
Contents

Contents i

List of Figures ii

8 Solitons 1

8.1 The Korteweg-deVries Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

8.1.1 KdV solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

8.1.2 Periodic solutions : soliton trains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

8.1.3 Interlude: primer on elliptic functions . . . . . . . . . . . . . . . . . . . . . . . . . 5

8.1.4 The soliton lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

8.1.5 N -soliton solutions to KdV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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Chapter 8

Solitons

Starting in the 19th century, researchers found that certain nonlinear PDEs admit exact solutions in the
form of solitary waves, known today as solitons. There’s a famous story of the Scottish engineer, John
Scott Russell, who in 1834 observed a hump-shaped disturbance propagating undiminished down a
canal. In 1844, he published this observation1, writing,

“I was observing the motion of a boat which was rapidly drawn along a narrow channel
by a pair of horses, when the boat suddenly stopped - not so the mass of water in the channel
which it had put in motion; it accumulated round the prow of the vessel in a state of violent
agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming the
form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which
continued its course along the channel apparently without change of form or diminution of
speed. I followed it on horseback, and overtook it still rolling on at a rate of some eight or
nine miles an hour, preserving its original figure some thirty feet long and a foot to a foot and
a half in height. Its height gradually diminished, and after a chase of one or two miles I lost
it in the windings of the channel. Such, in the month of August 1834, was my first chance
interview with that singular and beautiful phenomenon which I have called the Wave of
Translation”.

Russell was so taken with this phenomenon that subsequent to his discovery he built a thirty foot wave
tank in his garden to reproduce the effect, which was precipitated by an initial sudden displacement of
water. Russell found empirically that the velocity obeyed v ≃

√
g(h + um) , where h is the average depth

of the water and um is the maximum vertical displacement of the wave. He also found that a sufficiently
large initial displacement would generate two solitons, and, remarkably, that solitons can pass through
one another undisturbed. It was not until 1890 that Korteweg and deVries published a theory of shallow
water waves and obtained a mathematical description of Russell’s soliton.

Nonlinear PDEs which admit soliton solutions typically contain two important classes of terms which
feed off each other to produce the effect:

DISPERSION −⇀↽− NONLINEARITY
1J. S. Russell, Report on Waves, 14th Meeting of the British Association for the Advancement of Science, pp. 311-390.
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2 CHAPTER 8. SOLITONS

The effect of dispersion is to spread out pulses, while the effect of nonlinearities is, often, to draw in
the disturbances. We saw this in the case of front propagation, where dispersion led to spreading and
nonlinearity to steepening.

In the 1970’s it was realized that several of these nonlinear PDEs yield entire families of exact solutions,
and not just isolated solitons. These families contain solutions with arbitrary numbers of solitons of
varying speeds and amplitudes, and undergoing mutual collisions. The three most studied systems
have been

• The Korteweg-deVries equation,
ut + 6uux + uxxx = 0 . (8.1)

This is a generic equation for ‘long waves’ in a dispersive, energy-conserving medium, to lowest
order in the nonlinearity.

• The Sine-Gordon equation,
φtt − φxx + sinφ = 0 . (8.2)

The name is a play on the Klein-Gordon equation, φtt − φxx + φ = 0. Note that the Sine-Gordon
equation is periodic under φ→ φ+ 2π.

• The nonlinear Schrödinger equation,

iψt ± ψxx + 2|ψ|2ψ = 0 . (8.3)

Here, ψ is a complex scalar field. Depending on the sign of the second term, we denote this
equation as either NLS(+) or NLS(−), corresponding to the so-called focusing (+) and defocusing (−)
cases.

Each of these three systems supports soliton solutions, including exact N -soliton solutions, and nonlin-
ear periodic waves.

8.1 The Korteweg-deVries Equation

Let h0 denote the resting depth of water in a one-dimensional channel, and y(x, t) the vertical displace-
ment of the water’s surface. Let L be a typical horizontal scale of the wave. When |y| ≪ h0 ≪ L, and
v ≈ 0 (speed of propagation small compared with c0), the evolution of an x-directed wave is described
by the KdV equation,

yt + c0 yx +
3c0
2h0

yyx +
1
6c0 h

2
0 yxxx = 0 , (8.4)

where c0 =
√
gh0. For small amplitude disturbances, only the first two terms are consequential, and we

have
yt + c0 yx ≈ 0 , (8.5)

the solution to which is
y(x, t) = f(x− c0t) , (8.6)
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where f(ξ) is an arbitrary shape; the disturbance propagates with velocity c0. When the dispersion and
nonlinearity are included, only a particular pulse shape can propagate in an undistorted manner; this is
the soliton.

It is convenient to shift to a moving frame of reference:

x′ = x− c0t , t′ = t , (8.7)

hence
∂

∂x
=

∂

∂x′
,

∂

∂t
=

∂

∂t′
− c0

∂

∂x′
. (8.8)

Thus,

yt′ +
3c0
2h0

y yx′ +
1
6c0 h

2
0 yx′x′x′ = 0 . (8.9)

Finally, rescaling position, time, and displacement, and dropping the primes, we arrive at the KdV
equation,

ut + 6uux + uxxx = 0 , (8.10)

which is a convenient form.

8.1.1 KdV solitons

We seek a solution to the KdV equation of the form u(x, t) = u(x− V t). Then with ξ ≡ x− V t, we have
∂x = ∂ξ and ∂t = −V ∂ξ when acting on u(x, t) = u(ξ). Thus, we have

− V u′ + 6uu′ + u′′′ = 0 . (8.11)

Integrating once, we have
− V u+ 3u2 + u′′ = A , (8.12)

where A is a constant. We can integrate once more, obtaining

− 1
2V u

2 + u3 + 1
2(u

′)2 = Au+B , (8.13)

where now both A and B are constants. We assume that u and all its derivatives vanish in the limit
ξ → ±∞, which entails A = B = 0. Thus,

du

dξ
= ±u

√
V − 2u . (8.14)

With the substitution
u = 1

2V sech2θ , (8.15)

we find dθ = ∓1
2

√
V dξ, hence we have the solution

u(x, t) = 1
2V sech2

(√
V
2 (x− V t− ξ0)

)
. (8.16)

Note that the maximum amplitude of the soliton is umax = 1
2V , which is proportional to its velocity V .

The KdV equation imposes no limitations on V other than V ≥ 0.
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Figure 8.1: Soliton solutions to the KdV equation, with five evenly spaced V values ranging from V = 2
(blue) to V = 10 (orange). The greater the speed, the narrower the shape.

8.1.2 Periodic solutions : soliton trains

If we relax the condition A = B = 0, new solutions to the KdV equation arise. Define the cubic

P (u) = 2u3 − V u2 − 2Au− 2B

≡ 2(u− u1)(u− u2)(u− u3) ,
(8.17)

where ui = ui(A,B, V ). We presume that A, B, and V are such that all three roots u1,2,3 are real and
nondegenerate. Without further loss of generality, we may then assume u1 < u2 < u3. Then

du

dξ
= ±

√
−P (u) . (8.18)

Since P (u) < 0 for u2 < u < u3, we conclude u(ξ) must lie within this range. Therefore, we have

ξ − ξ0 = ±
u∫

u
2

ds√
−P (s)

= ±
(

2

u3 − u1

)1/2 φ∫

0

dθ√
1− k2 sin2θ

, (8.19)

where

u ≡ u3 − (u3 − u2) sin
2φ , k2 ≡ u3 − u2

u3 − u1
. (8.20)

The solution for u(ξ) is then

u(ξ) = u3 − (u3 − u2) sn
2(ζ, k) , (8.21)

where

ζ =

√
u3 − u1

2

(
ξ − ξ0

)
(8.22)

and sn(ζ, k) is the Jacobi elliptic function.
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Figure 8.2: The Jacobi elliptic functions sn(ζ, k) (solid) and cn(ζ, k) (dot-dash) versus ζ/K(k), for k = 0
(blue), k = 1√

2
(green), and k = 0.9 (red).

8.1.3 Interlude: primer on elliptic functions

We assume 0 ≤ k2 ≤ 1 and we define

ζ(φ, k) =

φ∫

0

dθ√
1− k2 sin2θ

. (8.23)

The sn and cn functions are defined by the relations

sn(ζ, k) = sinφ

cn(ζ, k) = cosφ .
(8.24)

Note that sn2(ζ, k) + cn2(ζ, k) = 1. One also defines the function dn(ζ, k) from the relation

dn2(ζ, k) + k2 sn2(ζ, k) = 1 . (8.25)

When φ advances by one period, we have ∆φ = 2π, and therefore ∆ζ = Z , where

Z =

2π∫

0

dθ√
1− k2 sin2θ

= 4K(k) , (8.26)

where K(k) is the complete elliptic integral of the first kind. Thus, sn(ζ + Z, k) = sn(ζ, k), and similarly
for the cn function. In fig. 8.2, we sketch the behavior of the elliptic functions over one quarter of a
period. Note that for k = 0 we have sn(ζ, 0) = sin ζ and cn(ζ, 0) = cos ζ .
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Figure 8.3: The cubic function P (u) (left), and the soliton lattice (right) for the case u1 = −1.5, u2 = −0.5,
and u3 = 2.5.

8.1.4 The soliton lattice

Getting back to our solution in eqn. 8.21, we see that the solution describes a soliton lattice with a wave-
length

λ =

√
8 K(k)√
u3 − u1

. (8.27)

Note that our definition of P (u) entails

V = 2(u1 + u2 + u3) . (8.28)

There is a simple mechanical analogy which merits illumination. Suppose we define

W (u) ≡ u3 − 1
2V u

2 −Au , (8.29)

and furthermore E ≡ B. Then

1

2

(
du

dξ

)2
+W (u) = E , (8.30)

which takes the form of a one-dimensional Newtonian mechanical system, if we replace ξ → t and
interpret uξ as a velocity. The potential is W (u) and the total energy is E. In terms of the polynomial
P (u), we have P = 2(W − E). Accordingly, the ‘motion’ u(ξ) is flattest for the lowest values of u, near
u = u2, which is closest to the local maximum of the function W (u).

Note that specifying umin = u2, umax = u3, and the velocity V specifies all the parameters. Thus, we
have a three parameter family of soliton lattice solutions.
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Figure 8.4: The cubic function P (u) (left), and the soliton lattice (right) for the case u1 = −1.5, u2 =
−1.49, and u3 = 2.50.

8.1.5 N-soliton solutions to KdV

In 1971, Ryogo Hirota2 showed that exactN -soliton solutions to the KdV equation exist. Here we discuss
the Hirota solution, following the discussion in the book by Whitham.

The KdV equation may be written as

ut +
{
3u2 + uxx

}
x
= 0 , (8.31)

which is in the form of the one-dimensional continuity equation ut + jx = 0, where the current is
j = 3u2 + uxx. Let us define u = px. Then our continuity equation reads ptx + jx = 0, which can be
integrated to yield pt + j = C , where C is a constant. Demanding that u and its derivatives vanish at
spatial infinity requires C = 0. Hence, we have

pt + 3p2x + pxxx = 0 . (8.32)

Now consider the nonlinear transformation

p = 2 (lnF )x =
2Fx

F
. (8.33)

We then have

pt =
2Fxt

F
− 2FxFt

F 2
, px =

2Fxx

F
− 2F 2

x

F 2
(8.34)

and

pxx =
2Fxxx

F
− 6FxFxx

F 2
+

4F 3
x

F 3

pxxx =
2Fxxxx

F
− 8FxFxxx

F 2
− 6Fxx

2

F 2
+

24F 2
xFxx

F 3
− 12F 4

x

F 4
.

(8.35)

2R. Hirota, Phys. Rev. Lett. 27, 1192 (1971).
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When we add up the combination pt + 3p2x + pxxx = 0, we find, remarkably, that the terms with F 3 and
F 4 in the denominator cancel. We are then left with

F
(
Ft + Fxxx

)
x
− Fx

(
Ft + Fxxx

)
+ 3
(
F 2
xx − FxFxxx

)
= 0 . (8.36)

This equation has the two-parameter family of solutions

F (x, t) = 1 + eφ(x,t) . (8.37)

where

φ(x, t) = α (x− b− α2 t) , (8.38)

with α and b constants. Note that these solutions are all annihilated by the operator ∂t + ∂3x, and also by
the last term in eqn. 8.36 because of the homogeneity of the derivatives. Converting back to our original
field variable u(x, t), we have that these solutions are single solitons:

u = px =
2(FFxx − F 2

x )

F 2
=

α2 f

(1 + f)2
= 1

2α
2 sech2(12φ) . (8.39)

The velocity for these solutions is V = α2.

If eqn. 8.36 were linear, our job would be done, and we could superpose solutions. We will meet up
with such a felicitous situation when we discuss the Cole-Hopf transformation for the one-dimensional
Burgers’ equation. But for KdV the situation is significantly more difficult. We will write

F = 1 + F (1) + F (2) + . . .+ F (N) , (8.40)

with

F (1) = f1 + f2 + . . .+ fN , (8.41)

where

fj(x, t) = eφj(x,t)

φj(x, t) = αj (x− α2
j t− bj) .

(8.42)

We may then derive a hierarchy of equations, the first two levels of which are

(
F

(1)
t + F (1)

xxx

)
x
= 0

(
F

(2)
t + F (2)

xxx

)
x
= −3

(
F (1)
xx F

(1)
xx − F (1)

x F (1)
xxx

)
.

(8.43)

Let’s explore the case N = 2. The equation for F (2) becomes

(
F

(2)
t + F

(2)
xxx

)
x
= 3α1α2 (α2 − α1)

2 f1f2 , (8.44)

with solution

F (2) =

(
α1 − α2

α1 + α2

)2
f1f2 . (8.45)
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Figure 8.5: Early and late time configuration of the two soliton solution to the KdV equation.

Remarkably, this completes the hierarchy for N = 2. Thus,

F = 1 + f1 + f2 +

(
α1 − α2

α1 + α2

)2
f1f2

= det


 1 + f1

2
√

α
1
α
2

α
1
+α

2

f1
2
√

α
1
α
2

α
1
+α

2

f2 1 + f2


 .

(8.46)

What Hirota showed, quite amazingly, is that this result generalizes to the N -soliton case,

F = detQ , (8.47)

where Q is matrix

Qmn = δmn +
2
√
αmαn

αm + αn

fm . (8.48)

Note that for N = 2 this agrees with Eqn. 8.46. Thus, N -soliton solutions to the KdV equation may be
written in the form

u(x, t) = 2
∂2

∂x2
ln detQ(x, t) . (8.49)

Here we are free to make a similarity transformation Q → S−1QS for any nonsingular matrix S. If we

take Smn = eφn/2 δmn, then Q → Q̃, where

Q̃ = e−φm/2 Qmn e
+φn/2 = δmn +

2
√
αmαn

αm + αn

√
fm fn (8.50)

is symmetric.
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Consider the case N = 2. Direct, if tedious, calculations lead to the expression

u = 2
α2
1f1 + α2

2f2 + 2 (α1 − α2)
2f1f2 +

(α
1
−α

2

α
1
+α

2

)2(
α2
1f1f

2
2 + α2

2f
2
1 f2
)

[
1 + f1 + f2 +

(α
1
−α

2

α
1
+α

2

)2
f1f2

]2 . (8.51)

Recall that

fj(x, t) = exp
[
αj (xj − α2

j t− bj)
]

. (8.52)

Let’s consider (x, t) values for which f1 ≃ 1 is neither large nor small, and investigate what happens in
the limits f2 ≪ 1 and f2 ≫ 1. In the former case, we find

u ≃ 2α2
1 f1

(1 + f1)
2

(f2 ≪ 1) , (8.53)

which is identical to the single soliton case of eqn. 8.39. In the opposite limit, we have

u ≃ 2α2
1 g1

(1 + g1)
2

(f2 ≫ 1) , (8.54)

where

g1 =

(
α1 − α2

α1 + α2

)2
f1 (8.55)

But multiplication of fj by a constant C is equivalent to a translation:

C fj(x, t) = fj(x+ α−1
j lnC , t) ≡ fj(x−∆xj , t) . (8.56)

Thus, depending on whether f2 is large or small, the solution either acquires or does not acquire a spatial
shift ∆x1, where

∆xj =
2

αj

ln

∣∣∣∣
α1 + α2

α1 − α2

∣∣∣∣ . (8.57)

The function f(x, t) = exp
[
α(x − α2t − b)

]
is monotonically increasing in x (assuming α > 0). Thus,

if at fixed t the spatial coordinate x is such that f ≪ 1, this means that the soliton lies to the right.
Conversely, if f ≫ 1 the soliton lies to the left. Suppose α1 > α2, in which case soliton #1 is stronger (i.e.
greater amplitude) and faster than soliton #2. The situation is as depicted in figs. 8.5 and 8.6. Starting
at early times, the strong soliton lies to the left of the weak soliton. It moves faster, hence it eventually
overtakes the weak soliton. As the strong soliton passes through the weak one, it is shifted forward, and
the weak soliton is shifted backward. It hardly seems fair that the strong fast soliton gets pushed even
further ahead at the expense of the weak slow one, but sometimes life is just like that3.

3See T. Piketty, Capital in the Twenty-First Century (Belknap Press, 2014).
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Figure 8.6: Left: Spacetime diagram (x versus t) for the collision of two KdV solitons. The strong, fast
soliton (#1) is shifted forward and the weak slow one (#2) is shifted backward. The red and blue lines
indicate the centers of the two solitons. The yellow shaded circle is the ‘interaction region’ where the
solution is not simply a sum of the two single soliton waveforms. Right: t versus x showing the soliton
waveforms through the collision. Here, the velocity of the slow soliton is close to zero. Note that the
slow soliton is again shifted backward. From P. J. Caudrey, Phil. Trans. Roy. Soc. A 28, 1215 (2011).

8.1.6 Bäcklund transformations

For certain nonlinear PDEs, a given solution may be used as a ‘seed’ to generate an entire hierarchy of
solutions. This is familiar from the case of Riccati equations, which are nonlinear and nonautonomous
ODEs, but for PDEs it is even more special. The general form of the Bäcklund transformation (BT) is

u1,t = P (u1 , u0 , u0,t , u0,x) (8.58)

u1,x = Q(u1 , u0 , u0,t , u0,x) , (8.59)

where u0(x, t) is the known solution.

A Bäcklund transformation for the KdV equation was first obtained in 19734. This provided a bet-
ter understanding of the Hirota hierarchy. To proceed, following the discussion in the book by Scott,
we consider the earlier (1968) result of Miura5, who showed that if v(x, t) satisfies the modified KdV
(MKdV) equation6,

vt − 6v2vx + vxxx = 0 , (8.60)

then
u = −(v2 + vx) (8.61)

solves KdV:

ut + 6uux + uxxx = −(v2 + vx)t + 6(v2 + vx)(v
2 + vx)x − (v2 + vx)xxx

= −
(
2v + ∂x

)(
vt − 6v2vx + vxxx

)
= 0 . (8.62)

4H. D. Wahlquist and F. B. Eastabrook, Phys. Rev. Lett. 31, 1386 (1973).
5R. M. Miura, J. Math. Phys. 9, 1202 (1968).
6Note that the second term in the MKdV equation is proportional to v2vx, as opposed to uux which appears in KdV.
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Figure 8.7: “Wrestling’s living legend” Bob Backlund, in a 1983 match, is subjected to a devastating
camel clutch by the Iron Sheikh. The American Bob Backlund has nothing to do with the Bäcklund
transformations discussed in the text, which are named for the 19th century Swedish mathematician
Albert Bäcklund. Note that Bob Backlund’s manager has thrown in the towel (lower right).

From this result, we have that if
vt − 6(v2 + λ) vx + vxxx = 0 , (8.63)

then
u = −(v2 + vx + λ) (8.64)

solves KdV. The MKdV equation, however, is symmetric under v → −v, hence

u0 = −vx − v2 − λ

u1 = +vx − v2 − λ
(8.65)

both solve KdV. Now define u0 ≡ −w0,x and u1 ≡ −w1,x. Subtracting the above two equations, we find

u0 − u1 = −2vx ⇒ w0 − w1 = 2v . (8.66)

Adding the equations instead gives

w0,x + w1,x = 2(v2 + λ)

= 1
2 (w0 − w1)

2 + 2λ .
(8.67)

Substituting for v = 1
2(w0 −w1) and v2 + λ− 1

2(w0,x + w1,x) into the MKdV equation, we have

(w0 − w1)t − 3
(
w2
0,x − w2

1,x

)
+ (w0 − w1)xxx = 0 . (8.68)

This last equation is a Bäcklund transformation (BT), although in a somewhat nonstandard form, since
the RHS of eqn. 8.58, for example, involves only the ‘new’ solution u1 and the ‘old’ solution u0 and its
first derivatives. Our equation here involves third derivatives. However, we can use eqn. 8.67 to express

w1,x in terms of w0, w0,x, and w1.

Starting from the trivial solution w0 = 0, eqn. 8.67 gives

w1,x = 1
2w

2
1 + 2λ . (8.69)
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With the choice λ = −1
4α

2 < 0, we integrate and obtain

w1(x, t) = −α tanh
(
1
2αx+ ϕ(t)

)
, (8.70)

were ϕ(t) is at this point arbitrary. We fix ϕ(t) by invoking eqn. 8.68, which says

w1,t = 3w2
1,x − w1,xxx = 0 . (8.71)

Invoking w1,x = 1
2w

2
1 +λ and differentiating twice to obtain w1,xxx, we obtain an expression for the RHS

of the above equation. The result is w1,t + α2w1,x = 0, hence

w1(x, t) = −α tanh
[
1
2α (x− α2t− b)

]

u1(x, t) =
1
2α

2 sech2
[
1
2α (x− α2t− b)

]
,

(8.72)

which recapitulates our earlier result. Of course we would like to do better, so let’s try to insert this
solution into the BT and the turn the crank and see what comes out. This is unfortunately a rather dif-
ficult procedure. It becomes tractable if we assume that successive Bäcklund transformations commute,
which is the case, but which we certainly have not yet proven. That is, we assume that w12 = w21, where

w0

λ
1−−−−→ w1

λ
2−−−−→ w12

w0

λ
2−−−−→ w2

λ
1−−−−→ w21 .

(8.73)

Invoking this result, we find that the Bäcklund transformation gives

w12 = w21 = w0 −
4(λ1 − λ2)

w1 − w2

. (8.74)

Successive applications of the BT yield Hirota’s multiple soliton solutions:

w0

λ
1−−−−→ w1

λ
2−−−−→ w12

λ
3−−−−→ w123

λ
4−−−−→ · · · . (8.75)

8.2 Sine-Gordon Model

Consider transverse electromagnetic waves propagating down a superconducting transmission line,
shown in fig. 8.8. The transmission line is modeled by a set of inductors, capacitors, and Josephson
junctions such that for a length dx of the transmission line, the capacitance is dC = C dx, the inductance
is dL = L dx, and the critical current is dI0 = I0 dx. Dividing the differential voltage drop dV and shunt
current dI by dx, we obtain

∂V

∂x
= −L ∂I

∂t

∂I

∂x
= −C ∂V

∂t
− I0 sinφ ,

(8.76)
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Figure 8.8: A superconducting transmission line is described by a capacitance per unit length C, an
inductance per unit length L, and a critical current per unit length I0. Based on fig. 3.4 of A. Scott,
Nonlinear Science.

where φ is the difference φ = φupper − φlower in the superconducting phases. The voltage is related to the
rate of change of φ through the Josephson equation,

∂φ

∂t
=

2eV

~
, (8.77)

and therefore
∂φ

∂x
= −2eL

~
I . (8.78)

Thus, we arrive at the equation

1

c2
∂2φ

∂t2
− ∂2φ

∂x2
+

1

λ2J
sinφ = 0 , (8.79)

where c = (LC)−1/2 is the Swihart velocity and λJ = (~/2eLI0)1/2 is the Josephson length. We may now
rescale lengths by λJ and times by λJ/c to arrive at the sine-Gordon equation,

φtt − φxx + sinφ = 0 . (8.80)

This equation of motion may be derived from the Lagrangian density

L = 1
2φ

2
t − 1

2φ
2
x − U(φ) . (8.81)

We then obtain

φtt − φxx = −∂U
∂φ

, (8.82)

and the sine-Gordon equation follows for U(φ) = 1− cosφ.
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Assuming φ(x, t) = φ(x− V t) we arrive at (1− V 2)φξξ = U ′(ξ), and integrating once we obtain

1
2(1− V 2)φ2ξ − U(φ) = E . (8.83)

This describes a particle of mass M = 1− V 2 moving in the inverted potential −U(φ). Assuming V 2 < 1,
we may solve for φξ :

φ2ξ =
2(E + U(φ))

1− V 2
, (8.84)

which requires E ≥ −Umax in order for a solution to exist. For −Umax < E < −Umin, the motion is
bounded by turning points. The situation for the sine-Gordon (SG) model is sketched in fig. 8.9. For the
SG model, the turning points are at φ∗± = ± cos−1(E + 1), with −2 < E < 0. We can write

φ∗± = π ± δ , δ = 2cos−1

√
−E

2
. (8.85)

This class of solutions describes periodic waves. From

√
2 dξ√

1− V 2
=

dφ√
E + U(φ)

, (8.86)

we have that the spatial period λ is given by

λ =
√

2 (1 − V 2)

2π−φ∗∫

φ∗

dφ√
E + U(φ)

, (8.87)

where φ∗ ∈ [0, π]. If E > −Umin, then φξ is always of the same sign, and φ(ξ) is a monotonic function
of ξ. If U(φ) = U(φ + 2π) is periodic, then the solution is a ‘soliton lattice’ where the spatial period of
φ mod 2π is

λ̃ =

√
1− V 2

2

2π∫

0

dφ√
E + U(φ)

. (8.88)

For the sine-Gordon model, with U(φ) = 1− cosφ, one finds

λ =
√

8(1 − V 2) K

(√
E + 2

2

)
, (8.89)

where K(k) is the complete elliptic integral of the first kindd7 and

λ̃ =

√
8 (1 − V 2)

E + 2
K

(√
2

E + 2

)
. (8.90)

7See the NIST Handbook of Mathematical Functions, ch. 19
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Figure 8.9: The inverted potential −U(φ) = cosφ− 1 for the sine-Gordon problem.

8.2.1 Tachyon solutions

When V 2 > 1, we have
1
2(V

2 − 1)φ2ξ + U(φ) = −E . (8.91)

Such solutions are called tachyonic. There are again three possibilities:

• E > Umin : no solution.

• −Umax < E < −Umin : periodic φ(ξ) with oscillations about φ = 0.

• E < −Umax : tachyon lattice with monotonic φ(ξ).

It turns out that the tachyon solution is unstable.

8.2.2 Hamiltonian formulation

The Hamiltonian density is
H = π φt − L , (8.92)

where

π =
∂L
∂φt

= φt (8.93)

is the momentum density conjugate to the field φ. Then

H(π, φ) = 1
2π

2 + 1
2φ

2
x + U(φ) . (8.94)

Note that the total momentum in the field is

P =

∞∫

−∞

dx π =

∞∫

−∞

dx φt = −V
∞∫

−∞

dx φx

= −V
[
φ(∞)− φ(−∞)

]
= −2πnV ,

(8.95)
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where n =
[
φ(∞)− φ(−∞)

]
/2π is the winding number.

8.2.3 Phonons

The Hamiltonian density for the SG system is minimized whenU(φ) = 0 everywhere. The ground states
are then classified by an integer n ∈ Z, where φ(x, t) = 2πn for ground state n. Suppose we linearize the
SG equation about one of these ground states, writing

φ(x, t) = 2πn + η(x, t) , (8.96)

and retaining only the first order term in η from the nonlinearity. The result is the Klein-Gordon (KG)
equation,

ηtt − ηxx + η = 0 . (8.97)

This is a linear equation, whose solutions may then be superposed. Fourier transforming from (x, t) to
(k, ω), we obtain the equation (

− ω2 + k2 + 1
)
η̂(k, ω) = 0 , (8.98)

which entails the dispersion relation ω = ±ω(k), where

ω(k) =
√

1 + k2 . (8.99)

Thus, the most general solution to the (1 + 1)-dimensional KG equation is

η(x, t) =

∞∫

−∞

dk

2π

{
A(k) eikx e−i

√
1+k2 t +B(k) eikx ei

√
1+k2 t

}
. (8.100)

For the Helmholtz equation ηtt − ηxx = 0, the dispersion is ω(k) = |k|, and the solution may be written
as η(x, t) = f(x− t)+ g(x+ t), which is the sum of arbitrary right-moving and left-moving components.
The fact that the Helmholtz equation preserves the shape of the wave is a consequence of the absence of
dispersion, i.e. the phase velocity vp(k) =

ω
k is the same as the group velocity vg(k) =

∂ω
∂k . This is not the

case for the KG equation, obviously, since

vp(k) =
ω

k
=

√
1 + k2

k
, vg(k) =

∂ω

∂k
=

k√
1 + k2

, (8.101)

hence vpvg = 1 for KG.

8.2.4 Mechanical realization

The sine-Gordon model can be realized mechanically by a set of pendula elastically coupled. The kinetic
energy T and potential energy U are given by

T =
∑

n

1
2mℓ

2φ̇2n

U =
∑

n

[
1
2κ
(
φn+1 − φn

)2
+mgℓ

(
1− cosφn

)]
.

(8.102)
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Figure 8.10: Kink and antikink solutions to the sine-Gordon equation.

Here ℓ is the distance from the hinge to the center-of-mass of the pendulum, and κ is the torsional
coupling. From the Euler-Lagrange equations we obtain

mℓ2φ̈n = −κ
(
φn+1 + φn−1 − 2φn

)
−mgℓ sin φn . (8.103)

Let a be the horizontal spacing between the pendula. Then we can write the above equation as

φ̈n =

≡ c2︷︸︸︷
κa2

mℓ2
·

≈φ′′

n︷ ︸︸ ︷
1

a

[(
φn+1 − φn

a

)
−
(
φn − φn−1

a

)]
−g
ℓ
sinφn . (8.104)

The continuum limit of these coupled ODEs yields the PDE

1

c2
φtt − φxx +

1

λ2
sinφ = 0 , (8.105)

which is the sine-Gordon equation, with λ = (κa2/mgℓ)1/2.

8.2.5 Kinks and antikinks

Let us return to eqn. 8.83 and this time set E = −Umin. With U(φ) = 1 − cosφ, we have Umin = 0, and
thus

dφ

dξ
= ± 2√

1− V 2
sin
(
1
2φ
)

. (8.106)

This equation may be integrated:

± dξ√
1− V 2

=
dφ

2 sin 1
2φ

= d ln tan 1
4φ . (8.107)

Thus, the solution is

φ(x, t) = 4 tan−1 exp

(
± x− V t− x0√

1− V 2

)
. (8.108)

where ξ0 is a constant of integration. This describes either a kink (with dφ/dx > 0) or an antikink
(with dφ/dx < 0) propagating with velocity V , instantaneously centered at x = x0 + V t. Unlike the
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KdV soliton, the amplitude of the SG soliton is independent of its velocity. The SG soliton is topological,
interpolating between two symmetry-related vacuum states, namely φ = 0 and φ = 2π.

Note that the width of the kink and antikink solutions decreases as V increases. This is a Lorentz con-
traction, and should have been expected since the SG equation possesses a Lorentz invariance under
transformations

x =
x′ + vt′√
1− v2

, t =
t′ + vx′√
1− v2

. (8.109)

One then readily finds
∂2t − ∂2x = ∂2t′ − ∂2x′ . (8.110)

The moving soliton solutions may then be obtained by a Lorentz transformation of the stationary solu-
tion,

φ(x, t) = 4 tan−1 e±(x−x
0
) . (8.111)

The field φ itself is a Lorentz scalar, and hence does not change in magnitude under a Lorentz transfor-
mation.

8.2.6 Bäcklund transformation for the sine-Gordon system

Recall D’Alembert’s method of solving the Helmholtz equation, by switching to variables

ζ = 1
2(x− t) , τ = 1

2(x+ t) , ∂x = 1
2∂ζ +

1
2∂t , ∂t = −1

2∂ζ +
1
2∂t . (8.112)

The D’Alembertian operator then becomes

∂2t − ∂2x = − ∂ζ ∂τ . (8.113)

This transforms the Helmholtz equation φtt − φxx = 0 to φζτ = 0, with solutions φ(ζ, τ) = f(ζ) + g(τ),
with f and g arbitrary functions of their arguments. As applied to the SG equation, we have

φζτ = sinφ . (8.114)

Suppose we have a solution φ0 to this equation. Suppose further that φ1 satisfies the pair of equations,

φ1,ζ = 2λ sin

(
φ1 + φ0

2

)
+ φ0,ζ (8.115)

φ1,τ =
2

λ
sin

(
φ1 − φ0

2

)
− φ0,τ . (8.116)

Thus,

φ1,ζτ − φ0,ζτ = λ cos

(
φ1 + φ0

2

)(
φ1,τ + φ0,τ

)

= 2cos

(
φ1 + φ0

2

)
sin

(
φ1 − φ0

2

)

= sinφ1 − sinφ0 .

(8.117)
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Thus, if φ0,ζτ = sinφ0, then φ1,ζτ = sinφ1 as well, and φ1 satisfies the SG equation. Eqns. 8.115 and 8.116
constitute a Bäcklund transformation for the SG system.

Let’s give the ‘Bäcklund crank’ one turn, starting with the trivial solution φ0 = 0. We then have

φ1,ζ = 2λ sin 1
2φ1 (8.118)

φ1,τ = 2λ−1 sin 1
2φ1 . (8.119)

The solution to these equations is easily found by direct integration:

φ(ζ, τ) = 4 tan−1 eλζ eτ/λ . (8.120)

In terms of our original independent variables (x, t), we have

λζ + λ−1τ = 1
2

(
λ+ λ−1

)
x− 1

2

(
λ− λ−1

)
t = ± x− vt√

1− v2
, (8.121)

where

v ≡ λ2 − 1

λ2 + 1
⇐⇒ λ = ±

(
1 + v

1− v

)1/2
. (8.122)

Thus, we generate the kink/antikink solution

φ1(x, t) = 4 tan−1 exp

(
± x− vt√

1− v2

)
. (8.123)

As was the case with the KdV system, successive Bäcklund transformations commute. Thus,

φ0
λ
1−−−−→ φ1

λ
2−−−−→ φ12

φ0
λ
2−−−−→ φ2

λ
1−−−−→ φ21 ,

(8.124)

with φ12 = φ21. This allows one to eliminate the derivatives and write

tan

(
φ12 − φ0

4

)
=

(
λ1 + λ2
λ1 − λ2

)
tan

(
φ2 − φ1

4

)
. (8.125)

We can now create new solutions from individual kink pairs (KK), or kink-antikink pairs (KK). For KK,

taking v1 = v2 = v yields

φKK(x, t) = 4 tan−1

(
v sinh(γx)

cosh(γvt)

)
, (8.126)

where γ is the Lorentz factor,

γ =
1√

1− v2
. (8.127)

Note that φKK(±∞, t) = ±2π and φKK(0, t) = 0, so there is a phase increase of 2π on each of the
negative and positive half-lines for x, and an overall phase change of +4π. For the KK system, if we

take v1 = −v2 = v, we obtain the solution

φ
KK

(x, t) = 4 tan−1

(
sinh(γvt)

v cosh(γx)

)
. (8.128)
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In this case, analytically continuing to imaginary v with

v =
iω√
1− ω2

=⇒ γ =
√

1− ω2 (8.129)

yields the stationary breather solution,

φB(x, t) = 4 tan−1

( √
1− ω2 sin(ωt)

ω cosh(
√
1− ω2 x)

)
. (8.130)

The breather is a localized solution to the SG system which oscillates in time. By applying a Lorentz
transformation of the spacetime coordinates, one can generate a moving breather solution as well.

Please note, in contrast to the individual kink/antikink solutions, the solutions φKK, φ
KK

, and φB are not
functions of a single variable ξ = x−V t. Indeed, a given multisoliton solution may involve components
moving at several different velocities. Therefore the total momentum P in the field is no longer given
by the simple expression P = V

(
φ(−∞) − φ(+∞)

)
. However, in cases where the multikink solutions

evolve into well-separated solitions, as happens when the individual kink velocities are distinct, the
situation simplifies, as we may consider each isolated soliton as linearly independent. We then have

P = −2π
∑

i

ni Vi , (8.131)

where ni = +1 for kinks and ni = −1 for antikinks.

8.3 Nonlinear Schrödinger Equation

The Nonlinear Schrödinger (NLS) equation arises in several physical contexts. One is the Gross-Pitaevskii
action for an interacting bosonic field,

S[ψ,ψ∗] =

∫
dt

∫
ddx

{
iψ∗ ∂ψ

∂t
− ~

2

2m
∇ψ∗ ·∇ψ − U

(
ψ∗ψ

)
+ µψ∗ψ

}
, (8.132)

where ψ(x, t) is a complex scalar field. The local interaction U
(
|ψ|2

)
is taken to be quartic,

U
(
|ψ|2

)
= 1

2g |ψ|
4 . (8.133)

Note that

U
(
|ψ|2

)
− µ |ψ|2 = 1

2g

(
|ψ|2 − µ

g

)2
− µ2

2g
. (8.134)

Extremizing the action with respect to ψ∗ yields the equation

δS

δψ∗ = 0 = i
∂ψ

∂t
+

~
2

2m
∇

2ψ − U ′(ψ∗ψ
)
ψ + µψ . (8.135)
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Extremization with respect to ψ yields the complex conjugate equation. In d = 1, we have

iψt = − ~
2

2m
ψxx + U ′(ψ∗ψ

)
ψ − µψ . (8.136)

We can absorb the chemical potential by making a time-dependent gauge transformation

ψ(x, t) −→ eiµt ψ(x, t) . (8.137)

Further rescalings of the field and independent variables yield the generic form

iψt ± ψxx + 2 |ψ|2 ψ = 0 , (8.138)

where the + sign pertains for the case g < 0 (attractive interaction), and the − sign for the case g >
0 (repulsive interaction). These cases are known as focusing, or NLS(+), and defocusing, or NLS(−),
respectively.

8.3.1 Amplitude-phase representation

We can decompose the complex scalar ψ into its amplitude and phase:

ψ = Aeiφ . (8.139)

We then find

ψt =
(
At + iAφt

)
eiφ

ψx =
(
Ax + iAφx

)
eiφ

ψxx =
(
Axx −Aφ2x + 2iAxφx + iAφxx

)
eiφ .

(8.140)

Multiplying the NLS(±) equations by e−iφ and taking real and imaginary parts, we obtain the coupled
nonlinear PDEs,

−Aφt ±
(
Axx −Aφ2x

)
+ 2A3 = 0

At ±
(
2Axφx +Aφxx

)
= 0 .

(8.141)

Note that the second of these equations may be written in the form of a continuity equation,

ρt + jx = 0 , (8.142)

where

ρ = A2

j = ± 2A2φx .
(8.143)
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8.3.2 Phonons

One class of solutions to NLS(±) is the spatially uniform case

ψ0(x, t) = A0 e
2iA2

0
t , (8.144)

with A = A0 and φ = 2A2
0 t. Let’s linearize about these solutions, writing

A(x, t) = A0 + δA(x, t)

φ(x, t) = 2A2
0 t+ δφ(x, t) .

(8.145)

Our coupled PDEs then yield

4A2
0 δA± δAxx −A0 δφt = 0

δAt ±A0 δφxx = 0 .
(8.146)

Fourier transforming, we obtain

(
4A2

0 ∓ k2 iA0 ω

−iω ∓A0k
2

)(
δÂ(k, ω)

δφ̂(k, ω)

)
= 0 . (8.147)

Setting the determinant to zero, we obtain

ω2 = ∓4A2
0 k

2 + k4 . (8.148)

For NLS(−), we see that ω2 ≥ 0 for all k, meaning that the initial solution ψ0(x, t) is stable. For NLS(+),
however, we see that wavevectors k ∈

[
−2A0 , 2A0

]
are unstable. This is known as the Benjamin-Feir

instability.

8.3.3 Soliton solutions for NLS(+)

Let’s consider moving soliton solutions for NLS(+). We try a two-parameter solution of the form

A(x, t) = A(x− ut)

φ(x, t) = φ(x− vt) .
(8.149)

This results in the coupled ODEs

Axx −Aφ2x + vAφx + 2A3 = 0

Aφxx + 2Axφx − uAx = 0 .
(8.150)

Multiplying the second equation by 2A yields

((
2φx − u

)
A2
)
x
= 0 =⇒ φx = 1

2u+
P

2A2
, (8.151)
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where P is a constant of integration. Inserting this in the first equation results in

Axx + 2A3 + 1
4(2uv − u2)A+ 1

2(v − u)PA−1 − 1
4PA

−3 = 0 . (8.152)

We may write this as
Axx +W ′(A) = 0 , (8.153)

where
W (A) = 1

2A
4 + 1

8 (2uv − u2)A2 + 1
2(v − u)P lnA+ 1

8PA
−2 (8.154)

plays the role of a potential. We can integrate eqn. 8.153 to yield

1
2A

2
x +W (A) = E , (8.155)

where E is second constant of integration. This may be analyzed as a one-dimensional mechanics prob-
lem.

The simplest case to consider is P = 0, in which case

W (A) = 1
2

(
A2 + 1

2uv − 1
4u

2
)
A2 . (8.156)

If u2 < 2uv, then W (A) is everywhere nonnegative and convex, with a single global minimum at A = 0,
whereW (0) = 0. The analog mechanics problem tells us thatAwill oscillate betweenA = 0 andA = A∗,
where W (A∗) = E > 0. There are no solutions with E < 0. If u2 > 2uv, then W (A) has a double well
shape8. If E > 0 then the oscillations are still between A = 0 and A = A∗, but if E < 0 then there are
two positive solutions to W (A) = E. In this latter case, we may write

F (A) ≡ 2
[
E −W (A)

]
=
(
A2 −A2

0

)(
A2

1 −A2
)

, (8.157)

where A0 < A1 and

E = −1
2A

2
0A

2
1

1
4u

2 − 1
2uv = A2

0 +A2
1 .

(8.158)

The amplitude oscillations are now between A = A∗
0 and A = A∗

1. The solution is given in terms of
Jacobi elliptic functions:

ψ(x, t) = A1 exp
[
i
2u (x− vt)

]
dn
(
A1(x− ut− ξ0) , k

)
, (8.159)

where

k2 = 1− A2
0

A2
1

. (8.160)

The simplest case is E = 0, for which A0 = 0. We then obtain

ψ(x, t) = A∗ exp
[
i
2u (x− vt)

]
sech

(
A∗(x− ut− ξ0)

)
, (8.161)

where 4A∗2 = u2 − 2uv. When u = 0 we obtain the stationary breather solution, for which the entire
function ψ(x, t) oscillates uniformly.

8Although we have considered A > 0 to be an amplitude, there is nothing wrong with allowing A < 0. When A(t) crosses
A = 0, the phase φ(t) jumps by ± π.
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8.3.4 Dark solitons for NLS(−)

The small oscillations of NLS(−) are stable, as we found in our phonon calculation. It is therefore per-
haps surprising to note that this system also supports solitons. We write

ψ(x, t) =
√
ρ0 e

2iρ
0
t eiα Z(x, t) , (8.162)

with α an arbitrary constant. This yields

iZt = Zxx + 2ρ0
(
1− |Z|2

)
Z . (8.163)

We then write Z = X + iY , yielding

Xt = Yxx + 2ρ0
(
1−X2 − Y 2

)
Y

−Yt = Xxx + 2ρ0
(
1−X2 − Y 2

)
X .

(8.164)

We try Y = Y0, a constant, and set X(x, t) = X(x− V t). Then

−V Xξ = 2ρ0Y0
(
1− Y 2

0 −X2
)

0 = Xξξ + 2ρ0
(
1− Y 2

0 −X2
)
X

(8.165)

Thus,

Xξ = −2ρ0Y0
V

(
1− Y 2

0 −X2
)

, (8.166)

from which it follows that

Xξξ =
4ρ0 Y0
V

XXξ

= −8ρ20 Y
2
0

V

(
1− Y 2

0 −X2
)
X =

4ρ0Y
2
0

V 2
Xξξ . (8.167)

Thus, in order to have a solution, we must have

V = ±2
√
ρ0 Y0 . (8.168)

We now write ξ = x− V t, in which case, from Eqn. 8.166,

√
ρ0 dξ = ∓ dX

1− Y 2
0 −X2

. (8.169)

From this point, the derivation is elementary. One writes X =
√

1− Y 2
0 X̃ , and integrates to obtain

X̃(ξ) = ∓ tanh

(√
ρ0
(
1− Y 2

0

)
(ξ − ξ0)

)
. (8.170)

We simplify the notation by writing Y0 = sin β. Then

ψ(x, t) =
√
ρ0 e

iα e2iρ0 t
[
∓ tanh

(√
ρ0 cos β

(
x− V t− ξ0

))
cos β + i sin β

]
, (8.171)
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where α is a constant and V = ±2
√
ρ0 sinβ. The density ρ = |ψ|2 is then given by

ρ(x, t) = ρ0

[
1− sech2

(√
ρ0 cos β

(
x− V t− ξ0

))]
. (8.172)

This is called a dark soliton because the density ρ(x, t) is minimized at the center of the soliton, where
ρ = ρ0 sin

2β, which is smaller than the asymptotic |x| → ∞ value of ρ(±∞, t) = ρ0 .
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