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• Removal of resonances

we now consider how to deal with resonances arising
in canonical perturbation theory . We start with the
periodic time- dependent Hamiltonian ,

HI to , 'T, H = HotJI t EVlol ,J, t )
where

V lol , J , t ) = Vloft IT , J, t ) Vlot ,J,t t Tl

This is identified as n
.

= Zz degrees of freedom ,
since it is equivalent to a dynamical system of
dimension 2n =3 .

The double periodicity of Vld ,T, t) entails that it

may
be expressed as a double Fourier sum, viz .
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.
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where A- hitIT.

Hamilton 's equations are then
i 1h10 - ert)
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where wot J ) = a HotJJ. The resonance condition follows

from inserting the Oleo ) solution 4 It ) = WITH , yielding

k wotJ ) - l r = 0

When this condition is satisfied
,
secular forcing results

in a linear increase of J with time .

To do better
,
let's

focus on a particular resonance (k , l ) = (ko , lol . The
resonance condition ko Wo (J) = for fixes the action J.

There is still an infinite set of possible 1k , e ) values leading
to resonance at the same value of J , i.e . Ikill = (p ko , plot
for all p c- 7L. . But the Fourier amplitudes Vp ko

, peo
(J )

decrease in magnitude , typically exponentially in Ipl .
So we will assume ko and lo are relatively prime, and
consider p e f

.
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We define

to
,
ol'T = Volt. . in

. . e.
1st = Iii

. .
.edit = title

is

a.nd obtain

J = 2 Eko VIJI sin (Kool - lohtt S )

if = WoHtt t t 2e cos IKool - lohtt 8)

Now let 's expand , writing J = Jot DJ and
o if f > O

4 = kool - lost t St (T, if C- L O



resulting in (assume wot og e > O )

BJ = -2E Kot
,
(Jol siint

il = how! Iso )SJ t c- hot!Hit - 2ekivi III cost

To lowest nontrivial order in E
,
we may drop the Oltl

terms in the second equation , and write

doit -- - Ey , iii. Ess
with

K14
,
DJ ) = tako wittol IAJT - 2e kob

,

'

II ) cost

which is the Hamiltonian for a simple pendulum !
The resulting equations of motion yield if TV'sin 4=0 ,
with V

'

= 2e bio nioholihltol .
So what do we conclude from this analysis ? The

original l - torus ( i.e .
circle S ' )

,
with

Jlt ) -- Jo ,
do It I = wotJo ) t t lolol

is destroyed . Both it and its ncigboring Tt - tori are

replaced
'

by a separatrix and surrounding libration
and rotation phase curves (see figure ) . The amplitude
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Libration s (blue )
,
rotations (green) , and separateices (black )

for ko -- l l left) and ko -- 6 (right) , plotted in Iq , p) plane .

Elliptic fixed points are shown as magenta dots . Hyperbolic (black)
fixed points lie at the self- intersections of the separations,

of the separatrix is (set, Itollw 'tJol)
"
.
This analysis

is justified provided (SJ)max K Jo and VKWo , or
d lnwo
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• n -- 2 systems
we now consider the Hamiltonian HII

,
F) = HotIttfHill,It

with To -- I 4.
,
old and

.

I = (J
. ,
Jzl . We write

Hilo , It -- E,
E. ate

. eiko

with t -- l l , , ez ) and t.pl It = 'VEIFI since H, little .IR .

Resonances exist whenever rw
,
IF) = swift

,
where

4,21J) =
tho
JJ

,,z

We eliminate the resonance in two steps :

(il Invoke a CT ( Toit → 15,8! generated by

Fito,It -- Iroh - soldJit da Ja
This yields

J
,
= 5¥

,

-

- rJ , 4
,
= 3¥
,

= roh - Sola

Ja -- ¥÷= J2 - SJ , 42=372--0/2
Why did we do this ? We did so in order to transform



to a rotating frame where 9, = rot , - she is
slowly varying , i - e . I, = ril, - sik = rw, - SWE O .
We also have if = ifi wz . Now we could instead

have used the generator
Fz = 4 ,Jit Ird , - soldJz

resulting in 4, = ¢ , and 92 = r ¢ ,
- sofa .

Here he

is the slow variable while 4
,
oscillates with frequency = w, .

Which should we choose? We will wind up averaging over
the faster of 9,2 ,

and
'

we want the fast frequency
itself to be as slow as possible , for reasons which have to
do with the removal of higher order resonances . (More
on this further on below . ) we'll assume Wo log that w, > wz .

Inverting to find To lie)
,
we have

¢ , = tr 4, * Er lls ,
0/2=42

so we have

it lie
,It = HotEight E H, Ethel , JIJI )

=

= tolyl te JE VilIlexp e
, till't t
-
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,
I -4,81

We now average over the fast variable 42 . This



yields the constraint slit rlz = O , which we solve

by writing (l , , ez ) = ( pr , - p s) for p c- 27. . We

then have

< it
, II. It > = §. Tpr, -psljleips

The averaging procedure is justified close to a resonance,
where lied >s lie, l . Note that Jz now is conserved,
i. e . J 2=0 .

Thus Jz -- f J, t Jz is a new invariant.

At this point , only the 19 , , J , ) variables are

dynamical . 4, has been averaged out and Ja is constant.
Since the Fourier amplitudes Fpr, -ps (Ty ) are assumed to
decay rapidly with increasing t.pl , we consider only pet- I, o, it )
as we did in the n -- { case . We thereby obtain the
effective Hamiltonian

Kth
,Ji , Jd = to Igi ,Jd t C- %

,
old , , Jd

+ ZE Fr
,
- slJi ,Ja ) cos 9,

where we have absorbed any phase in %.
- s lift into a

shift of 9 ,
so we may consider

%
,otgl and Er,sky to

be real functions of J = Ig , ,Jz ) . The fixed points of

the dynamics then satisfy



if = FIT te
'
tzejcosy -- o

j , = - 2E Jr, - s sin 4, = 0
Note that a stationary solution here corresponds to
a periodic solution in our original Variables , since we
have shifted to a rotating frame . Thus 4

,
= O or 4

,
= IT

,
and

Eg -

- Fi
. it :# 3¥

= rw
,
- S wz = 0

Thus fixed points occur for

*gg!I. ± 2K¥11 -- o Hei :
There are two cases to consider :

• accidental degeneracy Jz JIT )

In this case
,
the degeneracy condition #j,

VW
, ( Ji , J2 ) = Swz (Ji, Tz )

thus , we have Jz = Jz IT, ) . This is the case when Holt, , Jd

is a generic function of its arguments . The excursions



of J , relative to its fixed point value Ji
"
are then

on the order of C- Er
,
- s (gli

'
, Jal , and we may expand

to that -- tug
'
:
'

.miff
,

soit 's iffy it . . .

where derivatives are evaluated at (J!
'

,Ja ) . We thus arrive

at the standard Hamiltonian
,

K14, , AJ , ) =
'
za lbf ,Y - F cos 9

where

algal = I
go ,

i HH -

-
-2e E

.
-sigh"id

l , 821

Thus
,
the motion in the vicinity of every resonance

is like that of a pendulum .

F is the amplitude of the
first ( lpl -- t ) Fourier mode of the resonant perturbation,
and G is the

"

nonlinearity parameter
"

.
For FG I 0 ,

the elliptic fixed point (EFp) at 4=0 and the hyperbolic
fixed point (HFP) is at 9, = IT .

For FG so , their

locations are switched . The libration frequency about
the EFP is u

,

-

- IFI = Ofterms 1
,

which decreases to

zero as the separatrix is approached .
The maximum



excursion of DJ , along the separatrix is AJ ,)ma×=2fFkT
which is also OUTER

.
- s ) .

. intrinsic degeneracy
In this case , Holt , ,Jz ) is only a function of the
action Jz = (Slr ) J ,

t Jz . Then

KH. if I = to (Jal * C- To
,off It 2C- I, s (8) coil,

since both DJ , and S4, vary on the same Ole E.
.
. ) ,

we can 't expand in AJ , . However, in the vicinity of
an EFP we may expand in both S4, and SJ, to get

Klee , , by , ) -- IG by , I
'
t
'
z Ffs 4,12

with
a'to

aim tea'II÷t2e'Fifty,:p ,
FIJI = - 2 II. → 187,84

This expansion isgeneral, but for intrinsic case = O
.

Thus both F and G are O(EF.
.
. ) and u, -- IFI = OH

and the ratio of semimajor to semiminor axis lengths is

¥Iit÷
.

.

- FI -- on



121 Secondary resonances

Details to be found in § 15.9 . 3 .
Here just a sketch :

- CT (Al
, , SJ , ) → (Ii , X , I , given by

S4
,
= (2 IGIII , I

"
sinX

, DJ , = (2 IHIIi )
"'
cosX,

- Define X2=42 and Iz I Jz . Then

Ko 19
,J ) → KolIl = to (Ji

'

,
Iz ) tu, LILI , - FOGIIIIft . . .

- To this we add back the terms with slit rlz to which

we previously dropped :

IfI , It =

eIinE.WqnlIleinXi@ilslfrlzlXz1rwhereWi.ntIt-VelgY.I
at Tfl# ITI ITI, )
Bessel
function

- We now have III. It -- KolItt EI , II. It
Note that E also appears within Ko , and E

'
= E

.

- A secondary resonance occurs if r
'
v
,
= s

'
vz
,
where

4. atIt -- 3k¥!¥



- Do as we did before : CT (X
,
I ) → II, in ) via

Fz
'

II
,
till = (r 'X , - s ' Xz )Mit Xz Mz

Then

nxitlfhtlzlxz-F.lu, t (TF tf ht b) 42

and averaging over 42 yields nrs't Sr 'd , t rr 'd2=0 ,
which entails

n --yr
'

,
l
,

-

-
Kr

, le -js
'
- Ks

with jie c- 27
.

- Averaging results in [
see eqn .

15.304
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§, tri, .gs , title
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- Mz = Is't 'II , tI, is the adiabatic invariant for

the new oscillation

Motion in the vicinity of a secondary resonance with
✓ '
= Go and Sl = I . EFps in green , HFPs in red .

Separateices in black and blue . Note self - similarity.


