PHYSICS 200B : CLASSICAL MECHANICS SOLUTION SET \#1

[1] Consider one-dimensional motion in the potential $V(x)=-V_{0} \operatorname{sech}^{2}(x / a)$ with $V_{0}>0$.
(a) Sketch the potential $V(x)$. Over what range of energies may action-angle variables be used?
(b) Find the action J and the Hamiltonian $H(J)$.
(c) Find the angle variable ϕ in terms of x and the energy E.
(d) Find the Solution for $x(t)$ by first solving for the motion of the action-angle variables.

Helpful mathematical identities :

$$
\begin{gathered}
\int_{0}^{\bar{u}(E)} d u \sqrt{E+V_{0} \operatorname{sech}^{2} u}=\frac{\pi}{2}\left(\sqrt{V_{0}}-\sqrt{-E}\right) \quad \text { if }-V_{0}<E<0 \\
\int d u\left(E+V_{0} \operatorname{sech}^{2} u\right)^{-1 / 2}=\left\{\begin{array}{lll}
(-E)^{-1 / 2} \sin ^{-1}\left(\sqrt{\frac{-E}{V_{0}+E}} \sinh u\right) & \text { if } & -V_{0}<E<0 \\
E^{-1 / 2} \sinh ^{-1}\left(\sqrt{\frac{E}{V_{0}+E}} \sinh u\right) & \text { if } & E>0
\end{array}\right.
\end{gathered}
$$

where $\bar{u}(E)=\cosh ^{-1} \sqrt{V_{0} /(-E)}$ in the first integral.

Solution :

(a) The figure is shown below. For $E<-V_{0}$ there are no Solutions. For $E>0$ the motion is unbound, neither librating nor rotating. Action-angle variables may be applied in the region $-V_{0}<E<0$.
(b) Using conservation of energy $E=\frac{p^{2}}{2 m}+V(x)$, the momentum is

$$
p=\sqrt{2 m(E-V(x))} .
$$

The action is

$$
\begin{aligned}
J & =\frac{1}{2 \pi} \oint p d q=\frac{2}{\pi} \sqrt{2 m} \int_{0}^{\bar{x}(E)} d x \sqrt{E-V(x)} \\
& =\frac{2 a}{\pi} \sqrt{2 m} \int_{0}^{\bar{u}(E)} d u \sqrt{E+V_{0} \operatorname{sech}^{2} u} \\
& =\sqrt{2 m a^{2}}\left(V_{0}^{1 / 2}-|E|^{1 / 2}\right) .
\end{aligned}
$$

Thus, from $H(J)=E$ we have

$$
H(J)=-\left(\frac{J}{\sqrt{2 m a^{2}}}-\sqrt{V_{0}}\right)^{2}
$$

where $\bar{x}(E)=a \bar{u}(E)=a \cosh ^{-1} \sqrt{V_{0} /|E|}$.
(c) We have

$$
W(x, J)=\int d q p=\sqrt{2 m} \int^{x} d x^{\prime} \sqrt{E-V\left(x^{\prime}\right)} .
$$

Then

$$
\begin{aligned}
\phi=\frac{\partial W}{\partial J} & =\frac{1}{2} \sqrt{2 m} \frac{\partial E}{\partial J} \int^{x} d x^{\prime}\left(E+V_{0} \operatorname{sech}^{2}\left(x^{\prime} / a\right)\right)^{-1 / 2} \\
& =\phi_{0}-\sin ^{-1}\left(\sqrt{\frac{|E|}{V_{0}-|E|}} \sinh (x / a)\right),
\end{aligned}
$$

where ϕ_{0} is an arbitrary constant.
(d) Since $\dot{\phi}=\frac{\partial H}{\partial J} \equiv \nu(J)$, we have $\phi(t)=\nu(J) t$ and

$$
x(t)=a \sinh ^{-1}\left(\sqrt{\frac{V_{0}-|E|}{|E|}} \sin \left(\omega t+\phi_{0}\right)\right),
$$

where

$$
\omega=-\nu(J)=-\frac{\partial E}{\partial J}=\sqrt{\frac{-2 E}{m a^{2}}} .
$$

Note that $x(t)$ oscillates between $\pm \bar{x}(E)$, where $\sinh (\bar{x} / a)=\sqrt{\left(V_{0}-|E|\right) /|E|}$, which is equivalent to $\cosh (\bar{x} / a)=\sqrt{V_{0} /|E|}$, as we found in part (b).
[2] A particle of mass m moves in the potential $U(q)=A|q|$. The Hamiltonian is thus

$$
H_{0}(q, p)=\frac{p^{2}}{2 m}+A|q|
$$

where A is a constant.
(a) List all independent conserved quantities.
(b) Show that the action variable J is related to the energy E according to $J=\beta E^{3 / 2} / A$, where β is a constant, involving m. Find β.
(c) Find $q=q(\phi, J)$ in terms of the action-angle variables.
(d) Find $H_{0}(J)$ and the oscillation frequency $\nu_{0}(J)$.
(e) The system is now perturbed by a quadratic potential, so that

$$
H(q, p)=\frac{p^{2}}{2 m}+A|q|+\epsilon B q^{2}
$$

where ϵ is a small dimensionless parameter. Compute the shift $\Delta \nu$ to lowest nontrivial order in ϵ, in terms of ν_{0} and constants.

Solution :

(a) The only conserved quantity is the Hamiltonian itself:

$$
\frac{d H_{0}}{d t}=\frac{\partial H_{0}}{\partial t}=0
$$

We write $H_{0}(q, p)=E$, the total energy. Clearly $E \geq 0$, and $E=0$ is particularly boring.
(b) Since the energy is conserved, we have

$$
p(q)= \pm \sqrt{2 m(E-A|q|)} .
$$

There are two turning points, at $q_{ \pm}(E)=E / A$. We can integrate to get the action:

$$
J=\frac{1}{2 \pi} \oint_{\mathcal{C}} p d q=\frac{2}{\pi} \int_{0}^{E / A} d q \sqrt{2 m(E-A q)}=\frac{4 \sqrt{2 m}}{3 \pi A} E^{3 / 2} \equiv \frac{\beta}{A} E^{3 / 2}
$$

with $\beta=4 \sqrt{2 m} / 3 \pi$. Note that the integral over a complete cycle is written above as four times the integral over a quarter cycle, i.e. from $q=0$ to $q=q_{+}(E)=E / A$.
(c) We first obtain the characteristic function $W(q, E(J))$. We have

$$
p=\frac{d W}{d q}= \pm \sqrt{2 m(E-A|q|)} \Rightarrow W(q)=\mp \frac{\pi \beta}{2 A}(E-A|q|)^{3 / 2} \operatorname{sgn}(q)
$$

where we've used $\frac{2}{3} \sqrt{2 m}=\frac{\pi}{2} \beta$. The angle variable is

$$
\phi=\frac{\partial W}{\partial J}=\frac{\partial W}{\partial E} \frac{\partial E}{\partial J}=\mp \frac{\pi \beta^{1 / 3}}{2 A^{1 / 3}} J^{-1 / 3}(E-A|q|)^{1 / 2} \operatorname{sgn}(q) .
$$

Squaring, we find

$$
\begin{aligned}
\left(\frac{2 \phi}{\pi}\right)^{2} & =\left(\frac{\beta}{A J}\right)^{2 / 3}(E-A|q|) \\
& =1-\left(\frac{\beta^{2} A}{J^{2}}\right)|q|
\end{aligned}
$$

Thus,

$$
q(\phi, J)=\frac{J^{2 / 3}}{\left(\beta^{2} A\right)^{1 / 3}}\left\{1-\frac{4}{\pi^{2}} \phi^{2}\right\} \quad \phi \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
$$

This is valid on the interval $\phi \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, where q is positive. In fact, this is all we need to solve the problem, but it is worthwhile writing down the continuation of this relation for the other half of the cycle, i.e. for $\phi \in\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]$. This can be done by inspection, taking advantage of the symmetry of the orbit \mathcal{C} :

$$
q(\phi, J)=\frac{J^{2 / 3}}{\left(\beta^{2} A\right)^{1 / 3}}\left\{\frac{4}{\pi^{2}}(\phi-\pi)^{2}-1\right\} \quad \phi \in\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right] .
$$

(d)We have

$$
H_{0}(J)=E=\beta^{-2 / 3} A^{2 / 3} J^{2 / 3}
$$

so

$$
\nu_{0}(J)=\frac{\partial H_{0}(J)}{\partial J}=\frac{2}{3} \beta^{-2 / 3} A^{2 / 3} J^{-1 / 3} .
$$

(e) Expressed in terms of the action-angle variables (ϕ, J), the perturbing Hamiltonian is $\epsilon H_{1}(\phi, J)$, with

$$
H_{1}(\phi, J)=B q^{2}=B \cdot\left(\frac{J^{2}}{\beta^{2} A}\right)^{2 / 3}\left(1-\frac{4 \phi^{2}}{\pi^{2}}\right)^{2}
$$

This holds for all ϕ provided we periodically extend the function ϕ^{2} from the interval $\phi \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ to the entire real line. Due to the parity $(q \rightarrow-q)$ symmetry, we can average over a quarter cycle, and we obtain

$$
\left\langle H_{1}(\phi, J)\right\rangle=B \cdot\left(\frac{J^{2}}{\beta^{2} A}\right)^{2 / 3} \int_{0}^{1} d s\left(1-s^{2}\right)^{2}=\frac{8 B}{15\left(\beta^{2} A\right)^{2 / 3}} J^{4 / 3}
$$

where we've substituted $s=\frac{2}{\pi} \phi$. The energy shift is $\Delta E=\epsilon\left\langle H_{1}\right\rangle$. Thus,

$$
\nu(J)=\nu_{0}(J)+\frac{32}{45} \epsilon \frac{B J^{1 / 3}}{\left(\beta^{2} A\right)^{3 / 2}}=\nu_{0}(J)+\epsilon \cdot \frac{2 \pi^{2} B}{15 m} \cdot \frac{1}{\nu_{0}(J)} .
$$

[3] Consider the nonlinear oscillator described by the Hamiltonian

$$
H(q, p)=\frac{p^{2}}{2 m}+\frac{1}{2} k q^{2}+\frac{1}{4} \epsilon a q^{4}+\frac{1}{4} \epsilon b p^{4}
$$

where ε is small.
(a) Find the perturbed frequencies $\nu(J)$ to lowest nontrivial order in ϵ.
(b) Find the perturbed frequencies $\nu(A)$ to lowest nontrivial order in ϵ, where A is the amplitude of the q motion.
(c) Find the relationships $\phi=\phi\left(\phi_{0}, J_{0}\right)$ and $J=J\left(\phi_{0}, J_{0}\right)$ to lowest nontrivial order in ϵ.

Solution :

With $k \equiv m \nu_{0}^{2}$, recall the AA variables

$$
\phi_{0}=\tan ^{-1}\left(\frac{m \nu_{0} q}{p}\right) \quad, \quad J_{0}=\frac{p^{2}}{2 m \nu_{0}}+\frac{1}{2} m \nu_{0} q^{2}
$$

Thus, $q=\left(2 J_{0} / m \nu_{0}\right)^{1 / 2} \sin \phi_{0}$ and $p=\left(2 m \nu_{0} J_{0}\right)^{1 / 2} \cos \phi_{0}$, so the Hamiltonian is

$$
\widetilde{H}\left(\phi_{0}, J_{0}\right)=\nu_{0} J_{0}+\epsilon \widetilde{H}_{1}\left(\phi_{0}, J_{0}\right)
$$

where

$$
\widetilde{H}_{1}\left(\phi_{0}, J_{0}\right)=\frac{a J_{0}^{2}}{m^{2} \nu_{0}^{2}} \sin ^{4} \phi_{0}+b m^{2} \nu_{0}^{2} J_{0}^{2} \cos ^{4} \phi_{0}
$$

(a) Averaging over ϕ_{0}, we have $\left\langle\sin ^{4} \phi_{0}\right\rangle=\left\langle\cos ^{4} \phi_{0}\right\rangle=\frac{3}{8}$, so

$$
E_{1}(J)=\left\langle\widetilde{H}_{1}\left(\phi_{0}, J\right)\right\rangle=\left(\frac{a}{m k}+b m k\right) \times \frac{3}{8} J^{2}
$$

The perturbed frequencies are $\nu(J)=\nu_{0}+\epsilon \nu_{1}$ where $\nu_{1}=\frac{\partial E_{1}}{\partial J}$. Thus,

$$
\nu(J)=\sqrt{\frac{k}{m}}+\left(\frac{a}{m k}+b m k\right) \times \frac{3}{4} \epsilon J .
$$

(b) We only need J to zeroth order in ϵ. Setting $p=0$ and $q=A$ gives $J=\frac{1}{2} m \nu_{0} A^{2}+\mathcal{O}(\epsilon)$, in which case

$$
\nu(A)=\sqrt{\frac{k}{m}}+\left(\frac{a}{m k}+b m k\right) \times \frac{3}{8} \epsilon m \nu_{0} A^{2}
$$

(c) Recall the desired type-II CT is generated by $S\left(\phi_{0}, J\right)=\phi_{0} J+\epsilon S_{1}\left(\phi_{0}, J\right)+\ldots$, with

$$
\frac{\partial S_{1}}{\partial \phi_{0}}=\frac{\left\langle\widetilde{H}_{1}\right\rangle-\widetilde{H}_{1}}{\nu_{0}(J)}
$$

Thus,

$$
\frac{\partial S_{1}}{\partial \phi_{0}}=\frac{a J^{2}}{m^{2} \nu_{0}^{3}}\left(\frac{3}{8}-\sin ^{4} \phi_{0}\right)+b m^{2} \nu_{0} J\left(\frac{3}{8}-\cos ^{4} \phi_{0}\right)
$$

Integrating, we have

$$
S_{1}\left(\phi_{0}, J\right)=\frac{a J^{2}}{m^{2} \nu_{0}^{3}}\left(\frac{1}{4} \sin \left(2 \phi_{0}\right)-\frac{1}{32} \sin \left(4 \phi_{0}\right)\right)-b m^{2} \nu_{0} J^{2}\left(\frac{1}{4} \sin \left(2 \phi_{0}\right)+\frac{1}{32} \sin \left(4 \phi_{0}\right)\right) .
$$

The constant may be set to zero as it leads to a constant shift of the angle variable ϕ. Thus, we have

$$
\begin{aligned}
J_{0} & =J+\epsilon \frac{\partial S_{1}}{\partial \phi_{0}}+\mathcal{O}\left(\epsilon^{2}\right) \\
& =J+\left(\frac{a-b m^{4} \nu_{0}^{4}}{2 m^{2} \nu_{0}^{3}}\right) \epsilon J^{2} \cos \left(2 \phi_{0}\right)-\left(\frac{a+b m^{2} \nu_{0}^{4}}{8 m^{2} \nu_{0}^{3}}\right) \epsilon J^{2} \cos \left(4 \phi_{0}\right)+\mathcal{O}\left(\epsilon^{2}\right) .
\end{aligned}
$$

Thus,

$$
J=J_{0}-\left(\frac{a-b m^{4} \nu_{0}^{4}}{2 m^{2} \nu_{0}^{3}}\right) \epsilon J_{0}^{2} \cos \left(2 \phi_{0}\right)+\left(\frac{a+b m^{2} \nu_{0}^{4}}{8 m^{2} \nu_{0}^{3}}\right) \epsilon J_{0}^{2} \cos \left(4 \phi_{0}\right)+\mathcal{O}\left(\epsilon^{2}\right) .
$$

We then have

$$
\begin{aligned}
\phi & =\phi_{0}+\epsilon \frac{\partial S_{1}}{\partial J}+\mathcal{O}\left(\epsilon^{2}\right) \\
& =\phi_{0}+\left(\frac{a-b m^{4} \nu_{0}^{4}}{2 m^{2} \nu_{0}^{3}}\right) \epsilon J_{0} \sin \left(2 \phi_{0}\right)-\left(\frac{a+b m^{2} \nu_{0}^{4}}{16 m^{2} \nu_{0}^{3}}\right) \epsilon J_{0} \sin \left(4 \phi_{0}\right)+\mathcal{O}\left(\epsilon^{2}\right) .
\end{aligned}
$$

