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Chapter 1

Introduction to Dynamics

1.1 Introduction

1.1.1 Phase space and phase curves

Dynamics is the study of motion through phase space. The phase space of a given dynamical system is
described as an N -dimensional manifold, M. A (differentiable) manifold M is a topological space that
is locally diffeomorphic to R

N .1 Typically in this course M will RN itself, but other common examples
include the circle S

1, the torus T2, the sphere S
2, etc.

Let gτ : M → M be a one-parameter family of transformations from M to itself, with gτ=0 = 1, the

identity, and τ ∈ R. We call gτ the τ -advance mapping. It satisfies the composition rule

gτ gσ = gτ+σ . (1.1)

Let us choose an arbitrary point ϕ0 = ϕ(t0) ∈ M to be the phase space coordinate at an initial time t0 .

We then write ϕ(t0 + τ) ≡ gτ ϕ(t0) , which also is in M. The set

{
gτ ϕ0

∣∣ τ ∈ R , ϕ0 ∈ M
}

(1.2)

is called a phase curve. A graph of the motion ϕ(t) in the product space M×R is called an integral curve.

In a more general setting, we could define the two-parameter dynamical map G
t
0
+τ

t
0

, which evolves the

phase space coordinate from ϕ(t0) to ϕ(t0 + τ) to depend on t0 as well. Thus

G
t
0
+τ

t
0

ϕ(t0) = ϕ(t0 + τ) . (1.3)

But then Gt
t = 1 must be the identity for all t, and Gt′

t must satisfy a composition rule,

G
t
2

t
0

= G
t
2

t
1

G
t
1

t
0

(1.4)

1A diffeomorphism F : M → N is a differentiable map with a differentiable inverse. This is a special type of homeomorphism,
which is a continuous map with a continuous inverse.

1
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Figure 1.1: An example of a phase curve.

for any time t1. This says that to evolve the phase space coordinate ϕ between times t0 and t2, we
can first evolve from t0 to t1 and then from t1 to t2, for any t1. By extending the phase space M to
M′ ≡ M × R, where dim(M′) = N + 1, then defining the (N + 1)-dimensional phase space vector
ψT = (ϕ1, . . . , ϕN , t), we define the one-parameter map on M′, g̃τ , by

g̃τ

(
ϕ

t

)
=

(
G t+τ

t ϕ

t+ τ

)
. (1.5)

Unless otherwise stated, and without loss of generality, we will always consider our dynamical systems
to be governed by a one-parameter τ -advance map gτ .

1.1.2 Vector fields

The velocity vector V (ϕ) is given by the derivative

V (ϕ) =
d

dt

∣∣∣∣
t=0

gtϕ . (1.6)

The velocityV (ϕ) is an element of the tangent space to M atϕ, abbreviated TMϕ. If M isN -dimensional,

then so is each TMϕ (for all ϕ). However, M and TMϕ may differ topologically. For example, if
M = S

1, the circle, the tangent space at any point is isomorphic to R.

For our purposes, we will take ϕ = (ϕ1, . . . , ϕN ) to be an N -tuple, i.e. a point in R
N . The equation of

motion is then
d

dt
ϕ(t) = V

(
ϕ(t)

)
. (1.7)

Note that any N th order ODE, of the general form

dNx

dtN
= F

(
x,
dx

dt
, . . . ,

dN−1x

dtN−1

)
, (1.8)
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may be represented by the first order system ϕ̇ = V (ϕ). To see this, define ϕk = dk−1x/dtk−1, with

k = 1, . . . , N . Thus, for j < N we have ϕ̇j = ϕj+1, and ϕ̇N = f . In other words,

ϕ̇︷ ︸︸ ︷

d

dt




ϕ1
...

ϕN−1

ϕN



=

V (ϕ)︷ ︸︸ ︷


ϕ2
...

ϕN

F
(
ϕ1, . . . , ϕN

)




. (1.9)

1.1.3 Existence / uniqueness / extension theorems

Theorem : Given ϕ̇ = V (ϕ) and ϕ(0), if each V (ϕ) is a smooth vector field over some open set D ∈ M,
then for ϕ(0) ∈ D the initial value problem has a solution on some finite time interval (−τ,+τ) and
the solution is unique. Furthermore, the solution has a unique extension forward or backward in time,
either indefinitely or until ϕ(t) reaches the boundary of D.

Corollary : Different trajectories never intersect!

More generally, we might ask the following: under what conditions does the dynamical system ϕ̇ = V(ϕ, t)
with initial conditions ϕ(0) = ϕ0 have a unique solution?. This is specified by the Picard-Lindelöf theorem2,
which says that if D ⊆ R

N × R, is a closed rectangle and V : D → R
N is a function which is continuous

in t and Lipschitz continuous in ϕ, then there exists some ε > 0 such that the initial value problem
ϕ̇(t) = V

(
ϕ(t), t

)
with (ϕ0, t0) ∈ D, has a unique solution ϕ(t) on the interval t ∈ [t0 − ε, t0 + ε]. In this

case the solution is

ϕ(t) = ϕ(t0) +

t∫

t
0

ds V
(
ϕ(s), s

)
. (1.10)

In general, Lipschitz continuity3 is a condition on a function f : X → Y between two metric spaces
(X , dX ) and (Y, dY ), where dX (X1,X2) and dY(Y1, Y2) are distance functions on X and Y , respectively,
with X1,2 ∈ X and Y1,2 ∈ Y . The function f is then Lipschitz continuous if there exists a real constant
K ≥ 0 such that

dY
(
f(X1), f(X2)

)
≤ K dX (X1,X2) . (1.11)

For our application, this means ∃K ≥ 0 such that

∣∣V(ϕ1, t)− V(ϕ2, t)
∣∣ ≤ K

∣∣ϕ1 −ϕ2

∣∣ (1.12)

for all t ∈ [t0 − ε, t0 + ε], where

|ϕ′ −ϕ| =

√√√√
N∑

n=1

(ϕ′
n − ϕn)

2 (1.13)

is the Euclidean distance in phase space. An example where this fails is given in §1.2.3 below.

2See Wikipedia: https://en.wikipedia.org/wiki/Picard?Lindelf_theorem .
3See https://en.wikipedia.org/wiki/Lipschitz_continuity .

https://en.wikipedia.org/wiki/Picard?Lindel�f_theorem
https://en.wikipedia.org/wiki/Lipschitz_continuity
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1.1.4 Linear differential equations

A homogeneous linear N th order ODE,

dNx

dtN
+ cN−1

dN−1x

dtN−1
+ . . . + c1

dx

dt
+ c0 x = 0 (1.14)

may be written in matrix form, as

d

dt




ϕ1

ϕ2
...

ϕN




=

M︷ ︸︸ ︷


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...

−c0 −c1 −c2 · · · −cN−1







ϕ1

ϕ2
...

ϕN




. (1.15)

Thus,

ϕ̇ =Mϕ , (1.16)

and if the coefficients ck are time-independent, i.e. the ODE is autonomous, the solution is obtained by
exponentiating the constant matrix Q:

ϕ(t) = exp(Mt)ϕ(0) ; (1.17)

the exponential of a matrix may be given meaning by its Taylor series expansion. If the ODE is not
autonomous, then M = M(t) is time-dependent, and the solution is given by the path-ordered expo-
nential,

ϕ(t) = P exp

{ t∫

0

dt′M(t′)

}
ϕ(0) , (1.18)

As defined, the equation ϕ̇ = V (ϕ) is autonomous, since gt depends only on t and on no other time
variable. However, by extending the phase space from M to R×M, which is of dimension (N +1), one
can describe arbitrary time-dependent ODEs.

1.1.5 Lyapunov functions

For a general dynamical system ϕ̇ = V (ϕ), a Lyapunov function L(ϕ) is a function which satisfies

∇L(ϕ) · V (ϕ) ≤ 0 . (1.19)

There is no simple way to determine whether a Lyapunov function exists for a given dynamical system,
or, if it does exist, what the Lyapunov function is. However, if a Lyapunov function can be found, then
this severely limits the possible behavior of the system. This is because L

(
ϕ(t)

)
must be a monotonic

function of time:
d

dt
L
(
ϕ(t)

)
= ∇L · dϕ

dt
= ∇L(ϕ) · V (ϕ) ≤ 0 . (1.20)
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Thus, the system evolves toward a local minimum of the Lyapunov function. In general this means that
oscillations are impossible in systems for which a Lyapunov function exists. For example, the relax-
ational dynamics of the magnetization M of a system are sometimes modeled by the equation

dM

dt
= −Γ ∂F

∂M
, (1.21)

where F (M,T ) is the free energy of the system. In this model, assuming constant temperature T , Ḟ =

F ′(M) Ṁ = −Γ
[
F ′(M)

]2 ≤ 0. So the free energy F (M) itself is a Lyapunov function, and it monotoni-
cally decreases during the evolution of the system. We shall meet up with this example again in the next
chapter when we discuss imperfect bifurcations.

1.2 N = 1 Systems

We now study phase flows in a one-dimensional phase space, governed by the equation

du

dt
= f(u) . (1.22)

Again, the equation u̇ = h(u, t) is first order, but not autonomous, and it corresponds to the N = 2
system,

d

dt

(
u
t

)
=

(
h(u, t)

1

)
. (1.23)

The equation 1.22 is easily integrated:

du

f(u)
= dt =⇒ t− t0 =

u∫

u0

du′

f(u′)
. (1.24)

This gives t(u); we must then invert this relationship to obtain u(t).

Example : Suppose f(u) = a− bu, with a and b constant. Then

dt =
du

a− bu
= −b−1 d ln(a− bu) (1.25)

whence

t =
1

b
ln

(
a− b u(0)

a− b u(t)

)
=⇒ u(t) =

a

b
+
(
u(0) − a

b

)
exp(−bt) . (1.26)

Even if one cannot analytically obtain u(t), the behavior is very simple, and easily obtained by graphical
analysis. Sketch the function f(u). Then note that

u̇ = f(u) =⇒





f(u) > 0 u̇ > 0 ⇒ move to right

f(u) < 0 u̇ < 0 ⇒ move to left

f(u) = 0 u̇ = 0 ⇒ fixed point

(1.27)
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Figure 1.2: Phase flow for an N = 1 system.

The behavior of N = 1 systems is particularly simple: u(t) flows to the first stable fixed point encoun-
tered, where it then (after a logarithmically infinite time) stops. The motion is monotonic – the velocity
u̇ never changes sign. Thus, oscillations never occur for N = 1 phase flows.4

1.2.1 Classification of fixed points (N = 1)

A fixed point u∗ satisfies f(u∗) = 0. Generically, f ′(u∗) 6= 0 at a fixed point.5 Suppose f ′(u∗) < 0. Then
to the left of the fixed point, the function f(u < u∗) is positive, and the flow is to the right, i.e. toward
u∗. To the right of the fixed point, the function f(u > u∗) is negative, and the flow is to the left, i.e. again
toward u∗. Thus, when f ′(u∗) < 0 the fixed point is said to be stable, since the flow in the vicinity of u∗

is to u∗. Conversely, when f ′(u∗) > 0, the flow is always away from u∗, and the fixed point is then said
to be unstable. Indeed, if we linearize about the fixed point, and let ǫ ≡ u− u∗, then

ǫ̇ = f ′(u∗) ǫ+ 1
2 f

′′(u∗) ǫ2 +O(ǫ3) , (1.28)

and dropping all terms past the first on the RHS gives

ǫ(t) = exp
[
f ′(u∗) t

]
ǫ(0) . (1.29)

The deviation decreases exponentially for f ′(u∗) < 0 and increases exponentially for f(u∗) > 0. Note
that

t(ǫ) =
1

f ′(u∗)
ln

(
ǫ

ǫ(0)

)
, (1.30)

so the approach to a stable fixed point takes a logarithmically infinite time. For the unstable case, the
deviation grows exponentially, until eventually the linearization itself fails.

1.2.2 Logistic equation

This model for population growth was first proposed by Verhulst in 1838. Let N denote the population
in question. The dynamics are modeled by the first order ODE,

dN

dt
= rN

(
1− N

K

)
, (1.31)

4When I say ‘never’ I mean ‘sometimes’ – see the section 1.3.
5The system f(u∗) = 0 and f ′(u∗) = 0 is overdetermined, with two equations for the single variable u∗.
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Figure 1.3: Flow diagram for the logistic equation.

where N , r, and K are all positive. For N ≪ K the growth rate is r, but as N increases a quadratic
nonlinearity kicks in and the rate vanishes for N = K and is negative for N > K . The nonlinearity
models the effects of competition between the organisms for food, shelter, or other resources. Or maybe
they crap all over each other and get sick. Whatever.

There are two fixed points, one at N∗ = 0, which is unstable (f ′(0) = r > 0). The other, at N∗ = K , is
stable (f ′(K) = −r). The equation is adimensionalized by defining ν = N/K and s = rt, whence

ν̇ = ν(1− ν) . (1.32)

Integrating,

dν

ν(1− ν)
= d ln

( ν

1− ν

)
= ds =⇒ ν(s) =

ν0

ν0 +
(
1− ν0

)
exp(−s)

. (1.33)

As s→ ∞, ν(s) = 1−
(
ν−1
0 − 1

)
e−s +O(e−2s), and the relaxation to equilibrium (ν∗ = 1) is exponential,

as usual.

Another application of this model is to a simple autocatalytic reaction, such as

A+X ⇋ 2X , (1.34)

i.e. X catalyses the reaction A −→ X. Assuming a fixed concentration of A, we have

ẋ = κ+ a x− κ− x
2 , (1.35)

where x is the concentration of X, and κ± are the forward and backward reaction rates.

1.2.3 Singular f(u)

Suppose that in the vicinity of a fixed point we have f(u) = A
∣∣u− u∗

∣∣α, with A,α > 0. We now analyze
both sides of the fixed point.
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Figure 1.4: f(u) = A
∣∣u− u∗

∣∣α for α > 1 (left) and 0 < α < 1 (right).

u < u∗ : Let ǫ = u∗ − u. Then

ǫ̇ = −Aǫα =⇒ ǫ1−α

1− α
=

ǫ1−α
0

1− α
−At , (1.36)

hence

ǫ(t) =
[
ǫ1−α
0 + (α− 1)At

]1/(1−α)
. (1.37)

This, for α < 1 the fixed point ǫ = 0 is reached in a finite time: ǫ(tc) = 0, with

tc =
ǫ1−α
0

(1− α)A
. (1.38)

For α > 1, we have limt→∞ ǫ(t) = 0, but ǫ(t) > 0 for all finite t.

The fixed point u = u∗ is now half-stable – the flow from the left is toward u∗ but from the right is away
from u∗. Let’s now analyze the flow on either side of u∗.

u > u∗ : Let ǫ = u− u∗. Then ǫ̇ = Aǫα, and

ǫ(t) =
[
ǫ1−α
0 + (1− α)At

]1/(1−α)
. (1.39)

For α < 1, ǫ(t) escapes to ǫ = ∞ only after an infinite time. For α > 1, the escape to infinity takes a finite
time: ǫ(tc) = ∞, with

tc =
ǫ1−α
0

(α− 1)A
. (1.40)

In both cases, higher order terms in the (nonanalytic) expansion of f(u) about u = u∗ will eventually
come into play.

The case α < 1 provides a nice illustration of the Picard-Lindelöf theorem in §1.1.3, for consider the
equation dx/ds = −A|x|α with α ∈ (0, 1) and initial condition x(s = 0) = x0 > 0 . The solution is

x(s) =
[
x1−α
0 − (1− α)As

]1/(1−α)
Θ(tc − s) , (1.41)
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Figure 1.5: Solutions to ǫ̇ = ∓Aǫα. Left panel: ǫ = u∗ − u, with α = 1.5 (solid red) and α = 0.5 (dot-
dashed blue); A = 1 in both cases. Right panel: ǫ = u− u∗, α = 1.5 (solid red) and α = 0.5 (dot-dashed
blue); A = 4 in both cases.

where tc is given above. Now let’s run time backwards and define t ≡ −s + tc + τ with τ > 0. The
dynamical system is then dx/dt = A |x|α and the solution is

x(t) =
[
x1−α
0 − (1− α)A (tc + τ − t)

]1/(1−α)
Θ(t− τ) , (1.42)

where x(tc + τ) = x0 . This is a valid solution for any τ ≥ 0. Thus for any positive τ , we have a solution
to the equation ẋ = A |x|α with initial condition x(t = 0) = 0, and therefore the solution to the initial value
problem is not unique! The difficulty can be traced to the fact that the vector field V (x) = A|x|α is not
Lipschitz continuous at x = 0, since for any K > 0 we may find an x such that

∣∣V (x)− V (0)
∣∣ = A |x|α > K|x| , (1.43)

which is the case for all |x| < (A/K)1/(1−α).

1.2.4 Recommended exercises

It is constructive to sketch the phase flows for the following examples:

v̇ = −g u̇ = A sin(u)

mv̇ = −mg − γv u̇ = A (u− a)(u− b)(u− c)

mv̇ = −mg − cv2 sgn(v) u̇ = au2 − bu3 .

In each case, identify all the fixed points and assess their stability. Assume all constants A, a, b, c, γ, etc.
are positive.

1.2.5 Non-autonomous ODEs

Non-autonomous ODEs of the form u̇ = h(u, t) are in general impossible to solve by quadratures. One
can always go to the computer, but it is worth noting that in the separable case, h(u, t) = f(u) g(t), one
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can obtain the solution

du

f(u)
= g(t) dt =⇒

u∫

u0

du′

f(u′)
=

t∫

0

dt′ g(t′) , (1.44)

which implicitly gives u(t). Note that u̇ may now change sign, and u(t) may even oscillate. For an
explicit example, consider the equation

u̇ = A (u+ 1) sin(βt) , (1.45)

the solution of which is

u(t) = −1 +
(
u0 + 1

)
exp

{
A

β

[
1− cos(βt)

]}
. (1.46)

In general, the non-autonomous case defies analytic solution. Many have been studied, such as the
Riccati equation,

du

dt
= P (t)u2 +Q(t)u+R(t) . (1.47)

Riccati equations have the special and remarkable property that one can generate all solutions (i.e. with

arbitrary boundary condition u(0) = u0) from any given solution (i.e. with any boundary condition).

1.3 Flows on the Circle

We had remarked that oscillations are impossible for the equation u̇ = f(u) because the flow is to the
first stable fixed point encountered. If there are no stable fixed points, the flow is unbounded. However,
suppose phase space itself is bounded, e.g. a circle S

1 rather than the real line R. Thus,

θ̇ = f(θ) , (1.48)

with f(θ + 2π) = f(θ). Now if there are no fixed points, θ(t) endlessly winds around the circle, and in
this sense we can have oscillations.

1.3.1 Nonuniform oscillator

A particularly common example is that of the nonuniform oscillator,

θ̇ = ω − sin θ , (1.49)

which has applications to electronics, biology, classical mechanics, and condensed matter physics. Note
that the general equation θ̇ = ω − A sin θ may be rescaled to the above form. A simple application is to
the dynamics of a driven, overdamped pendulum. The equation of motion is

Iθ̈ + b θ̇ + Iω2
0 sin θ = N , (1.50)
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Figure 1.6: Flow for the nonuniform oscillator θ̇ = ω − sin θ for three characteristic values of ω.

where I is the moment of inertia, b is the damping parameter, N is the external torque (presumed con-

stant), and ω0 is the frequency of small oscillations when b = N = 0. When b is large, the inertial term
Iθ̈ may be neglected, and after rescaling we arrive at eqn. 1.49.

The book by Strogatz provides a biological example of the nonuniform oscillator: fireflies. An individual
firefly will on its own flash at some frequency f . This can be modeled by the equation φ̇ = β, where
β = 2πf is the angular frequency. A flash occurs when φ = 2πn for n ∈ Z. When subjected to a
periodic stimulus, fireflies will attempt to synchronize their flash to the flash of the stimulus. Suppose
the stimulus is periodic with angular frequency Ω. The firefly synchronization is then modeled by the
equation

φ̇ = β −A sin(φ−Ωt) . (1.51)

Here, A is a measure of the firefly’s ability to modify its natural frequency in response to the stimulus.
Note that when 0 < φ−Ωt < π , i.e. when the firefly is leading the stimulus, the dynamics tell the firefly
to slow down. Conversely, when −π < φ− Ωt < 0, the firefly is lagging the stimulus, the the dynamics
tell it to speed up. Now focus on the difference θ ≡ φ−Ωt. We have

θ̇ = β −Ω −A sin θ , (1.52)

which is the nonuniform oscillator. We can adimensionalize by defining

s ≡ At , ω ≡ β −Ω

A
, (1.53)

yielding dθ
ds = f(θ) = ω − sin θ.

Fixed points θ∗ occur only for |ω| < 1, at sin θ∗ = ω, in which case f ′(θ) = − cos θ∗. As we have seen
above, stability requires f ′(θ∗) < 0, which means θ∗ ∈

(
− π

2 ,
π
2

)
, i.e. θ∗ must lie on the right half of

the circle. For |ω| > 1, the angular velocity never vanishes anywhere along the circle, and there are no
fixed points. In this case the motion is eternally clockwise (ω < −1) or counterclockwise (ω > +1). The
situation is depicted in Fig. 1.6.

To integrate, set z = exp(iθ), in which case

dz

ds
= −1

2(z
2 − 2iωz − 1) = −1

2(z − ξ−)(z − ξ+) , (1.54)
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where ξ± = iω ±
√
1− ω2 ≡ iω ± ν with ν ≡

√
1− ω2. This yields

d log

(
z − ξ+
z − ξ−

)
= 1

2

(
ξ− − ξ+

)
ds = −ν ds (1.55)

which integrates to

z(s) =
(ξ+ − e−νs ξ−) z(0) + (e−νs − 1) ξ+ξ−

(1− e−νs) z(0) + (ξ+ e
−νs − ξ−)

. (1.56)

When ω2 > 1, ν is pure imaginary and exp(−νs) continually winds about the unit circle. When ω2 < 1,
ν is real and positive. We then have that z(s → ∞) = ξ+ while z(s → −∞) = ξ− . Note that ξ± lie on the
appropriate halves of the circle as depicted in fig. 1.6.

For |ω| > 1, the motion is periodic, with period

T =

2π∫

0

dθ

|ω| − sin θ
=

2π√
ω2 − 1

. (1.57)

1.4 Appendix I : Evolution of Phase Space Volumes

Recall the general form of a dynamical system, ϕ̇ = V (ϕ). Usually we are interested in finding integral
curvesϕ(t). However, consider for the moment a collection of points in phase space comprising a region
R. As the dynamical system evolves, this region will also evolve, so that R = R(t). We now ask: how
does the volume of R(t),

vol
[
R(t)

]
=

∫

R(t)

dµ , (1.58)

where dµ = dϕ1dϕ2 · · · dϕN is the phase space measure, change with time. We have, explicitly,

vol
[
R(t+ dt)

]
=

∫

R(t+dt)

dµ =

∫

R(t)

dµ

∥∥∥∥
∂ϕi(t+ dt)

∂ϕj(t)

∥∥∥∥

=

∫

R(t)

dµ
{
1 +∇·V dt+O

(
(dt)2

)}
,

(1.59)

since
∂ϕi(t+ dt)

∂ϕj(t)
= δij +

∂Vi
∂ϕj

∣∣∣∣
ϕ(t)

dt+O
(
(dt)2

)
, (1.60)

and, using ln detM = Tr lnM ,
det(1 + ǫA) = 1 + ǫTrA+O(ǫ2) . (1.61)

Thus,
d

dt
vol
[
R(t)

]
=

∫

R(t)

dµ∇·V =

∫

∂R(t)

dΣ n̂ · V , (1.62)

where in the last line we have used Stokes’ theorem to convert the volume integral over R to a surface
integral over its boundary ∂R.
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1.5 Appendix II : Lyapunov Characteristic Exponents

Suppose ϕ(t) is an integral curve – i.e. a solution of ϕ̇ = V (ϕ). We now ask: how do nearby trajectories
behave? Do they always remain close to ϕ(t) for all t? To answer this, we write ϕ̃(t) ≡ ϕ(t) + η(t), in
which case

d

dt
ηi(t) =Mij(t) ηj(t) +O

(
η2
)

, (1.63)

where

Mij(t) =
∂Vi
∂ϕj

∣∣∣∣
ϕ(t)

. (1.64)

The solution, valid to first order in δϕ, is

ηi(t) = Qij(t, t0) ηj(t0) , (1.65)

where the matrix Q(t, t0) is given by the path ordered exponential,

Q(t, t0) = P exp

{ t∫

t0

dt′M(t′)

}

≡ lim
N→∞

(
1 +

∆t

N
M(tN−1)

)
· · ·
(
1 +

∆t

N
M(t1)

)(
1 +

∆t

N
M(t0)

)
,

(1.66)

with ∆t = t− t0 and tj = t0 + (j/N)∆t. P is the path ordering operator, which places earlier times to the
right:

PA(t)B(t′) =

{
A(t)B(t′) if t > t′

B(t′)A(t) if t < t′ .
(1.67)

The distinction is important if
[
A(t), B(t′)

]
6= 0. Note that Q satisfies the composition property,

Q(t, t0) = Q(t, t1)Q(t1, t0) (1.68)

for any t1 ∈ [t0, t]. When M is time-independent, as in the case of a fixed point where V (ϕ∗) = 0, the
path ordered exponential reduces to the ordinary exponential, and Q(t, t0) = exp

(
M(t− t0)

)
.

Generally it is impossible to analytically compute path-ordered exponentials. However, the following
example may be instructive. Suppose

M(t) =





M1 if t/T ∈
[
2j, 2j + 1

]

M2 if t/T ∈
[
2j + 1, 2j + 2

]
,

(1.69)

for all integer j. M(t) is a ‘matrix-valued square wave’, with period 2T . Then, integrating over one
period, from t = 0 to t = 2T , we have

A ≡ exp

{ 2T∫

0

dtM(t)

}
= e(M1

+M
2
)T

AP ≡ P exp

{ 2T∫

0

dtM(t)

}
= eM2

T eM1
T .

(1.70)
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In general, A 6= AP , so the path ordering has a nontrivial effect6.

The Lyapunov exponents are defined in the following manner. Let ê be an N -dimensional unit vector.
Define

Λ(ϕ0, ê) ≡ lim
t→∞

lim
b→0

1

t− t0
ln

( ∥∥η(t)
∥∥

∥∥η(t0)
∥∥

)

η(t0)=b ê

, (1.71)

where ‖ · ‖ denotes the Euclidean norm of a vector, and where ϕ0 = ϕ
(
t0
)
. A theorem due to Oseledec

guarantees that there areN such valuesΛi(ϕ0), depending on the choice of ê, for a givenϕ0. Specifically,
the theorem guarantees that the matrix

W ≡
(
QTQ

)1/(t−t0) (1.72)

converges in the limit t→ ∞ for almost allϕ0. The eigenvaluesΛi correspond to the different eigenspaces
ofW . Oseledec’s theorem (also called the ‘multiplicative ergodic theorem’) guarantees that the eigenspaces
of W either grow (Λi > 1) or shrink (Λi < 1) exponentially fast. That is, the norm any vector lying in the
ith eigenspace of W will behave as Λt

i = exp(t lnΛi) as t→ ∞.

Note that while W =W T is symmetric by construction, Q is simply a general real-valued N ×N matrix.
The left and right eigenvectors of a matrix M ∈ GL(N,R) will in general be different. The set of eigen-
values λα is, however, common to both sets of eigenvectors. Let {ψα} be the right eigenvectors and {χ∗

α}
the left eigenvectors, such that

Mij ψα,j = λα ψα,i

χ∗
α,iMij = λα χ

∗
α,j .

(1.73)

We can always choose the left and right eigenvectors to be orthonormal, viz.

〈
χ
α

∣∣ψβ

〉
= χ∗

α,i ψβ,j = δαβ . (1.74)

Indeed, we can define the matrix Siα = ψα,i, in which case S−1
αj = χ∗

α,j , and

S−1M S = diag
(
λ1, . . . , λN

)
. (1.75)

The matrix M can always be decomposed into its eigenvectors, as

Mij =
∑

α

λα ψα,i
χ∗
α,j . (1.76)

If we expand u in terms of the right eigenvectors,

η(t) =
∑

β

Cβ(t)ψβ(t) , (1.77)

then upon taking the inner product with χα, we find that Cα obeys

Ċα +
〈
χα

∣∣ ψ̇β

〉
Cβ = λαCα . (1.78)

6If
[

M
1
,M

2

]

= 0 then A = AP .
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If ψ̇β = 0, e.g. if M is time-independent, then Cα(t) = Cα(0) e
λαt, and

ηi(t) =
∑

α

Cα(0)︷ ︸︸ ︷∑

j

ηj(0)χ
∗
α,j e

λαt ψα,i . (1.79)

Thus, the component of η(t) along ψα increases exponentially with time if Re(λα) > 0, and decreases
exponentially if Re(λα) < 0.

Nota bene: If M ∈ GL(N,R) is not symmetric – more generally if it does not commute with its trans-
pose MT – then it may be that the right eigenvectors of M do not span R

N . In this case, the canonical
decomposition of M contains one or more Jordan blocks. See §1.6 below.

1.6 Appendix III : Normal Matrices, Non-Normal Matrices, and Jordan Blocks

Normal matrices and eigenspectra : Quantum mechanical Hamiltonians can be represented as Hermi-
tian matrices. In elementary school linear algebra class, we all learned that any Hermitian matrix H is
diagonalizable by a unitary transformation, its eigenvalues are real, and eigenvectors corresponding to
different eigenvalues are necessarily orthogonal. In the case of degenerate eigenvalues, their associated
eigenvectors may be chosen to be mutually orthogonal via the Gram-Schmidt process. In the following
discussion, we will assume our matrices are in general complex, but we can of course restrict to the real
case, as is appropriate for real linear dynamical systems.

Any complex square matrix A which satisfies A†A = AA† is called normal. Hermitian matrices are
normal, but so are antihermitian and unitary matrices7. Real symmetric, antisymmetric, and orthogonal
matrices satisfy ATA = AAT. The Schur decomposition theorem guarantees that any n×n matrix A may be
decomposed as A = V TV †, where V ∈ U(n) and T is upper triangular. Now if A is normal, [A,A†] =
V [T, T †]V † = 0, hence T is normal. However, it is easy to show that any normal upper triangular
matrix must be diagonal8, so A = VDV †, which means D = V †AV is the diagonal matrix of eigenvalues
of A. Conversely, if A = VDV † is unitarily equivalent to a diagonal matrix, it is trivial to show that A
is normal. Thus any n × n matrix A is diagonalizable by a unitary transformation if and only if A is
normal.

There is a real version of Schur decomposition whereby a real matrix B satisfying BTB = BBT may
be decomposed as B = RSRT, where R is a real orthogonal matrix, and S is block upper triangular.
The diagonal blocks of S are either 1 × 1, corresponding to real eigenvalues, or 2 × 2, corresponding
to complex eigenvalues. One eventually concludes that real symmetric matrices have real eigenvalues,
real antisymmetric matrices have pure imaginary (or zero) eigenvalues, and real orthogonal matrices
have unimodular complex eigenvalues.

7There are many examples of normal matrices which are neither Hermitian, antihermitian, nor unitary. For example, any
diagonal matrix with arbitrary complex diagonal entries is normal.

8T †T = TT † says that
∑

j
|Tij |

2 =
∑

j
|Tji|

2 , i.e. the sum of the square moduli of the elements in the ith row is the same as

that for the ith column. Starting with i = 1, the only possible nonzero entry in the first column is T1,1, hence all the remaining
entries in the first row must vanish. Filling in all these zeros, proceed to i = 2. Since we just showed T1,2 = 0, we conclude
that the only possible nonzero entry in the second column is T2,2 , hence all remaining entries in the second row must vanish.
Continuing in this manner, we conclude that T is diagonal if it is both normal and upper triangular.
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Now let’s set A = VDV † and consider different classes of matrix A. If A is Hermitian, A = A† immedi-
ately yields D = D†, which says that all the eigenvalues of A must be real. If A† = −A, then D† = −D
and all the eigenvalues are purely imaginary. And if A† = A−1, then D† = D−1 and we conclude that all

the eigenvalues are unimodular, i.e. of the form eiωj . This analysis also tells us that any unitary matrix
U can be written in the form U = exp(iH) for some Hermitian matrix H .

Jordan blocks : What happens when an n×nmatrixA is not normal? In this caseA is not diagonalizable
by a unitary transformation, and while the sum of the dimensions of its eigenspaces is generically equal
to the matrix dimension dim(A) = n, this is not guaranteed; it may be less than n. For example, consider
the matrix

A =

(
a 1
0 a

)
. (1.80)

The eigenvalues are solutions to det(λI − A) = 0, hence λ = a, but there is only one eigenvector,

ψ =

(
1
0

)
. What is always true for any complex matrix A is that it can be brought to Jordan canonical form

by a similarity transformation J = P−1AP , where P is invertible, and

J =



J (1)

. . .

J (b)


 , (1.81)

where b is the number of Jordan blocks and where each block J (r) is an nr × nr matrix of the form

J (r) =




λr 1

λr
. . .

. . . 1
λr




. (1.82)

Thus each J (r) is tridiagonal, with diagonal elements all given by λr and each element directly above
the diagonal equal to one. Clearly J (r) has only one eigenvalue, λr , and writing the corresponding right

eigenvector as ~R(r), the condition J (r) ~R(r) = λ(r) ~R(r) yields the equations

λr R
(r)
1 +R

(r)
2 = λr R

(r)
1 , λr R

(r)
2 + ψ3 = λr R

(r)
2 . . . λr R

(r)
nr−1 +R

(r)
nr

= λr R
(r)
nr−1 , (1.83)

where nr = dim(J (r)) . These equations entail R
(r)
2 = R

(r)
3 = · · · = R

(r)
nr

= 0 , which says that there is only

one such eigenvector, whose components are R
(r)
j = δj,1. Note that the corresponding left eigenvector

~L(r) then has components L
(r)
j = δj,nr

. If nr > 1 we then have 〈L(r) |R(r) 〉 ≡ ~L(r) · ~R(r) = 0, which
means that the left and right eigenvectors of A which correspond to the Jordan blocks with nr > 1 are
orthogonal. Nota bene : It may be the case that there are degeneracies among the eigenvalues {λr}.

To summarize9, for every general complex n× n matrix A,

9See https://en.wikipedia.org/wiki/Jordan_normal_form .

https://en.wikipedia.org/wiki/Jordan_normal_form
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• A may be brought to Jordan canonical form by a similarity transformation J = P−1AP , where
J = bdiag

(
J (1), . . . , J (b)

)
is block diagonal, with each (J (r))ij = λr δi,j+ δi,j−1 with dim

(
J (r)

)
= nr,

for r ∈ {1, . . . , b}.

• There are b ≤ n eigenvalues {λ1, . . . , λb} (again, not necessarily all distinct) and b corresponding

eigenvectors
{
~R(1), . . . , ~R(b)

}
. If b = n then the matrix is diagonalizable.

• The dimension n of the matrix A satisfies n = n1 + . . . + nb , i.e. it is the sum of the dimensions of
all its Jordan blocks.

• Let λ ∈ {λ1, . . . , λb} be an eigenvalue, and define

tk(λ) = dim ker
(
λ In×n −A

)k
, (1.84)

which is the dimension of the null space of the matrix λ In×n −A. Then

⋄ tk(λ) is the number of Jordan blocks corresponding to the eigenvalue λ.

⋄ The number of Jordan blocks of size greater than k is tk+1(λ) − tk(λ). Thus the number of
Jordan blocks of size k for the eigenvalue λ is

Nk(λ) = 2 tk(λ)− tk+1(λ)− tk−1(λ) . (1.85)

Singular value decomposition : Note the difference between the decomposition into Jordan canonical

form and singular value decomposition (SVD), in which we write an m × n matrix A as A = US V †,
where U is m× k, V is n× k (hence V † is k × n), U †U = V †V = Ik×k , and S = diag(s1, . . . , sk) is a k × k
real matrix with k ≤ min(m,n) and each sj > 0. The elements sj are the singular values and the rows of

U and V are the singular vectors. Note that A†A = V S2 V † is n × n and AA† = US2 U † is m×m. If we
define

F (λ) =

k∏

j=1

(
λ− s2j

)
, (1.86)

Then
P (λ) ≡ det(λ−A†A) = λn−kF (λ) , Q(λ) ≡ det(λ−AA†) = λm−kF (λ) . (1.87)

Some comments:

• When A ∈ R is real, then both U and V may be chosen to be real, and we may write A = US V T.

• We may also adopt a convention where U is m×m, V is n× n, and S to be m× n, where only the
first k diagonal elements Sii are the (nonzero and real) singular values. In this case, U †U = Im×m

and V †V = In×n.

• For any square n× n complex matrix A we therefore have two decompositions, via JCF and SVD,
viz.

A = P−1JP = US V † , (1.88)

where J is the Jordan canonical form of A. When A is normal, k = n and P = U † = V †, in which
case the two decompositions are equivalent.
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Example : As an example highlighting the difference between eigenvalues and singular values, consider

A =



1 0 1
0 1 1
0 0 0


 = RDLT = US V T , (1.89)

where

LT =



1 −1 0
0 1 1
0 0 1


 , D =



1 0 0
0 1 0
0 0 0


 , R =



1 1 −1
0 1 −1
0 0 1


 (1.90)

and

U =
1√
2



1 −1
1 1
0 0


 , S =

(√
3 0
0 1

)
, V T =

1√
6

(
1 1 2

−
√
3

√
3 0

)
. (1.91)

Note that U and V T are both chosen to be real, which is a consequence of the fact thatA itself is real. One
can check that R is the matrix or right column eigenvectors, LT is the matrix of left row eigenvectors,
and Λ is the matrix of eigenvalues. Thus, the three eigenvalues are

{
λ1, λ2, λ3

}
=
{
1, 1, 0

}
. One also

has LTR = I, i.e. LT = R−1, which says that L
(a)
i R

(b)
i = δab – the row and column eigenvectors satisfy

orthonormality. Thus R−1AR = D and A is diagonalizable by R, which is a consequence of there being
no Jordan blocks. Note that there are only two singular values,

{
s1, s2

}
=
{√

3, 1
}

, and that U has
dimensions 3× 2 while V T has dimensions 2× 3. One can further check that UTU = V TV = I2×2 .

Had we adopted the convention where both U and V are square, we would have

U =
1√
2



1 −1 0
1 1 0

0 0
√
2


 , S =




√
3 0 0
0 1 0
0 0 0


 , V T =

1√
6




1 1 2

−
√
3

√
3 0

−
√
2 −

√
2

√
2


 , (1.92)

for which UTU = V TV = I3×3 . The extra zeroes in the matrix S are padding, and there are only two

singular values,
√
3 and 1.

For this example, both the set of eigenvalues and the set of singular values are distinct. Furthermore,

A†A =



1 0 1
0 1 1
1 1 2


 = V S2 V T , AA† =



2 1 0
1 2 0
0 0 0


 = US2 U † . (1.93)

The singular values ofA are thus the positive square roots of the eigenvalues of the nonnegative definite
Hermitian matrix A†A (or, equivalently, of AA†). In general, the eigenvalues λj of a non-normal matrix
A may not be real, even if A ∈ GL(n,R) is itself real. (In this case the eigenvalues are either real or come
in complex conjugate pairs.) The singular values, however, are always real and positive.

As a second example, consider the matrix

B =

(
1 1
−3 3

)
= RDLT = US V T , (1.94)
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where

LT =
i

2
√
2

(
+
√
3 e−iφ −1

−
√
3 e+iφ 1

)
, D =

(
2 + i

√
2 0

0 2− i
√
2

)
, R =

(
1 1√

3 e+iφ
√
3 e−iφ

)
(1.95)

with eiφ = 1√
3

(
1 + i

√
2
)

and

U =

(
1 0
0 1

)
, S =

(
3
√
2 0

0
√
2

)
, V T =

1√
2

(
1 1
−1 1

)
. (1.96)

Note that the two right eigenvectors form a complex conjugate pair, as do the two left eigenvectors.
This situation pertains for every complex eigenvalue, since if λr ∈ C is an eigenvalue then so is λ∗r .
Again, since B ∈ GL(2,R), the U and V matrices may be chosen real. There are two singular values{
s1, s2

}
=
{
3
√
2,
√
2
}

. But unlike the matrix A in the previous example, B has complex eigenvalues

λ± = 2± i
√
2, and the matrices LT and R of the left (row) and right (column) eigenvectors are complex.

As in the previous case, LT = R−1, hence R−1BR = D, i.e. B is diagonalized by the matrix R, which is
possible because there are no nontrivial Jordan blocks when it is brought to canonical form.
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