PHYSICS 200B : CLASSICAL MECHANICS
HOMEWORK SET #4

[1] Blasius’ theorem says that the force per unit length of a body of constant cross-sectional
profile X' is given by
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where C = 0X is a closed curve which traces the boundary of X, and W (z) is the complex

potential.

Consider a 2D flow with stream function ¢ (z,y) = A(z — ¢)y, where A and ¢ are real
constants. A circular cylinder of radius a is introduced into this flow, with its center at the
origin. Find W (z) for the resulting flow. Use Blasius’ theorem to calculate the force per
unit length exerted on the cylinder.

[2] Show that the Joukowski transformation Z = z + a?/z can be written in the form
Z—2a (z—a >
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arg(Z — 2a) — arg(Z + 2a) = 2{arg(z —a)—arg(z+ a)} . (1)

so that

Consider the circle in the (z,y) plane which passes through z = —a and @ with its center
at z; = tactn 8. Show that the above transformation takes this circle into a circular arc
between Z = —2a and Z = +2a, with subtended angle 23 (see figure). Obtain an expression
for the complex potential in the Z plane when the flow is uniform at speed V and parallel
to the real axis. Show that the velocity will be finite at both the leading and tailing edges
if ' — —4nVactnj3.
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Figure 1: Geometry of the circle and its image in problem 2.

[3] Show that an array of N identical point vortices of circulation I, placed equally about
a circle of radius a, will rotate at a constant angular frequency (2. Find the value of (2.



[4] Consider a large circular disk of radius R executing a prescribed angular motion 6(t).
The disk is immersed in a fluid under conditions of constant pressure. Let the plane of the
disk lie at z = 0. Assume that the fluid velocity takes the form

with v, = v, = 0.

(a) Write down the Navier-Stokes equations for the fluid. Assume you can neglect the
(v-V)v term. (Under what conditions is this true?) Show that you obtain the diffusion
equation. What are the boundary conditions on the fluid motion?

(b) Our goal is next to find a complete solution to {2(z,t) in terms of the function 6(t). To
this end, we perform the following analysis. Define the spatial Laplace transform,

[e.9]

O (k,t) = /dz e " (z,1) . (3)
0
You may assume in this problem that the fluid motion is symmetric about z = 0, i.e.

2(z,t) = £2(—z,t), so we only have to consider the region z > 0. The inverse Laplace
transform is

c+100
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where the contour lies to the left of any branch cut or singularity on the line Im (k) = 0.
Later on we will see that we can take ¢ = 0, so the contour lies along the axis Re (k) = 0.
Show directly that .
(at - V"iz) QL(Hat) = Fn(t) ) (5)

where the function F, (¢) on the RHS depends on 2(0,t) and 2'(0,¢) (prime denotes differ-
entiation with respect to z). Find F, (t).

(c) Integrate the above first order equation from some arbitrary initial time t = ¢, to
final time ¢ and obtain §2(z,t) in terms of the functions 2(z,t,), £2(0,t), and £2(0,?).
Show that the term involving 2(z,t,) is a transient which decays to zero in the limit
t, — —oo. Dropping the transient, performing the inverse Laplace transform, and rotating
the k contour so that k = ik, where k runs along the real axis, show that

o] t
2(z,t) = —z//g e“fz/dt'e—vk%—m [Q’(O,t’) +ik02(0,t")| . (6)
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(d) Find the total torque on the disk N(¢). You will need to integrate r x f over the surface
of the disk, using the viscous stress tensor of the fluid. Show that

Nyya(t) = mn RY 2'(0,t) (7)



where n = pv is the shear viscosity.

(e) By going to Fourier space in frequency, the k integral can be done. Show that

~ z‘eik+z -, . ~
O(z,w) = S {9 (0,w) + zk+9(0,w)} , (8)

where kL =+ eim/4 Vw/v. Thus, setting 2 — 07, we obtain
2(0,w) = —ik_02(0,w) . (9)
(£) Suppose the disk is suspended from a torsional fiber. Let the disk’s moment of inertia

be I and the restoring torque due to the fiber be Ny - = —K6. Show that the equation
for the oscillation frequency of the disk is

w? ™AW R =0, (10)
where w, = (K/I)'/?, and
w2 p’R8 v

Analyze this equation in the limits w, < w, and w;, > w,, and find the frequency of damped
oscillations. Hint: The former case is easy — simply neglect the w? term. For the latter
case, perturb about the w, = 0 solutions w = *w,. Find the real and imaginary parts of
the oscillation frequency w in each case.

Note: There is an easier way to solve this problem, if we use some intuition. The diffusion
equation (2, = v{2., and the boundary conditions are linear, which suggests we write our
solution as

Q(z,t) = A(w) e @l g7t (12)

This is a solution to the diffusion equation if vQ? = —iw. Of the two roots for Q(w), we

need the one with the positive real part, so Q = e~/ 4 /w/v. Setting z = 0 and using

2 =0, we find A(w) = —iwf(w). The Fourier component of the viscous torque on the disk
is then

Nyuia (@) = mprR" - (~Q)(~iw) f(w) (13)

=™ apRWY2W2 G(w) | (14)

which when plugged into the equation of motion for the disk yields the above equation for
the oscillation frequency.



