24. $\left(E+m_{e} c^{2}-E^{\prime}\right)^{2}=c^{2}\left(p^{2}-2 p p^{\prime} \cos \theta+p^{\prime 2}\right)+m_{\mathrm{e}}^{2} c^{4}$

$$
E^{2}+E^{\prime 2}+m_{\mathrm{e}}^{2} c^{4}+2 E m_{e} c^{2}-2 E E^{\prime}-2 E^{\prime} m_{\mathrm{e}} c^{2}=c^{2} p^{2}-2 c^{2} p p^{\prime} \cos \theta+c^{2} p^{\prime 2}+m_{\mathrm{e}}^{2} c^{4}
$$

With $E^{2}=c^{2} p^{2}$ and $E^{\prime 2}=c^{2} p^{\prime 2}$,

$$
\begin{aligned}
& E m_{\mathrm{e}} c^{2}-E E^{\prime}-E^{\prime} m_{\mathrm{e}} c^{2}=-E E^{\prime} \cos \theta \\
& m_{\mathrm{e}} c^{2}\left(E-E^{\prime}\right)=E E^{\prime}(1-\cos \theta) \\
& \frac{E-E^{\prime}}{E E^{\prime}}=\frac{1}{E^{\prime}}-\frac{1}{E}=\frac{1}{m_{\mathrm{e}} c^{2}}(1-\cos \theta)
\end{aligned}
$$

25. (a) $\frac{1}{E^{\prime}}=\frac{1}{E}+\frac{1-\cos \theta}{m_{\mathrm{e}} c^{2}}=\frac{1}{11.32 \mathrm{keV}}+\frac{1-\cos 62.9^{\circ}}{511.0 \mathrm{keV}}=0.08940 \mathrm{keV}^{-1}$
so $E^{\prime}=1 / 0.08727 \mathrm{keV}^{-1}=11.19 \mathrm{keV}$.
(b) $K_{\mathrm{e}}=E_{\mathrm{e}}-m_{\mathrm{e}} c^{2}=E-E^{\prime}=11.32 \mathrm{keV}-11.19 \mathrm{keV}=0.13 \mathrm{keV}$
26. (a) $\lambda^{\prime}=\lambda+\left(h / m_{e} c\right)(1-\cos \theta)$

$$
=0.02218 \mathrm{~nm}+(0.002426 \mathrm{~nm})\left(1-\cos 90^{\circ}\right)=0.02461 \mathrm{~nm}
$$

(b) The momenta of the incident and scattered photons are

$$
\begin{aligned}
& p=\frac{h}{\lambda}=\frac{1}{c} \frac{h c}{\lambda}=\frac{1}{c} \frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{0.02218 \mathrm{~nm}}=5.591 \times 10^{4} \mathrm{eV} / c \quad(x \text { direction }) \\
& p^{\prime}=\frac{h}{\lambda}=\frac{1}{c} \frac{h c}{\lambda}=\frac{1}{c} \frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{0.02461 \mathrm{~nm}}=5.039 \times 10^{4} \mathrm{eV} / c \quad(y \text { direction })
\end{aligned}
$$

(c) $K_{\mathrm{e}}=E-E^{\prime}=c p-c p^{\prime}=5.591 \times 10^{4} \mathrm{eV}-5.039 \times 10^{4} \mathrm{eV}=5.52 \times 10^{3} \mathrm{eV}$
(d) Because momentum must be conserved, the x component of the electron's momentum must equal p, and the y component must equal $-p^{\prime}$:

$$
\begin{gathered}
p_{\mathrm{ex}}=p=5.591 \times 10^{4} \mathrm{eV} / c \quad \text { and } \quad p_{\mathrm{ey}}=-p^{\prime}=-5.039 \times 10^{4} \mathrm{eV} / c \\
p_{\mathrm{e}}=\sqrt{p_{\mathrm{ex}}^{2}+p_{\mathrm{ey}}^{2}}=\sqrt{\left(5.591 \times 10^{4} \mathrm{eV} / c\right)^{2}+\left(5.039 \times 10^{4} \mathrm{eV} / c\right)^{2}}=7.527 \times 10^{4} \mathrm{eV} / \mathrm{c}
\end{gathered}
$$

in the direction given by $\theta=\tan ^{-1} \frac{p_{\text {ey }}}{p_{\text {ex }}}=\tan ^{-1} \frac{-5.039 \times 10^{4} \mathrm{eV} / \mathrm{c}}{5.591 \times 10^{4} \mathrm{eV} / \mathrm{c}}=-42.0^{\circ}$
28. (a) $\frac{1}{E^{\prime}}=\frac{1}{E}+\frac{1-\cos \theta}{m_{\mathrm{e}} c^{2}}=\frac{1}{0.662 \mathrm{MeV}}+\frac{1-\cos 52.2^{\circ}}{0.511 \mathrm{MeV}}=2.268 \mathrm{MeV}^{-1}$
so $E^{\prime}=1 / 2.268 \mathrm{MeV}^{-1}=0.441 \mathrm{MeV}$.
(b) $\quad K_{\mathrm{e}}=E-E^{\prime}=0.662 \mathrm{MeV}-0.441 \mathrm{MeV}=0.221 \mathrm{MeV}$
30. The energy of the original photon can be found from the sum of the energies of the scattered electron and photon:

$$
E=E^{\prime}+K_{\mathrm{e}}=2.302 \mathrm{MeV}+0.239 \mathrm{MeV}=2.541 \mathrm{MeV}
$$

The scattering angle can be found from Eq. 3.46:

$$
1-\cos \theta=m c^{2}\left(\frac{1}{E^{\prime}}-\frac{1}{E}\right)=(0.511 \mathrm{MeV})\left(\frac{1}{0.239 \mathrm{MeV}}-\frac{1}{2.541 \mathrm{MeV}}\right)=1.937
$$

from which

$$
\theta=\cos ^{-1}(-0.937)=160^{\circ}
$$

38. K_{e} is largest when E^{\prime} is smallest (because $K_{\mathrm{e}}=E-E^{\prime}$) and thus when $1 / E^{\prime}$ is largest, which occurs when $\cos \theta=-1$ (that is, when $\theta=180^{\circ}$).

$$
\frac{1}{E^{\prime}}=\frac{1}{E}+\frac{2}{m_{\mathrm{e}} c^{2}}=\frac{m_{\mathrm{e}} c^{2}+2 E}{E m_{\mathrm{e}} c^{2}} \quad \text { so } \quad E^{\prime}=\frac{E m_{\mathrm{e}} c^{2}}{m_{\mathrm{e}} c^{2}+2 E}
$$

$$
K_{\mathrm{e}}=E-E^{\prime}=E-\frac{E m_{\mathrm{e}} c^{2}}{m_{\mathrm{e}} c^{2}+2 E}=\frac{2 E^{2}}{m_{\mathrm{e}} c^{2}+2 E}
$$

43. The initial speed of the atom can be expressed as $v=c(125.0 \mathrm{~m} / \mathrm{s}) /\left(2.997 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)=$ $4.171 \times 10^{-7} c$. The initial momentum (which is nonrelativistic at this low speed) is

$$
p_{\mathrm{i}}=m v=\frac{1}{c} m c^{2} \frac{v}{c}=\frac{1}{c}(1.007825 \mathrm{u})\left(931.5 \times 10^{6} \mathrm{eV} / \mathrm{u}\right)\left(4.171 \times 10^{-7}\right)=391.6 \mathrm{eV} / c
$$

The photon momentum, which is in the opposite direction, has magnitude

$$
p=\frac{1}{c} \frac{h c}{\lambda}=\frac{1}{c} \frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{97 \mathrm{~nm}}=12.8 \mathrm{eV} / c
$$

The atom's final momentum is $p_{\mathrm{f}}=p_{\mathrm{i}}-p=391.6 \mathrm{eV} / c-12.8 \mathrm{eV} / c=378.8 \mathrm{eV} / c$ and its speed is

$$
v_{\mathrm{f}}=\frac{p_{\mathrm{f}}}{m}=c \frac{p_{\mathrm{f}} c}{m c^{2}}=c \frac{378.8 \mathrm{eV}}{(1.007825 \mathrm{u})\left(931.5 \times 10^{6} \mathrm{eV} / \mathrm{u}\right)}=4.035 \times 10^{-7} c=120.9 \mathrm{~m} / \mathrm{s}
$$

So the change in the speed of the atom is $125.0 \mathrm{~m} / \mathrm{s}-120.9 \mathrm{~m} / \mathrm{s}=4.1 \mathrm{~m} / \mathrm{s}$.

