3. $\Delta t=t_{\mathrm{up}}+t_{\text {down }}-2 t_{\text {across }}=\frac{2 L}{c}\left[\frac{1}{1-u^{2} / c^{2}}-\frac{1}{\sqrt{1-u^{2} / c^{2}}}\right]$

Assuming $u \ll c$,

$$
\begin{aligned}
& \frac{1}{1-u^{2} / c^{2}} \cong 1+\frac{u^{2}}{c^{2}} \quad \text { and } \quad \frac{1}{\sqrt{1-u^{2} / c^{2}}} \cong 1+\frac{1}{2} \frac{u^{2}}{c^{2}} \\
& \Delta t \cong \frac{2 L}{c}\left[1+\frac{u^{2}}{c^{2}}-\left(1+\frac{1}{2} \frac{u^{2}}{c^{2}}\right)\right]=\frac{L u^{2}}{c^{3}} \\
& u=\sqrt{\frac{c^{3} \Delta t}{L}}=\sqrt{\frac{\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{3}\left(2 \times 10^{-15} \mathrm{~s}\right)}{11 \mathrm{~m}}}=7 \times 10^{4} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

5. With $L=\frac{1}{2} L_{0}$, the length contraction formula gives $\frac{1}{2} L_{0}=L_{0} \sqrt{1-u^{2} / c^{2}}$, so

$$
u=\sqrt{3 / 4} c=2.6 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

6. The astronaut must travel 600 light-years at a speed close to the speed of light and must age only 12 years. To an Earth-bound observer, the trip takes about $\Delta t=600$ years, but this is a dilated time interval; in the astronaut's frame of reference, the elapsed time is the proper time interval Δt_{0} of 12 years. Thus, with $\Delta t=\Delta t_{0} / \sqrt{1-u^{2} / c^{2}}$,

$$
\begin{aligned}
& 600 \text { years }=\frac{12 \text { years }}{\sqrt{1-u^{2} / c^{2}}} \quad \text { or } \quad 1-\frac{u^{2}}{c^{2}}=\left(\frac{12}{600}\right)^{2} \\
& u=\sqrt{1-(12 / 600)^{2}} c=0.9998 c
\end{aligned}
$$

7. (a)

$$
\Delta t=\frac{\Delta t_{0}}{\sqrt{1-u^{2} / c^{2}}}=\frac{120.0 \mathrm{~ns}}{\sqrt{1-(0.950)^{2}}}=384 \mathrm{~ns}
$$

(b) $\quad d=v \Delta t=0.950\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)\left(384 \times 10^{-9} \mathrm{~s}\right)=109 \mathrm{~m}$
(c) $\quad d_{0}=v \Delta t_{0}=0.950\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)\left(120.0 \times 10^{-9} \mathrm{~s}\right)=34.2 \mathrm{~m}$
10. Let ship A represent observer O, and let observer O^{\prime} be on Earth. Then $v^{\prime}=0.831 c$ and u $=-0.743 c$, and so

$$
v=\frac{v^{\prime}+u}{1+v^{\prime} u / c^{2}}=\frac{0.831 c+0.743 c}{1+(0.831)(0.743)}=0.973 c
$$

If now ship B represents observer O, then $v^{\prime}=-0.743 c$ and $u=-0.831 c$.

$$
v=\frac{v^{\prime}+u}{1+v^{\prime} u / c^{2}}=\frac{-0.743 c-0.831 c}{1+(-0.743)(-0.831)}=-0.973 c
$$

11. Let O^{\prime} be the observer on the space station, and let O be the observer on ship B. Then v^{\prime} $=0.811 c$ and $u=-0.665 c$.

$$
v=\frac{v^{\prime}+u}{1+v^{\prime} u / c^{2}}=\frac{0.811 c-0.665 c}{1+(0.811)(-0.665)}=0.317 c
$$

13. With $f^{\prime}=f \sqrt{(1-u / c) /(1+u / c)}$ and $\lambda=c / f$, we obtain

$$
\frac{1-u / c}{1+u / c}=\left(\frac{f^{\prime}}{f}\right)^{2}=\left(\frac{\lambda}{\lambda^{\prime}}\right)^{2}=\left(\frac{650 \mathrm{~nm}}{550 \mathrm{~nm}}\right)^{2}=1.397
$$

Solving, $u / c=0.166$ or $u=5.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$.
17. For the light beam, observer O measures $v_{x}=0, v_{y}=c$. Observer O^{\prime} measures

$$
v_{x}^{\prime}=\frac{v_{x}-u}{1-u v_{x} / c^{2}}=0-u=-u \quad \text { and } \quad v_{y}^{\prime}=\frac{v_{y} \sqrt{1-u^{2} / c^{2}}}{1-u v_{x} / c^{2}}=c \sqrt{1-u^{2} / c^{2}}
$$

According to O^{\prime}, the speed of the light beam is

$$
v^{\prime}=\sqrt{\left(v_{x}^{\prime}\right)^{2}+\left(v_{y}^{\prime}\right)^{2}}=\sqrt{u^{2}+c^{2}\left(1-u^{2} / c^{2}\right)}=c
$$

18. O measures times t_{1} and t_{2} for the beginning and end of the interval, while O^{\prime} measures t_{1}^{\prime} and t_{2}^{\prime}. Using Equation 2.23d,

$$
t_{1}^{\prime}=\frac{t_{1}-u x / c^{2}}{\sqrt{1-u^{2} / c^{2}}} \quad \text { and } \quad t_{2}^{\prime}=\frac{t_{2}-u x / c^{2}}{\sqrt{1-u^{2} / c^{2}}}
$$

The same coordinate x appears in both expressions, because the bulb is at rest according to O (so Δt is the proper time interval). Subtracting these two equations, we obtain

$$
t_{2}^{\prime}-t_{1}^{\prime}=\frac{t_{2}-t_{1}}{\sqrt{1-u^{2} / c^{2}}} \quad \text { or } \quad \Delta t^{\prime}=\frac{\Delta t}{\sqrt{1-u^{2} / c^{2}}}
$$

27. (a) To an Earth-bound observer Alice's round trip takes 20 years each way (20 years \times $0.6 c=12$ light-years) for a total time of 40 years. Bob's travel time is 15 years each way (15 years $\times 0.8 c=12$ light-years) for a total travel time of 30 years. With Bob’s 10-year delay in departing, the two arrive on Earth simultaneously.
(b) To Alice, the distance to the star is contracted to

$$
L=L_{0} \sqrt{1-v^{2} / c^{2}}=12 \text { light-years } \sqrt{1-(0.6)^{2}}=9.6 \text { light-years }
$$

So in Alice's frame of reference the trip takes a time of (9.6 light years) $/ 0.6 c=16$ years each way. To Bob, the distance to the star is

$$
L=L_{0} \sqrt{1-v^{2} / c^{2}}=12 \text { light-years } \sqrt{1-(0.8)^{2}}=7.2 \text { light-years }
$$

and in Bob's frame the travel time is (7.2 light-years)/ $0.8 c=9$ years each way. Relative to Alice's original departure time, Alice has aged 32 years while Bob has aged $10+18=$ 28 years. So Bob is younger by 4 years.
28. (a) Suppose Agnes travels at speed v. Then in her reference frame the distance to the star is shortened to $L=L_{0} \sqrt{1-v^{2} / c^{2}}$, so the time for her one-way trip is L / v and thus

$$
\frac{16 \text { light-years } \sqrt{1-v^{2} / c^{2}}}{v}=10 \mathrm{y} \quad \text { or } \quad \sqrt{\frac{c^{2}}{v^{2}}-1}=\frac{10}{16}
$$

Solving, we find $v=0.848 c$.
(b) According to Bert, Agnes traveled on a journey of 32 light-years at a speed of 0.848 c which corresponds to a time of (32 light-years) $/ 0.848 c=37.7$ years .

