PHYSICS 200B : CLASSICAL MECHANICS HOMEWORK SET #3

[1] Consider the matrix

$$M = \begin{pmatrix} 4 & 4 \\ -1 & 9 \end{pmatrix}$$

- (a) Find the characteristic polynomial $P(\lambda) = \det(\lambda \mathbb{I} M)$ and the eigenvalues.
- (b) For each eigenvalue λ_{α} , find the associated right eigenvector R_i^{α} and left eigenvector L_i^{α} . Normalize your eigenvectors so that $\langle L^{\alpha} | R^{\beta} \rangle = \delta_{\alpha\beta}$.
- (c) Show explicitly that $M_{ij} = \sum_{\alpha} \lambda_{\alpha} R_i^{\alpha} L_j^{\alpha}$.

[2] Consider a three-state system with the following transition rates:

 $W_{12} = 0 \quad , \quad W_{21} = \gamma \quad , \quad W_{23} = 0 \quad , \quad W_{32} = 3\gamma \quad , \quad W_{13} = \gamma \quad , \quad W_{31} = \gamma \quad .$

- (a) Find the matrix Γ such that $\dot{P}_i = -\Gamma_{ij}P_j$.
- (b) Find the equilibrium distribution P_i^{eq} .
- (c) Does this system satisfy detailed balance? Why or why not?

[3] A Markov chain is a process which describes transitions of a discrete stochastic variable occurring at discrete times. Let $P_i(t)$ be the probability that the system is in state *i* at time *t*. The evolution equation is

$$P_i(t+1) = \sum_j Q_{ij} P_j(t) \quad .$$

The transition matrix Q_{ij} satisfies $\sum_i Q_{ij} = 1$ so that the total probability $\sum_i P_i(t)$ is conserved. The element Q_{ij} is the conditional probability that for the system to evolve to state *i* at time t + 1 given that it was in state *j* at time *t*. Now consider a group of Physics graduate students consisting of three theorists and four experimentalists. Within each group, the students are to be regarded as indistinguishable. Together, the students rent two apartments, A and B. Initially the three theorists live in A and the four experimentalists live in B. Each month, a random occupant of A and a random occupant of B exchange domiciles. Compute the transition matrix Q_{ij} for this Markov chain, and compute the average fraction of the time that B contains two theorists and two experimentalists, averaged over the effectively infinite time it takes the students to get their degrees. *Hint:* Q is a 4×4 matrix.

[4] Consider a modified version of the Kac ring model where each spin exists in one of three states: A, B, or C. The flippers rotate the internal states cyclically: $A \rightarrow B \rightarrow C \rightarrow A$.

- (a) What is the Poincaré recurrence time for this system? *Hint:* the answer depends on whether or not the total number of flippers is a multiple of 3.
- (b) Simulate the system numerically. Choose a ring size on the order of N = 10,000 and investigate a few flipper densities: x = 0.001, x = 0.01, x = 0.1, x = 0.99. Remember that the flippers are located randomly at the start, but do not move as the spins evolve. Starting from a configuration where all the spins are in the A state, plot the probabilities $p_A(t)$, $p_B(t)$, and $p_C(t)$ versus the discrete time coordinate t, with t ranging from 0 to the recurrence time. If you can, for each value of x, plot the three probabilities in different colors or line characteristics (e.g. solid, dotted, dashed) on the same graph.
- (c) Let's call $a_t = p_A(t)$, etc. Explain in words why the Stosszahlansatz results in the equations

$$a_{t+1} = (1 - x) a_t + x c_t$$

$$b_{t+1} = (1 - x) b_t + x a_t$$

$$c_{t+1} = (1 - x) c_t + x b_t$$

This describes what is known as a *Markov process*, which is governed by coupled equations of the form $P_i(t+1) = \sum_j Q_{ij} P_j(t)$, where Q is the *transition matrix*. Find the 3×3 transition matrix for this Markov process.

- (d) Show that the total probability is conserved by a Markov process if $\sum_i Q_{ij} = 1$ and verify this is the case for the equations in (c).
- (e) One can then eliminate $c_t = 1 a_t b_t$ and write these as two coupled equations. Show that if we define

$$\tilde{a}_t \equiv a_t - \frac{1}{3}$$
 , $\tilde{b}_t \equiv b_t - \frac{1}{3}$, $\tilde{c}_t \equiv c_t - \frac{1}{3}$

that we can write

$$\begin{pmatrix} \tilde{a}_{t+1} \\ \tilde{b}_{t+1} \end{pmatrix} = R \begin{pmatrix} \tilde{a}_t \\ \tilde{b}_t \end{pmatrix} \quad ,$$

and find the 2×2 matrix R. Note that this is *not* a Markov process in A and B, since total probability for the A and B states is not itself conserved. Show that the eigenvalues of R form a complex conjugate pair. Find the amplitude and phase of these eigenvalues. Show that the amplitude never exceeds unity.

(f) The fact that the eigenvalues of R are complex means that the probabilities should *oscillate* as they decay to their equilibrium values $p_{\rm A} = p_{\rm B} = p_{\rm C} = \frac{1}{3}$. Can you see this in your simulations?