
Chapter 2 Page 9 
 

 
and in Bob’s frame the travel time is (7.2 light-years)/0.8c = 9 years each way. Relative 
to Alice’s original departure time, Alice has aged 32 years while Bob has aged 10 + 18 = 
28 years. So Bob is younger by 4 years. 

 
28. (a) Suppose Agnes travels at speed v. Then in her reference frame the distance to the star 

is shortened to 2 2
0 1 /L L v c= − , so the time for her one-way trip is L/v and thus 

 

 
2 2 2

2

16 light-years 1 / 1010 y or 1
16

v c c
v v

−
= − =   

 
Solving, we find v = 0.848c. 
(b) According to Bert, Agnes traveled on a journey of 32 light-years at a speed of 0.848c 
which corresponds to a time of (32 light-years)/0.848c = 37.7 years. 

 
29. (a) 

   

2 2
2 21 2

i 1i 2i 1 22 2 2 2
1i 2i1 / 1 /

m c m cK K K m c m c
v c v c

′ ′ ′= + = − + −
′ ′− −  

  
2 2

2 2 2

2 2

(2 ) (2 ) 0.512
1 0 1 (0.750)
m c mcm c mc mc= − + − =
− −

 

 

2 2
2 21 2

f 1f 2f 1 22 2 2 2
1f 2f

2 2
2 2 2

2 2

1 / 1 /
(2 ) (2 ) 0.512

1 ( 0.585) 1 (0.294)

m c m cK K K m c m c
v c v c

m c mcm c mc mc

′ ′ ′= + = − + −
′ ′− −

= − + − =
− − −

 

  
(b)   

   

2 2
2 21 2

i 1i 2i 1 22 2 2 2
1i 2i1 / 1 /

m c m cK K K m c m c
v c v c

= + = − + −
− −  

2 2
2 2 2

2 2

(2 ) (2 ) 0.458
1 (0.550) 1 ( 0.340)

m c mcm c mc mc= − + − =
− − −

 

2 2
2 21 2

f 1f 2f 1 22 2 2 2
1f 2f

2 2
2 2 2

2 2

1 / 1 /
(2 ) (2 ) 0.458

1 ( 0.051) 1 (0.727)

m c m cK K K m c m c
v c v c

m c mcm c mc mc

= + = − + −
− −

= − + − =
− − −

 

 

30.  
2

2 2 2 2 2

1 ( )( / ) 1 (938.3 MeV)(0.835) 1424 MeV/
1 / 1 / 1 (0.835)

mv mc v cp c
c cv c v c

= = = =
− − −
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2
2

2 2 2

938.3 MeV 938.3 MeV 767 MeV
1 / 1 (0.835)

mcK mc
v c

= − = − =
− −

 

  
2 767 MeV 938.3 MeV 1705 MeVE K mc= + = + =  

 
31. 2 0.923 MeV 0.511 MeV 1.434 MeVE K mc= + = + =  

   
Solving Equation 2.36 for v, we obtain 
 

 
2 22 0.511 MeV1 1 0.934

1.434 MeV
mcv c c c
E

   
= − = − =   

  
 

 

32.  dp dxW F dx dx dp v dp
dt dt

= = = =∫ ∫ ∫ ∫  

 

2

2 2 2 20 0 0

2 2
2 2 2 2 2

2 2 2 2

1 / 1 /

1 /
1 / 1 /

v v vmv mvK v dp pv p dv dv
v c v c

mv mcmc v c mc mc
v c v c

= = − = −
− −

= + − − = −
− −

∫ ∫ ∫
 

 
33. For what range of velocities is 21

2 0.01K mv K− ≤ ?  At the upper limit of this range, 
where 21

2 0.01K mv K− = , we have 

   
2

2 21
22 2

0.99 0.99
1 /

mcK mc mv
v c

 
= − = 

− 
 

  

With 2 2/x v c= ,  
2

1
2

1 1 0.50.99 1 which gives 1
1 0.991

x x
xx

   − = = +   −−   
 

  
 2 21 (1 )(1 1.0101 0.2551 ) or 0.2551 0.7550 0.0101 0x x x x x= − + + + − =  
 
Solving using the quadratic formula, we find x = 0.0133 or -2.97.  Only the positive 
solution is physically meaningful, so 
 
 0.0133 0.115v c c= =  
 
That is, for speeds smaller than 0.115c, the classical kinetic energy is accurate to within 1%.  
For a different approach to that same type of calculation, see Problem 36. 
 
 

34. As in Problem 33, let us now find the lower limit on the momentum such that 
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2
2

2 2 2

938.3 MeV 938.3 MeV 767 MeV
1 / 1 (0.835)

mcK mc
v c

= − = − =
− −

 

  
2 767 MeV 938.3 MeV 1705 MeVE K mc= + = + =  

 
31. 2 0.923 MeV 0.511 MeV 1.434 MeVE K mc= + = + =  

   
Solving Equation 2.36 for v, we obtain 
 

 
2 22 0.511 MeV1 1 0.934

1.434 MeV
mcv c c c
E

   
= − = − =   

  
 

 

32.  dp dxW F dx dx dp v dp
dt dt

= = = =∫ ∫ ∫ ∫  

 

2

2 2 2 20 0 0

2 2
2 2 2 2 2

2 2 2 2

1 / 1 /

1 /
1 / 1 /

v v vmv mvK v dp pv p dv dv
v c v c

mv mcmc v c mc mc
v c v c

= = − = −
− −

= + − − = −
− −

∫ ∫ ∫
 

 
33. For what range of velocities is 21

2 0.01K mv K− ≤ ?  At the upper limit of this range, 
where 21

2 0.01K mv K− = , we have 

   
2

2 21
22 2

0.99 0.99
1 /

mcK mc mv
v c

 
= − = 

− 
 

  

With 2 2/x v c= ,  
2

1
2

1 1 0.50.99 1 which gives 1
1 0.991

x x
xx

   − = = +   −−   
 

  
 2 21 (1 )(1 1.0101 0.2551 ) or 0.2551 0.7550 0.0101 0x x x x x= − + + + − =  
 
Solving using the quadratic formula, we find x = 0.0133 or -2.97.  Only the positive 
solution is physically meaningful, so 
 
 0.0133 0.115v c c= =  
 
That is, for speeds smaller than 0.115c, the classical kinetic energy is accurate to within 1%.  
For a different approach to that same type of calculation, see Problem 36. 
 
 

34. As in Problem 33, let us now find the lower limit on the momentum such that 
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 2 2 2 2 2 2( ) ( ) 0.01 ( ) ( )pc mc pc pc mc+ − ≤ +  
  
From the lower limit, we obtain 2 2 20.99 ( ) ( )pc mc pc+ = , which can be written as 
  

 
2 4

2 2
2( ) or 7.02

1/(0.99) 1
m cpc pc mc= =

−
 

 
With 2 2 2/ 1 / 7.02mvc v c mc− = , we obtain 
  

 
2 2

2 249.25 1 or / 0.990v v v c
c c

 
= − = 

 
 

 
Whenever / 0.990v c ≥ , the expression E = pc will be accurate to within 1%. 
 

35. 
2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2
2 2 2 2 2 2

( ) 1 / /( ) ( ) ( ) ( )
1 / 1 / 1 /

mc v c v c m c vE mc mc mc pc
v c v c v c

 − +
= = = + = + − − − 

 

 
2 2 2( ) ( )E mc pc= +  

  
36. With 2(1 ) 1 ( 1) /2!nx nx n n x+ = + + −  we have 

 
22 2

2 22 2

1 1 ( 1/ 2)( 3 / 2)1
2 21 /

v v
c cv c

 − −
= + + + 

−  
  

 
and so 
  

 
2 4 2

2 2 21
22 4 22 2

1 1 3 31 1 1 1
2 8 41 /

v v vK mc mc mv
c c cv c

     
= − = + + + − = + +     

−     
   

 
The correction term is 2 23 /4v c , which has the value 0.1% when 2 23 /4 0.001v c = , or 
 
 0.001(4 / 3) 0.0365v c c= =  
 
 

37. (a) With E = 1351 MeV and pc = 1256 MeV, Equation 2.39 gives 
 

 2 2 2 2 2
2 2

1 1( ) (1351 MeV) (1256 MeV) 498 MeV/m E pc c
c c

= − = − =  



Chapter 2 Page 12 
 

 
(b)   2 2 2 2 2( ) ( ) (857 MeV) (498 MeV) 991 MeVE pc mc= + = + =  
 
 

38.  

 

2 2
f i f i f i

2 2

2 2 2 2 2 2
f i

( ) ( )

0.511 MeV 0.511 MeV 0.262 MeV
1 / 1 / 1 (0.91) 1 (0.85)

K K E mc E mc E E
mc mc
v c v c

− = − − − = −

= − = − =
− − − −

 

 
 

39.   (1g)(0.40 J/g K)(100 K) 40 JE mc T∆ = ∆ = ⋅ =  

 16
2 16 2 2

40 J 4.4 10 kg
9 10 m /s

Em
c

−∆
∆ = = = ×

×
 

 
40. (a)  At such low speed, the classical approximation is valid. 

  

 
2

2 2 -4 2 31 1 1
2 2 22 (0.511 MeV)(1.00 10 ) 2.56 10 eVvK mv mc

c
− 

= = = × = × 
 

 

 
(b)  The relativistic expression gives 
  

 2

2 2 2

1 11 0.511 MeV 1 25.6 eV
1 / 1 (0.01)

K mc
v c

  
 = − = − =   − −   

 

  
For this speed, the classical expression 21

2 mv  also gives 25.6 eV, so the two calculations 
agree to at least three significant figures.  (Actually they agree to four significant figures, 
but not to five.) 
 
(c)  The relativistic expression gives 
 

 2

2 2 2

1 11 0.511 MeV 1 24.7 keV
1 / 1 (0.3)

K mc
v c

  
 = − = − =   − −   

 

  
For this speed, the classical expression gives 23.0 keV, which is incorrect by about 7%. 
 

(d)   2

2 2 2

1 11 0.511 MeV 1 10.9 MeV
1 / 1 (0.999)

K mc
v c

  
 = − = − =   − −   
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41. Because the electrons and the protons have charges of the same magnitude e, after 
acceleration through a potential difference of magnitude ∆V = 12.0 million volts (a 
positive difference for the electron, a negative difference for the proton), each loses 
potential energy of U e V∆ = − ∆ = -12.0 MeV and thus each acquires a kinetic energy of 
K = +12.0 MeV.  For the electron, E = K + mc2 = 12.0 MeV + 0.511 MeV = 12.5 MeV.  
The momentum is then 
 

 2 2 2 2 21 1( ) (12.5 MeV) (0.511 MeV) 12.5 MeV/p E mc c
c c

= − = − =  

 
The classical formula 2 / 2K p m=  gives 
  
 22 2(0.511 MeV/ )(12.0 MeV) 3.50 MeV/p mK c c= = =  
 
which is far from the correct result (a discrepancy we would expect for such highly 
relativistic electrons).  For the protons, E = K + mc2 = 12.0 MeV + 938.3 MeV= 950.3 MeV, 
and the momentum is 
 

 2 2 2 2 21 1( ) (950.3 MeV) (938.3 MeV) 150.5 MeV/p E mc c
c c

= − = − =  

 
The classical formula gives 
  
 22 2(938.3 MeV/ )(12.0 MeV) 150.1 MeV/p mK c c= = =  
 
The difference between the classical and relativistic formulas appears only in the fourth 
significant figure. 
 
 

42. The mass of a uranium atom is about (235 u)(1.66 × 10−27 kg/u) = 3.90 × 10−25 kg, so 
1.50 kg contains 1.50 kg/3.90 × 10−25 kg = 3.84 × 1024 atoms.  The total energy released 
is  
  24 26(210 MeV/atom)(3.84 10 atoms) 8.06 10 MeVE∆ = × = ×  
 
and the change in mass is 
  

 
26 13

3
2 8 2

(8.06 10 MeV)(1.602 10 J/MeV) 1.44 10 kg
(2.998 10 MeV)

Em
c

−
−∆ × ×

∆ = = = ×
×

 

  
About one gram of matter vanishes for each kilogram that fissions! 
 

43. (a) The change in mass is 
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2 3( H) (n) ( H)

2.014102 u 1.008665 u 3.016049 u 0.006718 u
m m m m∆ = + −
= + − =

  

The corresponding energy change is 2 (931.5 MeV/u)(0.006718 u) 6.26 MeVE mc∆ = ∆ = = . 
 
(b)  

3 4( He) (n) ( He)
3.016029 u 1.008665 u 4.002603 u 0.022352 u

m m m m∆ = + −
= + − =

 

2 (931.5 MeV/u)(0.022352 u) 20.8 MeVE mc∆ = ∆ = =  
 
 

44. (a)   
2

2
p p2 2 2

139.6 MeV 938.3 MeV 1296.7 MeV
1 / 1 (0.921)
m cE E E m c

v c
p

p= + = + = + =
− −

 

(b) 

 
2

p 2 2 2 2 2

( / )1 1 (139.6 MeV)(0.921) 330.0 MeV/
1 / 1 / 1 (0.921)

m v m c v cp p p c
c cv c v c

p p
p= + = = = =

− − −
 

(c) 
 2 2 2 2 2( ) (1296.7 MeV) (330.0 MeV) 1254 MeVmc E pc= − = − =  
 
 

45. Before the collision, the total relativistic energy of each electron is 
  

  
2

e
e 2 2 2

0.511 MeV 114.3 MeV
1 / 1 (0.99999)

m cE
v c

= = =
− −

 

 
The total energy in the collision is therefore 2×114.3 MeV = 228.6 MeV.  The total 
momentum is zero before the collision, because the two particles moves with equal and 
opposite velocities and have equal masses.  After the collision, the total momentum is 
still zero, so we know that the two muons must move with equal speeds and thus have 
equal energies.  The total energy of each muon is then 114.3 MeV and its kinetic energy 
is 
 2 114.3 MeV 105.7 MeV 8.6 MeVK E m cm m m= − = − =  
   

46. The two protons have equal (and opposite) momenta and thus equal energies E1 and E2.  
The new particle is created with zero momentum (at rest), so its total energy is equal to 
its rest energy Mc2 = 9460 MeV.  Conservation of energy then gives 

2 2
1 2 1 2, so /2E E Mc E E Mc+ = = = . 
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2 2
p

1 2 2

2 222
p

2 2

21 /

2( ) 2(938.3 MeV)1 0.0394 so 0.980
9460 MeV

m c McE
v c

m cv v c
c Mc

= =
−

   
− = = = =   

    

 

 
 

47. For particle 1, moving in the positive x direction, 
 

 
2

1 1
2 2 2 2 2

1 1

282 MeV 140 MeV 422 MeV
( ) (422 MeV) (140 MeV) 398 MeV

E K mc
cp E mc

= + = + =

= − = − = +
 

 
For particle 2, moving in the negative x direction, 
 

2
2 2

2 2 2 2 2
2 2

25 MeV 140 MeV 165 MeV
( ) (165 MeV) (140 MeV) 87 MeV

E K mc
cp E mc

= + = + =

= − − = − − = −
 

 
The net final momentum is f 1 2 398 MeV/ 87 MeV/ 311 MeV/p p p c c c= + = − = , and the 
net final energy is f 1 2 422 MeV 165 MeV 587 MeVE E E= + = + = .  Because of the 
conservation laws, these must be equal to the momentum and the energy of the initial 
particle, so that its rest energy is then 
 
 2 2 2 2 2

i i i( ) (587 MeV) (311 MeV) 498 MeVm c E cp= − = − =  
 
Solving Equation 2.36 for v, we obtain 
 

 
2 22 498 MeV1 1 0.529

587 MeV
mcv c c c
E

   
= − = − =   

  
 

 
 
48. (a) In this frame of reference, the total momentum is zero before and after the collision, 

and at threshold the four product particles are formed at rest. So the total final energy is 
4mc2, and since this must be equal to the total initial energy each initial colliding proton 
must have an energy of 2mc2. 
(b) With 2 2 2/ 1 /E mc v c= − , we have for each of the initial protons 
 

 
2

2 2 2

2 2

12 or 1 /
21 /

mcmc v c
v c

= − =
−

  

 
so v = 0.866c. 
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 2

0.60 0.60 0.882
1 / 1 ( 0.60)(0.60)

x
x

x

v u c cv c
v u c
− − −′ = = = −

− − −
 

 
(e) On his 4th birthday. 
 
(f) On his 16th birthday. 
 
 

59.   (a) Before the first acceleration, E = E0 = mc2.  After the acceleration, the energy is 
 

 
2

1 2 2 2

0.511 MeV 3.6 MeV
1 / 1 (0.99)

mcE
v c

= = =
− −

 

 
The change in energy is 1 0 3.6 MeV 0.5 MeV 3.1 MeVE E E∆ = − = − = , so the first stage 
adds 3.1 MeV to the energy of the electron. 
 

(b)   
2

2 2 2 2

0.511 MeV 11.4 MeV
1 / 1 (0.999)

mcE
v c

= = =
− −

 

 
The change in energy is 2 1 11.4 MeV 3.6 MeV 7.8 MeVE E E∆ = − = − = , so the second 
stage adds about 2.5 times as much energy as the first stage, even though the second stage 
increases the velocity by only 0.9%. 
 
 

60. 
2

2

2 2 2

0.511 MeV 0.511 MeV 0.367 MeV per particle
1 / 1 (0.813)

mcK mc
v c

= − = − =
− −

 

 
11 14

beam (0.367 MeV/particle)(2.14 10 particles/s)(3600 s) 2.82 10 MeV 45.2 JE = × = × =  
 
Copper has a density of ρ = 8.92 g/cm3 and a specific heat capacity of cp = 0.385 J/g⋅K.  
The mass M of the copper is 3 3(8.92 g/cm )(2.54 cm) 146 gM Vρ= = = .  Assuming all of 
the kinetic energy carried by the particles in the beam acts to produce a change in 
temperature of the copper ( beam pE Mc T= ∆ ), the temperature increase is 
 

 beam

p

45.2 J 0.80 K 0.80 C
(146 g)(0.385 J/g K)

ET
Mc

∆ = = = = °
⋅

 

 

61. (a)  
2

i
i 2 2 2

i

(0.511 MeV/ )(0.960 ) 1.752 MeV/
1 / 1 (0.960)

mv c cp c
v c

= = =
− −
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2

1f
1f 2 2 2

1f

(0.511 MeV / )(0.956 ) 1.665 MeV/
1 / 1 (0.956)

mv c cp c
v c

= = =
− −

 

 
f 1f 1 2f 2 2f 2 2f 2cos cos (1.665 MeV/ )(cos9.7 ) cos 1.642 MeV/ cosxp p p c p c pθ θ θ θ= + = ° + = +

f 1f 1 2f 2 2f 2 2f 2sin sin (1.665 MeV/ )(sin 9.7 ) sin 0.281 MeV/ sinyp p p c p c pθ θ θ θ= + = ° + = +
 
Conservation of momentum gives pxf = pi and pyf = 0.  Thus 
 

 2f 2

2f 2

cos 1.752 MeV/ 1.642 MeV/ 0.110 MeV/
sin 0 0.281 MeV/ 0.281 MeV/

p c c c
p c c

θ
θ

= − =
= − = −

 

 
Dividing the second result by the first gives 
 

 2 2
0.281 MeV/tan 2.55 or 68.6

0.110 MeV/
c
c

θ θ−
= = − = − °  

 
With 2f (0.110 MeV/ ) /[cos( 68.6 )] 0.302 MeV/p c c= − ° = , we have 

 2f
2f 2 2

2f

0.302 MeV/
1 /

mvp c
v c

= =
−

 

and solving, we find v2f = 0.508c. 
 

(b)   
2

i 2 2 2
i

0.511 MeV 2.336 MeV
1 / 1 (0.960)

mcE
v c

= = =
− −

 

  
2

1f 2 2 2
1f

0.511 MeV 1.743 MeV
1 / 1 (0.956)

mcE
v c

= = =
− −

 

 
Conservation of energy gives Ei = E1f + E2f, so E2f = 2.366 MeV − 1.743 MeV = 0.593 
MeV and 

 
2

2f 2 2 2 2
2f 2f

0.511 MeV0.593 MeV
1 / 1 /

mcE
v c v c

= = =
− −

 

 
and solving we find v2f = 0.508c, in agreement with part (a). 
 
 

62. The initial energy is 
  

 
2

2 2 2

135 MeV 678 MeV
1 / 1 (0.98)

mcE
v c

p = = =
− −
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and the momentum is 
  

 2 2 2 2 21 1( ) (678 MeV) (135 MeV) 664 MeV/p E mc c
c cp p= − = − =  

  
Because the two gamma ray photons have equal energies, each has an energy of 
1
2 (678 MeV) , so Eγ = 339 MeV.  Each gamma ray photon has a momentum of 

/ 339 MeV/p E c cγ γ= = , which has a component cospγ θ  along the direction of the 
initial p meson.  Conservation of momentum then gives 2 cosp pp γ θ= , so the angle is 
 

 1 1 664 MeV/cos cos 11.7
2 2(339 MeV/ )
p c
p c
p

γ

θ − −= = = °  

 
63. (a) The total energy of the K meson in this frame is E = mc2 + K = 497.7 MeV + 77.0 

MeV = 574.7 MeV, and from Eq. 2.36 we then have 
 

 
2

2 2 497.7 MeV1 / 0.8660
574.7 MeV

mcv c
E

− = = =   

 
from which v = 0.5000c. 
(b) In the original frame the energy of the pi meson is  
 
 2 2 2 2 2( ) ( ) (381.6 MeV) (139.6 MeV) 406.3 MeVE pc mc= + = + =   
 
and we can find its speed as we did in part (a) 
 

 
2

2 2 139.6 MeV1 / 0.3436
406.3 MeV

mcv c
E

− = = =   

 
so v = 0.9391c. Transforming this speed to the new reference frame gives 
 

 2

0.9391 0.5000 0.8278
1 / 1 (0.9391)(0.5000)

v u c cv c
uv c
− −′ = = =

− −
  

 
from which we find 
 

 

2

2 2 2

2

2 2 2

1 ( / ) 1 (139.6 MeV)(0.8278) 206.0 MeV/
1 / 1 (0.8278)

139.6 MeV 248.9 MeV
1 / 1 (0.8278)

mc v cp c
c cv c

mcE
v c

′ = = =
− −

′ = = =
− −
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(c) Applying the conservation laws in this reference frame then gives -206.0 MeV/c for 
the momentum of the second particle and 497.7 MeV – 248.9 MeV = 248.8 MeV for its 
energy. Its mass is then, from Eq. 2.39, 
 
 2 2 2 2 2( ) (248.8 MeV) (206.0 MeV) 139.5 MeVmc E pc= − = − =   
 
again showing that the second particle is another pi meson. 
 

64. (a) We use subscripts − and + to represent respectively the electron (e−) and positron (e+). 
Then before the collision the momenta are 

 

 

2

2 2 2 2 2

2

2 2 2 2 2

( / )1 1 (0.511 MeV)(0.834) 0.772 MeV/
1 / 1 / 1 (0.834)

( / )1 1 (0.511 MeV)( 0.428) 0.242 MeV/
1 / 1 / 1 (0.428)

mv mc v cp c
c cv c v c

mv mc v cp c
c cv c v c

− −
−

− −

+ +

+ +

= = = =
− − −

−
+ = = = = −

− − −

  

  
The total momentum before the collision is  
 

0.772 MeV/ 0.242 MeV/ 0.530 MeV/p p p c c c− += + = − = .  
 
By conservation of momentum, this must also be the momentum of the new particle after 
the collision. The total energies before the collision are 
 

  

2

2 2 2

2

2 2 2

0.511 MeV 0.926 MeV
1 / 1 (0.834)

0.511 MeV 0.565 MeV
1 / 1 (0.428)

mcE
v c

mcE
v c

−

−

+

+

= = =
− −

= = =
− −

  

 
The total energy before the collision is  
 
   0.926 MeV 0.565 MeV 1.492 MeVE E E− += + = + = .  
 
By conservation of energy, this must be the same as the total energy of the new particle 
after the collision.  
(b) We can find the mass of the new particle from its momentum and total energy using 
Eq. 2.39: 
 
  2 2 2 2 2 2 2( ) (1.492 MeV) (0.530 MeV) 1.394 MeV/M c E pc c c− −= − = − =   
 
(c) The initial and final kinetic energies are 
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2 2

i
2

f

( ) ( ) 1.492 MeV 2(0.511 MeV) 0.470 MeV

1.492 MeV 1.394 MeV 0.097 MeV

K E mc E mc
K E Mc

− += − + − = − =

= − = − =
  

 
The change in kinetic energy is  
 
  i f 0.470 MeV 0.097 MeV 0.372 MeVK K K∆ = − = − =   
The change in mass is 
 
  2 2 22 1.394 MeV/ 2(0.511 MeV/ ) 0.372 MeV/m M m c c c∆ = − = − =   
  
The additional mass of the new particle comes from the loss in kinetic energy in the 
collision.  
(d) The momentum and energy of the original particles and the new particle would have 
different values in the new frame, but the values for M, ∆m, and ∆K would be the same. 
Mass is an invariant in special relativity (all observers measure the same value) and since 
the mass value comes from the change in kinetic energy, all observers must also find the 
same ∆K. 
 




