PHYSICS 200B : CLASSICAL MECHANICS SOLUTION SET \#2

[1] Consider the standard map on the unit torus,

$$
\begin{aligned}
x_{n+1} & =x_{n}+y_{n} \bmod 1 \\
y_{n+1} & =y_{n}+\kappa \sin \left(2 \pi x_{n+1}\right) \bmod 1 .
\end{aligned}
$$

Find all the fixed points and identify their stability as a function of the control parameter κ.

Solution :

The Jacobian of the map is

$$
M_{n} \equiv \frac{\partial\left(x_{n+1}, y_{n+1}\right)}{\partial\left(x_{n}, y_{n}\right)}=\left(\begin{array}{cc}
1 & 1 \\
2 \pi \kappa \cos \left(2 \pi x_{n+1}\right) & 1+2 \pi \kappa \cos \left(2 \pi x_{n+1}\right)
\end{array}\right) .
$$

Note that $\operatorname{det} M_{n}=1$. A fixed point $\left(x^{*}, y^{*}\right)$ must satisfy

$$
y^{*} \cong 0 \quad, \quad \kappa \sin \left(2 \pi x^{*}\right) \cong 0
$$

where $A \cong B$ means $A=B \bmod 1$. Thus, fixed points on the unit torus are located at $x^{*}=\sin ^{-1}(n / \kappa) / 2 \pi$ and $y^{*}=0$, where $n \in \mathbb{Z}$ and $\kappa \geq|n|$. Thus $\kappa \cos \left(2 \pi x^{*}\right)= \pm \sqrt{\kappa^{2}-n^{2}}$. For a 2×2 matrix M, the characteristic polynomial is $P(\lambda)=\lambda^{2}-T \lambda+D$, where $T=\operatorname{Tr} M$ and $D=\operatorname{det} M$. Since $D=1$, we have $\lambda_{ \pm}=\frac{1}{2} T \pm \frac{1}{2} \sqrt{T^{2}-4}$, with $T=2 \pm 2 \pi \sqrt{\kappa^{2}-n^{2}}$. Stability requires $|T|<2$ so that $\lambda_{ \pm}=e^{ \pm i \theta}$, with $\cos \theta=\frac{1}{2} T$. Thus, the solution with $\cos \left(2 \pi x^{*}\right)>0$ is always unstable. For $\cos \left(2 \pi x^{*}\right)<0$, we must have

$$
T_{-}=2-2 \pi \sqrt{\kappa^{2}-n^{2}}>-2 \quad \Rightarrow \quad n^{2}<\kappa^{2}<n^{2}+\frac{4}{\pi^{2}} .
$$

[2] Write a computer program to iterate the map from problem [1]. For each value of κ you consider, iterate starting from N^{2} initial conditions $\left(x_{0}, y_{0}\right)=(j / N, k / N)$, where j and k each run from 0 to $N-1$. You can take $N=10$.
(a) By experimenting, see if you can find the value of κ where there are no unbroken KAM tori which span the x-direction $x \in[0,1]$.
(b) Next, consider the standard map on the cylinder,

$$
\begin{aligned}
& x_{n+1}=x_{n}+y_{n} \bmod 1 \\
& y_{n+1}=y_{n}+\kappa \sin \left(2 \pi x_{n+1}\right),
\end{aligned}
$$

where the y variable now may take values on the entire real line. For each given κ, plot $\left\langle y_{n}^{2}\right\rangle$ versus n, where the average is over the N^{2} initial conditions. Assuming the evolution is diffusive in the chaotic regime, compute the diffusion constant $D(\kappa)$ from the formula $\left\langle y_{n}^{2}\right\rangle=2 D n$. Plot $D(\kappa)$ versus κ over the range $\kappa \in[1,10]$. Compare to the value from the quasilinear approximation, $D_{\mathrm{ql}}=\frac{1}{4} \kappa^{2}$.

Figure 1: The standard map on the torus for different values of κ. The critical value where no unbroken KAM tori span the x-direction is found to be $\kappa \approx 0.16$.

Solution :

(a) The critical value of κ is found to be $\kappa_{\mathrm{c}} \approx 0.16$. See fig. 1 .
(b) See fig. 2 for the results on the cylinder, and figs. 3 and 4 for the diffusion constant results.
[3] For the logistic map $x_{n+1}=f\left(x_{n}\right)$ with $f(x)=r x(1-x)$, plot the functions $f^{(n)}(x)$ for $n=1,2$, and 4 and plot the intersections of $y=f^{(n)}(x)$ with $y=x$. Show how varying the control parameter r results in bifurcations corresponding to the appearance of 2-cycles and 4 -cycles.

Figure 2: The standard map on the cylinder for different values of κ.

Solution :

See figs. 5, 6, 7, 8. The data are consistent with the Feigenbaum results cited in §2.5.1 of the lecture notes:

$$
\begin{aligned}
& r_{1}=3 \quad, r_{2}=1+\sqrt{6}=3.4494897 \quad, r_{3}=3.544096 \quad, r_{4}=3.564407 \quad, \\
& r_{5}=3.568759 \quad, r_{6}=3.569692 \quad, r_{7}=3.569891 \quad, r_{8}=3.569934 \quad, \quad \ldots
\end{aligned}
$$

Figure 3: $\left\langle y_{n}^{2}\right\rangle$ versus n for different values of κ. Credit: J. Gidugu.

Figure 4: The standard map on the cylinder for different values of κ. Credit: J. Gidugu.

Figure 5: The first four iterates of the logistic map for $r=2.8$.

Figure 6: The first four iterates of the logistic map for $r=3.2$.

Figure 7: The first four iterates of the logistic map for $r=3.5$.

Figure 8: The first four iterates of the logistic map for $r=3.55$.

