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6 -6(8 10 m)(9 10 m) 0.11 nm
0.64 m

d y
D

λ
−∆ × ×

= = =  

 
9. For m = 10−9 g and taking the density to be ρ = 2 g/cm3, the volume of the particle is 

9 3 10 3/ (10 g)/(2g/cm ) 5 10 cmV m ρ − −= = = × , which corresponds to a diameter of about 
0.001 cm = 10−5 m.  The spacing between the fringes is then 

  

  
20 6

8
5

(6.6 10 m)(5 10 m) 3.3 10 m 33 nm
10 m

Dy
d
λ −

−
−

× ×
∆ = = = × =  

  
 which is about the size of an atom! 

 

10.    sin (0.215 nm)(sin55 ) 0.0881 nm
2 2

d φλ °
= = =  

  

4

2 2 4 2

2 6

1240 eV nm 1.408 10 eV
0.0881 nm

( ) (1.408 10 eV) 194 eV
2 2 2(0.511 10 eV)

hcpc

p pcK
m mc

λ
⋅

= = = ×

×
= = = =

×

 

 
 To achieve this kinetic energy, the electrons must be accelerated through a potential 

difference of ∆V = +194 V. 
 

11.  2 6 41 12 2 2(0.511 10 eV)(175 eV) 1.337 10 eV/p mK mc K c
c c

= = = × = ×  

  4

1240 eV nm 0.0927 nm
1.337 10 eV

h hc
p pc

λ ⋅
= = = =

×
 

  

 For n = 1:  1 1 0.0927 nmsin sin 15.2
0.352 nmd

λφ − −= = = °  

 

 For n = 2:  1 12 2(0.0927 nm)sin sin 31.8
0.352 nmd

λφ − −= = = °  

 

 For n = 3:  1 13 3(0.0927 nm)sin sin 52.2
0.352 nmd

λφ − −= = = °  

 
 There is no diffracted beam for n = 4. 
 
12. The locations of the interference maxima on the screen are given by sind nθ λ= , and for 

small angles we have sin tan /ny Dθ θ≈ = , where yn is the location of the nth interference 
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2 2

2

(0.1)(12.6 cm) 0.11cm
1.5 10 cmx

ελλ∆ = =
∆ ×

  

 
16. The central frequency is 8 9/ (2.997 10 m/s)/(0.275 m) 1.09 10 Hzf c λ= = × = × .  The 

frequency range is 

  4
6

0.1 7.9 10 Hz
1.27 10 s

f
t
ε

−∆ = = ×
∆ ×

  

   
 The receiver should accept signals in a range of 7.9 × 104 Hz about a frequency of 1.09 × 

109 Hz. 
 
17. For 410 Hzf∆ = , 

  5
4

0.1 10 s
10 Hz

t
f
ε −∆ = =
∆

  

  
 The signal processing time must be at least 10−5 s. 
 
18.  

  
2 2

148 m 4.11 m
36

(0.1)(4.11 m) 0.011 m
148 m

x
N

x

λ

ελλ

∆
= = =

∆ = =
∆



  

 
19. With ∆v = 2.8 × 104 m/s, 
  

   
34

9
31 4

1.05 10 J s 4.1 10 m 5.8 nm
(9.11 10 kg)(2.8 10 m/s)

x
p m v

−
−

−

× ⋅
∆ = = = × =

∆ ∆ × ×
 

  

 

20. (a)  1 1 1240 eV nm 2000 eV/
2 2 2 (0.1 nm)

h hcp c
x x c x cp p p

⋅
∆ = = = =

∆ ∆ ∆


  

 

 (b)  
2 2 2

2 6

( ) ( ) (2000 eV) 4 eV
2 2 2(0.511 10 eV)
p c pK
m mc

∆ ∆
= = = =

×
 

 

21.   
16

23

6.58 10 eV s 33 MeV
2.0 10 s

E
t

−

−

× ⋅
∆ = =

∆ ×


  

 
 Measurements of the Σ+ rest energy are likely to fall in the range 1385 MeV ± 33 MeV, 

or from 1352 MeV to 1418 MeV. 
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22.   
16

24
6

6.58 10 eV s 5.5 10 s
120 10 eV

t
E

−
−× ⋅

∆ = = ×
∆ ×


  

 

23.   
16

7
9

6.58 10 eV s 3.1 10 eV
2.1 10 s

E
t

−
−

−

× ⋅
∆ = = ×

∆ ×


  

 
24. With 15/ 10E E −∆ = , we have 
 

  
15 15 3 11

16
5

11

10 10 (75 10 eV) 7.5 10 eV

6.58 10 eV s 0.88 10 s
7.5 10 eV

E E

t
E

− − −

−
−

−

∆ = = × = ×

× ⋅
∆ = = ×

∆ ×




 

 
25. As we did for electrons in Example 4.9, let’s find the kinetic energy of an alpha particle 

with a momentum of 19.7 MeV/c: 
  

  
2 2 2

2

( ) (19.7 MeV) 0.052 MeV
2 2 2(3727 MeV)
p pcK
m mc

= = = =  

 
 This is negligible compared with the typical kinetic energies of alpha particles emitted in 

radioactive decays. Therefore, the uncertainty principle does not limit the existence of 
these alpha particles inside the nucleus. 

 
26. With ∆x = 14 fm, we have 
 

    
1 1 197 MeV fm 14.1 MeV/

14 fmx
cp c

x c x c
⋅

∆ = = = =
∆ ∆
 

  

 
 With this uncertainty as an estimate for px, 
 

    
2 2 2 2

2

(14.1 MeV) 0.11 MeV
2 2 2(938 MeV)

x xp c pK
m mc

= = = =   

 
 This is a very small contribution to the energy of protons or neutrons in a nucleus, which 

are typically 10-20 MeV. 
 

27.        
00

0 0

/ 2/ 2

0 0
/ 2 / 2

sin( ) ( ) cos cos
k kk k

k k k k

kxy x A k kx dk A kx dk A
x

+∆+∆

−∆ −∆

= = =∫ ∫  
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22.   
16

24
6

6.58 10 eV s 5.5 10 s
120 10 eV

t
E

−
−× ⋅

∆ = = ×
∆ ×


  

 

23.   
16

7
9

6.58 10 eV s 3.1 10 eV
2.1 10 s

E
t

−
−

−

× ⋅
∆ = = ×

∆ ×


  

 
24. With 15/ 10E E −∆ = , we have 
 

  
15 15 3 11

16
5

11

10 10 (75 10 eV) 7.5 10 eV

6.58 10 eV s 0.88 10 s
7.5 10 eV

E E

t
E

− − −

−
−

−

∆ = = × = ×

× ⋅
∆ = = ×

∆ ×




 

 
25. As we did for electrons in Example 4.9, let’s find the kinetic energy of an alpha particle 

with a momentum of 19.7 MeV/c: 
  

  
2 2 2

2

( ) (19.7 MeV) 0.052 MeV
2 2 2(3727 MeV)
p pcK
m mc

= = = =  

 
 This is negligible compared with the typical kinetic energies of alpha particles emitted in 

radioactive decays. Therefore, the uncertainty principle does not limit the existence of 
these alpha particles inside the nucleus. 

 
26. With ∆x = 14 fm, we have 
 

    
1 1 197 MeV fm 14.1 MeV/

14 fmx
cp c

x c x c
⋅

∆ = = = =
∆ ∆
 

  

 
 With this uncertainty as an estimate for px, 
 

    
2 2 2 2

2

(14.1 MeV) 0.11 MeV
2 2 2(938 MeV)

x xp c pK
m mc

= = = =   

 
 This is a very small contribution to the energy of protons or neutrons in a nucleus, which 

are typically 10-20 MeV. 
 

27.        
00

0 0

/ 2/ 2

0 0
/ 2 / 2

sin( ) ( ) cos cos
k kk k

k k k k

kxy x A k kx dk A kx dk A
x

+∆+∆

−∆ −∆

= = =∫ ∫  
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[ ]0
0 0

0
0 0 0 0

0
0

sin ( / 2) sin ( / 2)

sin cos cos sin sin cos cos sin
2 2 2 2

2 sin cos
2

A x k k x k k
x

A x k x k x k x kk x k x k x k x
x

A k x k x
x

= + ∆ − −∆

 ∆ ∆ ∆ ∆  = + − −    

∆ =  
 

 

 

28.   
2 2

0( ) / 2( )
0( ) ( ) cos cosk k ky x A k kx dk A e kx dk

+∞ +∞ − − ∆

−∞ −∞
= =∫ ∫  

 
 Let 0k k k′ = − . 

    
2 2/ 2( )

0 0 0( ) [cos cos sin sin ]k ky x A e k x k x k x k x dk
+∞ ′− ∆

−∞
′ ′ ′= −∫  

 
 The integral over the second term (involving the sines) vanishes because sin k x′  is an odd 

function of k′ (the contribution of the integral from −∞ to 0 cancels the part from 0 to 
+∞).  The remaining integral is 

 

  
2 2/ 2( )

0 0 0
( ) 2 cos cosk ky x A k x e k x dk

∞ ′− ∆ ′ ′= ∫  

 
 The integral is a standard form that can be found in integral tables: 
  

  
2 2

2 2
( ) / 2

( ) / 2
0 0 0 0( ) 2 cos 2 cos

2 /

x k
x key x A k x A k e k x

k
p p

− ∆
− ∆= = ∆

∆
 

 
 
29.   1 2 1 2( ) cos(2 / ) cos(2 / ) [cos(2 / ) cos(2 / )]y x A x A x A x xp λ p λ p λ p λ= + = +  
  
 Using the identity 1 1

2 2cos cos 2cos ( )cos ( )x y x y x y+ = + − , we get directly 
   

  
1 2 1 2

( ) 2 cos cosx x x xy x A p p p p
λ λ λ λ

   
= + −   

   
 

 

30.    1
1 1 1

1 1

6 4 2 22 2 2 and
9 3 9

vf kp p pω p p p
λ λ

= = = = = =  

  2
2 2 2

2 2

4 8 2 22 2 2 and
11 11 11

vf kp p pω p p p
λ λ

= = = = = =  
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[ ]0
0 0

0
0 0 0 0

0
0

sin ( / 2) sin ( / 2)

sin cos cos sin sin cos cos sin
2 2 2 2

2 sin cos
2

A x k k x k k
x

A x k x k x k x kk x k x k x k x
x

A k x k x
x

= + ∆ − −∆

 ∆ ∆ ∆ ∆  = + − −    

∆ =  
 

 

 

28.   
2 2

0( ) / 2( )
0( ) ( ) cos cosk k ky x A k kx dk A e kx dk

+∞ +∞ − − ∆

−∞ −∞
= =∫ ∫  

 
 Let 0k k k′ = − . 

    
2 2/ 2( )

0 0 0( ) [cos cos sin sin ]k ky x A e k x k x k x k x dk
+∞ ′− ∆

−∞
′ ′ ′= −∫  

 
 The integral over the second term (involving the sines) vanishes because sin k x′  is an odd 

function of k′ (the contribution of the integral from −∞ to 0 cancels the part from 0 to 
+∞).  The remaining integral is 

 

  
2 2/ 2( )

0 0 0
( ) 2 cos cosk ky x A k x e k x dk

∞ ′− ∆ ′ ′= ∫  

 
 The integral is a standard form that can be found in integral tables: 
  

  
2 2

2 2
( ) / 2

( ) / 2
0 0 0 0( ) 2 cos 2 cos

2 /

x k
x key x A k x A k e k x

k
p p

− ∆
− ∆= = ∆

∆
 

 
 
29.   1 2 1 2( ) cos(2 / ) cos(2 / ) [cos(2 / ) cos(2 / )]y x A x A x A x xp λ p λ p λ p λ= + = +  
  
 Using the identity 1 1

2 2cos cos 2cos ( )cos ( )x y x y x y+ = + − , we get directly 
   

  
1 2 1 2

( ) 2 cos cosx x x xy x A p p p p
λ λ λ λ

   
= + −   

   
 

 

30.    1
1 1 1

1 1

6 4 2 22 2 2 and
9 3 9

vf kp p pω p p p
λ λ

= = = = = =  

  2
2 2 2

2 2

4 8 2 22 2 2 and
11 11 11

vf kp p pω p p p
λ λ

= = = = = =  
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  1 2
group

1 2

4 / 3 8 /11 15
2 / 9 2 /11

v
k k k

ω ωω p p
p p

−∆ −
= = = =
∆ − −

 

 
31. (a)  phase /v kω=   

phase
group phase phase

phase phase phase phase phase
2

phase
group phase

( )

2 2

dvd dv kv v k
dk dk dk

dv dv dv dv dvd d
dk d dk d dk k d k d k

dv
v v

d

ω

λ p p λ
λ λ λ λ

λ
λ

= = = +

     = = = − = −     
     

= −

 

 
 (b)  The index of refraction n for light in glass decreases as λ increases (shorter 

wavelengths are refracted more than longer wavelengths); that is / 0dn dλ < .  Because 
phase/n c v= , /dn dλ  and phase /dv dλ  have opposite signs and so phase /dv dλ > 0.  Thus 

group phasev v> . 
 

32.   3/ 2
phase or

2 2
b bk bv k

k
ω ω

λ p p
= = = =  

 

  1/ 2
group phase

3 3 3
2 2 2 2 2

d b bkv k v
dk
ω

p p
= = = =  

 
33.    2 2 2 2 4 2K E mc p c m c mc= − = + −  
 

           
2 2 2 2

2 2 2 4 1/ 2 2 2

2 2 2 4 2 2 2

1 / 1 /( ) (2 )
2 / 1 /

dK pc pc mv v cp c m c pc c v
dp Ep c m c mc v c

− −
= + = = = =

+ −
 

 
34. (a)  With a node at each end (say, at x = 0 and x = L) and no other nodes, we must have 

one half-wave between the two nodes.  Thus 1 1/2 or 2L Lλ λ= = .  If there is an 
additional node at the midpoint (x = L/2), then there is a full wave between the two ends, 
and 2 2or 2 /2L Lλ λ= = .  The next shorter wavelength has (in addition to the nodes at 
either end ) nodes at x = L/3 and x = 2L/3, so there are three half-waves between the ends:

3 33 /2 or 2 /3L Lλ λ= = .  Continuing in this way, we see that in the nth case there are n 
half-waves in the length L, so ( /2) or 2 /n nL n L nλ λ= = . 

 (b)  With / /2n np h nh Lλ= = , we see that cpn is of order keV, so nonrelativistic equations 
can safely be used: 
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2 2 2 2 2 2 2

2 2
2 2 2 2

(1240 eV nm) (1.50 eV)
2 2 8 8(511,000 eV)(0.50 nm)

n n
n

p c p n h cK n n
m mc mc L

⋅
= = = = =  

 
 Thus 1 2 31.50 eV, 6.00 eV, 13.5 eV.K K K= = =  
 

35.  
2 6

1240 eV nm 0.279 nm
2 2(940 10 eV)(0.0105 eV)

h hc
p mc K

λ ⋅
= = = =

×
 

   
 From the Bragg scattering formula (Eq. 3.16), we have 
 

  (1)(0.279 nm)sin 0.565 or 34.4
2 2(0.247 nm)
n

d
λθ θ= = = = °  

 
 For second-order (n = 2) scattering at that angle, (2 sin ) / 2 0.140 nmdλ θ= = .  The 

wavelength is reduced by half, so the momentum is doubled and the kinetic energy 
increases by a factor of 4 to 0.0420 eV.  For third-order scattering (n = 3), the kinetic 
energy is 9 times as great, or 0.0945 eV.  The scattered beam at that angle will consist of 
all energies that are n2 times the original energy (n = 1,2,3,…). 

 
36. (a)  The mass of a nitrogen molecule is 14 u.  The average molecular kinetic energy is 

3
2 kT , so the de Broglie wavelength is 

     

2 6 5

1240 eV nm 0.0279 nm
2 2(14 u)(931.5 10 eV/u)(1.5)(8.617 10 eV/K)(293 K)

h hc
p mc K

λ
−

⋅
= = = =

× ×
 

 (b)  The number of nitrogen molecules per unit volume is 
 

3 23
25 3A (1.292 kg/m )(6.02 10 molecules/mole) 2.78 10 molecules/m

(0.028 kg/mole)
Nn
M
ρ ×

= = = ×  

 
 and the average spacing between molecules is 1/ 3 93.30 10 m 3.3 nmn− −= × = .  The de 

Broglie wavelength is 2 orders of magnitude smaller than the molecular spacing, so that 
quantum effects are unimportant in gases at room temperature. 

 (c)  Let’s estimate that quantum effects would be significant if the de Broglie wavelength 
were about 1/10 of the molecular separation (0.33 nm): 

 

  2 2 2 2
4

2 6

1 1 1240 eV nm 3760 eV/
0.33 nm

(3760 eV) 2.71 10 eV
2 2 2(28 u)(931.5 10 eV/u)

h hcp c
c c

p p cK
m mc

λ λ
−

⋅
= = = =

= = = = ×
×

 

.   
 The molecules have this tiny amount of average kinetic energy at a temperature 
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2 2 2 2 2 2 2

2 2
2 2 2 2

(1240 eV nm) (1.50 eV)
2 2 8 8(511,000 eV)(0.50 nm)

n n
n

p c p n h cK n n
m mc mc L

⋅
= = = = =  

 
 Thus 1 2 31.50 eV, 6.00 eV, 13.5 eV.K K K= = =  
 

35.  
2 6

1240 eV nm 0.279 nm
2 2(940 10 eV)(0.0105 eV)

h hc
p mc K

λ ⋅
= = = =

×
 

   
 From the Bragg scattering formula (Eq. 3.16), we have 
 

  (1)(0.279 nm)sin 0.565 or 34.4
2 2(0.247 nm)
n

d
λθ θ= = = = °  

 
 For second-order (n = 2) scattering at that angle, (2 sin ) / 2 0.140 nmdλ θ= = .  The 

wavelength is reduced by half, so the momentum is doubled and the kinetic energy 
increases by a factor of 4 to 0.0420 eV.  For third-order scattering (n = 3), the kinetic 
energy is 9 times as great, or 0.0945 eV.  The scattered beam at that angle will consist of 
all energies that are n2 times the original energy (n = 1,2,3,…). 

 
36. (a)  The mass of a nitrogen molecule is 14 u.  The average molecular kinetic energy is 

3
2 kT , so the de Broglie wavelength is 

     

2 6 5

1240 eV nm 0.0279 nm
2 2(14 u)(931.5 10 eV/u)(1.5)(8.617 10 eV/K)(293 K)

h hc
p mc K

λ
−

⋅
= = = =

× ×
 

 (b)  The number of nitrogen molecules per unit volume is 
 

3 23
25 3A (1.292 kg/m )(6.02 10 molecules/mole) 2.78 10 molecules/m

(0.028 kg/mole)
Nn
M
ρ ×

= = = ×  

 
 and the average spacing between molecules is 1/ 3 93.30 10 m 3.3 nmn− −= × = .  The de 

Broglie wavelength is 2 orders of magnitude smaller than the molecular spacing, so that 
quantum effects are unimportant in gases at room temperature. 

 (c)  Let’s estimate that quantum effects would be significant if the de Broglie wavelength 
were about 1/10 of the molecular separation (0.33 nm): 

 

  2 2 2 2
4

2 6

1 1 1240 eV nm 3760 eV/
0.33 nm

(3760 eV) 2.71 10 eV
2 2 2(28 u)(931.5 10 eV/u)

h hcp c
c c

p p cK
m mc

λ λ
−

⋅
= = = =

= = = = ×
×

 

.   
 The molecules have this tiny amount of average kinetic energy at a temperature 
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4

5

2 2(2.71 10 eV) 2.1 K
3 3(8.617 10 eV/K)
KT
k

−

−

×
= = =

×
 

  
 Nitrogen is no longer a gas at this temperature, so our calculation using the formula for 

the mean molecular energy of gases is not correct.  However, it does suggest that if 
quantum effects are to become important in gases, they will occur only at low 
temperatures.  (Recall the discussion in Chapter 1 about how the equipartition of energy 
fails for the rotational and vibrational motions of some gases at even moderate 
temperatures, so other effects of quantum behavior may be observable at these 
temperatures.) 

 
37. For both the photon and the electron, 
 

  31 1 1240 eV nm 4.41 10 eV/
0.281 nm

h hcp c
c cλ λ

⋅
= = = = ×  

 
 For the photon, 
 
  34.41 10 eVE pc= = ×  
 
 For the electron, 
 

  
2 2 2 3 2

2

(4.41 10 eV) 19.1eV
2 2 2(511,000 eV)
p p cK
m mc

×
= = = =  

 
 
38. (a)  The initial nucleus is at rest, the final momenta of the helium and the neutron must 

sum to zero: n He 0p p+ = , and so n Hep p= − .  The energy released in the decay appears 
as the kinetic energy of the final products: n He 0.89 MeVK K+ = .  Using nonrelativisitc 
kinetic energies, we have 

 

  
22 2 2 2
Hen n n n n

n He
n He n He n He

1 0.89 MeV
2 2 2 2 2

pp p p p mK K
m m m m m m

 
+ = + = + = + = 

 
 

 

  n
n He

0.89 MeV 0.89 MeV 0.71 MeV
1 / 1 1/ 4

K
m m

= = =
+ +

 

 

 (b)    
16

21

6.58 10 eV s 0.66 MeV
1.0 10 s

E
t

−

−

× ⋅
∆ = =

∆ ×
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 (b)  2 2 2 2 2 2 2 2
av av( ) ( ) ( ) ( ) ( ) 3( )x y z x y z xp p p p p p p p= + + = ∆ + ∆ + ∆ = ∆  

 

  
2 2 2 2

5av av
av 2 6

( ) ( ) 3(990 eV) 2.4 10 eV
2 2 2(65 u)(931.5 10 eV/u)
p c pK

m mc
−= = = = ×

×
 

 
 (c)  In a cube of copper 1.0 cm on edge (0.141 mole), the energy is 
 

23 5 18(0.141 mole)(6.02 10 atoms/mole)(2.4 10 eV/atom) 2.04 10 eV 0.33 J−× × = × =  
 
 This energy is small compared with the internal energy (roughly 1000 J), but it is not 

quite as negligibly small as the energy of the electronic motion (see Problem 36).  This 
energy of 0.33 J is independent of temperature, so it becomes relatively more important 
as the temperature of the copper is reduced (thereby decreasing the internal energy).  This 
is one example of the phenomenon of “zero-point motion,” a certain minimum energy 
that a confined quantum system must have.  There is no counterpart to this zero-point 
motion in classical physics. 

 
42. When the beam passes through a hole of width x d∆ = , there is a resulting uncertainty in 

the transverse momentum of order /xp d∆   and thus in the transverse velocity of
/xv md∆   .  From Eq. 4.16, we have 2 2 2 2

av av( ) ( ) or ( ) ( )x x x xp p v v= ∆ = ∆ .  The diameter 
of the beam grows larger than its original diameter by an amount xd t v∆ = ∆ , where t is 
the time the beam has been traveling.  The speed of the atoms as they leave the oven at a 
temperature T is found from 

  

  2 31
2 2

3so kTK mv kT v
m

= = =  

 
 The beam travels the distance L at a speed v in a time t = L/v, and thus 
 

34
9

27 23

3 / 3

(2 m)(1.05 10 J s) 3 10 m
(0.003 m) 3(7 u)(1.66 10 kg/u)(1.38 10 J/K)(1500 K)

x
L L Ld t v
d md md kT m d mkT

−
−

− −

∆ = ∆ = =

× ⋅
= = ×

× ×

  



 

 
 The spreading of the beam due to the uncertainty principle is thus a negligible effect. 
 
43.  From Eq. 4.15 with ,av 0xp = , we have 2 2

av( ) ( )x xp p∆ =  and similarly in the y direction we 
have 2 2

av( ) ( )y yp p∆ = . The kinetic energy is 2 2 2/2 ( ) / 2x yK p m p p m= = + , and using the 
minimum estimates for the uncertainties we have 
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2 2 2 2 2 2

2 2 2

2

2 2

( ) ( ) ( / 2 ) ( / 2 ) 1 1
2 2 8 ( ) ( )

(197 eV nm) 1 1 7.3 meV
8(511,000 eV) (1.25 nm) (2.76 eV)

x yp p x y cK
m m mc x y

∆ + ∆  ∆ + ∆
= = = + ∆ ∆ 

 ⋅
= + = 

 

  

 

 
44. (a) 

    
 

 (b) The wave packet has amplitude mostly in the region from about x = −3 to x = +3, so 
∆x ∼ 6. 

 
 (c) There are 3 complete oscillations in the region from about x = −2 to x = +2, so λ ∼ 

4/3 = 1.3. 
 
  (d)  

2 2(0.1)(1.3) 0.03
6x

ελλ∆ = =
∆
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