23. (a) $E_{0}=\frac{1}{2} \hbar \omega_{0}=\frac{1}{2} k x_{0}^{2}$ so $x_{0}=\sqrt{\hbar \omega_{0} / k}$
(b) $\quad E_{1}=\frac{3}{2} \hbar \omega_{0}=\frac{1}{2} k x_{0}^{2} \quad$ so $\quad x_{0}=\sqrt{3 \hbar \omega_{0} / k}$

$$
E_{2}=\frac{5}{2} \hbar \omega_{0}=\frac{1}{2} k x_{0}^{2} \quad \text { so } \quad x_{0}=\sqrt{5 \hbar \omega_{0} / k}
$$

24.

$$
x_{\mathrm{av}}=\int_{-\infty}^{\infty}|\psi(x)|^{2} x d x=A^{2} \int_{-\infty}^{\infty} e^{-2 a x^{2}} x d x=0
$$

because the integrand is an odd function of x (the integral from $-\infty$ to 0 exactly cancels the integral from 0 to $+\infty$).

$$
\left(x^{2}\right)_{\mathrm{av}}=\int_{-\infty}^{\infty}|\psi(x)|^{2} x^{2} d x=A^{2} \int_{-\infty}^{\infty} e^{-2 a x^{2}} x^{2} d x=2 A^{2} \int_{0}^{\infty} e^{-2 a x^{2}} x^{2} d x=\frac{2 A^{2}}{\sqrt{8 a^{3}}} \int_{0}^{\infty} e^{-u^{2}} u^{2} d u
$$

with the substitution $u=x \sqrt{2 a}$. The integral is a standard form found in tables and is equal to $\sqrt{\pi} / 4$. Substituting $A=\left(\omega_{0} m / \pi \hbar\right)^{1 / 4}$ and $a=\sqrt{k m} / 2 \hbar=\omega_{0} m / 2 \hbar$, we find

$$
\begin{gathered}
\left(x^{2}\right)_{\mathrm{av}}=2\left(\frac{\omega_{0} m}{\pi \hbar}\right)^{1 / 2} \frac{1}{2 \sqrt{2}}\left(\frac{2 \hbar}{\omega_{0} m}\right)^{3 / 2} \frac{\sqrt{\pi}}{4}=\frac{\hbar}{2 \omega_{0} m} \\
\Delta x=\sqrt{\left(x^{2}\right)_{\mathrm{av}}-\left(x_{\mathrm{av}}\right)^{2}}=\sqrt{\hbar / 2 m \omega_{0}}
\end{gathered}
$$

25. (a) Because the oscillating particle moves with equal probability in the positive and negative x directions, $p_{\mathrm{av}}=0$.
(b)

$$
\begin{aligned}
& U_{\mathrm{av}}=\frac{1}{2} k\left(x^{2}\right)_{\mathrm{av}}=\frac{1}{2} k \frac{\hbar}{2 \omega_{0} m}=\frac{1}{2} \omega_{0}^{2} m \frac{\hbar}{2 \omega_{0}^{2} m}=\frac{1}{4} \hbar \omega_{0} \\
& K_{\mathrm{av}}=E-U_{\mathrm{av}}=\frac{1}{2} \hbar \omega_{0}-\frac{1}{4} \hbar \omega_{0}=\frac{1}{4} \hbar \omega_{0} \\
& \left(p^{2}\right)_{\mathrm{av}}=2 m K_{\mathrm{av}}=2 m\left(\frac{1}{4} \hbar \omega_{0}\right)=\frac{\hbar \omega_{0} m}{2}
\end{aligned}
$$

(c) $\quad \Delta p=\sqrt{\left(p^{2}\right)_{\mathrm{av}}-\left(p_{\mathrm{av}}\right)^{2}}=\sqrt{\hbar \omega_{0} m / 2}$
26. $E_{0}=1.24 \mathrm{eV}=\frac{1}{2} \hbar \omega_{0} \quad$ so $\quad \hbar \omega_{0}=2.48 \mathrm{eV}$

To $n=2$ state: $\quad \Delta E=E_{2}-E_{0}=\frac{5}{2} \hbar \omega_{0}-\frac{1}{2} \hbar \omega_{0}=2 \hbar \omega_{0}=2(2.48 \mathrm{eV})=4.96 \mathrm{eV}$
To $n=4$ state: $\quad \Delta E=E_{4}-E_{0}=\frac{9}{2} \hbar \omega_{0}-\frac{1}{2} \hbar \omega_{0}=4 \hbar \omega_{0}=4(2.48 \mathrm{eV})=9.92 \mathrm{eV}$
27. $P(x) d x=|\psi(x)|^{2} d x=A^{2} e^{-2 a x^{2}} d x \quad$ so at $x=0 \quad P(0) d x=A^{2} d x$

At the classical turning points $x= \pm x_{0}, K=0$ so $E=U \quad$ or $\quad \frac{1}{2} \hbar \omega_{0}=\frac{1}{2} k x_{0}^{2}$
$P\left(\pm x_{0}\right) d x=A^{2} e^{-2(\sqrt{k m} / 2 \hbar)\left(\hbar \omega_{0} / k\right)} d x=A^{2} e^{-1} d x=e^{-1} P(0) d x=0.368 P(0) d x$
28. (a) If $E=0$, then $p=0$ and we would know the momentum exactly. Thus $\Delta p=0$, which means $\Delta x=\infty$. But that would be inconsistent with a particle that is bound to a finite region of space.
(b)

$$
E=\frac{1}{2} \hbar \omega_{0}=\frac{1}{2} \hbar \sqrt{\frac{k}{m}}=\frac{1}{2} \hbar c \sqrt{\frac{k}{m c^{2}}}=0.5(197 \mathrm{eV} \cdot \mathrm{~nm}) \sqrt{\frac{3.5 \times 10^{3} \mathrm{eV} / \mathrm{nm}^{2}}{938 \times 10^{3} \mathrm{eV}}}=0.19 \mathrm{eV}
$$

This is less than the binding energy, so this motion is not sufficient to dissociate the molecule.
(c) At the turning point of the motion, $E=\frac{1}{2} k x_{0}^{2}$, so

$$
x_{0}=\sqrt{\frac{2 E}{k}}=\sqrt{\frac{2(0.19 \mathrm{eV})}{3.5 \times 10^{3} \mathrm{eV} / \mathrm{nm}^{2}}}=0.010 \mathrm{~nm}
$$

This motion is not negligible at the atomic level.
32. $x<0: \quad \psi_{0}=A^{\prime} e^{i k_{0} x}+B^{\prime} e^{-i k_{0} x} \quad$ with $\quad k_{0}=\sqrt{\frac{2 m E}{\hbar^{2}}}$
$x>0: \quad \psi_{1}(x)=C^{\prime} e^{i k_{1} x}+D^{\prime} e^{-i k_{1} x} \quad$ with $\quad k_{1}=\sqrt{\frac{2 m\left(E-U_{0}\right)}{\hbar^{2}}}$

If the particles are incident from them negative x direction, then D^{\prime} (which is the coefficient of the term that represents a wave in the region of positive x traveling toward the origin) must be set to 0 . We then apply the continuity conditions on ψ and $d \psi / d x$ at $x=0$:

$$
\begin{aligned}
& \psi_{0}(0)=\psi_{1}(0): \quad A^{\prime}+B^{\prime}=C^{\prime} \\
& \left(\frac{d \psi_{0}}{d x}\right)_{x=0}=\left(\frac{d \psi_{1}}{d x}\right)_{x=0}: \quad k_{0}\left(A^{\prime}-B^{\prime}\right)=k_{1} C^{\prime}
\end{aligned}
$$

Solving these two equations, we obtain

$$
\begin{aligned}
& C^{\prime}=\frac{2 A^{\prime}}{1+k_{1} / k_{0}} \\
& B^{\prime}=C^{\prime}-A^{\prime}=\frac{2 A^{\prime}}{1+k_{1} / k_{0}}-A^{\prime}=\frac{1-k_{1} / k_{0}}{1+k_{1} / k_{0}} A^{\prime}
\end{aligned}
$$

The squares of the amplitude ratios give the relative probabilities for the particles to be reflected at $x=0$ or transmitted into the $x>0$ region:

Reflection probability: $\quad \frac{\left|B^{\prime}\right|^{2}}{\left|A^{\prime}\right|^{2}}=\left(\frac{1-k_{1} / k_{0}}{1+k_{1} / k_{0}}\right)^{2}$
Transmission probability: $\quad \frac{\left|C^{\prime}\right|^{2}}{\left|A^{\prime}\right|^{2}}=\frac{4}{\left(1+k_{1} / k_{0}\right)^{2}}$
42. (a) The x and y motions are independent, and each contributes an energy of $\hbar \omega_{0}\left(n+\frac{1}{2}\right)$, but the integer n is not necessarily the same for the two independent motions. Thus the total energy is

$$
E=\hbar \omega_{0}\left(n_{x}+\frac{1}{2}\right)+\hbar \omega_{0}\left(n_{y}+\frac{1}{2}\right)=\hbar \omega_{0}\left(n_{x}+n_{y}+1\right)
$$

(b)

$4 \hbar \omega_{0} \longleftarrow 4$	$(0,3),(1,2),(2,1),(3,0)$
$3 \hbar \omega_{0}-3$	$(0,2),(1,1),(2,0)$
$2 \hbar \omega_{0}-2$	$(0,1),(1,0)$
$\hbar \omega_{0}-1$	$(0,0)$

$$
\text { Energy } \quad \text { Degeneracy } \quad\left(n_{x}, n_{y}\right)
$$

(c) The level with energy $N \hbar \omega_{0}$ has N different possible sets of quantum numbers n_{x}, n_{y}. Both n_{x} and n_{y} range from 0 to $N-1$ but with their sum fixed to N. The number of possible values of n_{x} is then N (the values are $0,1,2, \ldots, N-2, N-1$), and for each value of n_{x} the value of n_{y} is fixed. The total degeneracy of each level is thus $N=n_{x}+n_{y}+1$.
43. (a) With $\Delta x=\sqrt{\left(x^{2}\right)_{\mathrm{av}}-\left(X_{\mathrm{av}}\right)^{2}}$, clearly $X_{\mathrm{av}}=0$ for this wave function. Then

$$
\left(x^{2}\right)_{\mathrm{av}}=\int_{-\infty}^{+\infty} x^{2}|\psi(x)|^{2} d x=2 b^{-1} \int_{0}^{+\infty} x^{2} e^{-2 x / b} d x=2 b^{-1} \frac{2}{(2 / b)^{3}}=\frac{b^{2}}{2}
$$

So $\Delta x=b / \sqrt{2}=0.71 b$.
(b) The maximum probability density occurs at $x=0$, where $P(x)=|\psi(x)|^{2}=b^{-1}$. We now find the location where $P(x)$ drops to half that value, that is, where $e^{-2|x| b}=0.5$, or $-2|x| / b=\ln (0.5)$:

$$
|x|=-(b / 2) \ln (0.5) \quad \text { or } \quad x= \pm 0.347 b
$$

Our estimate for Δx is then the distance between the two points where the probability is half its maximum value, so $\Delta x=0.69 b$, which agrees very well with the result of the more rigorous calculation from part (a).

