PHYSICS 200B : CLASSICAL MECHANICS HOMEWORK SET \#4

[1] Blasius' theorem says that the force per unit length of a body of constant cross-sectional profile Σ is given by

$$
\overline{\mathcal{F}}=\mathcal{F}_{x}-i \mathcal{F}_{y}=\frac{i}{2} \rho \oint_{\mathcal{C}} d z\left(\frac{d W}{d z}\right)^{2}
$$

where $\mathcal{C}=\partial \Sigma$ is a closed curve which traces the boundary of Σ, and $W(z)$ is the complex potential.

Consider a 2D flow with stream function $\psi(x, y)=A(x-c) y$, where A and c are real constants. A circular cylinder of radius a is introduced into this flow, with its center at the origin. Find $W(z)$ for the resulting flow. Use Blasius' theorem to calculate the force per unit length exerted on the cylinder.
[2] Show that the Joukowski transformation $Z=z+a^{2} / z$ can be written in the form

$$
\frac{Z-2 a}{Z+2 a}=\left(\frac{z-a}{z+a}\right)^{2}
$$

so that

$$
\begin{equation*}
\arg (Z-2 a)-\arg (Z+2 a)=2\{\arg (z-a)-\arg (z+a)\} . \tag{1}
\end{equation*}
$$

Consider the circle in the (x, y) plane which passes through $z=-a$ and a with its center at $z_{0}=i a \operatorname{ctn} \beta$. Show that the above transformation takes this circle into a circular arc between $Z=-2 a$ and $Z=+2 a$, with subtended angle 2β (see figure). Obtain an expression for the complex potential in the Z plane when the flow is uniform at speed V and parallel to the real axis. Show that the velocity will be finite at both the leading and tailing edges if $\Gamma--4 \pi V a \operatorname{ctn} \beta$.

Figure 1: Geometry of the circle and its image in problem 2.
[3] Show that an array of N identical point vortices of circulation Γ, placed equally about a circle of radius a, will rotate at a constant angular frequency Ω. Find the value of Ω.
[4] Consider a large circular disk of radius R executing a prescribed angular motion $\theta(t)$. The disk is immersed in a fluid under conditions of constant pressure. Let the plane of the disk lie at $z=0$. Assume that the fluid velocity takes the form

$$
\begin{equation*}
v_{\phi}(r, \phi, z, t)=r \Omega(z, t), \tag{2}
\end{equation*}
$$

with $v_{r}=v_{z}=0$.
(a) Write down the Navier-Stokes equations for the fluid. Assume you can neglect the $(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v}$ term. (Under what conditions is this true?) Show that you obtain the diffusion equation. What are the boundary conditions on the fluid motion?
(b) Our goal is next to find a complete solution to $\Omega(z, t)$ in terms of the function $\theta(t)$. To this end, we perform the following analysis. Define the spatial Laplace transform,

$$
\begin{equation*}
\check{\Omega}_{\mathrm{L}}(\kappa, t) \equiv \int_{0}^{\infty} d z e^{-\kappa z} \Omega(z, t) \tag{3}
\end{equation*}
$$

You may assume in this problem that the fluid motion is symmetric about $z=0$, i.e. $\Omega(z, t)=\Omega(-z, t)$, so we only have to consider the region $z \geq 0$. The inverse Laplace transform is

$$
\begin{equation*}
\Omega(z, t)=\int_{c-i \infty}^{c+i \infty} \frac{d \kappa}{2 \pi i} e^{+\kappa z} \check{\Omega}_{\mathrm{L}}(\kappa, t) \tag{4}
\end{equation*}
$$

where the contour lies to the left of any branch cut or singularity on the line $\operatorname{Im}(\kappa)=0$. Later on we will see that we can take $c=0$, so the contour lies along the axis $\operatorname{Re}(\kappa)=0$. Show directly that

$$
\begin{equation*}
\left(\partial_{t}-\nu \kappa^{2}\right) \check{\Omega}_{\mathrm{L}}(\kappa, t)=F_{\kappa}(t), \tag{5}
\end{equation*}
$$

where the function $F_{\kappa}(t)$ on the RHS depends on $\Omega(0, t)$ and $\Omega^{\prime}(0, t)$ (prime denotes differentiation with respect to z). Find $F_{\kappa}(t)$.
(c) Integrate the above first order equation from some arbitrary initial time $t=t_{0}$ to final time t and obtain $\Omega(z, t)$ in terms of the functions $\Omega\left(z, t_{0}\right), \Omega(0, t)$, and $\Omega^{\prime}(0, t)$. Show that the term involving $\Omega\left(z, t_{0}\right)$ is a transient which decays to zero in the limit $t_{0} \rightarrow-\infty$. Dropping the transient, performing the inverse Laplace transform, and rotating the κ contour so that $\kappa=i k$, where k runs along the real axis, show that

$$
\begin{equation*}
\Omega(z, t)=-\nu \int_{-\infty}^{\infty} \frac{d k}{2 \pi} e^{i k z} \int_{-\infty}^{t} d t^{\prime} e^{-\nu k^{2}\left(t-t^{\prime}\right)}\left[\Omega^{\prime}\left(0, t^{\prime}\right)+i k \Omega\left(0, t^{\prime}\right)\right] . \tag{6}
\end{equation*}
$$

(d) Find the total torque on the disk $N(t)$. You will need to integrate $\boldsymbol{r} \times \boldsymbol{f}$ over the surface of the disk, using the viscous stress tensor of the fluid. Show that

$$
\begin{equation*}
N_{\text {fluid }}(t)=\pi \eta R^{4} \Omega^{\prime}(0, t), \tag{7}
\end{equation*}
$$

where $\eta=\rho \nu$ is the shear viscosity.
(e) By going to Fourier space in frequency, the k integral can be done. Show that

$$
\begin{equation*}
\hat{\Omega}(z, \omega)=-\frac{i e^{i k_{+} z}}{k_{+}-k_{-}}\left\{\hat{\Omega}^{\prime}(0, \omega)+i k_{+} \hat{\Omega}(0, \omega)\right\} \tag{8}
\end{equation*}
$$

where $k_{ \pm}= \pm e^{i \pi / 4} \sqrt{\omega / \nu}$. Thus, setting $z \rightarrow 0^{+}$, we obtain

$$
\begin{equation*}
\hat{\Omega}^{\prime}(0, \omega)=-i k_{-} \hat{\Omega}(0, \omega) . \tag{9}
\end{equation*}
$$

(f) Suppose the disk is suspended from a torsional fiber. Let the disk's moment of inertia be I and the restoring torque due to the fiber be $N_{\text {fiber }}=-K \theta$. Show that the equation for the oscillation frequency of the disk is

$$
\begin{equation*}
\omega^{2}+e^{i \pi / 4} \omega_{\nu}^{1 / 2} \omega^{3 / 2}-\omega_{0}^{2}=0, \tag{10}
\end{equation*}
$$

where $\omega_{0}=(K / I)^{1 / 2}$, and

$$
\begin{equation*}
\omega_{\nu}=\frac{\pi^{2} \rho^{2} R^{8} \nu}{I^{2}} . \tag{11}
\end{equation*}
$$

Analyze this equation in the limits $\omega_{0} \ll \omega_{\nu}$ and $\omega_{0} \gg \omega_{\nu}$, and find the frequency of damped oscillations. Hint: The former case is easy - simply neglect the ω^{2} term. For the latter case, perturb about the $\omega_{\nu}=0$ solutions $\omega= \pm \omega_{0}$. Find the real and imaginary parts of the oscillation frequency ω in each case.

Note: There is an easier way to solve this problem, if we use some intuition. The diffusion equation $\Omega_{t}=\nu \Omega_{z z}$ and the boundary conditions are linear, which suggests we write our solution as

$$
\begin{equation*}
\Omega(z, t)=A(\omega) e^{-Q|z|} e^{-i \omega t} . \tag{12}
\end{equation*}
$$

This is a solution to the diffusion equation if $\nu Q^{2}=-i \omega$. Of the two roots for $Q(\omega)$, we need the one with the positive real part, so $Q=e^{-i \pi / 4} \sqrt{\omega / \nu}$. Setting $z=0$ and using $\dot{\Omega}=\theta$, we find $A(\omega)=-i \omega \hat{\theta}(\omega)$. The Fourier component of the viscous torque on the disk is then

$$
\begin{align*}
\hat{N}_{\text {fluid }}(\omega) & =\pi \rho \nu R^{4} \cdot(-Q)(-i \omega) \hat{\theta}(\omega) \tag{13}\\
& =e^{i \pi / 4} \pi \rho R^{4} \nu^{1 / 2} \omega^{3 / 2} \hat{\theta}(\omega), \tag{14}
\end{align*}
$$

which when plugged into the equation of motion for the disk yields the above equation for the oscillation frequency.

