Lecture 18 (Dec. 2)

- Canonical perturbation theory

Suppose

$$
H(\stackrel{\rightharpoonup}{q}, \stackrel{\rightharpoonup}{p}, t)=H_{0}(\stackrel{\rightharpoonup}{q}, \stackrel{\rightharpoonup}{p}, t)+\epsilon H_{1}(\stackrel{\rightharpoonup}{q}, \stackrel{\rightharpoonup}{p}, t)
$$

where $|\in| \ll 1$. Let's implement a type -II CT generated by $S(\stackrel{\rightharpoonup}{q}, \vec{P}, t)$ (not intended to signify Hamilton's principal function):

$$
\tilde{H}(\vec{Q}, \vec{p}, t)=H(\vec{q}, \stackrel{\rightharpoonup}{p}, t)+\frac{\partial}{\partial t} S(\stackrel{\rightharpoonup}{q}, \vec{p}, t)
$$

Expand everything in sight in powers of ϵ :

$$
\begin{aligned}
& q_{v}=Q_{\sigma}+\epsilon q_{1, \sigma}+\epsilon^{2} q_{2, \sigma}+\ldots \\
& P_{\sigma}=P_{\sigma}+\epsilon P_{1, \sigma}+\epsilon^{2} p_{2, \sigma}+\ldots \\
& \tilde{H}=\tilde{H}_{0}+\epsilon \tilde{H}_{1}+\epsilon^{2} \tilde{H}_{2}+\ldots \\
& S=\underbrace{q_{\sigma} P_{\sigma}}_{\text {identity } C T}+\epsilon S_{1}+\epsilon^{2} S_{2}+\ldots
\end{aligned}
$$

Then

$$
\begin{aligned}
Q_{\sigma}=\frac{\partial S}{\partial P_{\sigma}} & =q_{\sigma}+\epsilon \frac{\partial S_{1}}{\partial P_{\sigma}}+\epsilon^{2} \frac{\partial S_{2}}{\partial P_{\sigma}}+\ldots \\
& =Q_{\sigma}+\left(q_{1, \sigma}+\frac{\partial S_{1}}{\partial P_{\sigma}}\right) \epsilon+\left(q_{2, \sigma}+\frac{\partial S_{2}}{\partial P_{\sigma}}\right) \epsilon^{2}+\ldots
\end{aligned}
$$

We also have

$$
\begin{aligned}
p_{\sigma}=\frac{\partial S}{\partial q_{\sigma}} & =P_{\sigma}+\epsilon \frac{\partial S_{1}}{\partial q_{\sigma}}+\epsilon^{2} \frac{\partial S_{2}}{\partial q_{\sigma}}+\ldots \\
& =P_{\sigma}+\epsilon P_{1, \sigma}+\epsilon^{2} P_{2, \sigma}+\ldots
\end{aligned}
$$

Thus we conclude, order by order in ϵ,

$$
q_{k, \sigma}=-\frac{\partial S_{k}}{\partial P_{\sigma}}, \quad p_{k, v}=\frac{\partial S_{k}}{\partial q_{v}}
$$

Next, expand the Hamiltonian:

$$
\begin{aligned}
\tilde{H}(\vec{Q}, \vec{P}, t)= & H_{0}(\vec{q}, \vec{p}, t)+\epsilon H_{1}(\vec{q}, \vec{p}, t)+\frac{\partial S}{\partial t} \\
= & H_{0}(\vec{Q}, \vec{P}, t)
\end{aligned} \quad+\frac{\partial H_{0}}{\partial Q_{\sigma}}\left(q_{\sigma}-Q_{\sigma}\right)+\frac{\partial H_{0}}{\partial P_{\sigma}}\left(p_{\sigma}-P_{\sigma}\right)+\ldots .+\epsilon H_{1}\left(\vec{Q}_{1}, \vec{P}, t\right)+\epsilon \frac{\partial}{\partial t} S_{1}(\vec{Q}, \vec{P}, t)+O\left(\epsilon^{2}\right) .
$$

Notice we are writing $q_{\sigma}=Q_{v}+\left(q_{v}-Q_{v}\right)=Q_{v}-\epsilon \frac{\partial S_{1}}{\partial P_{v}}+\cdots$
so, eng.

$$
\begin{aligned}
S_{1}(\vec{q}, \vec{P}, t) & =S_{1}(\vec{Q}, \vec{P}, t)+\left(q_{\sigma}-Q_{v}\right) \frac{\partial S_{1}}{\partial Q_{v}}+\cdots \\
& =S_{1}(\vec{Q}, \vec{P}, t)-\frac{\partial S_{1}(\vec{Q}, \vec{P}, t)}{\partial P_{v}} \frac{\partial S_{1}(\vec{Q}, \vec{P}, t)}{\partial Q_{v}} \epsilon+\theta\left(t^{2}\right)
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
\tilde{H}(\vec{Q}, \vec{P}, t) & =H_{0}(\vec{Q}, \vec{P}, t)+\left(H_{1}+\left\{S_{1}, H_{0}\right\}+\frac{\partial S_{1}}{\partial t}\right) \epsilon+\theta\left(\epsilon^{2}\right) \\
& =\tilde{H}_{0}(\vec{Q}, \vec{P}, t)+\epsilon \tilde{H}_{1}(\vec{Q}, \vec{P}, t)+O\left(\epsilon^{2}\right)
\end{aligned}
$$

We therefore conclude

$$
\begin{aligned}
& \tilde{H}_{0}(\stackrel{\rightharpoonup}{Q}, \vec{P}, t)=H_{0}(\vec{Q}, \stackrel{\rightharpoonup}{P}, t) \\
& \tilde{H}_{1}(\vec{Q}, \vec{P}, t)=\left[H_{1}+\left\{S_{1}, H_{0}\right\}+\frac{\partial S_{1}}{\partial t}\right]_{\vec{Q}, \vec{P}, t}
\end{aligned}
$$

We are left with a single equation in two unknowns, i.e. \tilde{H}_{1} and S_{1}. The problem is underdetermined. We could at this point demand $\tilde{H}_{1}=0$, but this is just one of many possible choices. Similar story in QM:

$$
i \hbar \frac{\partial}{\partial t}|\psi\rangle=\left(\hat{H}_{0}+\epsilon \hat{H}_{1}\right)|\psi\rangle
$$

Now define $|\psi\rangle \equiv e^{i \hat{S} / \hbar}|x\rangle$ with $\hat{S}=\epsilon \hat{S}_{1}+\epsilon^{2} \hat{S}_{2}+\ldots$.
Then find

$$
\begin{aligned}
i \hbar \frac{\partial}{\partial t}|x\rangle & =\hat{H}_{0}|x\rangle+\epsilon\left(\hat{H}_{1}+\frac{1}{i \hbar}\left[\hat{S}_{1}, \hat{H}_{0}\right]+\frac{\partial \hat{S}_{1}}{\partial t}\right)|x\rangle+\cdots \\
& \equiv \hat{\tilde{H}}|x\rangle
\end{aligned}
$$

Typically we choose $\hat{S}_{\text {, }}$ such that the $\theta(\epsilon)$ term vanish. But this isn't the only possible choice. (Note here the correspondence $\{A, B\} \leftrightarrow \frac{1}{i \hbar}[\hat{A}, \hat{B}]$.)

- CPT for $n=1$ systems

Here we demonstrate the implementation of CPT in a general $n=1$ system. We will need to deal with resonances when $n>1$, which we discuss later on. We assume $H(q, p)=H_{0}(q, p)+\epsilon H_{1}(q, p)$ is time-independent. Let $\left(\phi_{0}, J_{0}\right)$ be AAV for H_{0}, so that

$$
\tilde{H}_{0}\left(J_{0}\right)=H_{0}\left(q\left(\phi_{0}, J_{0}\right), p\left(\phi_{0}, J_{0}\right)\right)
$$

We define

$$
\tilde{H}_{1}\left(\phi_{0}, J_{0}\right) \equiv H_{1}\left(q\left(\phi_{0}, J_{0}\right), p\left(\phi_{0}, J_{0}\right)\right)
$$

We assume that $\tilde{H}=\tilde{H}_{0}+\in \tilde{H}_{1}$ is integrable, which for $n=1$ is indeed always the case. [Reminder: $H(q, p)=E$ means all motion takes place on the one-dimensional level sets of $H(q, p)$.] Thus there must be a CT taking $\left(\phi_{0}, J_{0}\right) \rightarrow(\phi, J)$, where

$$
\tilde{H}\left(\phi_{0}(\phi, J), J_{0}(\phi, J)\right)=E(J)
$$

We solve by a type -II CT:

$$
S\left(\phi_{0}, J\right)=\underbrace{\phi_{0} J}+\epsilon S_{1}\left(\phi_{0}, J\right)+\epsilon^{2} S_{2}\left(\phi_{0}, J\right)+\ldots
$$

Then

$$
\begin{aligned}
& J_{0}=\frac{\partial S}{\partial \phi_{0}}=J+\epsilon \frac{\partial S_{1}}{\partial \phi_{0}}+\epsilon^{2} \frac{\partial S_{2}}{\partial \phi_{0}}+\cdots \\
& \phi=\frac{\partial S}{\partial J}=\phi_{0}+\epsilon \frac{\partial S_{1}}{\partial J}+\epsilon^{2} \frac{\partial S_{2}}{\partial J}+\cdots
\end{aligned}
$$

We also write

$$
\begin{aligned}
E(J) & =E_{0}(J)+\epsilon E_{1}(J)+\epsilon^{2} E_{2}(J)+\ldots \\
& =\tilde{H}_{0}\left(J_{0}\right)+\epsilon \tilde{H}_{1}\left(\phi_{0}, J_{0}\right) \quad \text { (no higher order terms) }
\end{aligned}
$$

Now we expand $\tilde{H}\left(\phi_{0}, J_{0}\right)=\tilde{H}(\phi_{0}, J+\underbrace{\left(J_{0}-J\right)}_{\delta J})$ in powers
of $\left(J_{0}-J\right)$:

$$
\begin{aligned}
& \begin{aligned}
\tilde{H}\left(\phi_{0}, J_{0}\right)=\tilde{H}_{0}(J) & +\frac{\partial \tilde{H}_{0}}{\partial J}\left(J_{0}-J\right)+\frac{1}{2} \frac{\partial^{2} \tilde{H}_{0}}{\partial J^{2}}(J-J)^{2} \\
& +\epsilon \tilde{H}_{1}\left(\phi_{0}, J\right)+\left.\epsilon \frac{\partial \tilde{H}_{1}}{\partial J}\right|_{\phi_{0}}\left(J_{0}-J\right)+\ldots
\end{aligned}
\end{aligned}
$$

Substitute

$$
J_{0}-J=\epsilon \frac{\partial S_{1}}{\partial \phi_{0}}+\epsilon^{2} \frac{\partial S_{2}}{\partial \phi_{0}}+\ldots
$$

and collect terms to obtain

$$
\begin{aligned}
\tilde{H}\left(\phi_{0}, J_{0}\right)= & \tilde{H}_{0}(J)+\left(\tilde{H}_{1}+\frac{\partial \tilde{H}_{0}}{\partial J} \frac{\partial S_{1}}{\partial \phi_{0}}\right) \epsilon \\
& +\left(\frac{\partial \tilde{H}_{0}}{\partial J} \frac{\partial S_{2}}{\partial \phi_{0}}+\frac{1}{2} \frac{\partial^{2} \tilde{H}_{0}}{\partial J^{2}}\left(\frac{\partial S_{1}}{\partial \phi_{0}}\right)^{2}+\frac{\partial \tilde{H}_{1}}{\partial J} \frac{\partial S_{1}}{\partial \phi_{0}}\right) \epsilon^{2}+\ldots
\end{aligned}
$$

where all terms on the RHS are expressed in terms of ϕ_{0} and J. We may now read off
(0) $E_{0}(J)=\tilde{H}_{0}(J)$
(1) $E_{1}(J)=\tilde{H}_{1}\left(\phi_{0}, J\right)+\frac{\partial \tilde{H}_{0}}{\partial J} \frac{\partial S_{1}\left(\phi_{0}, J\right)}{\partial \phi_{0}}$
(2) $E_{2}(J)=\frac{\partial \tilde{H}_{0}}{\partial J} \frac{\partial S_{2}\left(\phi_{0}, J\right)}{\partial \phi_{0}}+\frac{1}{2} \frac{\partial^{2} H_{0}}{\partial J^{2}}\left(\frac{\partial S_{1}\left(\phi_{0}, J\right)}{\partial \phi_{0}}\right)^{2}+\frac{\partial \tilde{H}_{1}\left(\phi_{0}, J\right)}{\partial J} \frac{\partial S_{1}\left(\phi_{0}, J\right)}{\partial \phi_{0}}$

But the RHS should be independent of ϕ_{0} ! How can this be? We use the freedom in the functions $S_{k}\left(\phi_{0}, J\right)$ to make it so. Let's see just how this works.
Each of the expressions on the RHSs must be equal to its average over ϕ_{0} if it is to be independent of ϕ_{0} :

$$
\left\langle f\left(\phi_{0}\right)\right\rangle=\int_{0}^{2 \pi} \frac{d \phi_{0}}{2 \pi} f\left(\phi_{0}\right)
$$

The averages $\left\langle\operatorname{RHS}\left(\phi_{0}, J\right)\right\rangle$ are taken at fixed J and not at fixed J_{0}. We must have that

$$
S_{k}\left(\phi_{0}, J\right)=\sum_{\ell=-\infty}^{\infty} S_{k, l}(J) e^{i l \phi_{0}}
$$

Thus

$$
\left\langle\frac{\partial S_{k}}{\partial \phi_{0}}\right\rangle=\frac{1}{2 \pi}\left\{S_{k}(2 \pi, J)-S_{k}(0, J)\right\}=0
$$

Now let's implement this in our hierarchy. Consider the level (1) equation,

$$
E_{1}(J)=\tilde{H}_{1}\left(\phi_{0}, J\right)+\underbrace{\frac{\partial \tilde{H}_{0}}{\partial J}}_{\nu_{0}(J)} \frac{\partial S_{1}\left(\phi_{0}, J\right)}{\partial \phi_{0}}
$$

Taking the average,

$$
\begin{aligned}
E_{1}(J) & =\left\langle\tilde{H}_{1}\left(\phi_{0}, J\right)\right\rangle+\frac{\partial \tilde{H}_{0}}{\partial J}\langle\underbrace{\left.\frac{\partial S_{1}\left(\phi_{0}, J\right)}{\partial \phi_{0}}\right\rangle}_{\text {this vanishes }} \\
& =\left\langle\tilde{H}_{1}\right\rangle
\end{aligned}
$$

Thus,

$$
\left\langle\tilde{H}_{1}\right\rangle=\widetilde{H}_{1}+\nu_{0}(J) \frac{\partial S_{1}}{\partial \phi_{0}} \Rightarrow \frac{\partial S_{1}\left(\phi_{0}, J\right)}{\partial \phi_{0}}=\frac{\left\langle\widetilde{H}_{1}\right\rangle_{J}-\tilde{H}_{1}\left(\phi_{0}, J\right)}{\nu_{0}(J)}
$$

If we Fourier decompose

$$
\tilde{H}_{1}\left(\phi_{0}, J\right)=\sum_{l=-\infty}^{\infty} \tilde{H}_{1, l}(J) e^{i l \phi_{0}}
$$

then we obtain

$$
\ell \neq 0 \text { : il } S_{1, \ell}(J)=\tilde{H}_{1, \ell}(J)^{\ell} \Rightarrow S_{1, \ell}(J)=-\frac{i}{\ell} \tilde{H}_{1, \ell}(J)
$$

We are free to set $S_{1,0}(J) \equiv 0(w h y ?)$.
Now that we've got the hang of the logic here, left's go to second order:

$$
E_{2}(J)=\underbrace{\frac{\partial \tilde{H}_{0}}{\partial J}}_{\nu_{0}(J)} \underbrace{\frac{\partial S_{2}\left(\phi_{0}, J\right)}{\partial \phi_{0}}}_{\text {averages to zero }}+\frac{1}{2} \underbrace{\frac{\partial^{2} H_{0}}{\partial J^{2}}}_{\partial V_{0} / \partial J}(\underbrace{\frac{\left.\partial \phi_{0}, J\right)}{\nu_{0}}}_{\frac{\partial S_{1}}{\partial \phi_{0}}=\frac{\left.\partial \tilde{H}_{1}\right\rangle-\tilde{H}_{1}}{\nu_{0}}})^{2}+\frac{\partial \tilde{H}_{1}\left(\phi_{0}, J\right)}{\partial J} \underbrace{\frac{\tilde{H}_{0}}{\nu_{0}}}_{\frac{\partial S_{1}}{\partial \phi_{0}}=\frac{\partial \tilde{H}_{1}\left(\phi_{0}, J\right)}{\partial \phi_{0}}}
$$

Taking the average,

$$
E_{2}=\frac{1}{2} \frac{\partial V_{0}}{\partial J}\left\langle\left(\frac{\left\langle\tilde{H}_{1}\right\rangle-\tilde{H}_{1}}{\nu_{0}}\right)^{2}\right\rangle+\left\langle\frac{\partial \tilde{H}_{1}}{\partial J}\left(\frac{\left\langle\tilde{H}_{1}\right\rangle-\tilde{H}_{1}}{\nu_{0}}\right)\right\rangle
$$

which yields, a fer some work,

$$
\begin{aligned}
& \frac{\partial S_{2}}{\partial \phi_{0}}=\frac{1}{\nu_{0}^{2}}\left\{\left\langle\frac{\partial \widetilde{H}_{1}}{\partial J}\right\rangle\left\langle\tilde{H}_{1}\right\rangle-\left\langle\frac{\partial \tilde{H}_{1}}{\partial J} \widetilde{H}_{1}\right\rangle-\frac{\partial \tilde{H}_{1}}{\partial J}\left\langle\widetilde{H}_{1}\right\rangle+\frac{\partial \widetilde{H}_{1}}{\partial J} \tilde{H}_{1}\right. \\
&\left.+\frac{1}{2} \frac{\partial \ln \nu_{0}}{\partial J}\left(\left\langle\tilde{H}_{1}^{2}\right\rangle-2\left\langle\tilde{H}_{1}\right\rangle^{2}+2\left\langle\widetilde{H}_{1}\right\rangle \tilde{H}_{1}-\widetilde{H}_{1}^{2}\right)\right\}
\end{aligned}
$$

and the energy to second order is

$$
\begin{aligned}
& E(J)=\tilde{H}_{0}+\epsilon\left\langle\tilde{H}_{1}\right\rangle+\frac{\epsilon^{2}}{v_{0}}\left\{\left\langle\frac{\partial \tilde{H}_{1}}{\partial J}\right\rangle\left\langle\tilde{H}_{1}\right\rangle-\left\langle\frac{\partial \tilde{H}_{1}}{\partial J} \tilde{H}_{1}\right\rangle\right. \\
&\left.+\frac{1}{2} \frac{\partial \ln v_{0}}{\partial J}\left(\left\langle\tilde{H}_{1}^{2}\right\rangle-\left\langle\tilde{H}_{1}\right\rangle^{2}\right)\right\}+\theta\left(\epsilon^{3}\right)
\end{aligned}
$$

Note that we don't need $S\left(\phi_{0}, J\right)$ to obtain $E(J)$, though of course we do need it to obtain $\left(\phi_{c}, J_{0}\right)$ in terms of (ϕ, J). The perturbed frequencies are $\nu(J)=\partial E / \partial J$. For the full motion, we need

$$
(\phi, J) \rightarrow\left(\phi_{0}, J_{0}\right) \rightarrow(q, p)
$$

- Example : quartic oscillator

The Hamiltonian is

$$
H(q, p)=\frac{p^{2}}{2 m}+\frac{1}{2} m v_{0}^{2} q^{2}+\frac{\alpha}{4} \in q^{4}
$$

Recall the AAV for the SHO:

$$
\begin{aligned}
& J_{0}=\frac{P^{2}}{2 m \nu_{0}}+\frac{1}{2} m \nu_{0} q^{2}=\frac{H_{0}}{\nu_{0}} \\
& \phi_{0}=\tan ^{-1}\left(\frac{m \nu_{0} q}{P}\right) \\
& q=\left(\frac{2 J_{0}}{m v_{0}}\right)^{1 / 2} \sin \phi_{0} \\
& p=\sqrt{2 J_{0} m \nu_{0}} \cos \phi_{0}
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
\tilde{H}\left(\phi_{0}, J_{0}\right) & =\nu_{0} J_{0}+\frac{\alpha}{4} \epsilon\left(\sqrt{\frac{2 J_{0}}{m \nu_{0}}} \sin \phi_{0}\right)^{4} \\
& =\underbrace{\nu_{0} J_{0}}_{\tilde{H}_{0}\left(J_{0}\right)}+\underbrace{\epsilon\left(\frac{\alpha}{m^{2} \nu_{0}^{2}}\right) J_{0}^{2} \sin ^{4} \phi_{0}}_{\tilde{H}_{1}\left(\phi_{0}, J_{0}\right)}
\end{aligned}
$$

We therefore have

$$
\begin{aligned}
& \text { re have } \\
& \begin{aligned}
& E_{1}(J)=\left\langle\tilde{H}_{1}\left(\phi_{0}, J\right)\right\rangle \\
&=\frac{\alpha J^{2}}{m^{2} \nu_{0}^{2}} \int_{0}^{2 \pi} \frac{d \phi_{0}}{2 \pi} \sin ^{4} \phi_{0}=\frac{3}{8} \\
& 8 m^{2} \nu_{0}^{2}
\end{aligned}
\end{aligned}
$$

The frequency, to order ϵ, is then

$$
\nu(J)=\frac{\partial}{\partial J}\left(E_{0}+\epsilon E_{1}\right)=\nu_{0}+\frac{3 \epsilon \alpha J}{4 m^{2} \nu_{0}^{2}}+\theta\left(\epsilon^{2}\right)
$$

To this order, we may replace J above by $J_{0}=\frac{1}{2} m \nu_{0} A^{2}$, where $A=$ amplitude of oscillations. Thus, pendulum:

$$
\nu(A)=\nu_{0}+\frac{3 \epsilon \alpha A^{2}}{8 m v^{2}}+\theta\left(\epsilon^{2}\right)
$$

Only for the linear oscillator $\ddot{q}=-v_{0}^{2} q$ is the oscillation frequency independent of the amplitude.
Next, let's work through the CT $\left(\phi_{0}, J_{0}\right) \rightarrow(\phi, J)$.

We have

$$
\begin{aligned}
& \text { have } v_{0} \frac{\partial S_{1}}{\partial \phi_{0}}=\frac{\alpha J^{2}}{m^{2} V_{0}^{2}}\left(\frac{3}{8}-\sin ^{4} \phi_{0}\right) \\
& \Rightarrow S_{1}\left(\phi_{0}, J\right)=\frac{\alpha J^{2}}{8 m^{2} v_{0}^{3}}\left(3+2 \sin ^{2} \phi_{0}\right) \sin \phi_{0} \cos \phi_{0}
\end{aligned}
$$

and

$$
\begin{aligned}
\phi & =\phi_{0}+\epsilon \frac{\partial S_{1}}{\partial J}+\theta\left(\epsilon^{2}\right) \\
& =\phi_{0}+\frac{\epsilon \alpha J}{4 m^{2} \nu_{0}^{3}}\left(3+2 \sin ^{2} \phi_{0}\right) \sin \phi_{0} \cos \phi_{0}+\theta\left(\epsilon^{2}\right) \\
J_{0} & =J+\epsilon \frac{\partial S_{1}}{\partial \phi_{0}} \\
& =J+\frac{\epsilon \alpha J^{2}}{8 m^{2} \nu_{0}^{3}}\left(4 \cos \left(2 \phi_{0}\right)-\cos \left(4 \phi_{0}\right)\right)+\theta\left(\epsilon^{2}\right)
\end{aligned}
$$

To lowest nontrivial order we may invert to obtain

$$
J=J_{0}-\frac{\epsilon \alpha J_{0}^{2}}{8 m^{2} \nu_{0}^{3}}\left(4 \cos \left(2 \phi_{0}\right)-\cos \left(4 \phi_{0}\right)\right)+\theta\left(\epsilon^{2}\right)
$$

With $q=\left(2 J_{0} / m v_{0}\right)^{1 / 2} \sin \phi_{0}$ and $p=\left(2 m v_{0} J_{0}\right)^{1 / 2} \cos \phi_{0}$, we can obtain (q, p) in terms of (ϕ, J).

- $n>1$: degeneracies and resonances

Generalizing the CPT formalism to $n>1$ is straightforward. We have $S=S\left(\vec{\phi}_{0}, \vec{J}\right)$, so with $\alpha \in\{1, \ldots, n\}$,

$$
\begin{aligned}
& J_{0}^{\alpha}=\frac{\partial S}{\partial \phi_{0}^{\alpha}}=J^{\alpha}+\epsilon \frac{\partial S_{1}}{\partial \phi_{0}^{\alpha}}+\epsilon^{2} \frac{\partial S_{2}}{\partial \phi_{0}^{\alpha}}+\ldots \\
& \phi^{\alpha}=\frac{\partial S}{\partial J^{\alpha}}=\phi_{0}^{\alpha}+\epsilon \frac{\partial S_{1}}{\partial J^{\alpha}}+\epsilon^{2} \frac{\partial S_{2}}{\partial J^{\alpha}}+\ldots
\end{aligned}
$$

and

$$
\begin{aligned}
& E_{0}(\vec{J})=\tilde{H}_{0}(\vec{J}) \\
& \begin{aligned}
E_{1}(\vec{J})= & \tilde{H}_{1}\left(\vec{\phi}_{0}, \vec{J}\right)+\nu_{0}^{\alpha}(\vec{J}) \frac{\partial S_{1}\left(\vec{\phi}_{0}, \vec{J}\right)}{\partial \phi_{0}^{\alpha}} \\
E_{2}(\vec{J})= & V_{0}^{\alpha}(\vec{J}) \frac{\partial S_{2}\left(\phi_{0}, \vec{J}\right)}{\partial \phi_{0}^{\alpha}}+\frac{1}{2} \frac{\partial V_{0}^{\alpha}(\vec{J})}{\partial J^{\beta}} \frac{\partial S_{1}\left(\vec{\phi}_{0}, \vec{J}\right)}{\partial J^{\alpha}} \frac{\partial S_{1}\left(\vec{\phi}_{0}, \vec{J}\right)}{\partial J \beta} \\
& +\frac{\partial \tilde{H}_{1}\left(\overrightarrow{\phi_{0}}, \vec{J}\right)}{\partial J^{\alpha}} \frac{\partial S_{1}\left(\vec{\phi}_{0}, \vec{J}\right)}{\partial J^{\alpha}}
\end{aligned}
\end{aligned}
$$

where $\nu_{0}^{\alpha}(\vec{J})=\partial \tilde{H}_{0}(\vec{J}) / \partial J^{\alpha}$. Now we average:

$$
\left\langle f\left(\vec{\phi}_{0}, \vec{J}\right)\right\rangle=\int_{0}^{2 \pi} \frac{d \phi_{0}^{1}}{2 \pi} \cdots \int_{0}^{2 \pi} \frac{d \phi_{0}^{n}}{2 \pi} f\left(\vec{\phi}_{0}, \vec{J}\right)
$$

The equation for $S_{1}\left(\vec{\phi}_{0}, \vec{J}\right)$ is

$$
\begin{aligned}
\nu_{0}^{\alpha} \frac{\partial S_{1}\left(\vec{\phi}_{0}, \vec{J}\right)}{\partial \phi_{0}^{\alpha}} & =\left\langle\tilde{H}_{1}\left(\vec{\phi}_{0}, \vec{J}\right)\right\rangle-\tilde{H}_{1}\left(\vec{\phi}_{0}, \vec{J}\right) \\
& =-\sum_{\vec{l} \in \mathbb{Z}^{n}}^{\prime} V_{\vec{l}}(\vec{J}) e^{i \vec{l} \cdot \vec{\phi}_{0}}
\end{aligned}
$$

where $V_{\vec{l}}(\vec{J})=\tilde{H}_{1}, \vec{l}(\vec{J})$, i.e. $\tilde{H}_{1}\left(\vec{\phi}_{0}, \vec{J}\right)=\sum_{\vec{l}} V_{\vec{l}}(\vec{J}) e^{i \vec{l} \cdot \vec{\phi}_{0}}$

The prime on the sum means $\vec{l}=(0,0, \ldots, 0)$ is excluded. The solution is

$$
S_{1}\left(\vec{\phi}_{0}, \vec{J}\right)=-i \sum_{\vec{l} \in \mathbb{Z}^{n}} \frac{V_{\vec{l}}(\vec{J})}{\vec{l} \cdot \overrightarrow{V_{0}}(\vec{J})} e^{i \vec{l} \cdot \vec{\phi}_{0}}
$$

When the resonance condition

$$
\vec{l} \cdot \stackrel{\rightharpoonup}{V}_{0}(\vec{J})=0
$$

pertains (with $\vec{l} \neq 0$), the denominator vanishes and CPT breaks down. One can always find such an \vec{l} whenever two or more of the frequencies $\nu_{0}^{\alpha}(\vec{J})$ have a rational ratio. Suppose for example that $\nu_{0}^{2}(\vec{J}) / \nu_{0}^{1}(\vec{J})=r / s$ with $v_{1} s \in \mathbb{Z}$ relatively prime. Then $r v_{0}^{\prime}=S v_{0}^{2}$ and with $\vec{l}=(r,-s, 0, \ldots, 0)$, we have $\vec{l} \cdot \vec{v}_{0}=0$. Even if all the frequency ratios are irrational, for large enough $|\vec{\ell}|$ we can make $\left|\vec{l} \cdot \vec{V}_{0}\right|$ as small (but finite) as we please. In §15.9, we'll see how any given resonance may be removed canonically. We've just looking at things the wrong way at the moment.

