
Lecture.IO/Dec.9l-:MAPS-l4n+.--i-%)
• Motion on resonant tori

consider the motion on a resonant torus in terms of the AAV :

Totti = ÑIJIt + ¢101

Resonance means that there exist some n - tuples Ñ={l,, . . .,ln}
for which I. Ñ = 0

. If the motion is periodic , so that

Wj = Kj Wo with kj C- 27 for each j c- 11 , . . . ,n }
,
then all of

the frequencies are in resonance .
Let's consider the case n = 2 . Dynamics sketched below :
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0/2=-0

Since the energy E is fixed
,
we can regard Jz = Jz Hi, E)

and the motion as occurring in the 3-dint space (d.it . ,J, ) .

Suppose we plot the consecutive intersections of the system 's

motion with the two -dint subspace defined by fixing E and
also 01*2 Hay 102=-01 .

Let's write 4=-4
,
and J = J, ,



and define Idk
, Jk ) to be the values of 1¢ , J) at the

kth consecutive intersection of the system 's motion with the
for E

subspace 142=0 , E fixed ) . The 2d space 11oz , Jd is called the
surface of section

.
Since ¢2 = Wz , we have

a.b-1=-11%-4¢k+i - ¢k = Wi 2w±z I 2Nd
(E suppressed )

and therefore
10=-01 , , JEJ ,

¢KH = ¢ k t 21T ✗ (Jha )
"

twist map
"

Jk +1 = Jk

Note that we've written here ✗ lJn+ , ) in the first equation .

[Since Jw ,
= Jn

,
it doesn't matter since J never changes

for these dynamics . But writing the equations this way is more
convenient

. ] Note that (Ion , Jn ) → 14ns
, ,
Jnt, ) is canonical :

{¢kH
, JKH } ,¢n , jn ,

= def
°l¢kHiJk
2110k , Jk )

=¥¥¥¥ - %¥%¥n -

- n - o.o ¥

k k

Formally ,
we may write this map as

Ñk+
,

= IÑ
,

where Ñn= Ida , Jk ) and I is the map . Note that if



✗ = Is € Q ,
then is acts as the identity , leaving

every point in the 14 ,J) plane fixed .
For systems with n degrees of freedom , and with the

surface
.

of section fixed by 14in , Jn ) or 14N , E) , define

9=-14 , ,
. . .

,
Ion
-, ) and I = 1J, , . . , Jn - il . Then with

& =/ ¥n
,
. . .,Wj÷ ) ,

Ñk+
,
= Ñk + 21T£ (Ihh )

Én+i=Jk
which is canonical . Note = 14,

,
n ,

. . . , 4mi , b) where

4J
,
k is the value of Yj the kth time the motion passes

through the SOS . We call this map the twist map .

Perturbed twist map : Now consider a Hamiltonian

HIÉIJ ) = Ho /It + c- 1-1,1-4,5-1 . Again we will take. n
--2
.

We expect the resulting map on the Sos to be given by

¢h+
,

= 4kt 21T ✗ 1%+11 + E f/4k , Jh+ , ) + . . .

ÉÑ=%+i
+,

= Jut c- glolu , Jhti ) + " '

Is this map canonical ? Let's check that det "¥Y¢;¥n =\ :

ddu+ ,
= dcfut 21T✗

'

lJn+ , )dJh+.tt#o-nd&htE&jf-n+,dJhHdJn+i--dJn
+ C- 3¥ doth + c-%¥dJnH



Now bring d¢u+, and dJµ, to the LHS of each eqn
and bring dolu and dJn to the RHS . We obtain

1 - 21-124%+11 - E}¥+,µkHdrum / =/
" "¥" ? / (It;)(O l - c- 01

t¥¥n-Anti

Thus

det%9E.in?;-;'---detBh---Y.?&Iu-.-=idetAnti2JhH
and we conclude the necessary condition is 3¥ = }÷+

,

.

This guarantees the map II is canonical .
If we restrict to g--g (4) , then we have f-- f/J ) .

We may then
write 2Nd /Jk+ , I + c-f/Jk+ , / I 211-4-1%+1 ) .

We'll drop the E subscript on a.) Thus , our perturbed
twist map is given by

¢k+ ,
= but 2Nd (Jha )

} canonical !
Jht, = Jut c-g 14h1

For a/J) --J and g /4) =
- sin¢

,
we obtain the standard map

4kt , = dnt 251%+1 , Jk+, = Jn - C- sin 01h



• Maps from time-dependent Hamiltonians

- Parametric oscillator
,
e.g. pendulum with time - dependent

length lltl : I +wiltI ✗ = 0 with woltl =/gllltl .
This describes pumping a swing by periodically extending
and withdrawing one 's legs . We have

¥+111 -

- 1-Fit , 'ok :| a- is

tf
-

FtlAlt )

The formal so 1 " to 811-1 = Alt) ÑH ) is

4TH = T exp /ftdt ' Alt '1) IN
where T is the time ordering operator which puts
earlier times to the right. Thus

T.ee/p(ftdt'Alt4)--limfl+Altn.i18)--./1t-Alo18 )N→ so

where tj = js with 8 = TIN .
Note if Alt ) is

time
. independent then

texpoftdt! Alt 't ) = eat = bing.li + ¥ )
"



There are no general methods for analytically evaluating
time - ordered' exponentials as we have here .

But one tractable

case
.

is where the matrix Altl oscillates as a square. wave :

WH / = { "
+ c- two if 2jt£t< 12Jtilt

4- E) Wo if 12J tilt et, < (zjtzjt
¥- j E B)

The period is 2T .

Define in = Ñlt -- 2nd . I TLE

*

¥÷11- f /Wo
T

Then we have
- 2T -T 0 I 2T

Ñn+
,
= et - teAttyg

NB : et - teAtty PLATA + It

with

A±=f°w±2 to ) , w± =/HEI Wo

Note that AI = -WII and that

U = eA±t = I + A-±t + tz ! AIT 't 31! AIT
>
+
.
- .

±

= ( 1 - &, wit
'

+¥ wit
"
t . .

. / I
M symplectic ⇒

+ (t -¥ wit
'
+¥ WE c-5- . . . / A-

±Mt JM = J

5=(91^-0) = cos /w±t ) I + WI
'

sin /w±t ) A- ±

cos lw±tl WI
'

sin lw±t 1) = eA±t= (W±sin1w±t1 coslwt.tl



Note also that det U
,
= 1

,
since U± is simply Hamiltonian

evolution over half a period , and it must be. canonical .

Now we need

U -

- I exp t AH ) -- U- U+ = ( Ibd )
c'real , notsymmetric )

a = cos Iw
-
t ) cos(wth l - wi

'

wt Sin (wit sin lwtt I

b = WI
'

cosIw
-

t) sin (wit ) t w sinIw
-

II costwth I

C = - wt coslw.tl sinhtt t - W
-

Sin (w- t) cos lwtt )

d = cos Iwit costwith - WI
'

w
-

Sin (W-t ) sin lwttl

It follows from U -- N
- Ut that U is also canonical

(i.e . Int , = NIN is a canonical transformation ) .

The eigenvalues X± of U thus satisfy X
+
X
-

= 1
.

For a 2x 2 matrix U -

- l: bdl
,
the characteristic

polynomial is

PIN -- det ith - U ) = I - T X t s

where T -

- trill = atd and b -- det U = ad. -be . The

eigenvalues are then

X± ⇐ IT ± I ITT4D

But in our case U is special , and def U = 1
,
so



i± = IT ± { ✓TI = Iz ± iÑz
We therefore have :

11-1<2 : ✗
+
= it = e is with 8 = cos

-

YETI

IT/ 72 : A+ = 5-
'
= EM sgnlt) with µ = cosh

-1/{ IT 1)

Note ✗
+
d- = det U = 1 always . Thus

,
for IT/ < 2 ,

the motion is bounded
,
but for IT I > 2 we have that

till increases exponentially with time , even though phase
space volumes are preserved by the dynamics . I. e. we
have exponential stretching along the eigenvector I.+ and
exponential squeezing along the eigenvector Ñ- .

→
→ - - -

Let's set 0 = Wot = 2Mt/ To where To is the natural

oscillation period when C- = 0 . Since the period of the pumping
is 1-

pump
= 2T

,
we have ¥ = TP÷m÷ .

Find
-172 Tc-2

It
Tr U = 2c°sK0Y?¥cosl_

1-= +2 : D= ntt 8
,

C- = ± /
"

T
-

= -2 : D= In +1-211-1+8 , C- = ± 8

The phase. diagram in 10
,
c- 1 space

is shown at the right .



Kicked dynamics : Let Hltl = Tlp ) + V /g) Kitt , where

• HETHKltl = c-£81T -ntl

As 1-→ 0
,
KH ) → 1 (constant) . -

5t-uÉ It-01
"

Dirac comb
"

Equations of motion :

•q=TYp ) , is = - V'(g) kltt

Define qn = g- It = ntt ) and pn =p It
= net ) and integrate

from t= ntt to t = InHltt :

9-nti = 9-n + IT
'

/pn )

Puti = pn - I V1/9-ntil

This is our map Ñnt
,
= Tin . Note that it is qn+, which

appears as the argument of V1 in the second equation .
This is crucial in order that I be canonical :

dqn.+ , = data + TT
"

lpnldpn

dpn+, = dpn - TV
"

/9-ntildotnti

1 0

) (
d 9-na

Itv "1%+11 i. dpn+, / =/ !
"

"

"" ' / /%,?;)1

I TT
"

/pn )(
" " ""

\ =\- iv.yqm.li - ET "/p.lv "1qn+Ñ¥p:)dpnti



and thus

at :%÷¥÷, --1
The standard map is obtained from

1£
Hltl = It

- Vcosolkltl

resulting in

⑨ n+ ,
= dnt ¥ Ln

Ln + , = Ln - TVs in ¢nH

Defining Jj : Ln/IZMIT and c- = TJVKTITT we arrive at

¢n+, = ¢n 1- 21T C- Jn

Jnt , = Jn - E- sin ¢n+,

The phase space 14 , J ) is thus a cylinder . As c- → 0 ,

¢n+Y# → d¥g = 217J \ ⇒ E = TIJ
'

- cos ¢

DJ
is preserved

JnHj → Is = - sin ¢ pendulum !

This is because c-→ 0 means c-→ o hence Kltl → 1
,
which

is the simple pendulum . There is a separatrix at E =/ ,

along which 5141 = ± ¥1 cos 141211 .



Top : E -- O - 01 ( left )
,
C- = 0.2 (Center ) , E = 0.4 (right)

Bottom : details from C- = 0.4 (upper right)

Another example is Hae kicked Harper map , when

Htt t = - V
,
cos17¥) - K cos128¥) Kitt

this generates the map

Xnt , = Xu t a E Sin (UTyn ) x = of IQ a -- IVI

Ynti
= Yn

- 4-
'

E Sin 12TXun ) y =p/P e = Kitty
PQ

on the torus T2 -

- fo , t ) x fo , i] with x -- o , I identified

and
y
-

- oil identified
'

.



Kicked Harper map with 4=2 and C- = 0.01 NL ) , E
-

- 0.125 HR ),

C- = 0.2 (LL )
,
and C- = 5.0 (LR ) .

Note PSF
says KHL = t.IS/t-ntt=Icosf2TIt- )

and a kicked Hamiltonian
may

be written

HIT
,
d
,
t ) -- Holst t Vlol ) t 2441£

,

cos /
-

integrable
-

resonances



Localstab.li/yandLyapunovExponents-
Consider a map I on a phase space of dimension n -- 2N.

What is the fate of two nearly separated initial conditions

}
.
and É + d } under iterations of I ? First iteration :

5. → is
,

-

- II
[ + d} → III. + d }) = }, + MIÉ ) d } t . . .

where

Mijl } / =
°Ñ$i_

an nxn matrix
23J

is the linearization of I at }
.

Next iteration

I. → I
,
-

-FI → 5--1^-5=75
I. +d} → }

,
+ MIÉID } → It M(5) M (5) d }

Thus
,
after k iterations

,

I → In = Ik É

É+d} → 5ktM /5h
- ,
1m15s -c) . - - M /Éld }

p÷ÉmiaR" '/It
we define the linear operator (matrix ) R'

"
151 as

R'" I } I = Mlik -151M /Ih-2} ) . . . MIT} )Mt } )

thus
, RY (5) = H¥ < EIN > = 8dB



Since I is presumed canonical, at each stage the

matrix M1 };) c- Sp (2N ) , i. e. MTJM = J where

J = ( ° IN ✗N )
-In ✗no ,

.

As the product of symplectic matrices is
itself symplectic , R'

"(5) c- Sp 12N) for all k , }.
Note g- 2=-1 so M

- l
= - JMTJ

,
and we have

PIN = dot It - RI = dot /E - R ) = Pity

= det / R
"
-I 't - det-R.tn

= det 1- JRTJ - I
' ).de/-R.th--det,-1-Rt1.detR

. I - H
"

; 1-114=1-11
"

= 1

= I detR.PH
- ' 1

Thus
,
PIX ) = 0 ⇒ PII

')=PH*) =P/I'
*

1--0
,
and

the eigenvalues of any symplectic matrix come as

either • Unimodular pairs leis , e-
is)

,
se lo , za )

or • real pairs H ,
X
- ' 1

,
it .IR

or • complex quartets (X , X
"

,
Xt
,
E '

) "
=One defines the Lyapunov exponents ofVj / 5) = lim Il .nl/Y

" 1511
k → ask

where 1%1 is the yth eigenvalue of R'
"

151
,

I I
ordered such that V

,
I V2 f. . . turn .

Note that

Vj + V2N+ , -j=
0 and so there is a sum rule É

j= ,
Y ' = 0

.

Note : Vj so ⇒ exponential squeezing , Vj > o ⇒ exponential stretching



As an example , consider the Arnot 'd catnap ,
9- + +,

= (rtl ) 9-t + Pt
mod 1

rezy
mod 1

'

Ptt, = r 9-+ + pt

Then

M=%9;¥¥ =/ I :) .

damn

M
- '

= ( 1 - i

- r rn
) i MTJM = J

the eigenvalues are ✗
±
= It I ± )r+¥- .

re - 4 : X
-

< - I < ✗
+
< 0

÷: : :÷÷.r=-3 : ✗
±

= e
± 2mi /3

r = - l : ✗
±

= e±i 'T/3 ]J%1×1=1

✓ = 0 : ✗
±

= e±i°=1 X
-

r > 0 : 0 < X
-

< lit

The Lyapunov exponents are V± = In / X±l
, 4+4=0 .

Kolmogorov - Sinai entropy
let 1- be our phase space , restricted to constant total

energy E for Hamiltonian systems . Let {Dj } be a

partition of disjoint sets whose union is T : 4. Dj = T
✗ C- [n , n ti ) ⇒ n c- ✗anti



It is simplest to think of each Dj as a little hypercube .

stacking the hypercubes results in T. Now consider a

map T : 1- → T and consider the application of I to Dj .
Then define A jh = Dj hi

- '

An . Any point Je Sju then
satisfies } c- Aj and ÉJ c- bn . If §pls;) =Nrl =L ,
where

µ Irl is the measure of the set R , then we

must have §, µ /Sjk ) = 1 because Un bin = Dj . Now
iterate once more

, defining bjhe = djn I
- '

Ann be
.

Thus if } c- bjhe , we have } c- Dj , IT c- du , and I } c- de .
The entropy of a distribution {pa } , with pay o ta
and Epa =L , is defined to be Slpl = - Capa log pa .

We now define A :{Bj }
Sfb ) = - [ - ^ -[µ /Dj , . . ji log µ ldj . . - -ji

j , j<

This depends both on the initial partition {D; } as well

as the iteration number L
.

The Kolmogorov * -Sinai

entropy of the map F on the phase space r is then

defined to be

his = sup Iim l

s ↳
•
I sits )

where Sgp indicates the supremum (maximum valve / over

over all possible partitions {Dj } .



Consider the baker 's transformation F : T2→ T2 :

iiqp , = {
" 9- ' ±" it " 9- < ±

p

'

:;¥129--1 , Ep +E) if { Eq < I °

o
q

1

Then it is straight forward to show that hks = In 2 .

For a simple translation , F-lot .pl =/ g- + ✗ , ptp ) mod 272
,

then hks = 0 .
The KS entropy is related to the Lyapunov

exponents according to

hks = § Vj ④ (Vjl -

i. e. a sum over positive Lyapunov exponents . If the g.(5)

vary in space , then

hks =/ dµ (5) § 4.151 14^1511
1-

" Pesin 's entropy formula
"



P.oincare-Birkhofftheorem-Back.to
our perturbed twist map , Fe :

guy 151T¥ FIJI
dnt, = dnt 2Nd/It, It C- f(¢n,Jn+ , ) = ¢

n
t 2M ÑIJN + c)

Jnt, = Jnt Eg ton , Jntil = Jn t c-gton )

with
of

J¢n
+3¥

, ,

= 0 ⇒ II canonical

For E--0
,
the map É. leaves J invariant , and thus maps

circles to circles . If ✗1J) ¢ IQ ,
the images of the iterated

map To become dense on the circle . Suppose ✗ (J) = Is C- IQ
,

and wolog assume ✗
'
1J) > 0 , so that on circles J±=J ± DJ we

have a 1J+1 > rts and
'

✗1J-1 < rls .
Under ios

,
all points

on the circle C = CIJ ) are fixed . The circle C+ = CHI /

rotates slightly counterclockwise while C- =CIII rotates

slightly clockwise . Now consider the action of Fes , assuming
that c- << SJIJ . Acting on C+

,
the result is still a net

counterclockwise shift plus a small radial component of Old .

Similarly , C- continues to rotate clockwise plus an Oltl
radial component . By the Intermediate Value Theorem, for
each value of ¢ there is some point J= Je (d) where the

angular shift vanishes . Thus
, along the curve Jello) the



action of ¥ is purely radial . Next consider the
curve Felch = Tes Je 141 . Since Fes is volume -preserving ,
these curves must intersect at an even number ofpoints .

\

The situation is depicted in the above figure .
The intersections

of Jech and Feldt are thus fixed points of the map Fes .
We furthermore see that the intersection JelloIn Jello) consists
of an alternating sequence of elliptic and hyperbolic fixedpoints .
This is the content of the PBT : a small perturbation of a
resonant torus with a 1J ) = r/s results in an equal number

of elliptic and hyperbolic fixed points for 1¥ .
Since É has

period S acting n these fixed points , the number of EFPS

and HFPS must be equal and a multiple of s. In the

vicinity of each EFP, this structure repeats (see the

figure below ) .



!Ñ"
"

ii. ion
itesJello

y
self- similar structures in the iterated twist map .

¥¥¥Stable and unstable manifolds

Emanating from each HFP are stable and unstable manifolds :

I c- [44*1 ⇒ k-nga.IT?s5--I*lf1ow.s to 6*1

¥¥£ ie [4¥ ⇒ nliya.TT?sI--ce*lf1owsfrom4*1
Note [SIÑI. In [ slit;) = ¢ and [ 46.*. In [ 45¥) = ¢
for it j / no Sls or Ulu intersections ) . However ,

IsIII. ) and [ 44¥ I can intersect . For i=j , this
is called a homo clinic point . (on its way from 4¥
to 9¥ . ) For it j , this is a hetero clinic point .



Homoclinic tangle for x.at, = yn and ynt, = latbynlyn - Xu
with a =2.693 , b = - 104.888 . Blue curve is the stable
manifold . Red curve is the unstable manifold. .

HFP at lo
, o ) .

The fact that neither red nor blue curve can self intersect

requires them to become increasingly tortured .

But since Ise is continuous and invertible
,
its action

on a homoclinic (heteroclinic ) point will produce a view
homo clinic (heteroclinic ) point, ad infinitum ! For
homo clinic intersections , the result is known as a

homoclinic tangle .

• Maps in D= I : Xnt , = fan )
; fixed point x*= f-txt )

If X = x
*
t U
,
then Unt, = f

'

txt ) Un t 01h21

FP is stable if I f '(x* Ill I
,
unstable if If

'

(x 'T I > 1
.



The most studied one - dimensional map is the logistic map ,
f-1×1 = rxll - x)

on the interval ✗ c- [on ] . Setting 1-1×1 = ✗ we obtain

fixed points at ✗
*
= 0 and ✗

*
= I - r

- '

,
where the latter

requires r> 1 .
Note f-

'

lol = r
,
so if r < 1 then ✗

*
= 0

is stable . It 'r > 1
,
✗
*
=o is unstable

,
but what about

✗
*
= 1- r

"

? Well we have f-
'

11 -r - '1=2 - r, so we

conclude ✗* =\ - r
" exists and is stable provided r c- 11,3 ) .

What happens for r > 3 ? We can explore further with the

help of the cobweb diagram below
. Sketchy = ✗ and y -1-1×1 .

Given ✗
,
move vertically to g--1-1×1 , then horizontally to y=x , etc .

r = 2.8 ✓= 3.4

r=3 . 5 ✓ =3. 8

Cobweb diagram for 1-1×1 = r ✗/1- x)



For ri --3.4 , ✗
*

= I - r
- '

is unstable
,
but there is a stable

two - cycle lxnxz ) , where
✗z=rX ,

l l - X , ) ,
X
,
= rxz /1- Xz)

The second iterate of 1-1×1 is

f '" 1×1 = flflx ) ) = r2×/1-× ) /1-rxtrx )

setting f-
'"
1×1 = ✗ yields a cubic equation , but Ix-✗

*) is a

factor which we can divide out , yielding

Xyz = ( I + r±✓lr+iH )
How stable is the 2 - cycle ? We find

d¥ f-
'"1×11 = - r't 2r +4

✗µ

← note

stable 3 -cycle

Fixed points and cycles for fix) = rxli - x)



Thus stability of the 2- cycle requires
- I < r1 - Lr - 4<1 ⇒ refs ,

I + V5 ]
At r = It IT = 3.449

.
.
. there is a bifurcation

to a stable 4 - cycle I see figure above ) .
The

4- cycle becomes unstable at r = 3.544 .
. .

and bifurcates into an 8- cycle . This sequence
of bifurcations continues :

r
,
=3

, V2 = 3.4494897 . . .

, ↳
= 3.544096 . . .

ry --3.564407 . . .
, rg
=3 . 568759. . . ,rg= 3.569692 . . .

V7 = 3.569891 . .
. , rg = 3.569934 .

. .

,
. . .

Here he is the location of the Kth bifurcation
from a k - cycle to a (2k ) - cycle . Mitchell

Feigenbaum noticed that the sequence {rim , . . . }
seemed to converge exponentially . Writing.

8-- lim ry-✓€ra - rn ~ ¥ i

n→ ao ni ,
- rk

Feigenbaum found

rao =3 . 5699456 . . .
,
8=4.669202 . . .

,
c--2.637 . . .



Iterates of the sine map f-1×1 = rsin 11TH

At r = ro ,
the period doubling cascade diverges

in frequency and we enter a regime of chaos .
A nice way

of looking at this is to consider
the map for the value r = 4 .

Then defining
✗
n
= sin On we have

✗n+,
= sitOut , = 4✗ n 11 - ✗ n )

= 4sin
'
On cos

'On = sin 2120N )

which is to say Out , = 2On . Now consider

the binary decimal expansion of On It . We
start with

•

bn

¥ = § , In
C- 10

,
I ]



with but {0,11 .
Thus ¥

,

= 0
. b. bzb, .

. .

in
"

binary decimal
"

form
. Under the logistic

map, we have On -

- 2
"

Oo
,
and therefore

On = IT É bnjk_ .

h =\

Note that we may strip off any integer
multiples of IT from On since xn = Sinton .

Thus
,

0,1-1 = 0
. but , but zbnt } ' ' ^

The logistic map at r = 4 effectively shifts
the digits in the binary expansion to the left
by one space with each iteration . The leftmost

digit falls off the edge of the world . ) thus ,
two initial binary expansions of Ooh which
differ by 2-

M will after M iterations differ

by 0111 . :⇒ne"
Lyapvnovexponentse
The Lyapunov exponent ✗ 1×1 for the iterated

map Xn+ ,
= flint is defined as



Lyapunov exponent /red/ for the logistic map
✗1×1 =

hi-ma.tn/og/dfIfx1-/--niIa.1n&.,Iog1fYxjH
It Re Nxt > 0

,
then two nearby initial

conditions will exponentially separate under g-✗
the iterated map .

For the tent mop ,

f-1×1 :{
" ✗ if ✗' ¥ fix

211-x) it ✗ 71-2
one finds 11×1=1oglzr ) independent

° '"
✗

'

of the position ✗ . Thus r > 1-2 ⇒ ✗ > 0
.



r: 3.828

r--3.829

Intermittency in the logistic map in+Frink -✗nl
in the vicinity of the stable 3 - cycle , with
r = 3.8281 top and ✓ = 3.8291 bottom ) .

Intermittency
Period doubling is not the only route to chaos . Consider

the logistic map ✗
n+ ,

= rxnli - ✗ul for r = 3.829 ,
shown in the bottom panel above .

There is a stable

3- cycle . But if we reduce the control parameter
to r --3.828

,
the 3 - cycle becomes unstable . The map

produces an almost stable 3-cycle irregularly
interrupted by bursts . The average time between
bursts scales as a power law : TH a Irc - ri)

-

i
where s is a critical exponent. Depending on how



the Lyapunov exponent vlrl behaves in the
vicinity of rc , with Re v14 > 0 in the

chaotic 1bursting ) phase , the intermittent

behavior is classified as one of three types :
• type I : R.eu/rc1--0,ImVlrc1-- 0
• type I : Re V14 1=0 ,

Im vlrc ) t-o.IT In 72 )
• type III : Rev /re ) = 0 ,

Im Vlrc ) = IT
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Fixed points : JIM = 0

Linearized dynamics in vicinity of It : Ñ=ÑÉÉ

dd-ttj-YI-n.g-i.ie = Rjnli'T Eu

limit cycles : 2D plane , polar words (r, 01

E = all - r ) i = alr- 11

D= I④ = I

r
Ead-v2
0--1

half -stable
7

stable LC unstable LC

Attractors of Dss : SFPS , SLCS .
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Im ✓ 1=0 Imr =0


