PHYSICS 200B : CLASSICAL MECHANICS HOMEWORK SET \#3

[1] Consider the matrix

$$
M=\left(\begin{array}{cc}
4 & 4 \\
-1 & 9
\end{array}\right)
$$

(a) Find the characteristic polynomial $P(\lambda)=\operatorname{det}(\lambda \mathbb{I}-M)$ and the eigenvalues.
(b) For each eigenvalue λ_{α}, find the associated right eigenvector R_{i}^{α} and left eigenvector L_{i}^{α}. Normalize your eigenvectors so that $\left\langle L^{\alpha} \mid R^{\beta}\right\rangle=\delta_{\alpha \beta}$.
(c) Show explicitly that $M_{i j}=\sum_{\alpha} \lambda_{\alpha} R_{i}^{\alpha} L_{j}^{\alpha}$.
[2] Consider a three-state system with the following transition rates:

$$
W_{12}=0 \quad, \quad W_{21}=\gamma \quad, \quad W_{23}=0 \quad, \quad W_{32}=3 \gamma \quad, \quad W_{13}=\gamma \quad, \quad W_{31}=\gamma .
$$

(a) Find the matrix Γ such that $\dot{P}_{i}=-\Gamma_{i j} P_{j}$.
(b) Find the equilibrium distribution P_{i}^{eq}.
(c) Does this system satisfy detailed balance? Why or why not?
[3] A Markov chain is a process which describes transitions of a discrete stochastic variable occurring at discrete times. Let $P_{i}(t)$ be the probability that the system is in state i at time t. The evolution equation is

$$
P_{i}(t+1)=\sum_{j} Q_{i j} P_{j}(t)
$$

The transition matrix $Q_{i j}$ satisfies $\sum_{i} Q_{i j}=1$ so that the total probability $\sum_{i} P_{i}(t)$ is conserved. The element $Q_{i j}$ is the conditional probability that for the system to evolve to state i at time $t+1$ given that it was in state j at time t. Now consider a group of Physics graduate students consisting of three theorists and four experimentalists. Within each group, the students are to be regarded as indistinguishable. Together, the students rent two apartments, A and B. Initially the three theorists live in A and the four experimentalists live in B. Each month, a random occupant of A and a random occupant of B exchange domiciles. Compute the transition matrix $Q_{i j}$ for this Markov chain, and compute the average fraction of the time that B contains two theorists and two experimentalists, averaged over the effectively infinite time it takes the students to get their degrees. Hint: Q is a 4×4 matrix.
[4] Consider a modified version of the Kac ring model where each spin exists in one of three states: A, B, or C . The flippers rotate the internal states cyclically: $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{A}$.
(a) What is the Poincaré recurrence time for this system? Hint: the answer depends on whether or not the total number of flippers is a multiple of 3 .
(b) Simulate the system numerically. Choose a ring size on the order of $N=10,000$ and investigate a few flipper densities: $x=0.001, x=0.01, x=0.1, x=0.99$. Remember that the flippers are located randomly at the start, but do not move as the spins evolve. Starting from a configuration where all the spins are in the A state, plot the probabilities $p_{\mathrm{A}}(t), p_{\mathrm{B}}(t)$, and $p_{\mathrm{C}}(t)$ versus the discrete time coordinate t, with t ranging from 0 to the recurrence time. If you can, for each value of x, plot the three probabilities in different colors or line characteristics (e.g. solid, dotted, dashed) on the same graph.
(c) Let's call $a_{t}=p_{\mathrm{A}}(t)$, etc. Explain in words why the Stosszahlansatz results in the equations

$$
\begin{aligned}
a_{t+1} & =(1-x) a_{t}+x c_{t} \\
b_{t+1} & =(1-x) b_{t}+x a_{t} \\
c_{t+1} & =(1-x) c_{t}+x b_{t} .
\end{aligned}
$$

This describes what is known as a Markov process, which is governed by coupled equations of the form $P_{i}(t+1)=\sum_{j} Q_{i j} P_{j}(t)$, where Q is the transition matrix. Find the 3×3 transition matrix for this Markov process.
(d) Show that the total probability is conserved by a Markov process if $\sum_{i} Q_{i j}=1$ and verify this is the case for the equations in (c).
(e) One can then eliminate $c_{t}=1-a_{t}-b_{t}$ and write these as two coupled equations. Show that if we define

$$
\tilde{a}_{t} \equiv a_{t}-\frac{1}{3} \quad, \quad \tilde{b}_{t} \equiv b_{t}-\frac{1}{3} \quad, \quad \tilde{c}_{t} \equiv c_{t}-\frac{1}{3}
$$

that we can write

$$
\binom{\tilde{a}_{t+1}}{\tilde{b}_{t+1}}=R\binom{\tilde{a}_{t}}{\tilde{b}_{t}},
$$

and find the 2×2 matrix R. Note that this is not a Markov process in A and B, since total probability for the A and B states is not itself conserved. Show that the eigenvalues of R form a complex conjugate pair. Find the amplitude and phase of these eigenvalues. Show that the amplitude never exceeds unity.
(f) The fact that the eigenvalues of R are complex means that the probabilities should oscillate as they decay to their equilibrium values $p_{\mathrm{A}}=p_{\mathrm{B}}=p_{\mathrm{C}}=\frac{1}{3}$. Can you see this in your simulations?

