$$
\Delta y=y_{n+1}-y_{n}=\frac{\lambda D}{d}=\frac{(589.0 \mathrm{~nm})(2.604 \mathrm{~m})}{1.25 \mathrm{~mm}}=1.23 \mathrm{~mm}
$$

5. (a) $E=10.0 \mathrm{MeV}=1.60 \times 10^{-12} \mathrm{~J}$

$$
\begin{aligned}
& p=\frac{E}{c}=\frac{10.0 \mathrm{MeV}}{c}=1.00 \times 10^{7} \mathrm{eV} / c \\
& p=\frac{1.60 \times 10^{-12} \mathrm{~J}}{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}=5.33 \times 10^{-21} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(b) $E=25 \mathrm{keV}=4.0 \times 10^{-15} \mathrm{~J}$

$$
\begin{aligned}
& p=\frac{E}{c}=\frac{25 \mathrm{keV}}{c}=2.5 \times 10^{4} \mathrm{eV} / \mathrm{c} \\
& p=\frac{4.0 \times 10^{-15} \mathrm{~J}}{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}=1.3 \times 10^{-23} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(c) $\lambda=1.0 \mu \mathrm{~m}=1.0 \times 10^{3} \mathrm{~nm}$

$$
\begin{aligned}
& p=\frac{h}{\lambda}=\frac{1}{c} \frac{h c}{\lambda}=\frac{1}{c} \frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{1.0 \times 10^{3} \mathrm{~nm}}=1.2 \mathrm{eV} / \mathrm{c} \\
& p=\frac{6.6 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}{1.0 \times 10^{-6} \mathrm{~m}}=6.6 \times 10^{-28} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(d) $E=h f=\left(4.14 \times 10^{-15} \mathrm{eV} \cdot \mathrm{s}\right)\left(150 \times 10^{6} \mathrm{~Hz}\right)=6.2 \times 10^{-7} \mathrm{eV}=9.9 \times 10^{-26} \mathrm{~J}$

$$
\begin{aligned}
& p=\frac{E}{c}=\frac{6.2 \times 10^{-7} \mathrm{eV}}{c}=6.2 \times 10^{-7} \mathrm{eV} / \mathrm{c} \\
& p=\frac{9.9 \times 10^{-26} \mathrm{~J}}{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}=3.3 \times 10^{-34} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

6. At $1 \mathrm{MHz}=10^{6} \mathrm{~Hz}, E=h f=\left(4.14 \times 10^{-15} \mathrm{eV} \cdot \mathrm{s}\right)\left(10^{6} \mathrm{~s}^{-1}\right)=4 \times 10^{-9} \mathrm{eV}$

At $100 \mathrm{MHz}=10^{8} \mathrm{~Hz}, E=h f=\left(4.14 \times 10^{-15} \mathrm{eV} \cdot \mathrm{s}\right)\left(10^{8} \mathrm{~s}^{-1}\right)=4 \times 10^{-7} \mathrm{eV}$
The range is from $4 \times 10^{-9} \mathrm{eV}$ to $4 \times 10^{-7} \mathrm{eV}$.
7.

$$
\lambda=\frac{h c}{E}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{1.00 \times 10^{4} \mathrm{eV}}=0.124 \mathrm{~nm}
$$

(b) $\lambda=\frac{1240 \mathrm{eV} \cdot \mathrm{nm}}{1.00 \times 10^{6} \mathrm{eV}}=1.24 \times 10^{-3} \mathrm{~nm}$
(c) $350 \mathrm{~nm}: \quad E=\frac{h c}{\lambda}=\frac{1240 \mathrm{eV} \cdot \mathrm{nm}}{350 \mathrm{~nm}}=3.5 \mathrm{eV}$
$700 \mathrm{~nm}: \quad E=\frac{1240 \mathrm{eV} \cdot \mathrm{nm}}{700 \mathrm{~nm}}=1.8 \mathrm{eV}$

The range is from 1.8 eV to 3.5 eV .
9.

$$
\begin{aligned}
& \phi=\frac{h c}{\lambda_{\mathrm{c}}}=\frac{1239.853 \mathrm{eV} \cdot \mathrm{~nm}}{352.8 \mathrm{~nm}}=3.514 \mathrm{eV} \\
& e V_{\mathrm{s}}=\frac{h c}{\lambda}-\phi=\frac{1239.853 \mathrm{eV} \cdot \mathrm{~nm}}{304.2 \mathrm{~nm}}-3.514 \mathrm{eV}=0.561 \mathrm{eV} \\
& V_{\mathrm{s}}=0.561 \mathrm{~V}
\end{aligned}
$$

11. (a) $\phi=\frac{h c}{\lambda_{\mathrm{c}}}=\frac{1240 \mathrm{eV} \cdot \mathrm{nm}}{254 \mathrm{~nm}}=4.88 \mathrm{eV}$
(b) $\lambda<254 \mathrm{~nm}$
12. (a) With $\phi=4.31 \mathrm{eV}, \lambda_{\mathrm{c}}=\frac{h c}{\phi}=\frac{1240 \mathrm{eV} \cdot \mathrm{nm}}{4.31 \mathrm{eV}}=288 \mathrm{~nm}$
(b) $e V_{s}=\frac{h c}{\lambda}-\phi=\frac{1240 \mathrm{eV} \cdot \mathrm{nm}}{252.0 \mathrm{~nm}}-4.31 \mathrm{eV}=0.61 \mathrm{eV}$, so $V_{\mathrm{s}}=0.61$ volts
13. (a) The total number of oscillators is

$$
\int_{0}^{\infty} n(E) d E=\int_{0}^{\infty} \frac{N}{k T} e^{-E / k T} d E=\left.\frac{N}{k T}(-k T) e^{-E / k T}\right|_{0} ^{\infty}=N
$$

(b) The average energy is (from Equation 3.31)

$$
E_{\mathrm{av}}=\frac{1}{N} \int_{0}^{\infty} E n(E) d E=\frac{1}{k T} \int_{0}^{\infty} E e^{-E / k T} d E=k T \int_{0}^{\infty} x e^{-x} d x \quad \text { with } x=E / k T
$$

The definite integral is a standard form that is equal to 1 , so $E_{\mathrm{av}}=k T$.
14. (a) The total number of oscillators at all energies is

$$
\sum_{i=0}^{\infty} N_{n}=\sum_{n=0}^{\infty} A e^{-E_{n} / k T}=A \sum_{n=0}^{\infty} e^{-n \varepsilon / k T}=A \frac{1}{1-e^{-\varepsilon / k T}}
$$

Setting this result equal to N, we obtain $A=N\left(1-e^{-\varepsilon / k T}\right)$.
(b) On the left side $\frac{d}{d x} \sum_{n=0}^{\infty} e^{n x}=\sum_{n=0}^{\infty} n e^{n x}$ and on the right side $\frac{d}{d x} \frac{1}{1-e^{x}}=\frac{e^{x}}{\left(1-e^{x}\right)^{2}}$. Setting these equal to each other gives $\sum_{n=0}^{\infty} n e^{n x}=\frac{e^{x}}{\left(1-e^{x}\right)^{2}}$.
(c) $E_{\mathrm{av}}=\frac{1}{N} \sum_{n=0}^{\infty} N_{n} E_{n}=\left(1-e^{-\varepsilon / k T}\right) \sum_{n=0}^{\infty}(n \varepsilon) e^{-n \varepsilon / k T}=\left(1-e^{-\varepsilon / k T}\right) \varepsilon \frac{e^{-\varepsilon / k T}}{\left(1-e^{-\varepsilon / k T}\right)^{2}}=\frac{\varepsilon}{e^{\varepsilon / k T}-1}$
(d) For large $\lambda, e^{h c / \lambda k T} \approx 1+h c / \lambda k T$ and thus $E_{\mathrm{av}}=\frac{h c / \lambda}{e^{h c / \lambda k T}-1} \approx \frac{h c / \lambda}{1+h c / \lambda k T-1}=k T$

As λ goes to $0, e^{h c / \lambda k T} \rightarrow \infty$ and $E_{\text {av }} \rightarrow 0$.
15.

$$
\begin{aligned}
& I(\lambda)=\frac{2 \pi h c^{2}}{\lambda^{5}} \frac{1}{e^{h c / \lambda k T}-1} \\
& \frac{d I}{d \lambda}=2 \pi h c^{2}\left[\left(\frac{-5}{\lambda^{6}}\right) \frac{1}{e^{h c / \lambda k T}-1}+\left(\frac{1}{\lambda^{5}}\right) \frac{\left(-e^{h c / \lambda k T}\right)\left(-h c / \lambda^{2} k T\right)}{\left(e^{h c / \lambda k T}-1\right)^{2}}\right]
\end{aligned}
$$

Setting $d I / d \lambda$ equal to zero gives

$$
-\frac{5}{\lambda}+\frac{\left(e^{h c / \lambda k T}\right)\left(h c / \lambda^{2} k T\right)}{e^{h c / \lambda k T}-1}=0
$$

or, with $x=h c / \lambda k T$,

$$
(x-5) e^{x}+5=0
$$

This equation does not have an exact solution, but an approximate solution can be found by trial and error: $x=4.9651=h c / \lambda k T$, so

$$
\lambda T=\frac{h c}{4.9651 \mathrm{k}}=\frac{1239.853 \mathrm{eV} \cdot \mathrm{~nm}}{4.9651\left(8.6174 \times 10^{-5} \mathrm{eV} / \mathrm{K}\right)}=2.8978 \times 10^{-3} \mathrm{~m} \cdot \mathrm{~K}
$$

16.

$$
\int_{0}^{\infty} I(\lambda) d \lambda=\int_{0}^{\infty} \frac{2 \pi h c^{2}}{\lambda^{5}} \frac{1}{e^{h c / \lambda k T}-1} d \lambda
$$

With $x=h c / \lambda k T$ and $d x=\left(-h c / \lambda^{2} k T\right) d \lambda$,

$$
\begin{aligned}
\int_{0}^{\infty} I(\lambda) d \lambda & =2 \pi h c^{2}\left(\frac{k T}{h c}\right)^{3}\left(-\frac{k T}{h c}\right) \int_{0}^{\infty} \frac{x^{3} d x}{e^{x}-1} \\
& =2 \pi h c^{2}\left(\frac{k}{h c}\right)^{4} T^{4} \int_{0}^{\infty} \frac{x^{3} d x}{e^{x}-1}=\frac{2 \pi k^{4}}{h^{3} c^{2}} T^{4} \frac{\pi^{4}}{15}=\sigma T^{4}
\end{aligned}
$$

with $\sigma=2 \pi^{5} k^{4} / 15 h^{3} c^{2}$
18.

$$
\lambda=\frac{2.898 \times 10^{-3} \mathrm{~m} \cdot \mathrm{~K}}{T}=\frac{2.898 \times 10^{-3} \mathrm{~m} \cdot \mathrm{~K}}{6000 \mathrm{~K}}=483 \mathrm{~nm}
$$

This is in the middle of the visible spectrum, close to the peak sensitivity of the eye.
19. $\lambda=\frac{2.898 \times 10^{-3} \mathrm{~m} \cdot \mathrm{~K}}{T}=\frac{2.898 \times 10^{-3} \mathrm{~m} \cdot \mathrm{~K}}{2.7 \mathrm{~K}}=1.1 \mathrm{~mm}$ (microwave region)

$$
E=\frac{h c}{\lambda}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{1.1 \mathrm{~mm}}=1.1 \times 10^{-3} \mathrm{eV}
$$

20. (a) $\lambda_{\max }=\frac{2.898 \times 10^{-3} \mathrm{~m} \cdot \mathrm{~K}}{T}=\frac{2.898 \times 10^{-3} \mathrm{~m} \cdot \mathrm{~K}}{307 \mathrm{~K}}=9.4 \mu \mathrm{~m}$ (infrared)
(b) Assume a person can be represented as a cylinder, about 6 feet (1.83 m) tall and 1 foot $(0.30 \mathrm{~m})$ in diameter. The surface area is $2 \pi r L=2 \pi(0.15 \mathrm{~m})(1.83 \mathrm{~m})=1.72 \mathrm{~m}^{2}$.

$$
\begin{aligned}
& I=\sigma T^{4}=\left(5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}\right)(307 \mathrm{~K})^{4}=504 \mathrm{~W} / \mathrm{m}^{2} \\
& P=I A=\left(504 \mathrm{~W} / \mathrm{m}^{2}\right)\left(1.72 \mathrm{~m}^{2}\right)=870 \mathrm{~W}
\end{aligned}
$$

(c) For $T=20^{\circ} \mathrm{C}=293 \mathrm{~K}$,

$$
\begin{aligned}
& I=\sigma T^{4}=\left(5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}\right)(293 \mathrm{~K})^{4}=418 \mathrm{~W} / \mathrm{m}^{2} \\
& P=I A=\left(418 \mathrm{~W} / \mathrm{m}^{2}\right)\left(1.72 \mathrm{~m}^{2}\right)=719 \mathrm{~W}
\end{aligned}
$$

Thus the net power radiated by a person is about 150 W .
21. $I=\sigma T^{4}=\left(5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}\right)(1750 \mathrm{~K})=5.32 \times 10^{5} \mathrm{~W} / \mathrm{m}^{2}$

$$
P=I A=I\left(\pi r^{2}\right)=\left(5.32 \times 10^{5} \mathrm{~W} / \mathrm{m}^{2}\right) \pi\left(0.62 \times 10^{-3} \mathrm{~m}\right)^{2}=0.64 \mathrm{~W}
$$

23. (a) We consider an interval of width $d \lambda=2.0 \mathrm{~nm}$ at a central wavelength of 531.0 nm . At $T=6000 \mathrm{~K}, k T=\left(8.6174 \times 10^{-5} \mathrm{eV} / \mathrm{K}\right)(6000 \mathrm{~K})=0.517 \mathrm{eV}$. The intensity in this interval is

$$
\begin{aligned}
d I & =I(\lambda) d \lambda=\frac{2 \pi h c^{2}}{\lambda^{5}} \frac{1}{e^{h c / \lambda k T}-1} d \lambda \\
& =\frac{2 \pi\left(6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}\left(2.0 \times 10^{-9} \mathrm{~m}\right)}{\left(531.0 \times 10^{-9} \mathrm{~m}\right)^{5}\left(e^{(1240 \mathrm{eV} \cdot \mathrm{~mm})(531.0 \mathrm{~mm})(0.517 \mathrm{eV})}-1\right)}=1.96 \times 10^{5} \mathrm{~W} / \mathrm{m}^{2}
\end{aligned}
$$

(b) The total radiant intensity emitted by the Sun is

$$
I=\sigma T^{4}=\left(5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}\right)(6000 \mathrm{~K})^{4}=7.35 \times 10^{7} \mathrm{~W} / \mathrm{m}^{2}
$$

The fraction is then

$$
\frac{1.96 \times 10^{5} \mathrm{~W} / \mathrm{m}^{2}}{7.35 \times 10^{7} \mathrm{~W} / \mathrm{m}^{2}}=0.0027=0.27 \%
$$

$$
I=\sigma T^{4}=\left(5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}\right)(293 \mathrm{~K})^{4}=418 \mathrm{~W} / \mathrm{m}^{2}
$$

$$
P=I A=\left(418 \mathrm{~W} / \mathrm{m}^{2}\right)\left(1.72 \mathrm{~m}^{2}\right)=719 \mathrm{~W}
$$

