Lecture 20 (Dec. 9): MAPS $\left(\vec{\varphi}_{n+1}=\hat{T} \vec{\varphi}_{n}\right)$

- Motion on resonant tori

Consider the motion on a resonant torus in terms of the AAV:

$$
\vec{\phi}(t)=\vec{\omega}(\vec{J}) t+\vec{\phi}(0)
$$

Resonance means that there exist some n-tuples $\vec{l}=\left\{l_{1}, \ldots, l_{n}\right\}$ for which $\vec{l} \cdot \vec{\omega}=0$. If the motion is periodic, so that $\omega_{j}=k_{j} \omega_{0}$ with $k_{j} \in \mathbb{Z}$ for each $j \in[1, \ldots, n\}$, then all of the frequencies are in resonance.

Let's consider the case $n=2$. Dynamics sketched below:

Since the energy E is fixed, we can regard $J_{2}=J_{2}\left(J_{1}, E\right)$ and the motion as occurring in the 3 -dim l space $\left(\phi_{1}, \phi_{2}, J_{1}\right)$. Suppose we plot the consecutive intersections of the system's motion with the two-dim' subspace defined by fixing E and also $\phi_{2}\left(\right.$ say $\left.\phi_{2} \equiv 0\right)$. Let's write $\phi \equiv \phi_{1}$ and $J \equiv J_{1}$,
and define $\left(\phi_{k}, J_{k}\right)$ to be the values of (ϕ, J) at the $k^{\text {th }}$ consecutive intersection of the system's motion with the subspace $\left(\phi_{2}=0, E\right.$ fixed $)$. The ad space $\left(\phi_{2}, \widetilde{J}_{2}\right)$ is called the surface of section. Since $\dot{\phi}_{2}=\omega_{2}$, we have

$$
\phi_{k+1}-\phi_{k}=\omega_{1} \cdot \frac{2 \pi}{\omega_{2}} \equiv 2 \pi \alpha
$$

$$
\alpha(J) \equiv \frac{w_{1}(J)}{w_{2}(J)}
$$

(E suppressed)
and therefore

$$
\phi \equiv \phi_{1}, J \equiv J_{1}
$$

$$
\begin{aligned}
& \phi_{k+1}=\phi_{k}+2 \pi \alpha\left(J_{k+1}\right) \\
& J_{k+1}=J_{k}
\end{aligned}
$$

"twist map"

Note that we've written here $\alpha\left(J_{n+1}\right)$ in the first equation.
[Since $J_{k+1}=J_{k}$, it doesn't matter since J never changes for these dynamics. But writing the equations this way is more convenient.] Note that $\left(\phi_{n}, J_{n}\right) \rightarrow\left(\phi_{n+1}, J_{n+1}\right)$ is canonical:

$$
\begin{aligned}
\left\{\phi_{k+1}, J_{k+1}\right\}_{\left(\phi_{k}, J_{k}\right)} & =\operatorname{det} \frac{\partial\left(\phi_{k+1}, J_{k+1}\right)}{\partial\left(\phi_{k}, J_{k}\right)} \\
& =\frac{\partial \phi_{k+1}}{\partial \phi_{k}} \frac{\partial J_{k+1}}{\partial J_{k}}-\frac{\partial \phi_{k+1}}{\partial J_{k}} \frac{\partial J_{k+1}}{\partial \phi_{k}}=1.1-0.0=1
\end{aligned}
$$

Formally, we may write this map as

$$
\vec{\varphi}_{k+1}=\hat{T} \stackrel{\rightharpoonup}{\varphi}_{k}
$$

where $\vec{\varphi}_{k}=\left(\phi_{k}, J_{k}\right)$ and \hat{T} is the map. Note that if
$\alpha=\frac{r}{s} \in \mathbb{Q}$, then \hat{T}^{s} acts as the identity, leaving every point in the (ϕ, J) plane fixed.

For systems with n degrees of freedom, and with the surface of section fixed by $\left(\phi_{n}, J_{n}\right)$ or $\left(\phi_{n}, E\right)$, define $\stackrel{\rightharpoonup}{\varphi} \equiv\left(\phi_{1}, \ldots, \phi_{n-1}\right)$ and $\vec{J} \equiv\left(J_{1}, \ldots, J_{n-1}\right)$. Then with $\vec{\alpha} \equiv\left(\frac{w_{1}}{w_{n}}, \ldots, \frac{w_{n-1}}{w_{n}}\right)$,

$$
\begin{aligned}
& \vec{\varphi}_{k+1}=\vec{\varphi}_{k}+2 \pi \vec{\alpha}\left(\vec{J}_{k+1}\right) \\
& \vec{J}_{k+1}=\vec{J}_{k}
\end{aligned}
$$

which is canonical. Note $\vec{\varphi}_{\vec{k}}=\left(\varphi_{1}, k, \ldots, \varphi_{n-1, k}\right)$ where $\varphi_{j, k}$ is the value of φ_{j} the $k^{\text {th }}$ time the motion passes through the SOS. We call this map the twist map.
Perturb bed twist map: Now consider a Hamiltonian $H(\vec{\phi}, \vec{J})=H_{0}(\vec{J})+\epsilon H_{1}(\vec{\phi}, \vec{J})$. Again we will take $n=2$. We expect the resulting map on the sos to be given by

$$
\hat{T}_{\epsilon} \vec{\varphi}_{k}=\varphi_{k+1}:\left\{\begin{array}{l}
\phi_{k+1}=\phi_{k}+2 \pi \alpha\left(J_{k+1}\right)+\epsilon f\left(\phi_{k}, J_{k+1}\right)+\ldots \\
J_{k+1}=J_{k}+\epsilon g\left(\phi_{k}, J_{k+1}\right)+\ldots
\end{array}\right.
$$

Is this map canonical? Let's check that deft $\frac{\partial\left(\phi_{k+1}, J_{k+1}\right)}{\partial\left(\phi_{k}, J_{k}\right)}=1$:

$$
\begin{aligned}
& d \phi_{k+1}=d \phi_{k}+2 \pi \alpha^{\prime}\left(J_{k+1}\right) d J_{k+1}+\epsilon \frac{\partial f}{\partial \phi_{k}} d \phi_{k}+\epsilon \frac{\partial f}{\partial J_{k+1}} d J_{k+1} \\
& d J_{k+1}=d J_{k}+\epsilon \frac{\partial g}{\partial \phi_{k}} d \phi_{k}+\epsilon \frac{\partial g}{\partial J_{k+1}} d J_{k+1}
\end{aligned}
$$

Now bring $d \phi_{n+1}$ and $d J_{k+1}$ to the LHS of each equ and bring $d \phi_{k}$ and $d J_{k}$ to the RHS. We obtain

$$
\underbrace{\left(\begin{array}{cc}
1 & -2 \pi \alpha^{\prime}\left(J_{k+1}\right)-\epsilon \frac{\partial f}{\partial J_{k+1}} \\
0 & 1-\epsilon \frac{\partial g}{\partial J_{k+1}}
\end{array}\right)}_{A_{k+1}}\binom{d \phi_{k+1}}{d J_{k+1}}=\underbrace{\left(\begin{array}{cc}
1+\epsilon \frac{\partial f}{\partial \phi_{k}} & 0 \\
\epsilon \frac{\partial g}{\partial \phi_{k}} & 1
\end{array}\right)}_{B_{k}}\binom{d \phi_{k}}{d J_{k}}
$$

Thus

$$
\operatorname{det} \frac{\partial\left(\phi_{k+1}, J_{k+1}\right)}{\partial\left(\phi_{k}, J_{k}\right)}=\frac{\operatorname{det} B_{k}}{\operatorname{det} A_{k+1}}=\frac{1+\epsilon \frac{\partial f}{\partial \phi_{k}}}{1-\epsilon \frac{\partial g}{\partial J_{k+1}}} \equiv 1
$$

and we conclude the necessary condition is $\frac{\partial f}{\partial \phi_{k}}=\frac{\partial g}{\partial J_{k+1}}$. This guarantees the map \hat{T}_{ϵ} is canonical.
If we restrict to $g=g(\phi)$, then we have $f=f(J)$. We may then write $2 \pi \alpha\left(J_{k+1}\right)+\epsilon f\left(J_{k+1}\right) \equiv 2 \pi \alpha_{\epsilon}\left(J_{k+1}\right)$. (Well drop the ϵ subscript on α.) Thus, our perturbed twist map is given by

$$
\left.\begin{array}{l}
\phi_{k+1}=\phi_{k}+2 \pi \alpha\left(J_{k+1}\right) \\
J_{h+1}=J_{k}+\epsilon g\left(\phi_{k}\right)
\end{array}\right\} \text { Canonical! }
$$

For $\alpha(J)=J$ and $g(\phi)=-\sin \phi$, we obtain the standard map

$$
\phi_{h+1}=\phi_{k}+2 \pi J_{k+1}, \quad J_{k+1}=J_{k}-\epsilon \sin \phi_{k}
$$

- Maps from time-dependent Hamiltonians
- Parametric oscillator, e.g. pendulum with time-dependent length $l(t): \ddot{x}+w_{0}^{2}(t) x=0$ with $\omega_{0}(t)=\sqrt{g / l(t)}$. This describes pumping a swing by periodically extending and withdrawing one's legs. We have

$$
\underbrace{\frac{d}{d t}\binom{x}{v}}_{\dot{\vec{\varphi}}(t)}=\underbrace{\left(\begin{array}{cc}
0 & 1 \\
-\omega^{2}(t) & 0
\end{array}\right)}_{A(t)} \underbrace{\binom{x}{v}}_{\vec{\varphi}(t)} \quad(v=\dot{x})
$$

The formal sol to $\dot{\vec{\varphi}}(t)=A(t) \vec{\varphi}(t)$ is

$$
\vec{\varphi}(t)=T \exp \left\{\int_{0}^{t} d t^{\prime} A\left(t^{\prime}\right)\right\} \vec{\varphi}(0)
$$

where T is the time ordering operator which puts earlier times to the right. Thus

$$
T \exp \left\{\int_{0}^{t} d t^{\prime} A\left(t^{\prime}\right)\right\}=\lim _{N \rightarrow \infty}\left(1+A\left(t_{N-1}\right) \delta\right) \cdots(1+A(0) \delta)
$$

where $t_{j}=j \delta$ with $\delta \equiv t / N$. Note if $A(t)$ is time independent then

$$
T \exp \left\{\int_{0}^{t} d t^{\prime} A\left(t^{\prime}\right)\right\}=e^{A t}=\lim _{N \rightarrow \infty}\left(1+\frac{A t}{N}\right)^{N}
$$

There are no general methods for analytically evaluating time-ordered exponentials as we have here. But one tractable case is where the matrix $A(t)$ oscillates as a square wave:

$$
w(t)=\left\{\begin{array}{ll}
(1+\epsilon) \omega_{0} & \text { if } 2 j \tau \leqslant t<(2 j+1) \tau \\
(1-\epsilon) \omega_{0} & \text { if }(2 j+1) \tau \leqslant t<(2 j+2) \tau
\end{array} \quad \text { (for } j \in \mathbb{Z}\right)
$$

The period is 2τ. Define $\vec{\varphi}_{n}=\vec{\varphi}(t=2 n \tau)$. Then we have

$$
\vec{\varphi}_{n+1}=e^{A-\tau} e^{A_{+} \tau} \stackrel{\rightharpoonup}{\varphi}_{n}
$$

$$
N B: e^{A_{-} \tau} e^{A_{+} \tau} \neq e^{\left(A_{+}+A_{+}\right) \tau}
$$

with

$$
A_{ \pm}=\left(\begin{array}{cc}
0 & 1 \\
-\omega_{ \pm}^{2} & 0
\end{array}\right), \quad \omega_{ \pm} \equiv(1 \pm \epsilon) \omega_{0}
$$

Note that $A_{ \pm}^{2}=-\omega_{ \pm}^{2} 1$ and that

$$
\begin{aligned}
\mathcal{U}_{ \pm} \equiv e^{A_{ \pm} \tau} & =\mathbb{1}+A_{ \pm} \tau+\frac{1}{2!} A_{ \pm}^{2} \tau^{2}+\frac{1}{3!} A_{ \pm}^{3} \tau^{3}+\ldots \\
& =\left(1-\frac{1}{2!} \omega_{ \pm}^{2} \tau^{2}+\frac{1}{4!} \omega_{ \pm}^{4} \tau^{4}+\ldots\right) 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Msymplectic } \Rightarrow \\
& \begin{aligned}
M^{ \pm} J M=J
\end{aligned} \\
& \begin{aligned}
J=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) & +\left(\tau-\frac{1}{3!} \omega_{ \pm}^{2} \tau^{3}+\frac{1}{5!} \omega_{ \pm}^{4} \tau^{5}-\ldots\right) A_{ \pm} \\
& =\cos \left(\omega_{ \pm} \tau\right) \mathbb{1}+\omega_{ \pm}^{-1} \sin \left(\omega_{ \pm} \tau\right) A_{ \pm} \\
& =\left(\begin{array}{cc}
\cos \left(\omega_{ \pm} \tau\right) & \omega_{ \pm}^{-1} \sin \left(\omega_{ \pm} \tau\right) \\
-\omega_{ \pm} \sin \left(\omega_{ \pm} \tau\right) & \cos \left(\omega_{ \pm} \tau\right)
\end{array}\right)=e^{A_{ \pm} \tau}
\end{aligned}
\end{aligned}
$$

Note also that $\operatorname{det} U_{ \pm}=1$, since $U_{ \pm}$is simply Hamiltonian evolution over half a period, and it must be canonical.
Now we need

$$
\begin{aligned}
& U=\tilde{T} \exp \left\{\int_{0}^{2 \tau} d t A(t)\right\}=U_{-} U_{+}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \\
& \quad(\text { real, not symmetric) } \\
& a=\cos \left(\omega_{-} \tau\right) \cos \left(\omega_{+} \tau\right)-\omega_{-}^{-1} \omega_{+} \sin \left(\omega_{-} \tau\right) \sin \left(\omega_{+} \tau\right) \\
& b=\omega_{+}^{-1} \cos \left(\omega_{-} \tau\right) \sin \left(\omega_{+} \tau\right)+\omega_{-}^{-1} \sin \left(\omega_{-} \tau\right) \cos \left(\omega_{+} \tau\right) \\
& c=-\omega_{+} \cos \left(\omega_{-} \tau\right) \sin \left(\omega_{+} \tau\right)-\omega_{-} \sin \left(\omega_{-} \tau\right) \cos \left(\omega_{+} \tau\right) \\
& d=\cos \left(\omega_{-} \tau\right) \cos \left(\omega_{+} \tau\right)-\omega_{+}^{-1} \omega_{-} \sin \left(\omega_{-} \tau\right) \sin \left(\omega_{+} \tau\right)
\end{aligned}
$$

It follows from $U=U_{-} U_{+}$that U is also canonical (i.e. $\vec{\varphi}_{n+1}=\mathcal{U} \vec{\varphi}_{n}$ is a canonical transformation).

The eigenvalues $\lambda_{ \pm}$of U thus satisfy $\lambda_{+} \lambda_{-}=1$ 。
For a 2×2 matrix $U=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, the characteristic polynomial is

$$
P(\lambda)=\operatorname{det}(\lambda \mathbb{1}-U)=\lambda^{2}-T \lambda+\Delta
$$

where $T=\operatorname{tr} U=a+d$ and $\Delta=\operatorname{det} U=a d-b c$. The eigenvalues are then

$$
\lambda_{ \pm}=\frac{1}{2} T \pm \frac{1}{2} \sqrt{T^{2}-4 \Delta}
$$

But in our case U is special, and $\operatorname{det} U=1$, so

$$
\lambda_{ \pm}=\frac{1}{2} T \pm \frac{1}{2} \sqrt{T^{2}-4}=\frac{T}{2} \pm i \sqrt{1-\left(\frac{T}{2}\right)^{2}}
$$

We therefore have:

$$
\begin{aligned}
& |T|<2: \lambda_{+}=\lambda_{-}^{*}=e^{i \delta} \text { with } \delta=\cos ^{-1}\left(\frac{1}{2} T\right) \\
& |T|>2: \lambda_{+}=\lambda_{-}^{-1}=e^{\mu} \operatorname{sgn}(T) \text { with } \mu=\cosh ^{-1}\left(\frac{1}{2}|T|\right)
\end{aligned}
$$

Note $\lambda_{+} \lambda_{-}=\operatorname{det} U=1$ always. Thus, for $|T|<2$, the motion is bounded, but for $|T|>2$ we have that $|\vec{\varphi}|$ increases exponentially with time, even though phase space volumes are preserved by the dynamics. Ire. we have exponential stretching along the eigenvector $\vec{\psi}_{+}$and exponential squeezing along the eigenvector $\vec{\psi}_{-}$.

Let's set $\theta=\omega_{0} \tau=2 \pi \tau / T_{0}$ where T_{0} is the natural oscillation period when $\epsilon=0$. Since the period of the pumping is $T_{\text {pump }}=2 \tau$, we have $\frac{\theta}{\pi}=\frac{T_{\text {pump }}}{T_{0}}$. Find

$$
\begin{gathered}
\operatorname{Tr} \mathcal{U}=\frac{2 \cos (2 \theta)-2 \epsilon^{2} \cos (2 \epsilon \theta)}{1-\epsilon^{2}} \\
T=+2: \theta=n \pi+\delta, \epsilon= \pm\left|\frac{\delta}{n \pi}\right|^{1 / 2} \\
T=-2: \theta=\left(n+\frac{1}{2}\right) \pi+\delta, \epsilon= \pm \delta
\end{gathered}
$$

The phase diagram in (θ, ϵ) space is shown at the right.

Kicked dynamics: Let $H(t)=T(p)+V(q) K(t)$, where

$$
K(t)=\tau \sum_{-\infty}^{\infty} \delta(t-n \tau)
$$

As $\tau \rightarrow 0, K(t) \rightarrow 1$ (constant).

Equations of motion:
"Dirac comb"

$$
\dot{q}=T^{\prime}(p), \quad \dot{p}=-V^{\prime}(q) k(t)
$$

Define $q_{n} \equiv q\left(t=n \tau^{+}\right)$and $p_{n}=p\left(t=n \tau^{+}\right)$and integrate from $t=n \tau^{+}$to $t=(n+1) \tau^{+}$:

$$
\begin{aligned}
& q_{n+1}=q_{n}+\tau T^{\prime}\left(p_{n}\right) \\
& p_{n+1}=p_{n}-\tau V^{\prime}\left(q_{n+1}\right)
\end{aligned}
$$

This is our map $\vec{\varphi}_{n+1}=\hat{\mathcal{T}} \vec{\varphi}_{n}$. Note that it is q_{n+1} which appears as the argument of V^{\prime} in the second equation. This is crucial in order that \hat{T} be canonical:

$$
\begin{gathered}
d q_{n+1}=d q_{n}+\tau T^{\prime \prime}\left(p_{n}\right) d p_{n} \\
d p_{n+1}=d p_{n}-\tau V^{\prime \prime}\left(q_{n+1}\right) d q_{n+1} \\
\left(\begin{array}{cc}
1 & 0 \\
\tau V^{\prime \prime}\left(q_{n+1}\right) & 1
\end{array}\right)\binom{d q_{n+1}}{d p_{n+1}}=\left(\begin{array}{cc}
1 & \tau T^{\prime \prime}\left(p_{n}\right) \\
0 & 1
\end{array}\right)\binom{d q_{n}}{d p_{n}} \\
\binom{d q_{n+1}}{d p_{n+1}}=\left(\begin{array}{cc}
1 & \tau T^{\prime \prime}\left(p_{n}\right) \\
-\tau V^{\prime \prime}\left(q_{n+1}\right) & 1-\tau^{2} T^{\prime \prime}\left(p_{n}\right) V^{\prime \prime}\left(q_{n+1}\right)
\end{array}\right)\binom{d q_{n}}{d p_{n}}
\end{gathered}
$$

and thus

$$
\operatorname{det} \frac{\partial\left(q_{n}, p_{n}\right)}{\partial\left(q_{n+1}, p_{n+1}\right)}=1
$$

The standard map is obtained from

$$
H(t)=\frac{L^{2}}{2 I}-V \cos \phi K(t)
$$

resulting in

$$
\begin{aligned}
& \phi_{n+1}=\phi_{n}+\frac{\tau}{I} L_{n} \\
& L_{n+1}=L_{n}-\tau V \sin \phi_{n+1}
\end{aligned}
$$

Defining $J_{n} \equiv L_{n} / \sqrt{2 \pi I V}$ and $\epsilon \equiv \tau \sqrt{V / 2 \pi I}$ we arrive at

$$
\begin{aligned}
& \phi_{n+1}=\phi_{n}+2 \pi \epsilon J_{n} \\
& J_{n+1}=J_{n}-\epsilon \sin \phi_{n+1}
\end{aligned}
$$

The phase space (ϕ, J) is thus a cylinder. As $\in \rightarrow 0$,

$$
\left.\begin{array}{l}
\frac{\phi_{n+1}-\phi_{n}}{\epsilon} \rightarrow \frac{d \phi}{d s}=2 \pi J \\
\frac{J_{n+1}-J_{n}}{\epsilon} \rightarrow \frac{d J}{d s}=-\sin \phi
\end{array}\right\} \Rightarrow \begin{aligned}
& E=\pi J^{2}-\cos \phi \\
& \text { is preserved } \\
& \text { pendulum! }
\end{aligned}
$$

This is because $\epsilon \rightarrow 0$ means $\tau \rightarrow 0$ hence $K(t) \rightarrow 1$, which is the simple pendulum. There is a separatrix at $E=1$, along which $J(\phi)= \pm \frac{2}{\pi}|\cos (\phi \mid 2)|$.

Top: $\epsilon=0.01$ (left), $\epsilon=0.2$ (center), $\epsilon=0.4$ (right)
Bottom: details from $\epsilon=0.4$ (upper right)
Another example is the kicked Harper map, when

$$
H(t)=-V_{1} \cos \left(\frac{2 \pi p}{P}\right)-V_{2} \cos \left(\frac{2 \pi q}{Q}\right) K(t)
$$

This generates the map

$$
\begin{array}{ll}
x_{n+1}=x_{n}+\alpha \epsilon \sin \left(2 \pi y_{n}\right) & x \equiv q / Q \quad \alpha=\sqrt{V_{1} / V_{2}} \\
y_{n+1}=y_{n}-\alpha^{-1} \epsilon \sin \left(2 \pi x_{n+1}\right) & y \equiv p / P \quad \epsilon=\frac{2 \pi \tau \sqrt{V_{1} V_{2}}}{P Q}
\end{array}
$$

on the torus $T^{2}=[0,1] \times[0,1]$ with $x=0,1$ identified and $y=0,1$ identified.

Kicked Harper map with $\alpha=2$ and $\epsilon=0.01$ (UL), $\epsilon=0.125$ (UR), $E=0.2(L L)$, and $E=5.0(L R)$.
Note PSF says $K(t)=\tau \sum_{-\infty}^{\infty} \delta(t-n \tau)=\sum_{-\infty}^{\infty} \cos \left(\frac{2 \pi m t}{\tau}\right)$ and a kicked Hamiltonian may be written

$$
H(J, \phi, t)=\underbrace{H_{0}(J)+V(\phi)}_{\text {integrable }}+\underbrace{2 V(\phi) \sum_{m=1}^{\infty} \cos \left(\frac{2 \pi m t}{\tau}\right)}_{\text {resonances }}
$$

Local Stability and Lyapunov Exponents
Consider a map \hat{T} on a phase space of dimension $n=2 \mathbb{N}$. What is the fate of two nearly separated initial conditions $\vec{\xi}_{0}$ and $\vec{\xi}_{0}+d \vec{\xi}$ under iterations of $\hat{\mathcal{T}}$? First iteration:

$$
\begin{aligned}
& \vec{\xi}_{0} \rightarrow \vec{\xi}_{1}=\hat{T} \vec{\xi}_{0} \\
& \vec{\xi}_{0}+d \vec{\xi}_{3} \rightarrow \vec{T}\left(\vec{\xi}_{0}+d \vec{\xi}\right)=\vec{\xi}_{1}+M\left(\vec{\xi}_{0}\right) d \vec{\xi}+\ldots
\end{aligned}
$$

where

$$
M_{i j}(\vec{\xi})=\frac{\partial(\hat{T} \vec{\xi})_{i}}{\partial \xi_{j}} \text { an n xn matrix }
$$

is the linearization of \hat{T} at $\vec{\xi}$. Next iteration

$$
\begin{gathered}
\vec{\xi}_{0} \rightarrow \vec{\xi}_{1}=\hat{T} \vec{\xi}_{0} \rightarrow \vec{\xi}_{2}=\hat{T} \vec{\xi}_{1}=\hat{T}^{2} \vec{\xi}_{0} \\
\vec{\xi}_{0}+d \vec{\xi} \rightarrow \vec{\xi}_{1}+M\left(\vec{\xi}_{0}\right) d \vec{\xi} \rightarrow \vec{\xi}_{2}+M\left(\vec{\xi}_{1}\right) M\left(\vec{\xi}_{0}\right) d \vec{\xi}
\end{gathered}
$$

Thus, after k iterations,

$$
\begin{aligned}
& \vec{\xi}_{0} \rightarrow \vec{\xi}_{k} \equiv \hat{T}^{k} \vec{\xi}_{0} \\
& \vec{\xi}_{0}+d \vec{\xi} \rightarrow \vec{\xi}_{k}+M\left(\vec{\xi}_{k-1}\right) M\left(\vec{\xi}_{k-2}\right) \ldots M\left(\vec{\xi}_{0}\right) d \vec{\xi}
\end{aligned}
$$

product of k matrices $R^{(k)}\left(\vec{\xi}_{0}\right)$
We define the linear operator (matrix) $R^{(k \mid}(\vec{\xi})$ as

$$
R^{(k)}(\vec{\xi})=M\left(\hat{T}^{k-1} \vec{\xi}\right) M\left(\hat{T}^{k-2 \vec{\xi}}\right) \ldots M(\hat{\tau} \vec{\xi}) M(\vec{\xi})
$$

Thus,

$$
R_{i j}^{(k)}(\tilde{\xi})=\frac{\left.\partial\left(\hat{\tau}^{k}\right)^{k}\right)_{i}}{\partial \xi_{j}} \quad<L^{\alpha}\left(R^{\beta}\right)=\delta^{\alpha \beta}
$$

Since \hat{T} is presumed canonical, at each stage the Matrix $M\left(\vec{\xi}_{j}\right) \in S_{p}(2 N)$, i.e. $M^{t} J M=J$ where $J=\left(\begin{array}{cc}0 & 1_{N \times N} \\ -1_{N \times N} & 0\end{array}\right)$. As the product of symplectic matrices is itself symplectic, $R^{(k)}(\vec{\xi}) \in S_{p}(2 N)$ for all $k, \overrightarrow{3}$. Note $\frac{J}{J}^{2}=-1$ so $M^{-1}=-J M^{t} J$, and we have

$$
\begin{aligned}
P(\lambda) & =\operatorname{det}(\lambda-R)=\operatorname{det}\left(\lambda^{*}-R\right)=P\left(\lambda^{*}\right) \\
& =\operatorname{det}\left(R^{-1}-\lambda^{-1}\right) \cdot \operatorname{det} R \cdot \lambda^{n} \\
& =\operatorname{det}\left(-J R^{t} J-\lambda^{-1}\right) \cdot \operatorname{det} R \cdot \lambda^{n} \\
& =\operatorname{det}\left(\lambda^{-1}-R^{t}\right) \cdot \operatorname{det} R \cdot(-\lambda)^{n} ; \quad ;(-1)^{n}=(-1)^{2 N}=1 \\
& =\lambda^{n} \operatorname{det} R \cdot P\left(\lambda^{-1}\right)
\end{aligned}
$$

Thus, $P(\lambda)=0 \Rightarrow P\left(\lambda^{-1}\right)=P\left(\lambda^{*}\right)=P\left(\lambda^{-1 *}\right)=0$, and the eigenvalues of any symplectic matrix come as either • unimodular pairs $\left(e^{i \delta}, e^{-i \delta}\right), \delta \in[0,2 \pi)$
or - real pairs $\left(\lambda, \lambda^{-1}\right), \lambda \in \mathbb{R}$
or . complex quartets $\left(\lambda, \lambda^{-1}, \lambda^{*}, \lambda^{*-1}\right)$
One defines the Lyapunov exponents

$$
V_{j}(\vec{\xi})=\lim _{k \rightarrow \infty} \frac{1}{k} \ln \left|\lambda_{j}^{(k)}(\vec{\xi})\right|
$$

where $\lambda_{j}^{(k)}(\vec{\xi})$ is the $j^{\text {th }}$ eigenvalue of $\mathbb{R}^{(k)}(\vec{\xi})$, ordered such that $\nu_{1} \leq \nu_{2} \leq \ldots \leq \nu_{2 N}$. Note that $\nu_{j}+\nu_{2 N+1-j}=0$ and so there is a sum rule $\sum_{j=1}^{2 N} \nu_{j}=0$.
Note: $\nu_{j}<0 \Rightarrow$ exponential squeezing, $\nu_{j}>0 \Rightarrow$ exponential stretching

As an example, consider the Arnol'd cat map,

$$
\begin{array}{ll}
q_{t+1}=(r+1) q_{t}+p_{t} \bmod 1 \\
p_{t+1}=r q_{t}+p_{t} & \bmod 1
\end{array}, r \in \mathbb{Z}
$$

Then

$$
\begin{aligned}
& M=\frac{\partial\left(q_{t+1}, p_{t+1}\right)}{\partial\left(q_{t}, p_{t}\right)}=\left(\begin{array}{cc}
r+1 & 1 \\
r & 1
\end{array}\right), \operatorname{det} M=1 \\
& M^{-1}=\left(\begin{array}{cc}
1 & -1 \\
-r & r+1
\end{array}\right) ; M^{t} J M=J
\end{aligned}
$$

The eigenvalues are $\lambda_{ \pm}=1+\frac{r}{2} \pm \sqrt{r+\frac{r^{2}}{4}}$.

$$
\begin{array}{ll}
r<-4: & \lambda_{-}<-1<\lambda_{+}<0 \\
r=-4: & \lambda_{ \pm}=e^{ \pm i \pi}=-1 \\
r=-3: & \lambda_{ \pm}=e^{ \pm 2 \pi i / 3} \\
r=-2: & \lambda_{ \pm}=e^{ \pm i \pi / 2} \\
r=-1: & \lambda_{ \pm}=e^{ \pm i \pi / 3} \\
r=0 & : \\
\lambda_{ \pm}=e^{ \pm i 0}=1 \\
r>0 & : \\
0<\lambda_{-}<1<\lambda_{+}
\end{array}
$$

The Lyapunov exponents are $\nu_{ \pm}=\ln \left|\lambda_{ \pm}\right|, V_{+}+V_{-}=0$.
Kolmogorov - Sinai entropy
Let r be our phase space, restricted to constant total energy E for Hamiltonian systems. Let $\left\{\Delta_{j}\right\}$ be a partition of disjoint sets whose union is $\Gamma: \bigcup_{j} \Delta_{j}=\Gamma$

$$
x \in[n, n+1] \Rightarrow n \leq x<n+1
$$

It is simplest to think of each Δ_{j} as a little hypercube. Stacking the hypercubes results in Γ. Now consider a map $\hat{T}: \Gamma \rightarrow \Gamma$ and consider the application of $\tilde{\mathcal{T}}$ to Δ_{j}. Then define $\Delta_{j k} \equiv \Delta_{j} \cap \hat{T}^{-1} \Delta_{k}$. Any point $\vec{\xi} \in \Delta_{j k}$ then satisfies $\vec{\xi} \in \Delta_{j}$ and $\hat{T} \vec{\xi} \in \Delta_{k}$. If $\sum_{j} \mu\left(\Delta_{j}\right)=\mu(\Gamma)=1$, where $\mu(\Omega)$ is the measure of the set Ω, then we must have $\sum_{j, k} \mu\left(\Delta_{j k}\right)=1$ because $\cup_{k} \Delta_{j k}=\Delta_{j}$. Now iterate once more, defining, $\Delta_{j k l}^{k} \equiv \Delta_{j} \cap \tilde{T}^{-1} \Delta_{k} \cap \hat{T}^{-2} \Delta_{l}$. Thus if $\vec{\xi} \in \Delta_{j k l}$, we have $\vec{\xi} \in \Delta_{j}, \hat{\jmath} \vec{\xi} \in \Delta_{h}$, and $\hat{T}^{2} \vec{\xi} \in \Delta_{l}$. The entropy of a distribution $\left\{p_{a}\right\}$, with $p_{a} \geqslant 0 \forall a$ and $\sum_{a} p_{a}=1$, is defined to be $S(p)=-\sum_{a} p_{a} \log p_{a}$. We now define $\Delta \equiv\left\{\Delta_{j}\right\}$

$$
S_{L}(\Delta) \equiv-\sum_{j_{1}} \cdots \sum_{j_{L}} \mu\left(\Delta_{j_{1} \cdots j_{L}}\right) \log \mu\left(\Delta_{j_{1}, \cdots j_{L}}\right)
$$

This depends both on the initial partition $\left\{\Delta_{j}\right\}$ as well as the iteration number L. The Kolmuguror-Sinai entropy of the map \hat{T} on the phase space Γ is then defined to be

$$
h_{k s} \equiv \sup _{\Delta} \lim _{L \rightarrow \infty} \frac{1}{L} S_{L}(\Delta)
$$

where sup indicates the supremum (maximum valve) over over all possible partitions $\left\{\Delta_{j}\right\}$.

Consider the baker's transformation $\hat{T}: T^{2} \rightarrow T^{2}$:

$$
\hat{T}(q, p)=\left\{\begin{array}{lll}
\left(2 q, \frac{1}{2} p\right) & \text { if } 0 \leq q<\frac{1}{2} & p \\
\left(2 q-1, \frac{1}{2} p+\frac{1}{2}\right) & \text { if } \frac{1}{2} \leq q<1
\end{array}\right.
$$

Then it is straight forward to show that $h_{k s}=\ln 2$.
For a simple translation, $\hat{T}(q, p)=(q+\alpha, p+\beta) \bmod \mathbb{Z}^{2}$, then $h_{k S}=0$. The KS entropy is related to the Lyapunov exponents according to

$$
h_{K S}=\sum_{j} \nu_{j} \Theta\left(\nu_{j}\right)
$$

\square
i.e. a Sum over positive Lyapunov exponents. If the $v_{j}(\vec{\xi})$ vary in space, then

$$
h_{K S}=\int_{r} d_{\mu}(\vec{\xi}) \sum_{j} \nu_{j}(\vec{\xi}) \Theta\left(\nu_{j}(\vec{\xi})\right)
$$

"Pesin's entropy formula"

Poincaré-Birkhoff Theorem
Back to our perturbed twist map, \hat{T}_{ϵ} :

$$
\widetilde{\alpha}(J) \equiv \alpha(J)+\frac{\epsilon}{2 \pi} f(J)
$$

$$
\phi_{n+1}=\phi_{n}+2 \pi \alpha\left(J_{n+1}\right)+\epsilon f\left(\phi_{n}, J_{n+1}\right)=\phi_{n}+2 \pi \tilde{\alpha}\left(J_{n+1}\right)
$$

$$
J_{n+1}=J_{n}+\epsilon g\left(\phi_{n}, J_{n+1}\right) \quad=J_{n}+\epsilon g\left(\phi_{n}\right)
$$

with

$$
\frac{\partial f}{\partial \phi_{n}}+\frac{\partial g}{\partial J_{n+1}}=0 \Rightarrow \hat{T}_{\epsilon} \text { canonical }
$$

For $\epsilon=0$, the map \hat{T}_{0} leaves J invariant, and thus maps circles to circles. If $\alpha(J) \notin Q$, the images of the iterated map \hat{T}_{0} become dense on the circle. Suppose $\alpha(J)=\frac{r}{s} \in \mathbb{Q}$, and wolog assume $\alpha^{\prime}(J)>0$, so that on circles $J_{ \pm}=J \pm \Delta J$ we have $\alpha\left(J_{+}\right)>r / s$ and $\alpha\left(J_{-}\right)\left\langle r / s\right.$. Under \hat{T}_{0}^{s}, all points on the circle $C=C(J)$ are fixed. The circle $C_{t}=C\left(J_{+}\right)$ rotates slightly counterclockwise while $C_{-}=C\left(J_{-}\right)$rotates slightly clockwise. Now consider the action of \hat{T}_{ϵ}^{s}, assuming that $\in \ll \Delta J / J$. Acting on C_{+}, the result is still a net counterclockwise shift plus a small radial component of $\theta(\epsilon)$. Similarly, C_{-}continues to rotate clockwise plus an $\theta(\epsilon)$ radial component. By the Intermediate Value Theorem, for each value of ϕ there is some point $J=J_{\epsilon}(\phi)$ where the angular shift vanishes. Thus, along the curve $J_{\epsilon}(\phi)$ the
action of \hat{T}_{ϵ}^{s} is purely radial. Next consider the curve $\tilde{J}_{\epsilon}(\phi)=\hat{T}_{\epsilon}^{s} J_{\epsilon}(\phi)$. Since \tilde{T}_{ϵ}^{s} is volume-preserving, these curves must intersect at an even number of points.

The situation is depicted in the above figure. The intersections of $J_{\epsilon}(\phi)$ and $\tilde{J}_{\epsilon}(\phi)$ are thus fixed points of the map $\hat{\mathcal{T}}_{\epsilon}^{s}$. We furthermore see that the intersection $J_{\epsilon}(\phi) \cap \tilde{J}_{\epsilon}(\phi)$ consists of an alternating sequence of elliptic and hyperbolic fixed points. This is the content of the PBT: a small perturbation of a resonant torus with $\alpha(J)=r / s$ results in an equal number of elliptic and hyperbolic fixed points for \hat{T}_{ϵ}^{s}. Since \hat{T}_{ϵ} has period s acting on these fixed points, the number of EFFs and HFPS must be equal and a multiple of s. In the vicinity of each EFP, this structure repeats (see the figure below).

Self-similar structures in the iterated twist map.

Stable and unstable manifolds

Emanating from each HFP are stable and unstable manifolds:

$$
\begin{aligned}
& \vec{\varphi} \in \Sigma^{s}\left(\vec{\varphi}^{*}\right) \Rightarrow \lim _{n \rightarrow \infty} \hat{T}_{\epsilon}^{n s} \vec{\varphi}=\vec{\varphi}^{*} \text { (flows to } \vec{\varphi}^{*} \text {) } \\
& \vec{\varphi} \in \Sigma^{u}\left(\vec{\varphi}^{*}\right) \Rightarrow \lim _{n \rightarrow \infty} \hat{T}_{\epsilon}^{-n s} \vec{\varphi}=\vec{\varphi}^{*} \text { (flows from } \vec{\varphi}^{*} \text {) }
\end{aligned}
$$

Note $\sum^{S}\left(\vec{\varphi}_{i}^{*}\right) \cap \sum^{S}\left(\vec{\varphi}_{j}^{*}\right)=\phi$ and $\sum^{U}\left(\vec{\varphi}_{i}^{*}\right) \cap \sum^{U}\left(\vec{\varphi}_{j}^{*}\right)=\phi$ for $i \neq j$ (no sis or U/U intersections). However, $\sum^{S}\left(\vec{\varphi}_{i}^{*}\right)$ and $\sum^{U}\left(\vec{\varphi}_{j}^{*}\right)$ can intersect. For $i=j$, this is called a homoclinic point. (On its way from $\vec{\varphi}_{j}^{*}$ to $\vec{\varphi}_{i}^{*}$.) For $i \neq j$, this is a heteroclinic point.

Homoclinic tangle for $x_{n+1}=y_{n}$ and $y_{n+1}=\left(a+b y_{n}^{2}\right) y_{n}-x_{n}$ with $a=2.693, b=-104.888$. Blue curve is the stable manifold. Red curve is the unstable manifold. HFP at $(0,0)$. The fact that neither red nor blue curve can self intersect requires them to become increasingly tortured.
But since \hat{T}_{ϵ}^{s} is continuous and invertible, its action on a homoclinic (heteroclinic) point will produce a new homoclinic (heteroclinic) point, ad infinitum! For homoclinic intersections, the result is Known as a homoclinic tangle.

- Maps in $d=1$: $x_{n+1}=f\left(x_{n}\right)$; fixed point $x^{*}=f\left(x^{*}\right)$ If $x=x^{*}+u$, then $u_{n+1}=f^{\prime}\left(x^{*}\right) u_{n}+\theta\left(u^{2}\right)$ $F P$ is stable if $\left|f^{\prime}\left(x^{*}\right)\right|<1$, unstable if $\left.\left|f^{\prime}\left(x^{*}\right)\right|\right\rangle 1$.

The most studied one-dimensional map is the logistic map,

$$
f(x)=r x(1-x)
$$

on the interval $x \in[0,1]$. Setting $f(x)=x$ we obtain fixed points at $x^{*}=0$ and $x^{*}=1-r^{-1}$, where the latter requires $r>1$. Note $f^{\prime}(0)=r$, so if $r<1$ then $x^{*}=0$ is stable, If $r>1, x^{*}=0$ is unstable, but what about $x^{*}=1-r^{-1}$? Well we have $f^{\prime}\left(1-r^{-1}\right)=2-r$, so we conclude $x^{*}=1-r^{-1}$ exists and is stable provided $r \in(1,3)$. What happens for $r>3$? We can explore further with the help of the cobweb diagram below. Sketch $y=x$ and $y=f(x)$. Given x, move vertically to $y=f(x)$, then horizontally to $y=x$, etc.

Cobweb ${ }^{x}$ diagram for $f(x)=r x(1-x)$

For $r=3.4, x^{*}=1-r^{-1}$ is unstable, but there is a stable two-cycle $\left(x_{1}, x_{2}\right)$, where

$$
x_{2}=r x_{1}\left(1-x_{1}\right), \quad x_{1}=r x_{2}\left(1-x_{2}\right)
$$

The second iterate of $f(x)$ is

$$
f^{(2)}(x)=f(f(x))=r^{2} x(1-x)\left(1-r x+r x^{2}\right)
$$

Setting $f^{(2)}(x)=x$ yields a cubic equation, but $\left(x-x^{*}\right)$ is a factor which we can divide out, yielding

$$
x_{1,2}=\frac{1}{2 r}(1+r \pm \sqrt{(r+1)(r-3)})
$$

How stable is the 2 -cycle? We find

$$
\left.\frac{d}{d x} f^{(2)}(x)\right|_{x, 12}=-r^{2}+2 r+4
$$

\leftarrow note stable 3-cyde

Fixed points and cycles for $f(x)=r x(1-x)$

Thus stability of the 2 -cycle requires

$$
-1<r^{2}-2 r-4<1 \Rightarrow r \in[3,1+\sqrt{6}]
$$

At $r=1+\sqrt{6}=3.449 \ldots$ there is a bifurcation to a stable 4-cycle (see figure above). The 4 -cycle becomes unstable at $r=3.544 \ldots$ and bifurcates into an 8 -cycle. This sequence of bifurcations continues:

$$
\begin{aligned}
& r_{1}=3, r_{2}=3.4494897 \ldots, r_{3}=3.544096 \ldots \\
& r_{4}=3.564407 \ldots, r_{5}=3.568759 \ldots, r_{6}=3.569692 \ldots \\
& r_{7}=3.569891 \ldots, r_{8}=3.569934 \ldots, \ldots
\end{aligned}
$$

Here r_{k} is the location of the $k^{\text {th }}$ bifurcation from a k-cycle to a $\left(2^{k}\right)$-cycle. Mitchell Feigenbaum noticed that the sequence $\left\{r_{1}, r_{2}, \ldots\right\}$ seemed to converge exponentially. Writing

$$
r_{\infty}-r_{k} \sim \frac{c}{\delta^{k}}, \quad \delta=\lim _{k \rightarrow \infty} \frac{r_{k}-r_{k-1}}{r_{k+1}-r_{k}}
$$

Feigenbaum found

$$
r_{\infty}=3.5699456 \ldots, \quad \delta=4.669202 \ldots, c=2.637 \ldots
$$

Iterates of the sine map $f(x)=r \sin (\pi x)$
At $r=r_{\infty}$, the period doubling cascade diverges in frequency and we enter a regime of chaos. A nice way of looking at this is to consider the map for the value $r=4$. Then defining $x_{n}=\sin ^{2} \theta_{n}$ we have

$$
\begin{aligned}
x_{n+1}=\sin ^{2} \theta_{n+1} & =4 x_{n}\left(1-x_{n}\right) \\
& =4 \sin ^{2} \theta_{n} \cos ^{2} \theta_{n}=\sin ^{2}\left(2 \theta_{n}\right)
\end{aligned}
$$

which is to say $\theta_{n+1}=2 \theta_{n}$. Now consider the binary decimal expansion of θ_{n} / π. we start with

$$
\frac{\theta_{0}}{\pi} \equiv \sum_{k=1}^{\infty} \frac{b_{k}}{2^{k}} \in[0,1]
$$

with $b_{n} \in\{0,1\}$. Thus $\frac{\theta_{0}}{\pi}=0 . b_{1} b_{2} b_{3} \ldots$ in "binary decimal" for m. Under the logistic map, we have $\theta_{n}=2^{n} \theta_{0}$, and therefore

$$
\theta_{n}=\pi \sum_{k=1}^{\infty} \frac{b_{n+k}}{2^{k}}
$$

Note that we may strip off any integer multiples of π from θ_{n} since $x_{n}=\sin ^{2} \theta_{n}$.
Thus,

$$
\frac{\theta_{n}}{\pi}=0 \cdot b_{n+1} b_{n+2} b_{n+3} \ldots
$$

The logistic map at $r=4$ effectively shifts the digits in the binary expansion to the leff by one space with each iteration. (The leftmost digit falls off the edge of the world. I Thus, tho initial binary expansions of θ_{0} / π which differ by 2^{-M} will after M iterations differ by $O(1)$.
Lyapurov exponents

The Lyapunar exponent $\lambda(x)$ for the iterated map $x_{n+1}=f\left(x_{n}\right)$ is defined as

Lyapunor exponent (red) for the logistic map

$$
\begin{aligned}
\lambda(x) & =\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|\frac{d f^{(n)}(x)}{d x}\right| \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \log \left|f^{\prime}\left(x_{j}\right)\right|
\end{aligned}
$$

If $\operatorname{Re} \lambda(x)>0$, then two nearby initial conditions will exponentially separate under $y=x$ the iter ated map. For the feat map,

$$
f(x)= \begin{cases}2 r x & \text { if } x<\frac{1}{2} \\ 2 r(1-x) & \text { if } x \geqslant \frac{1}{2}\end{cases}
$$

 of the position x. Thus $r>\frac{1}{2} \Rightarrow \lambda>0$.

Inter mittency in the ${ }^{n}$ logistic map $x_{n+1}=r x_{n}\left(1-x_{n}\right)$ in the vicinity of the stable 3-cycle, with
$r=3.828$ (top) and $r=3.829$ (bottom).
Intermittency
Period doubling is not the only route to chaos. Consider the logistic map $x_{n+1}=r x_{n}\left(1-x_{n}\right)$ for $r=3.829$, shown in the bottom panel above. There is a stable 3-cycle. But if we reduce the control parameter to $r=3.828$, the 3 -cycle becomes unstable. The map produces an almost stable 3-cycle irregularly interrupted by bursts. The average time between bursts scales as a power lour: $T(r) \propto\left(r_{c}-r\right)^{-s}$, where s is a critical exponent. Depending on how
the Lyapunov exponent $\nu(r)$ behaves in the vicinity of r_{c}, with $\operatorname{ReV}(r)>0$ in the chaotic (bursting) phase, the intermittent behavior is classified as one of three types:

- type I: $\operatorname{Rev}\left(r_{c}\right)=0, \operatorname{Im} \nu\left(r_{c}\right)=0$
- type II: $\operatorname{Re} \nu\left(r_{c}\right)=0, \operatorname{Im} \nu\left(r_{c}\right) \neq 0, \pi \quad(n \geqslant 2)$
- type III: $\operatorname{Re} \nu\left(r_{c}\right)=0, \operatorname{Im} \nu\left(r_{c}\right)=\pi$

Dynamical Systems (221A 522 course on NLD)

$$
\vec{\varphi}=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\} \in M
$$

$D S: \frac{d \vec{\varphi}}{d t}=\vec{V}(\vec{\varphi}) \quad ; \quad \vec{V}(\vec{\varphi}) \in \mathcal{T} \vec{\varphi}$

$$
\begin{gathered}
\dot{\varphi}_{1}=V_{1}\left(\varphi_{1}, \ldots \varphi_{n}\right) \\
\dot{\varphi}_{2}=V_{2}\left(\varphi_{1}, \ldots, \varphi_{n}\right) \\
\vdots \\
\dot{\varphi}_{n}=V_{n}\left(\varphi_{1}, \ldots, \varphi_{n}\right)
\end{gathered}
$$

Fixed points : $\vec{V}\left(\vec{\varphi}^{*}\right)=0$
Linearized dynamics in vicinity of $\vec{\varphi}^{*}: \vec{\varphi}=\vec{\varphi}^{*}+\vec{\epsilon}$

$$
\frac{d}{d t} \epsilon_{j}=\left.\frac{\partial V_{j}}{\partial \varphi_{k}}\right|_{\vec{\varphi}^{*}} \epsilon_{k}=R_{j k}\left(\vec{\varphi}^{*}\right) \epsilon_{k}
$$

Limit cycles: 2D plane, pular coords (r, θ)

$$
\begin{array}{ll}
\dot{r}=a(1-r) & \dot{r}=a(r-1) \\
\dot{\theta}=1 & \dot{\theta}=1
\end{array}
$$

$$
\dot{r}=a(1-r)^{2}
$$

$$
\dot{\theta}=1
$$

half-stable
stable LC
urstable LC
Attractors of DSS: SFPS, SLCS.

SPIRAL
Rev<0
Imvキo

NODE Rev<o
$\operatorname{Im} v=0$

