19. $r_{3}=9 a_{0}=9(0.0529 \mathrm{~nm})=0.476 \mathrm{~nm}$

$$
\begin{aligned}
& v=\frac{n \hbar}{m r}=c \frac{n \hbar c}{m c^{2} r}=c \frac{3(1240 \mathrm{eV} \cdot \mathrm{~nm}) / 2 \pi}{\left(0.511 \times 10^{6} \mathrm{eV}\right)(0.476 \mathrm{~nm})}=2.43 \times 10^{-3} c=7.30 \times 10^{5} \mathrm{~m} / \mathrm{s} \\
& U=-\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{r}=-\frac{1.440 \mathrm{eV} \cdot \mathrm{~nm}}{0.476 \mathrm{~nm}}=-3.02 \mathrm{eV} \\
& K=\frac{e^{2}}{8 \pi \varepsilon_{0}} \frac{1}{r}=\frac{1.440 \mathrm{eV} \cdot \mathrm{~nm}}{2(0.476 \mathrm{~nm})}=1.51 \mathrm{eV}
\end{aligned}
$$

21. (a) From Equation 6.26, $v=\frac{n \hbar}{m r}=\frac{n \hbar}{m n^{2} a_{0}}$. Using Equation 6.29 for a_{0}, we obtain

$$
v=\frac{\hbar}{n m\left(4 \pi \varepsilon_{0} \hbar^{2} / m e^{2}\right)}=\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{n \hbar}=\frac{\alpha c}{n}
$$

(b) When the nuclear charge is $Z e$, we must replace e^{2} with $Z e^{2}$, so $v=Z \alpha c / n$.
24. The photon energy of the incident light is

$$
E=\frac{h c}{\lambda}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{53.0 \mathrm{~nm}}=23.4 \mathrm{eV}
$$

When an atom in the ground state absorbs a $23.4-\mathrm{eV}$ photon, the atom is ionized (which takes 13.6 eV). The excess energy, $23.4 \mathrm{eV}-13.6 \mathrm{eV}=9.8 \mathrm{eV}$, appears as the kinetic energy of the electron, which is now free of the atom. Neglecting a small recoil kinetic energy given to the proton, the electrons have a kinetic energy of 9.8 eV .
27. The Lyman series consists of transitions that end in the $n=1$ level. The smallest energy difference, corresponding to the longest wavelength, is $n=2$ to $n=1$.

$$
\begin{aligned}
\Delta E & =E_{2}-E_{1}=(-13.6 \mathrm{eV}) 2^{2}\left(\frac{1}{2^{2}}-\frac{1}{1^{2}}\right)=40.8 \mathrm{eV} \\
\lambda & =\frac{h c}{\Delta E}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{40.8 \mathrm{eV}}=30.4 \mathrm{~nm}
\end{aligned}
$$

The largest energy difference would correspond to transitions from $n=\infty$ to $n=1$:

$$
\begin{aligned}
\Delta E & =E_{\infty}-E_{1}=(-13.6 \mathrm{eV}) 2^{2}\left(0-\frac{1}{1^{2}}\right)=54.4 \mathrm{eV} \\
\lambda & =\frac{h c}{\Delta E}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{54.4 \mathrm{eV}}=22.8 \mathrm{~nm}
\end{aligned}
$$

28. Using Equation 6.38, we have $E_{n}=(-13.6 \mathrm{eV}) \mathrm{Z}^{2} / n^{2}=(-54.4 \mathrm{eV}) / n^{2}$, so $E_{1}=-54.40 \mathrm{eV}, E_{2}=-13.60 \mathrm{eV}, E_{3}=-6.04 \mathrm{eV}, E_{4}=-3.40 \mathrm{eV}$. The possible transitions are:

$$
\begin{array}{lll}
4 \rightarrow 1: & \Delta E=E_{4}-E_{1}=51.00 \mathrm{eV} & \lambda=h c / \Delta E=24.31 \mathrm{~nm} \\
4 \rightarrow 2: & \Delta E=E_{4}-E_{2}=10.20 \mathrm{eV} & \lambda=h c / \Delta E=121.6 \mathrm{~nm} \\
4 \rightarrow 3: & \Delta E=E_{4}-E_{3}=2.64 \mathrm{eV} & \lambda=h c / \Delta E=469.7 \mathrm{~nm} \\
3 \rightarrow 1: & \Delta E=E_{3}-E_{1}=48.36 \mathrm{eV} & \lambda=h c / \Delta E=25.64 \mathrm{~nm} \\
3 \rightarrow 2: & \Delta E=E_{3}-E_{2}=7.56 \mathrm{eV} & \lambda=h c / \Delta E=164.0 \mathrm{~nm} \\
2 \rightarrow 1: & \Delta E=E_{2}-E_{1}=40.80 \mathrm{eV} & \lambda=h c / \Delta E=30.39 \mathrm{~nm}
\end{array}
$$

30. (a) If the circumference is an integral number of de Broglie wavelengths ($2 \pi r=n \lambda$), then after each orbit the waves will align, peak to peak and valley to valley, to give standing waves.
(b) $2 \pi r=n \lambda=n \frac{h}{p}=\frac{n h}{m v} \quad$ so $\quad m v r=\frac{n h}{2 \pi}=n \hbar$
35. (a) The frequency of revolution is given by Equation 6.41:

$$
f_{n}=\frac{m e^{4}}{32 \pi^{3} \varepsilon_{0}^{2} \hbar^{3}} \frac{1}{n^{3}}=\frac{1}{\pi \hbar} \frac{m e^{4}}{32 \pi^{2} \varepsilon_{0}^{2} \hbar^{2}} \frac{1}{n^{3}}=\frac{13.6 \mathrm{eV}}{\pi \hbar} \frac{1}{n^{3}}=\frac{6.58 \times 10^{15} \mathrm{~Hz}}{n^{3}}
$$

A similar calculation gives the radiation frequency from Equation 6.42:

$$
f=\frac{m e^{4}}{64 \pi^{3} \varepsilon_{0}^{2} \hbar^{3}} \frac{2 n-1}{n^{2}(n-1)^{2}}=\frac{13.6 \mathrm{eV}}{2 \pi \hbar} \frac{2 n-1}{n^{2}(n-1)^{2}}=\left(6.58 \times 10^{15} \mathrm{~Hz}\right) \frac{2 n-1}{2 n^{2}(n-1)^{2}}
$$

For $n=10$, we get $f_{n}=6.58 \times 10^{12} \mathrm{~Hz}$ and $f=7.72 \times 10^{12} \mathrm{~Hz}$.
(b) For $n=100, f_{n}=6.58 \times 10^{9} \mathrm{~Hz}$ and $f=6.68 \times 10^{9} \mathrm{~Hz}$.
(c) For $n=1000, f_{n}=6.58 \times 10^{6} \mathrm{~Hz}$ and $f=6.59 \times 10^{6} \mathrm{~Hz}$.
(d) For $n=10,000, f_{n}=6.58 \times 10^{3} \mathrm{~Hz}$ and $f=6.58 \times 10^{3} \mathrm{~Hz}$. Note how f approaches f_{n} as n becomes large, in accordance with the correspondence principle.
36. The Rydberg constant in ordinary hydrogen is

$$
R_{\mathrm{H}}=R_{\infty}\left(1+\frac{m}{M_{\mathrm{H}}}\right)=R_{\infty}\left(1+\frac{5.48580 \times 10^{-4} \mathrm{u}}{1.007825 \mathrm{u}}\right)=R_{\infty}(1.000544)
$$

and in "heavy" hydrogen or deuterium:

$$
R_{\mathrm{D}}=R_{\infty}\left(1+\frac{m}{M_{\mathrm{D}}}\right)=R_{\infty}\left(1+\frac{5.48580 \times 10^{-4} \mathrm{u}}{2.104102 \mathrm{u}}\right)=R_{\infty}(1.000272)
$$

From Equation 6.33 the difference in wavelengths for the first line of the Balmer series (n $=3$ to $n=2$) is

$$
\lambda_{\mathrm{D}}-\lambda_{\mathrm{H}}=\left(\frac{1}{R_{\mathrm{D}}}-\frac{1}{R_{\mathrm{H}}}\right)\left(\frac{3^{2} 2^{2}}{3^{2}-2^{2}}\right)=\frac{7.2}{1.09737 \times 10^{7} \mathrm{~m}^{-1}}\left(\frac{1}{1.000272}-\frac{1}{1.000544}\right)=0.178 \mathrm{~nm}
$$

