
PHYSICS 200B : CLASSICAL MECHANICS
HOMEWORK SET #4

[1] Blasius’ theorem says that the force per unit length of a body of constant cross-sectional
profile Σ is given by

F = Fx − iFy = i
2 ρ

∮

C

dz

(

dW

dz

)2

,

where C = ∂Σ is a closed curve which traces the boundary of Σ, and W (z) is the complex
potential.

Consider a 2D flow with stream function ψ(x, y) = A(x − c)y, where A and c are real
constants. A circular cylinder of radius a is introduced into this flow, with its center at the
origin. Find W (z) for the resulting flow. Use Blasius’ theorem to calculate the force per
unit length exerted on the cylinder.

[2] Show that the Joukowski transformation Z = z + a2/z can be written in the form

Z − 2a

Z + 2a
=

(

z − a

z + a

)2

,

so that
arg(Z − 2a)− arg(Z + 2a) = 2

{

arg(z − a)− arg(z + a)
}

. (1)

Consider the circle in the (x, y) plane which passes through z = −a and a with its center
at z0 = ia ctn β. Show that the above transformation takes this circle into a circular arc
between Z = −2a and Z = +2a, with subtended angle 2β (see figure). Obtain an expression
for the complex potential in the Z plane when the flow is uniform at speed V and parallel
to the real axis. Show that the velocity will be finite at both the leading and tailing edges
if Γ −−4πV a ctn β.

Figure 1: Geometry of the circle and its image in problem 2.

[3] Show that an array of N identical point vortices of circulation Γ , placed equally about
a circle of radius a, will rotate at a constant angular frequency Ω. Find the value of Ω.
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[4] Consider a large circular disk of radius R executing a prescribed angular motion θ(t).
The disk is immersed in a fluid under conditions of constant pressure. Let the plane of the
disk lie at z = 0. Assume that the fluid velocity takes the form

vφ(r, φ, z, t) = r Ω(z, t) , (2)

with vr = vz = 0.

(a) Write down the Navier-Stokes equations for the fluid. Assume you can neglect the
(v ·∇)v term. (Under what conditions is this true?) Show that you obtain the diffusion
equation. What are the boundary conditions on the fluid motion?

(b) Our goal is next to find a complete solution to Ω(z, t) in terms of the function θ(t). To
this end, we perform the following analysis. Define the spatial Laplace transform,

Ω̌L(κ, t) ≡

∞
∫

0

dz e−κz Ω(z, t) . (3)

You may assume in this problem that the fluid motion is symmetric about z = 0, i.e.

Ω(z, t) = Ω(−z, t), so we only have to consider the region z ≥ 0. The inverse Laplace
transform is

Ω(z, t) =

c+i∞
∫

c−i∞

dκ

2πi
e+κz Ω̌L(κ, t) (4)

where the contour lies to the left of any branch cut or singularity on the line Im (κ) = 0.
Later on we will see that we can take c = 0, so the contour lies along the axis Re (κ) = 0.
Show directly that

(

∂t − νκ2
)

Ω̌L(κ, t) = Fκ(t) , (5)

where the function Fκ(t) on the RHS depends on Ω(0, t) and Ω′(0, t) (prime denotes differ-
entiation with respect to z). Find Fκ(t).

(c) Integrate the above first order equation from some arbitrary initial time t = t0 to

final time t and obtain Ω(z, t) in terms of the functions Ω(z, t0), Ω(0, t), and Ω′(0, t).

Show that the term involving Ω(z, t0) is a transient which decays to zero in the limit

t0 → −∞. Dropping the transient, performing the inverse Laplace transform, and rotating
the κ contour so that κ = ik, where k runs along the real axis, show that

Ω(z, t) = −ν

∞
∫

−∞

dk

2π
eikz

t
∫

−∞

dt′ e−νk2(t−t′)
[

Ω′(0, t′) + ikΩ(0, t′)
]

. (6)

(d) Find the total torque on the disk N(t). You will need to integrate r×f over the surface
of the disk, using the viscous stress tensor of the fluid. Show that

Nfluid(t) = πη R4Ω′(0, t) , (7)
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where η = ρ ν is the shear viscosity.

(e) By going to Fourier space in frequency, the k integral can be done. Show that

Ω̂(z, ω) = −
i eik+z

k+ − k−

{

Ω̂′(0, ω) + ik+Ω̂(0, ω)
}

, (8)

where k± = ± eiπ/4
√

ω/ν. Thus, setting z → 0+, we obtain

Ω̂′(0, ω) = −ik−Ω̂(0, ω) . (9)

(f) Suppose the disk is suspended from a torsional fiber. Let the disk’s moment of inertia
be I and the restoring torque due to the fiber be Nfiber = −Kθ. Show that the equation
for the oscillation frequency of the disk is

ω2 + eiπ/4 ω1/2
ν ω3/2 − ω2

0 = 0 , (10)

where ω0 = (K/I)1/2, and

ων =
π2ρ2R8 ν

I2
. (11)

Analyze this equation in the limits ω0 ≪ ων and ω0 ≫ ων , and find the frequency of damped
oscillations. Hint: The former case is easy – simply neglect the ω2 term. For the latter
case, perturb about the ων = 0 solutions ω = ±ω0. Find the real and imaginary parts of
the oscillation frequency ω in each case.

Note: There is an easier way to solve this problem, if we use some intuition. The diffusion
equation Ωt = νΩzz and the boundary conditions are linear, which suggests we write our
solution as

Ω(z, t) = A(ω) e−Q|z| e−iωt . (12)

This is a solution to the diffusion equation if νQ2 = −iω. Of the two roots for Q(ω), we
need the one with the positive real part, so Q = e−iπ/4

√

ω/ν. Setting z = 0 and using

Ω̇ = θ, we find A(ω) = −iω θ̂(ω). The Fourier component of the viscous torque on the disk
is then

N̂fluid(ω) = πρνR4 · (−Q)(−iω) θ̂(ω) (13)

= eiπ/4 πρR4ν1/2ω3/2 θ̂(ω) , (14)

which when plugged into the equation of motion for the disk yields the above equation for
the oscillation frequency.
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