducing the observed temperature dependences, and moreover introduces additional
interaction parameters which allow us to describe all these behaviors in a consistent way. We
shall largely follow here the treatments by Nozieres and Pines, and by Baym and Pethick3.

9.2 Fermi Liquid Theory : Statics and Thermodynamics

9.2.1 Adiabatic continuity

The idea behind Fermi liquid theory is that the many-body eigenstates of the free Fermi gas

with Hamiltonian Ĥ0, which are Slater determinants, each evolve adiabatically into eigenstates

of the interacting Hamiltonian Ĥ = Ĥ0+ Ĥ1, where Ĥ1 is the interaction part. Typically we will

3P. Nozieres and D. Pines, Theory of Quantum Liquids (Avalon, 1999); G. Baym and C. Pethick, Landau Fermi-
Liquid Theory : Concepts and Applications (Wiley, 1991).
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Figure 9.3: Two particle, two hole excitation of the state |F〉 obtained via first order perturbation

theory in the interaction Hamiltonian Ĥ1.

consider

Ĥ0 =
∑

k,σ

ε0k c
†
k,σck,σ , (9.3)

with ε0k = ~
2k2/2m . The general form of interactions in a translationally invariant system is

Ĥ1 =
1

2

∑

k,p,q

∑

α,β

∑

α′,β′

ûαβα′β′(q) c†k+q,α c
†
p−q,α′ cp,β′ ck,β . (9.4)

In systems with spin isotropy, we can write

ûαβα′β′(q) = ûS(q) δαβ δα′β′ + ûH(q) ταβ · τα′β′ , (9.5)

where ûS,H(q) are the scalar and Heisenberg exchange parts of the interaction, respectively.

We will focus here on the case where ûH = 0, in which case we may write

Ĥ1 =
1

2

∑

k,p,q

∑

σ,σ′

û(q) c†k+q,σ c
†
p−q,σ′ cp,σ′ ck,σ . (9.6)

When Ĥ1 = 0, the N-particle ground state is the filled Fermi sphere, |F 〉 =∏′

k,σ c
†
k,σ | 0 〉 , where

the prime denotes the restriction |k| ≤ kF . Treating the interaction in first order perturbation
theory, we have the perturbed ground state |F′ 〉 is given by

|F′ 〉 = |F 〉+
∑

α

|α 〉 〈α | Ĥ1 |F 〉
E0

F − E0
α

+O(Ĥ2
1 ) . (9.7)

This results in contributions such as that depicted in Fig. 9.3. Proceeding to still higher orders
of perturbation theory, the perturbed ground state appears as a seething, bubbling ’soup’ of
particle-hole pairs.
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We can associate interacting and noninteracting eigenstates, however, through the process of
adiabatic evolution. Define

Ĥ(λ) = Ĥ0 + λĤ1 , (9.8)

so Ĥ(0) = Ĥ0 and Ĥ(1) = Ĥ0 + Ĥ1 = Ĥ. Suppose λ(t) is a monotonically increasing function
of t for t < 0, with λ(−∞) = 0 and λ(0) = 1. The unitary evolution operator is then

Û(0,−∞) = T exp

{
− i

~

0∫

−∞

dt Ĥ(t)

}

= T exp

{
− i

~

1∫

0

dλ

λ̇
Ĥ(λ)

}
= T exp

{
− i

~ǫ

1∫

0

dλ

λ
Ĥ(λ)

}
≡ Ûǫ ,

(9.9)

where in the final expression we take λ(t) = exp(−ǫ|t|). Thus, we can consider the adiabatic
map,

Ûǫ : |F 〉 → |F′
ǫ 〉 = Ûǫ |F 〉 (9.10)

where Ĥ |F′ 〉 = E ′ |F′ 〉 . We then consider the limit as ǫ → 0. One wrinkle here is that the
phase of |F′

ǫ 〉 in the limit ǫ → 0 is generally divergent, and to cancel it out we could instead
define the state

| F̃′ 〉 ≡ lim
ǫ→0

{(〈F |U †
ǫ |F 〉

〈F |Uǫ |F 〉

)1/2
Ûǫ |F 〉

}
, (9.11)

in which the phase cancels.

Suppose that rather starting with the N-particle state |F 〉, we start with the state c†k,σ |F 〉, where

|k| > kF. We then adiabatically evolve with Ûǫ as described above (including our nifty phase
divergence cancellation protocol). We then obtain a state |Ψk,σ 〉, about which we know three
things: (i) its total particle number is N + 1, (ii) its total momentum is ~k, and (iii) its total spin
polarization is σ. We may write

|Ψ′
k,σ 〉 = q†k,σ |F′ 〉 , (9.12)

where

q†k,σ = lim
ǫ→0

{
Uǫ c

†
k,σ U

†
ǫ

}

= Zk,σ c
†
k,σ +

∑

k
1
,k

2

∑

σ
1
,σ

2

A
σ
1
,σ

2

k
1
,k

2

c†k
1
,σ

1

c†k
2
,σ

2

ck
1
+k

2
−k,σ

1
+σ

2
−σ + . . . .

(9.13)

Thus, the operator which when acting on the interacting ground state |F′ 〉 creates the excited state
|Ψk,σ 〉 is a complicated linear combination of products of creation and annihilation operators
where each term has fixed total particle number, momentum, and spin polarization. We say

that q†k,σ creates a quasiparticle of momentum ~k and spin polarization σ. The factor Zk,σ is
called the quasiparticle weight (typically independent of σ in unmagnetized systems) and tells
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Figure 9.4: A quasi-particle is to a real particle as a quasi-horse is to a real horse. From R. D.
Mattuck, A Guide to Feynman Diagrams in the Many-Body Problem (Dover, 1992).

us what fraction of the quasiparticle content is the single bare fermion c†k,σ . The rest is what
we in the many-body biz call dressing. The bare particle, or what’s left of it, is surrounded by a
cloud of particle-hole pairs in various combinations. See Fig. 9.4 for a vivid analogy.

Now imagine starting with a general Fock basis state,

∣∣Ψ0

[
{Nk,σ}

] 〉
=
∏

k,σ

(
c†k,σ
)N

k,σ
∣∣ 0
〉

, (9.14)

which is an eigenstate of Ĥ0 with eigenvalue E0
[
{Nk,σ}

]
=
∑

k,σ Nk,σ ε
0
k,σ . We then perform

our adiabatic evolution, which generates the interacting eigenstate
∣∣Ψ
[
{Nk,σ}

]〉
, which must be

an eigenstate of Ĥ = Ĥ0 + Ĥ1. Its associated eigenvalue E must then be a function, however
complicated, of the set {Nk,σ}, i.e. E = E

[
{Nk,σ}

]
. Since we can adiabatically evolve any many-

body eigenstate of Ĥ0, we can also evolve a density matrix of the form

̺0
[
{nk,σ}

]
=
⊗

k,σ

[(
1− nk,σ

)
| 0 〉〈 0 |+ nk,σ c

†
k,σ | 0 〉〈 0 | ck,σ

]
(9.15)

Here we may take the distribution {nk,σ} to be smooth as a function of k for each σ, and regard

the energy to be a function (or functional4) of the distributions {nk,σ}.

It is important to note that the principle of adiabatic continuity can easily fail, for example when
a phase boundary is crossed as λ evolves over the interval λ ∈ [0, 1]. This is indeed the case for
phases of matter such as charge and spin density waves, exciton condensates, superconductors,
etc.

4If we regard k as a continuous variable, then E[{nk,σ}] is a functional of the functions nk,↑ and nk,↓.
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9.2.2 First law of thermodynamics for Fermi liquids

We begin with the formula for the entropy of a distribution of fermions,

S[{nk,σ}] = −k
B
Tr (̺0 ln ̺0)

= −k
B

∑

k,σ

{
nk,σ lnnk,σ + (1− nk,σ) ln(1− nk,σ)

}
.

(9.16)

Note that the entropy does not change under adiabatic evolution of the density matrix. The
first variation of the entropy is then

δS = −k
B

∑

k,σ

ln

(
nk,σ

1− nk,σ

)
δnk,σ . (9.17)

The total particle number operator is N̂ =
∑

k,σ n̂k,σ, hence

N = Tr
(
̺0 N̂

)
=
∑

k,σ

nk,σ , δN =
∑

k,σ

δnk,σ . (9.18)

Note that the particle number, like the entropy, is preserved by adiabatic evolution.

Finally, the energy E, as discussed in the previous section, is a functional of the distribution,
which means that we may write

δE =
∑

k,σ

ε̃k,σ δnk,σ , ε̃k,σ =
δE

δnk,σ

(9.19)

is the first functional variation of E. The energy is not an adiabatic invariant. It is crucial to note
that ε̃k,σ is simultaneously a function of k and σ and a functional of the distribution. Indeed, we
shall write

δ2E

δnk,σ δnk′,σ′

=
δε̃k,σ
δnk′,σ′

≡ 1

V
f̃kσ,k′σ′ , (9.20)

where f̃kσ,k′σ′ has dimensions of energy × volume and is itself, in principle, a functional of the
distribution.

Writing the First Law as

T δS = δE − µ δN , (9.21)

and using the fact that the δnk,σ are all independent variations, we have

− k
B
T ln

(
nk,σ

1− nk,σ

)
= ε̃k,σ − µ , (9.22)
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for each (k, σ), which is equivalent to

nk,σ =
1

exp
(

ε̃
k,σ

−µ

k
B
T

)
+ 1

. (9.23)

This has the innocent appearance of the Fermi distribution familiar from elementary quantum
statistical physics, but it must be emphasized again that ε̃k,σ is a functional of the distribu-
tion, hence Eqn. 9.23 is in fact a complicated implicit, nonlinear equation for the individual
occupations nk,σ .

At T = 0, however, we have

nk,σ(T = 0) = Θ(µ− ε̃k,σ) ≡ n0
k,σ . (9.24)

It is now convenient to define the deviation

δnk,σ ≡ nk,σ − n0
k,σ , (9.25)

where n0
k,σ is the ground state distribution at T = 0. In an isotropic system with no external

magnetic field, we have n0
k,σ = Θ(kF − k). We may now write the energy E as a functional of

the δnk,σ, viz.

E = E0 +
∑

k,σ

εk,σ δnk,σ +
1

2V

∑

k,σ

∑

k′,σ′

fkσ,k′σ′ δnk,σ δnk′,σ′ + . . . . (9.26)

Though it may not be obvious at this stage, it turns out that this is as far as we need to go in
the expansion of the energy as a functional Taylor series in the δnk,σ. Note that

ε̃k,σ =
δE

δnk,σ

= εk,σ +
1

V

∑

k′,σ′

fkσ,k′σ′ δnk′,σ′ + . . . (9.27)

and thus

εk,σ =
δE

δnk,σ

∣∣∣∣∣
δn=0

. (9.28)

Similarly,

δ2E

δnk,σ δnk′,σ′

∣∣∣∣∣
δn=0

=
δε̃k,σ
δnk′,σ′

∣∣∣∣∣
δn=0

≡ 1

V
fkσ,k′σ′ . (9.29)

Compare with Eqn. 9.20. In isotropic systems, the Fermi velocity is given by

1

~

∂εk,σ
∂k

∣∣∣∣
k=k

F

= v
F
k̂ , (9.30)
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and we define the effective mass m∗ by the relation vF = ~kF/m
∗. The Fermi energy is then given

by εF = εk,σ
∣∣
k=k

F

, and the density of states at the Fermi energy is

g(ε
F
) =

∑

σ

∫
d3k

(2π)3
δ(ε

F
− εk,σ) =

m∗kF

π2~2
, (9.31)

where, recall, kF = (3π2n)1/3.

In systems with spin isotropy, we may define the functions f s
k,k′ and f a

k,k′ as follows:

fk↑,k′↑ = fk↓,k′↓ ≡ f s
k,k′ + f a

k,k′

fk↑,k′↓ = fk↓,k′↑ ≡ f s
k,k′ − f a

k,k′ .
(9.32)

Equivalently,
fkσ,k′σ′ = f s

k,k′ + σσ′f a
k,k′ . (9.33)

Recall that fkσ,k′σ′ has dimensions of energy × volume. Thus we may define the dimensionless

function Fkσ,k′σ′ by multiplying fkσ,k′σ′ by the density of states g(εF):

Fkσ,k′σ′ ≡ g(ε
F
) fkσ,k′σ′ , F s,a

k,k′ ≡ g(ε
F
) f s,a

k,k′ , (9.34)

with Fkσ,k′σ′ = F s
k,k′ + σσ′F a

k,k′ . When k and k′ both lie on the Fermi surface, we may write

F s,a

k
F
k̂,k

F
k̂′
≡ F s,a(ϑ

k̂,k̂′
) , (9.35)

where k̂ · k̂′ = cosϑ
k̂,k̂′

. Furthermore, we may expand F s,a(ϑ) in terms of the Legendre polyno-

mials, viz.

F s,a(ϑ) =

∞∑

n=0

F s,a
n Pn(cosϑ) . (9.36)

Recall the generating function for the Legendre polynomials,

(1− 2xt + t2)−1/2 =
∞∑

n=0

tn Pn(x) , (9.37)

as well as the recurrence relation

Pn+1(x) =
2n+ 1

n+ 1
xPn(x)−

n

n+ 1
Pn−1(x) , (9.38)

and the orthogonality relation

1∫

−1

dx Pm(x)Pn(x) =
2

2n+ 1
δmn . (9.39)

Therefore if F (ϑ) =
∑

ℓ Fℓ Pℓ(ϑ) then
∫

dΩ

4π
F (ϑ) Pn(cosϑ) =

Fn

2n+ 1
, (9.40)

where dΩ is the differential solid angle.
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parameter p = 0 bar p = 27 bar
m∗/m 2.80 5.17
F s
0 9.28 68.17

F s
1 5.39 12.79

F a
0 −0.696 −0.760

(F a
1 )

∗ −0.54 −1.00
(F a

1 )
∗ −0.46 −0.27

vF (cm/sec) 5.90× 103 3.57× 103

c1 (cm/sec) 1.829× 104 3.893× 104

Table 9.1: Fermi liquid parameters for 3HeN (from Baym and Pethick, p. 117). Two estimates
for the parameter F a

1 are given, based on two different methods.

9.2.3 Low temperature equilibrium properties

Entropy and specific heat

From the first law, we have

T δS =
∑

k,σ

(ε̃k,σ − µ) δnk,σ

=
∑

k,σ

(ε̃k,σ − µ)

{
∂nk,σ

∂ε̃k,σ
δε̃k,σ +

∂nk,σ

∂µ
δµ+

∂nk,σ

∂T
δT

}

=
∑

k,σ

(ε̃k,σ − µ)

(
∂nk,σ

∂ε̃k,σ

){(
δε̃k,σ − δµ

)
−
(
ε̃k,σ − µ

T

)
δT

}
.

(9.41)

It turns out that the contribution of the (δε̃k,σ − δµ) term inside the curly brackets results in a
contribution of order T 3 lnT , which we shall accept on faith for the time being5. Thus, we are
left with

δS = −
∑

k,σ

(
∂nk,σ

∂ε̃k,σ

)
(ε̃k,σ − µ)2

δT

T 2
= −V g(ε

F
)
δT

T 2

∞∫

0

dε
∂n

∂ε
(ε− µ)2

= −V g(ε
F
) k2

B
δT

∞∫

−∞

dx
∂

∂x

(
1

exp(x) + 1

)
x2 =

π2

3
V g(ε

F
) k2

B
δT .

(9.42)

We conclude

S(T, V,N) = V
π2

3
g(ε

F
) k2

B
T (9.43)

5For a justification, see §1.4 of Baym and Pethick.
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and

cV (T, n) =
T

V

(
∂S

∂T

)

V,N

=
π2

3
g(ε

F
) k2

B
T . (9.44)

The difference between this result and that of the free fermi gas is the appearance of the effective

mass m∗ in the density of states g(εF). If c0V (T ) is defined to be the low-temperature specific heat
in a free Fermi gas of particles of mass m at the same density n, then

cV (T )

c0V (T )
=

m∗

m
. (9.45)

From δF
∣∣
V,N

= −S δT , we integrate and obtain the temperature dependence of the ltz free
energy,

F (T, V,N) = E0(V,N) + V
π2

6
g(ε

F
) (k

B
T )2 . (9.46)

Thus the chemical potential is

µ(n, T ) = − ∂F

∂N

∣∣∣∣
T,V

= −
(
∂(F/V )

∂(N/V )

)

T

= µ(n, T = 0) +
π2

6
(k

B
T )2

∂g(εF)

∂n

= µ(n, 0)− π2

4
k

B

(
1

3
+

∂ lnm∗

∂ lnn

)
T 2

T
F

,

(9.47)

where k
B
T

F
≡ ~

2k2
F
/2m∗.

Compressibility and sound velocity

Consider a swollen Fermi surface of radius kF + dkF, as depicted in Fig. 9.5. The change in the
chemical potential is then given by

dµ = ε̃
k
F
+dk

F

− ε̃
k
F

= dε̃
k
F

, (9.48)

where we assume no spin dependence in the dispersion. Thus,

dµ = dε
k
F

+
1

V

∑

k′,σ′

fk
F
σ,k′σ′ δnk′,σ′ = ~v

F
dk

F

{
1 +

∫
d3k′

(2π)3

∑

σ′

fk
F
σ.k′σ′ δ(εk′ − µ)

}

= ~v
F
dk

F

{
1 + 2

∫
dΩ

4π
f s(ϑ)

∫
d3k′

(2π)3
δ(εk′ − µ)

}
= ~v

F
dk

F

{
1 + F s

0

}
.

(9.49)
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Figure 9.5: δnkσ for a swollen Fermi surface.

We can now write

κ = n−2 ∂n

∂µ
= n−2 ∂n

∂kF

∂kF

∂µ

= n−2 k
2
F

π2

1

~vF (1 + F s
0)

=
n−2 g(εF)

1 + F s
0

=
9π2m∗

~2k5
F
(1 + F s

0)
.

(9.50)

Thus, if κ0 = n−2 g0(εF) is the compressibility of the free Fermi gas with mass m at the same
density n, we have

κ

κ0
=

m∗/m

1 + F s
0

. (9.51)

To derive the connection with sound propagation, we examine the inviscid, weak flow limit
of the Navier-Stokes equations, yielding ∂t(̺u) = −∇p, where ̺ = mn is the density, with m
the bare mass and n the number density, and p the pressure. Local thermodynamics then gives
∇p = (∂p/∂̺) ∇̺ = (1/̺κ)∇̺ . Taking the divergence,

− 1

κ
∇ ·

(1
̺
∇̺

)
=

∂

∂t
∇ · (̺u) = −∂2̺

∂t2
, (9.52)

where in the last equality we have invoked the continuity equation ∂t̺ + ∇ · (̺u) = 0 . Since
∇̺ is presumed to be small, we arrive at the Helmholtz equation,

1

¯̺κ
∇2̺ =

∂2̺

∂t2
, (9.53)

with wave propagation speed s = 1/
√
¯̺κ, where ¯̺ is the average density.

Uniform magnetic susceptibility

In the presence of an external magnetic field B, there is an additional Zeeman contribution to

the Hamiltonian, ĤZ = −µ0B
∑

k,σ σnk,σ. This causes the ↑ Fermi surface to expand and the ↓
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Figure 9.6: δnkσ in the presence of a magnetic field.

Fermi surface to contract. Thus dk
F↑ = −dk

F↓ ≡ dkF and δnk,σ = σ δ(kF − k) dkF. The situation is
depicted in Fig. 9.6. If particle number is conserved, then the chemical potential, which is the
same for each spin species, is unchanged to lowest order in B. Thus,

0 = dε̃k
F
,σ = −σµ0 dB + dε

k
F
,σ
+

1

V

∑

k′,σ′

fk
F
σ,k′σ′ δnk′,σ′

= −σµ0 dB + ~v
F
dk

F

{
σ +

∫
d3k′

(2π)3
fk

F
σ,k′σ′ σ′ δ(εk′ − µ)

}

= −σµ0 dB + σ~v
F
dk

F

{
1 + g(ε

F
)

∫
dΩ

4π
f a(ϑ)

}

= −σµ0 dB + σ~v
F
(1 + F a

0 ) dkF
.

(9.54)

Note that we have invoked the fact that
∑

σ′ σ′fkσ,k′σ′ = 2σf a
k,k′ . We conclude that

∂kF

∂B
=

µ0

~vF (1 + F a
0 )

. (9.55)

The magnetic susceptibility is then

χ =
1

V

(
∂M

∂B

)

N,V,B=0

= µ0

(
∂n↑

∂B
−

∂n↓

∂B

)
= µ0

(
∂n↑

∂k
F↑

+
∂n↓

∂k
F↓

)(
∂kF

∂B

)

B=0

=
µ2
0 g(εF)

1 + F a
0

, (9.56)
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and therefore
χ

χ0
=

m∗/m

1 + F a
0

, (9.57)

where χ0 = µ2
0 g0(εF)

Galilean invariance

Consider now a Galilean transformation to an inertial primed frame of reference moving at
constant velocity u with respect to our unprimed inertial laboratory frame. The Hamiltonian
in the primed frame is

Ĥ ′ =
N∑

i=1

(pi −mu)2

2m
+ Ĥ1

= Ĥ − u · P + 1
2
Mu2 ,

(9.58)

where P =
∑

i pi is the total momentum and M = Nm is the total mass. Let’s now add a
particle of momentum p = ~k and spin polarization σ in the lab frame at T = 0, where its
energy is then εk,σ. In the primed frame, however, the added particle has momentum ~k−mu

and energy ε̃k,σ = εk,σ − ~k ·u+ 1
2
mu2. Thus, ε̃′

k−~−1mu,σ = εk,σ − ~k ·u+ 1
2
mu2, or, equivalently,

ε̃′k,σ = εk+~−1mu,σ − ~k · u− 1
2
mu2 . (9.59)

Note though that ε̃′k,σ = ε̃′k,σ[{n′
k,σ}], with

n′
k,σ = n0

k+~−1mu,σ = n0
k,σ +

mu

~
·∇k n

0
k,σ

= n0
k −mv

F
u · k̂ δ(εk,σ − µ) .

(9.60)

This relation is illustrated in Fig. 9.7. Thus, we have

ε̃′k,σ = εk,σ +
1

V

∑

k′,σ′

fkσ,k′σ′ δn′
k′σ′

= εk,σ −mv
F

∑

σ′

∫
d3k′

(2π)3
fkσ,k′σ′ u · k̂′ δ(εk′,σ′ − µ)

= εk,σ −mv
F
g(ε

F
)u ·
∫

dk̂′

4π
k̂′ f s

k,k′

F

(9.61)

We are only interested in the case where |k| ≈ kF , and thus we may write

ε̃′k
F
,σ = εk

F
,σ −mv

F
u ·
∫

dk̂′

4π
k̂′ F s

k
F
,k′

F

= εk
F
,σ −mv

F
u · k̂

∫
dk̂′

4π
k̂ · k̂′ F s

k
F
,k′

F

= εk
F
,σ − 1

3
F s
1 mv

F
u · k̂ .

(9.62)
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Figure 9.7: Distribution of quasiparticle occupancies in a frame moving with velocity u.

Note that we have used above the fact that the integral

∫
dk̂′

4π
k̂′ F s

k
F
,k′

F

= Ck̂ (9.63)

must by rotational isotropy lie along k̂. Taking the dot product with k̂ then gives

C =

∫
dk̂′

4π
k̂ · k̂′ F s(ϑ

k̂,k̂′
) = 1

3
F s
1 . (9.64)

Putting this all together, we have

ε̃′k
F
,σ = εk

F
,σ − 1

3
F s
1 mv

F
u · k̂

= εk
F
+~−1mu,σ − ~k · u− 1

2
mu2

= εk
F
,σ +

mu

~
·∇k εk,σ

∣∣
k=k

F

− ~k
F
u · k̂ − 1

2
mu2

= εk
F
,σ + (m−m∗)v

F
u · k̂ − 1

2
mu2 ,

(9.65)

Thus, to lowest order in u, we have

(m−m∗) = −1
3
F s
1 m ⇒ m∗

m
= 1 + 1

3
F s
1 . (9.66)
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This result is connected with the following point. The total particle current is given by

J =
∑

k,σ

1

~

∂ε̃k,σ
∂k

nk,σ , (9.67)

where it is ε̃k,σ and not εk,σ which appears.

We again stress that this relationship between m∗/m and F s
1 is valid only in Galilean invari-

ant systems, such as liquid 3HeN. The imposition of a crystalline lattice potential breaks the
Galilean symmetry and invalidates the above result.

9.2.4 Thermodynamic stability at T = 0

Consider a T = 0 distortion of the Fermi surface. The Landau free energy Ω = E − TS + µN
must be a minimum with respect to all possible such distortions. We adopt the parameteriza-
tion

nk,σ = Θ(k
F
(k̂, σ)− k) = Θ(k

F
+ δk

F
(k̂, σ)− k)

= Θ(k
F
− k) + δ(k

F
− k) δk

F
(k̂, σ) + 1

2
δ′(k

F
− k)

[
δk

F
(k̂, σ)

]2
+ . . . ,

(9.68)

where δkF(k̂, σ) is the local FS distortion in the direction k̂ for spin polarization σ. We now

evaluate Ω(T = 0) = E − µN to second order in δkF:

Ω = Ω0 +
∑

k,σ

(εk,σ − µ) δnk,σ +
1

2V

∑

k,σ

∑

k′,σ′

fkσ,k′σ′ δnk,σ δnk′,σ′

= Ω0 +
∑

k,σ

(εk,σ − µ)
{
δ(k

F
− k) δk

F
(k̂, σ) + 1

2
δ′(k

F
− k)

[
δk

F
(k̂, σ)

]2}

+
1

2V

∑

k,σ

∑

k′,σ′

fkσ,k′σ′ δ(k
F
− k) δ(k

F
− k′) δk

F
(k̂, σ) δk

F
(k̂′, σ′) ,

(9.69)

which entails

Ω −Ω0

V
=
∑

σ

∫
d3k

(2π)3

{
− ∂

∂k
δ(k

F
− k)

}[
δk

F
(k̂, σ)

]2

+
k4

F

8π4

∑

σ,σ′

∫
dk̂

4π

∫
dk̂′

4π
fσ,σ′(ϑk̂,k̂′

) δk
F
(k̂, σ) δk

F
(k̂′, σ′)

=
~
2k3

F

4π2m∗

{
∑

σ

∫
dk̂

4π

[
δk

F
(k̂, σ)

]2

+
1

2

∑

σ,σ′

∫
dk̂

4π

∫
dk̂′

4π
Fσ,σ′(ϑ

k̂,k̂′
) δk

F
(k̂, σ) δk

F
(k̂′, σ′)

}
.

(9.70)
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Recall now that Fkσ,k′σ′ = F s
k,k′ + σσ′F a

k,k′ , so if we define the symmetric and antisymmetric
components of the FS distortion

δks
F
(k̂) ≡

∑

σ

δk
F
(k̂, σ) , δka

F
(k̂) ≡

∑

σ

σ δk
F
(k̂, σ) , (9.71)

then

Ω −Ω0

V
=

~
2k3

F

8π2m∗

∑

ν=s,a

{∫
dk̂

4π

[
δkν

F
(k̂)
]2

+

∫
dk̂

4π

∫
dk̂′

4π
F ν(ϑ

k̂,k̂′
) δkν

F
(k̂) δkν

F
(k̂′)

}
. (9.72)

Having resolved the free energy into contributions from the spin symmetric and antisymmetric
distortions of the FS, we now further resolve it into angular momentum channels, writing

δkν
F
(k̂) =

∞∑

ℓ=0

ℓ∑

m=−ℓ

Aν
ℓ,m Yℓ,m(k̂) , (9.73)

where Aν
ℓ,−m = Aν∗

ℓ,m since δkν
F
(k̂) is real. We also have

F ν(ϑ
k̂,k̂′

) =
∞∑

ℓ=0

F ν
ℓ Pℓ(ϑk̂,k̂′

) =
∞∑

ℓ=0

ℓ∑

m=−ℓ

4π

2ℓ+ 1
F ν
ℓ Y ∗

ℓ,m(k̂) Yℓ,m(k̂
′) , (9.74)

and invoking the orthonormality of the spherical harmonics,
∫
dk̂ Y ∗

ℓ,m(k̂) Yℓ′m′(k̂) = δℓℓ′ δmm′ , (9.75)

we obtain the pleasingly compact expression

Ω −Ω0

V
=

~
2k3

F

32 π3m∗

∑

ν=s,a

(
1 +

F ν
ℓ

2ℓ+ 1

)
|Aν

ℓ,m|2 . (9.76)

The stability criterion in each angular momentum channel is then

F ν
ℓ > −(2ℓ+ 1) , (9.77)

where ν ∈ {s, a}.

What happens when these stability criteria are violated? According to Eqn. 9.76, the free energy
can be made arbitrarily negative by increasing the amplitude(s) Aν

ℓ,m of any FS distortion for
which F ν

ℓ < −(2ℓ + 1). This is unphysical, and an artifact of going only to order (δkν
F
)2 in the

expansion of the Landau free energy. Suppose though we add a fourth order correction to Ω of
the form

∆Ω

V
=

~
2k3

F

4πm∗

∑

ν=s,a

λν

(∫
dk̂

4π

[
δkν

F
(k̂)
]2
)2

=
~
2k3

F

64π3m∗

∑

ν=s,a

λν

(
∑

ℓ,m

|Aν
ℓ,m|2

)2
(9.78)
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so that

Ω +∆Ω −Ω0

V
=

~
2k3

F

32 π3m∗

∑

ν=s,a

{
∑

ℓ,m

(
1 +

F ν
ℓ

2ℓ+ 1

)
|Aν

ℓ,m|2 + 1
2
λν

(∑

ℓ,m

|Aν
ℓ,m|2

)2}
. (9.79)

Such a term lies beyond the expansion for the internal energy of a Fermi liquid that we have
considered thus far. To minimize the free energy, we set the variation with respect to each Aν∗

ℓ,m

to zero. For stable channels where F ν
ℓ > −(2ℓ + 1), we then find Aν

ℓ,m = 0. But for unstable
channels, we obtain

ℓ∑

m=−ℓ

|Aν
ℓ,m|2 = − 1

λν

(
1 +

F ν
ℓ

2ℓ+ 1

)
> 0 . (9.80)

Thus, the weight of the distortion in each unstable (ν, ℓ) sector is distributed over all (2ℓ + 1)
of the coefficients Aν

ℓ,m such that the sum of their squares is fixed as specified above. Thus, an
ℓ = 1 instability results in a dipolar distortion of the FS, while an ℓ = 2 instability results in a
quadrupolar distortion of the FS, etc.

9.3 Collective Dynamics of the Fermi Surface

9.3.1 Landau-Boltzmann equation

We first review some basic features of the Boltzmann equation, which was discussed earlier
in §5.6. Consider the classical dynamical system governing flow on an N-dimensional phase
space Γ , where X = (X1, . . . , XN) ∈ Γ is a point in phase space. The dynamical system is

dX

dt
= V (X) (9.81)

where each V µ = V µ(X1, . . . , XN)6. Now consider a distribution function f(X, t). The conti-
nuity equation says

∂f

∂t
+∇·(Vf) = 0 , (9.82)

where ∇ =
(

∂
∂X1 , . . . ,

∂
∂XN

)
. Assuming phase flow is incompressible, ∇·V = 0 and the continuity

equation takes the form
Df

Dt
=

∂f

∂t
+ V ·∇f = 0 , (9.83)

where Df
Dt

= d
dt
f(X(t), t), called the convective derivative, is the total derivative of the distribution

in the frame comoving with the flow.

6This autonomous system can be extended to a time-dependent one, i.e. Ẋ = V (X , t), which is a dynamical
system in one higher (N + 1) dimensions, taking XN+1 = t and V N+1 = 1.
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For our application, phase space has dimension N = 6, with X = (r, k). We also add to the
RHS a source/sink term corresponding to collisions between particles. Typically these are local
in position r but nonlocal in the wavevector k. An example is shown in Fig. 9.3, where a col-
lision results in an instantaneous wavevector q transfer between two interacting particles. We
also must account for spin, and the most straightforward way to do this is to specify indepen-
dent distributions for each spin polarization. Writing f(r, k, σ, t) = nk,σ(r, t), our Boltzmann
equation takes the form

∂nk,σ(r, t)

∂t
+ 〈ṙ〉σ ·

∂nk,σ(r, t)

∂r
+ 〈k̇〉σ ·

∂nk,σ(r, t)

∂k
= I[n] , (9.84)

where I[n] is the collision term. We now invoke Landau’s Fermi liquid theory, but on a local
scale, and write the energy density E(r, t) as a functional of the distribution δnk,σ(r, t), viz.

E(r, t) = E0 +
∑

σ

∫
d3k

(2π)3
εk,σ δnk,σ(r, t) +

1

2

∑

σ,σ′

∫
d3k

(2π)3

∫
d3k′

(2π)3
fkσ,k′σ′ δnk,σ(r, t) δnk′,σ′(r, t) ,

(9.85)
where δnk,σ(r, t) is dimensionless and indicates the local number density of fermions of wavevec-
tor k and spin polarization σ in units of the bulk number density n. Note that the above ex-
pression is local in position space. We then have the Landau-Boltzmann equation7,

∂nk,σ(r, t)

∂t
+

〈ṙ〉σ︷ ︸︸ ︷
1

~

∂ε̃k,σ(r, t)

∂k
·
∂nk,σ(r, t)

∂r
−

−〈k̇〉σ︷ ︸︸ ︷
1

~

∂ε̃k,σ(r, t)

∂r
·
∂nk,σ(r, t)

∂k
= I[n] , (9.86)

where

ε̃k,σ(r, t) = Vσ(r, t) + εk,σ(r, t) +
∑

σ′

∫
d3k′

(2π)3
fkσ,k′σ′ δnk′,σ′(r, t) . (9.87)

Here we have included Vσ(r, t), the external local potential for particles at position r at time t.
Note that

∂

∂r
ε̃k,σ(r, t) =

∂

∂r
Vσ(r, t) +

∑

σ′

∫
d3k′

(2π)3
fkσ,k′σ′

∂

∂r
δnk′,σ′(r, t) (9.88)

Now we write linearize, writing n = n0 + δn, obtaining

∂ δnk,σ

∂t
+

1

~

∂εk,σ
∂k

·
∂ δnk,σ

∂r
− 1

~

∂n0
k,σ

∂k
·
∂ε̃k,σ
∂r

= I[n0 + δn] . (9.89)

If Vσ(r, t) = δV̂σ e
i(q·r−ωt), then the solution for the distribution in the linearized theory will be

δnk,σ(r, t) = δn̂k,σ e
i(q·r−ωt), with

ω δn̂k,σ−q ·vk,σ δn̂k,σ+

(
∂n0

k,σ

∂εk,σ

)
q ·vk,σ

[
δV̂σ+

∑

σ′

∫
d3k′

(2π)3
fkσ,k′σ′ δn̂k′,σ′

]
= −

[
L δn̂

]
k,σ

, (9.90)

7We assume no curvature Ω(k) contributing to the velocity ṙ.
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where L is the linearized collision operator. Note that this is a linear integral (or integrodifferen-

tial, depending on the form of L) equation for δn̂k,σ in terms of δV̂σ.

9.3.2 Zero sound : free FS oscillations in the collisionless limit

We now consider the case of free oscillations of the Fermi surface, i.e. the case Vσ(r, t) = 0, in
the collisionless limit (L = 0). We are left with

(ω − q · vk,σ) δn̂k,σ + q · vk,σ
(
∂n0

k,σ

∂εk,σ

)∑

σ′

∫
d3k′

(2π)3
fkσ,k′σ′ δn̂k′,σ′ = 0 . (9.91)

This is an eigenvalue equation for ω(q), where the eigenvector is the distribution δn̂k,σ. If we
write

δnk,σ(r, t) = ~v
F
δ(ε

F
− εk,σ) δkF

(k̂, σ) ei(q·r−ωt) , (9.92)

then we arrive at

(ω − q · vk
F
,σ) δkF

(k̂, σ)− q · vk
F
,σ

∑

σ′

∫
d3k′

(2π)3
δ(ε

F
− εk′,σ′) fk

F
σ,k′

F
σ′ δk

F
(k̂′, σ′) = 0 . (9.93)

We now take vk,σ = vFk̂, independent of σ. Thus,

(λ− q̂ · k̂) δk
F
(k̂, σ)− 1

2
q̂ · k̂

∫
dk̂′

4π
Fσ,σ′(ϑ

k̂,k̂′
) δk

F
(k̂′, σ′) = 0 , (9.94)

where λ ≡ ω/vFq . This is immediately resolved into symmetric and antisymmetric channels
ν ∈ {s, a}, viz.

(q̂ · k̂ − λ) δkν
F
(k̂) + q̂ · k̂

∫
dk̂′

4π
F ν(ϑ

k̂,k̂′
) δkν

F
(k̂′) = 0 (9.95)

Thus,

δkν
F
(k̂) =

q̂ · k̂
λ− q̂ · k̂

∫
dk̂′

4π
F ν(ϑ

k̂,k̂′
) δkν

F
(k̂′) , (9.96)

and resolving into angular momentum channels as before, writing

F ν(ϑ
k̂,k̂′

) =
∑

ℓ,m

4π F ν
ℓ

2ℓ+ 1
Yℓ,m(k̂) Y

∗
ℓ,m(k̂

′) , δkν
F
(k̂) =

∞∑

ℓ=0

ℓ∑

m=−ℓ

Aν
ℓ,m Yℓ,m(k̂) , (9.97)

multiplying the above equation by Y ∗
ℓ,m(k̂) and then integrating over the unit k̂ sphere, we

obtain

Aν
ℓ,m =

∑

ℓ′,m′

F ν
ℓ′

2ℓ′ + 1

[∫
dk̂

q̂ · k̂
λ− q̂ · k̂

Y ∗
ℓ,m(k̂) Yℓ′,m′(k̂)

]
Aν

ℓ′,m′ (9.98)

The oscillations of the FS are called zero sound.
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Simple model for zero sound

Eqn. 9.98 defines an eigenvalue equation for the infinite length vector A = {A0,0, A1,−1, A1,0, . . .}.
So simplify matters, consider the case where F ν

ℓ = F ν
0 δℓ,0. We drop the ν superscript for clarity.

Eqn. 9.98 then reduces to

1 = F0

∫
dk̂

4π

q̂ · k̂
λ− q̂ · k̂

= F0

[
λ

2
ln

(
λ+ 1

λ− 1

)
− 1

]
, (9.99)

which is equivalent to (
1 +

1

F0

)
λ−1 = tanh−1(λ−1) . (9.100)

This is a transcendental equation for λ(F0). It may be solved graphically by plotting the LHS
and RHS versus the quantity u ≡ λ−1. One finds that a nontrivial solution with real λ exists
provided F0 > 0. For F0 ∈ [−1, 0] , a complex solution exists, corresponding to a damped
oscillation. We may also solve explicitly in two limits:

F0 → 0 ⇒ λ → 1 ⇒ λ

2
ln

(
λ+ 1

λ− 1

)
=

1

2
ln

(
2

λ− 1

)
+ . . . ⇒ λ ≃ 1 + 2 e−2/F

0

F0 → ∞ ⇒ λ → ∞ ⇒ λ

2
ln

(
λ+ 1

λ− 1

)
= 1 +

1

3λ2
+ . . . ⇒ λ ≃

√
F0

3
(9.101)

The ratio of zero sound to first sound velocities is thus

c0
c1

=

√
3λ(F s

0)√
(1 + F s

0)(1 +
1
3
F s
1)

. (9.102)

Another zero sound mode

Consider next the truncated Landau interaction function

F (ϑ
k̂,k̂′

) = F0 + F1 k̂ · k̂′

= F0 + F1 cos θ cos θ′ + 1
2
F1 sin θ sin θ′

(
eiφ e−iφ′

+ e−iφeiφ
′

)
.

(9.103)

We posit a Fermi surface distortion of the form δkF(k̂) = u(θ) eiφ, resulting in the eigenvalue
equation

u(θ) =
F1

4

sin θ cos θ

λ− cos θ

π∫

0

dθ′ sin2θ′ u(θ′) . (9.104)
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Multiply by sin θ and integrate to obtain

4

F1

=

1∫

−1

dx
x− x3

λ− x
= −λ(λ2 − 1) ln

(
λ+ 1

λ− 1

)
+ 2λ2 − 4

3
, (9.105)

where x = cos θ. Note that at the limiting value λ = 0 the integral returns a value of 2
3
, corre-

sponding to F1 = 6. In the opposite limit λ → ∞, the RHS takes the value 2/3λ2. Thus, there
should be a solution for F1 ∈ [6,∞]. According to Tab. 9.1, in 3HeN at high pressure one indeed
has F s

1 > 6, yet so far as I am aware this mode has yet to be observed.

Separable kernel

Finally, consider the case of the separable kernel,

F (k̂, k̂′) = Lw(k̂)w(k̂′) , (9.106)

resulting in the eigenvalue equation

δk
F
(k̂) =

L q̂ · k̂w(k̂)
λ− q̂ · k̂

∫
dk̂′

4π
w(k̂′) δk

F
(k̂′) . (9.107)

Multiplying by w(k̂) and integrating, we obtain
∫

dk̂

4π

(
q̂ · k̂

λ− q̂ · k̂

)
w2(k̂) = L−1 . (9.108)

Note that λ = λ(q̂) will in general be a function of direction if the function w(k̂) is not isotropic.

9.4 Dynamic Response of the Fermi Liquid

We now restore the driving term V (r, t) = δV̂ (q, ω) ei(q·r−ωt), taken to be spin-independent, and
solve the inhomogeneous linear equation Eqn. 9.89 at T = 0 for δn̂k,σ(q, ω) in the collisionless
limit. The Fourier components of the bulk density are given by

δn̂(q, ω) =

∫
d3k

(2π)3
δn̂k,σ(q, ω) ≡ −χ(q, ω) δV̂ (q, ω) , (9.109)

where χ(q, ω) is the dynamical density response function, which we first met in chapter 9.
We work in the symmetric channel and suppress the symmetry index ν = s. The linearized
collisionless Landau-Boltzmann equation then takes the form

δk
F
(k̂) =

q̂ · k̂
λ− q̂ · k̂

{∫
dk̂′

4π
F (ϑ

k̂,k̂′
) δk

F
(k̂′) +

δV̂ (q̂, ω)

~vF

}
, (9.110)
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with λ = ω/qvF as before. The density response is related to the Fermi surface distortion ac-
cording to

δn̂(q, ω) =
k2

F

π2

∫
dk̂

4π
δk

F
(k̂) . (9.111)

Note that δkF(k̂) is implicity a function of q and ω.

The difficulty in solving the above equation is that the different angular momentum channels
don’t decouple. However, in the simplified model where the interaction function F (ϑ) = F0 is
isotropic, we can make progress. We then have

δn̂(q, ω) =

≡ −G(λ)︷ ︸︸ ︷∫
dk̂

4π

(
q̂ · k̂

λ− q̂ · k̂

) {
F0 δn̂(q̂, ω) +

k2
F

π2

δV̂ (q̂, ω)

~vF

}
(9.112)

where

G(λ) = −
∫

dk̂

4π

(
q̂ · k̂

λ− q̂ · k̂

)
= 1− λ

2
ln

(
λ+ 1

λ− 1

)
. (9.113)

Thus we find

χ(q, ω) =
g(εF)G(ω/vF|q|)
1 + F0G(ω/vF|q|)

. (9.114)

Note that the pole of the response function lies at the natural frequency of the FL oscillations,

i.e. when 1 + F0G(ω/qvF) = 0 .
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