PHYSICS 200B : CLASSICAL MECHANICS HOMEWORK SET \#2

[1] Consider the standard map on the unit torus,

$$
\begin{aligned}
& x_{n+1}=x_{n}+y_{n} \bmod 1 \\
& y_{n+1}=y_{n}+\kappa \sin \left(2 \pi x_{n+1}\right) \bmod 1 .
\end{aligned}
$$

Find all the fixed points and identify their stability as a function of the control parameter κ.
[2] Write a computer program to iterate the map from problem [1]. For each value of κ you consider, iterate starting from N^{2} initial conditions $\left(x_{0}, y_{0}\right)=(j / N, k / N)$, where j and k each run from 0 to $N-1$. You can take $N=10$.
(a) By experimenting, see if you can find the value of κ where there are no unbroken KAM tori which span the x-direction $x \in[0,1]$.
(b) Next, consider the standard map on the cylinder,

$$
\begin{aligned}
& x_{n+1}=x_{n}+y_{n} \bmod 1 \\
& y_{n+1}=y_{n}+\kappa \sin \left(2 \pi x_{n+1}\right),
\end{aligned}
$$

where the y variable now may take values on the entire real line. For each given κ, plot $\left\langle y_{n}^{2}\right\rangle$ versus n, where the average is over the N^{2} initial conditions. Assuming the evolution is diffusive in the chaotic regime, compute the diffusion constant $D(\kappa)$ from the formula $\left\langle y_{n}^{2}\right\rangle=2 D n$. Plot $D(\kappa)$ versus κ over the range $\kappa \in[1,10]$. Compare to the value from the quasilinear approximation, $D_{\text {ql }}=\frac{1}{4} \kappa^{2}$.
[3] For the logistic map $x_{n+1}=f\left(x_{n}\right)$ with $f(x)=r x(1-x)$, plot the functions $f^{(n)}(x)$ for $n=1,2$, and 4 and plot the intersections of $y=f^{(n)}(x)$ with $y=x$. Show how varying the control parameter r results in bifurcations corresponding to the appearance of 2-cycles and 4 -cycles.

