1. (a) Conservation of momentum gives $p_{x, \text { initial }}=p_{x, \text { final }}$, or

$$
m_{\mathrm{H}} v_{\mathrm{H}, \text { initial }}+m_{\mathrm{He}} v_{\mathrm{He}, \text { initial }}=m_{\mathrm{H}} v_{\mathrm{H}, \text { final }}+m_{\mathrm{He}} v_{\mathrm{He}, \text { final }}
$$

Solving for $v_{\text {He,final }}$ with $v_{\text {He,initial }}=0$, we obtain

$$
\begin{aligned}
v_{\text {He,final }} & =\frac{m_{\mathrm{H}}\left(v_{\mathrm{H}, \text { initial }}-v_{\mathrm{H}, \text { final }}\right)}{m_{\mathrm{He}}} \\
& =\frac{\left(1.674 \times 10^{-27} \mathrm{~kg}\right)\left[1.1250 \times 10^{7} \mathrm{~m} / \mathrm{s}-\left(-6.724 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)\right]}{6.646 \times 10^{-27} \mathrm{~kg}}=4.527 \times 10^{6} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(b) Kinetic energy is the only form of energy we need to consider in this elastic collision. Conservation of energy then gives $K_{\text {initial }}=K_{\text {final }}$, or

$$
\frac{1}{2} m_{\mathrm{H}} v_{\mathrm{H}, \text { initial }}^{2}+\frac{1}{2} m_{\mathrm{He}} v_{\mathrm{He}, \text { initial }}^{2}=\frac{1}{2} m_{\mathrm{H}} v_{\mathrm{H}, \text { final }}^{2}+\frac{1}{2} m_{\mathrm{He}} v_{\mathrm{He}, \text { final }}^{2}
$$

Solving for $v_{\text {He,final }}$ with $v_{\text {He, initial }}=0$, we obtain

$$
\begin{aligned}
v_{\text {He,final }} & =\sqrt{\frac{m_{\mathrm{H}}\left(v_{\mathrm{H}, \text { initial }}^{2}-v_{\mathrm{H}, \text { final }}^{2}\right)}{m_{\mathrm{He}}}} \\
& =\sqrt{\frac{\left(1.674 \times 10^{-27} \mathrm{~kg}\right)\left[\left(1.1250 \times 10^{7} \mathrm{~m} / \mathrm{s}\right)^{2}-\left(-6.724 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)^{2}\right]}{6.646 \times 10^{-27} \mathrm{~kg}}}=4.527 \times 10^{6} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

5. (a) The kinetic energy of the electrons is

$$
K_{\mathrm{i}}=\frac{1}{2} m v_{\mathrm{i}}^{2}=\frac{1}{2}\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(1.76 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)=14.11 \times 10^{-19} \mathrm{~J}
$$

In passing through a potential difference of $\Delta V=V_{\mathrm{f}}-V_{\mathrm{i}}=+4.15$ volts, the potential energy of the electrons changes by

$$
\Delta U=q \Delta V=\left(-1.602 \times 10^{-19} \mathrm{C}\right)(+4.15 \mathrm{~V})=-6.65 \times 10^{-19} \mathrm{~J}
$$

Conservation of energy gives $K_{\mathrm{i}}+U_{\mathrm{i}}=K_{\mathrm{f}}+U_{\mathrm{f}}$, so

$$
\begin{gathered}
K_{\mathrm{f}}=K_{\mathrm{i}}+\left(U_{\mathrm{i}}-U_{\mathrm{f}}\right)=K_{\mathrm{i}}-\Delta U=14.11 \times 10^{-19} \mathrm{~J}+6.65 \times 10^{-19} \mathrm{~J}=20.76 \times 10^{-19} \mathrm{~J} \\
v_{\mathrm{f}}=\sqrt{\frac{2 K_{\mathrm{f}}}{m}}=\sqrt{\frac{2\left(20.76 \times 10^{-19} \mathrm{~J}\right)}{9.11 \times 10^{-31} \mathrm{~kg}}}=2.13 \times 10^{6} \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

(b) In this case $\Delta V=-4.15$ volts, so $\Delta U=+6.65 \times 10^{-19} \mathrm{~J}$ and thus

$$
\begin{gathered}
K_{\mathrm{f}}=K_{\mathrm{i}}-\Delta U=14.11 \times 10^{-19} \mathrm{~J}-6.65 \times 10^{-19} \mathrm{~J}=7.46 \times 10^{-19} \mathrm{~J} \\
v_{\mathrm{f}}=\sqrt{\frac{2 K_{\mathrm{f}}}{m}}=\sqrt{\frac{2\left(7.46 \times 10^{-19} \mathrm{~J}\right)}{9.11 \times 10^{-31} \mathrm{~kg}}}=1.28 \times 10^{6} \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

12. The combined particle, with mass $m^{\prime}=m_{1}+m_{2}=3 m$, moves with speed v^{\prime} at an angle θ with respect to the x axis. Conservation of momentum then gives:

$$
\begin{array}{llll}
p_{x, \text { initial }}=p_{x, \text { final }}: & m_{1} v_{1}=m^{\prime} v^{\prime} \cos \theta & \text { or } & v=3 v^{\prime} \cos \theta \\
p_{y, \text { initial }}=p_{y, \text { final }}: & m_{2} v_{2}=m^{\prime} v^{\prime} \sin \theta & \text { or } & \frac{4}{3} v=3 v^{\prime} \sin \theta
\end{array}
$$

We can first solve for θ by dividing these two equations to eliminate the unknown v^{\prime} :

$$
\tan \theta=\frac{4}{3} \quad \text { or } \quad \theta=53.1^{\circ}
$$

Now we can substitute this result into either of the momentum equations to find

$$
v^{\prime}=5 v / 9
$$

The kinetic energy lost is the difference between the initial and final kinetic energies:
$K_{\text {initial }}-K_{\text {final }}=\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}-\frac{1}{2} m^{\prime} v^{\prime 2}=\frac{1}{2} m v^{2}+\frac{1}{2}(2 m)\left(\frac{2}{3} v\right)^{2}-\frac{1}{2}(3 m)\left(\frac{5}{9} v\right)^{2}=\frac{26}{27}\left(\frac{1}{2} m v^{2}\right)$
The total initial kinetic energy is $\frac{1}{2} m v^{2}+\frac{1}{2}(2 m)\left(\frac{2}{3} v\right)^{2}=\frac{17}{9}\left(\frac{1}{2} m v^{2}\right)$. The loss in kinetic energy is then $\frac{26}{51}=51 \%$ of the initial kinetic energy.
15. (a) With $K=\frac{3}{2} k T$,

$$
\Delta K=\frac{3}{2} k \Delta T=\frac{3}{2}\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(80 \mathrm{~K})=1.66 \times 10^{-21} \mathrm{~J}=0.0104 \mathrm{eV}
$$

(b) With $U=m g h$,

$$
h=\frac{U}{m g}=\frac{1.66 \times 10^{-21} \mathrm{~J}}{(40.0 \mathrm{u})\left(1.66 \times 10^{-27} \mathrm{~kg} / \mathrm{u}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}=2550 \mathrm{~m}
$$

