Lecture 17 (Feb. 25)

- Solution of the mean field Hamiltonian: We have, with $\xi_{k}=\varepsilon_{k}-\mu$,

$$
\hat{K}_{B C S}=\sum_{k}^{\sum_{k}} \underbrace{\left(\begin{array}{cc}
c_{k}^{+} & c_{-k \downarrow}
\end{array}\right)\left(\begin{array}{cc}
\xi_{k} & \Delta_{k} \\
\Delta_{k}^{*} & -\xi_{k}
\end{array}\right)\binom{c_{k \uparrow}}{c_{-k \downarrow}^{+}}}+K_{0}
$$

where $\xi_{k}=\varepsilon_{k}-\mu$ and to become $\left(\gamma_{k \uparrow}^{+} \gamma_{-k \downarrow}\right)\left(\begin{array}{cc}E_{k} & 0 \\ 0 & -E_{k}\end{array}\right)\binom{\gamma_{k \uparrow}}{\gamma_{-k \downarrow}^{+}}$

$$
K_{0}=\sum_{k} \xi_{k^{k}}-\sum_{k, k^{\prime}} V_{k_{1}, k^{\prime}}\left\langle C_{k^{\prime} \uparrow}^{+} C_{-k \downarrow}^{+}\right\rangle\left\langle C_{-k^{\prime} \downarrow} C_{k^{\prime} \uparrow \uparrow}\right\rangle
$$

We diagonalize the problem via a unitary transformation,

$$
\binom{c_{k \uparrow}}{c_{-\hbar \downarrow}^{+}}=\underbrace{\left(\begin{array}{cc}
\cos v_{\hbar} & -\sin v_{k} e^{i \phi_{k}} \\
\sin v_{k} e^{-i \phi_{k}} & \cos v_{k}
\end{array}\right)}_{v_{k}}\binom{\gamma_{\hbar \uparrow}}{\gamma_{-\hbar \downarrow}^{+}}
$$

In order that the $\gamma_{k j \sigma}$ operators satisfy Fermi statistics, we must have that U_{t} is unitary. Then

$$
\begin{aligned}
& c_{k \sigma}=\cos v_{k} \gamma_{k_{\sigma}-}-\sigma \sin v_{k} e^{i \phi_{k}} \gamma_{-k-\sigma}^{+} \\
& \gamma_{k \sigma}=\cos v_{k} c_{k j}+\sigma \sin v_{k} e^{i \phi_{k}} c_{-k-\sigma}^{+}
\end{aligned}
$$

The transformed grand canonical Hamiltonian is (dropping k, σ):

$$
\tilde{K}=U^{\dagger} K U=\left(\begin{array}{cc}
\cos v & \sin v e^{i \phi} \\
-\sin v e^{-i \phi} & -\cos v
\end{array}\right)\left(\begin{array}{cc}
\xi & \Delta \\
\Delta^{*} & -\xi
\end{array}\right)\left(\begin{array}{cc}
\cos v & -\sin v e^{i \phi} \\
\sin v e^{-i \phi} & -\cos v
\end{array}\right)
$$

Working this out, we obtain

$$
\begin{aligned}
& \tilde{K}_{11}=\left(\cos ^{2} v-\sin ^{2} v\right) \xi+\sin v \cos v\left(\Delta e^{-i \phi}+\Delta^{*} e^{i \phi}\right) \\
& \widetilde{K}_{22}=\left(\sin ^{2} v-\cos ^{2} v\right) \xi-\sin v \cos v\left(\Delta e^{-i \phi}+\Delta^{*} e^{i \phi}\right)=-\widetilde{K}_{11} \\
& \widetilde{K}_{12}=\left[\left(\Delta e^{-i \phi} \cos ^{2} v-\Delta^{*} e^{i \phi} \sin ^{2} v\right)-2 \xi \sin v \cos v\right] e^{i \phi} \\
& \widetilde{K}_{21}=\widetilde{K}_{12}^{*}
\end{aligned}
$$

We now use our freedom to choose V and ϕ to make the off-diagonal elements vanish. We demand $\phi \equiv \arg (\Delta)$ and

$$
\begin{gathered}
2 \xi \sin v \cos v=|\Delta|\left(\cos ^{2} v-\sin ^{2} v\right) \\
\text { i.e. } \tan (2 v)=|\Delta| / \xi
\end{gathered}
$$

We then have

$$
\cos (2 v)=\frac{\xi}{E}, \quad \sin (2 v)=\frac{|\Delta|}{E}, \quad E=\sqrt{\xi^{2}+|\Delta|^{2}}
$$

The element \widetilde{K}_{11} then becomes

$$
\begin{aligned}
\widetilde{K}_{11} & =\left(\cos ^{2} \vartheta-\sin ^{2} \theta\right) \xi-\sin v \cos \theta\left(\Delta e^{-i \phi}+\Delta^{*} e^{i \phi}\right) \\
& =\frac{\xi^{2}}{E}+\frac{|\Delta|^{2}}{E}=E
\end{aligned}
$$

and thus

$$
\widetilde{K}=U^{+} K U=\left(\begin{array}{cc}
E & 0 \\
0 & -E
\end{array}\right)
$$

This transform ation is known as the Bogolivbov transformation.
Restoring the wavevector subscript, $\phi_{k}=\arg \left(\Delta_{k}\right)$ and

$$
\cos \left(2 v_{k}\right)=\frac{\xi_{k}}{E_{k}}, \quad \sin \left(2 v_{k}\right)=\frac{\left|\Delta_{k}\right|}{E_{k}}, \quad E_{k}=\sqrt{\xi_{k}^{2}+\left|\Delta_{k}\right|^{2}}
$$

We also have the BCS coherence factors

$$
\cos v_{k}=\sqrt{\frac{1}{2}\left(1+\frac{\xi_{k}}{E_{k}}\right)} \approx\left\{\begin{array}{ll}
0 & \text { if } k<k_{F} \\
1 & \text { if } k_{2} k_{F}
\end{array}, \sin v_{k}=\sqrt{\frac{1}{2}\left(1-\frac{\xi_{k}}{E_{k}}\right)} \approx \begin{cases}1 & \text { if } k<k_{F} \\
0 & \text { if } k i k_{F}\end{cases}\right.
$$

In terms of the $\gamma_{k \sigma}$ fermions, then,

$$
\hat{K}_{B C S}=\sum_{k, \sigma} E_{k} \gamma_{k \sigma}^{+} \gamma_{k_{\sigma}}+\sum_{k}\left(\xi_{k}-E_{k}\right)-\sum_{k, k^{\prime}} V_{k_{1}, k^{\prime}}\left\langle C_{k \uparrow}^{+} C_{-k^{\prime} \downarrow}^{+}\right\rangle\left\langle C_{-k^{\prime} \downarrow} C_{k^{\prime} \uparrow}\right\rangle
$$

What is the ground state $|G\rangle$ in terms of our original $C_{\hbar_{0}}$ fermions? We must have

$$
\gamma_{k \sigma}|G\rangle=\left(\cos V_{k} c_{k \sigma}+\sigma \sin v_{k} e^{i \phi_{k}} c_{-k-\sigma}^{+}\right)|G\rangle=0
$$

for each k, σ. Therefore,

$$
|G\rangle=\prod_{k}\left(\cos v_{k}-\sin v_{k} e^{i \phi_{k}} c_{k \uparrow}^{+} c_{-k \downarrow}^{+}\right)|0\rangle
$$

This is the famous BCS ground state, first written by J. R. Schrieffer.

To make contact with the familiar consider the case where $\Delta_{k}=0$. Note that $\xi_{k}<0$ for $\left|k_{k}\right|<k_{F}$ and $\xi_{k}>0$ for $|\hbar|>k_{F}$. Thus

$$
\cos v_{k}=\Theta\left(k-k_{F}\right), \quad \sin v_{k}=\Theta\left(k_{F}-k\right)
$$

and

$$
|G\rangle=\prod_{|k|<k_{F}} C_{k \uparrow}^{+} C_{-k \downarrow}^{+}|O\rangle=|F\rangle
$$

What are the elementary excitations? We have

$$
\begin{aligned}
\gamma_{k \sigma}^{+} & =\cos v_{k} c_{k \sigma}^{+}+\sigma \sin v_{k} e^{-i \phi_{k}} C_{-k-\sigma} \\
& =\sigma \Theta\left(k_{F}-k\right) C_{-k-\sigma}+\Theta\left(k-k_{F}\right) C_{k \sigma}^{+}
\end{aligned}
$$

The elementary excitations are particles above the Fermi surface $\left(k>k_{F}\right)$ and holes below the Fermi surface $\left(h_{F}>k\right)$.

- Self-consistency: We now dem and two things:

$$
N=\sum_{k, \sigma}\left\langle C_{k^{\prime} \sigma}^{+} C_{\hbar_{\sigma}}\right\rangle, \quad \Delta_{k}=\sum_{k^{\prime}} V_{k_{k}, k^{\prime}}\left\langle C_{-k^{\prime} \downarrow} C_{k^{\prime} \uparrow}\right\rangle
$$

Work it out:

$$
\begin{aligned}
\left\langle c_{k \sigma}^{+} c_{\hbar \sigma}\right\rangle & =\left\langle\left(\cos v_{k} \gamma_{k \sigma}^{+}-\sigma \sin v_{k} e^{-i \phi_{k}} \gamma_{-k-\sigma}\right)\left(\cos v_{k} \gamma_{k \sigma}-\sigma \sin v_{k} e^{i \phi_{k}} \gamma_{-k-\sigma}^{+}\right)\right\rangle \\
& =\cos ^{2} v_{k}\left\langle\gamma_{k \sigma}^{+} \gamma_{\hbar \sigma}\right\rangle+\sin ^{2} v_{k}\left\langle\gamma_{-\hbar \sigma} \gamma_{-k \sigma}^{+}\right\rangle \\
& =\cos ^{2} v_{k} f_{k}+\sin ^{2} v_{k}\left(1-f_{k}\right)=\frac{1}{2}-\frac{\xi_{k}}{2 E_{k}} \tanh \left(\frac{1}{2} \beta E_{k}\right)
\end{aligned}
$$

where $f_{k k}=\left\langle\gamma_{t \sigma}^{+} \gamma_{t \sigma}\right\rangle=\frac{1}{e^{\beta E_{t}+1}}=\frac{1}{2}\left(1-\tanh \left(\frac{1}{2} \beta E_{k}\right)\right)$.
Next,

$$
\begin{aligned}
\left\langle c_{-k-\sigma} c_{k \sigma}\right\rangle & =\left\langle\left(\cos v_{k} v_{-k-\sigma}+\sigma \sin v_{k} e^{i \phi_{k}} \gamma_{k \sigma}^{+}\right)\left(\cos \eta_{k} v_{k \sigma}-\sigma \sin v_{k} e^{i \phi_{v_{2}}} \gamma_{-k-\sigma}^{+}\right)\right\rangle \\
& =\sigma \sin v_{k} \cos v_{k} e^{i \phi_{k}}\left(2 f_{k}-1\right)=-\frac{\sigma \Delta_{k}}{2 E_{k}} \tanh \left(\frac{1}{2} \beta E_{k}\right)
\end{aligned}
$$

Let's work at $T=0$:

$$
N=\sum_{\vec{k}}\left(1-\frac{\xi_{k}}{E_{k}}\right), \quad \Delta_{k}=-\sum_{k^{\prime}} V_{k_{k}, \hbar^{\prime}} \frac{\Delta_{k^{\prime}}}{2 E_{k^{\prime}}}
$$

Note that $\Delta_{k}=0$ is always a solution to the gap equation, just as zero magnetization is always a solution to the mean field theory of an Ising ferromagnet: $m=\tanh \left(z J_{m} / k_{B} T\right)$. In both cases, however, the broken symmetry solution $\left(\Delta_{k} \neq 0, m \neq 0\right)$ is generally of lower energy for $T<T_{c}$.
To proceed further, we need a model for $V_{\hbar, k^{\prime}}$. Let's take

$$
V_{k_{1}, k^{\prime}}= \begin{cases}-v / v & \text { if }\left|\xi_{k}\right|<\hbar \omega_{D} \text { and }\left|\xi_{\hbar^{\prime}}\right|<\hbar \omega_{D} \\ 0 & \text { otherwise }\end{cases}
$$

Here $v>0$, so the interaction is attractive if ξ_{k} and $\xi_{k^{\prime}}$ are each within $\hbar \omega_{D}$ of ε_{F} and is zero otherwise. We seek a solution of the form

$$
\Delta_{k}= \begin{cases}\Delta e^{i \phi} & \text { if }\left|\xi_{k}\right|<\hbar \omega_{D} \\ 0 & \text { otherwise }\end{cases}
$$

with Δ real and non-negative. We then have

$$
\Delta=+v \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{\Delta}{2 E_{k}} \Theta\left(\hbar \omega_{D}-\left|\xi_{k}\right|\right)=\frac{1}{2} v g\left(\varepsilon_{F}\right) \int_{0}^{\hbar \omega_{D}} d \xi^{\Delta} \frac{\Delta}{\sqrt{\xi^{2}+\Delta^{2}}}
$$ where we presume $g\left(\varepsilon_{F}+\xi\right) \approx g\left(\varepsilon_{F}\right)$. Thus, we have

$$
1=\frac{1}{2} v g\left(\varepsilon_{F}\right) \int_{0}^{\hbar \omega_{D} / \Delta} d s\left(1+s^{2}\right)^{-1 / 2}=\frac{1}{2} v g\left(\varepsilon_{F}\right) \sinh ^{-1}\left(\hbar \omega_{D} / \Delta\right)
$$

Writing $\Delta_{0} \equiv \Delta(T=0)$, then,

$$
\Delta_{0}=\frac{\hbar \omega_{D}}{\sinh \left(\frac{2}{g\left(\varepsilon_{F}\right) v}\right)} \approx 2 \hbar \omega_{D} \exp \left(-\frac{2}{g\left(\varepsilon_{F}\right) v}\right)
$$

where the latter expression holds for $g\left(\varepsilon_{f}\right) v \ll 1$. Note that the argument of the exponential is half as large as what we found in the solution of the Cooper problem.

- Condensation energy: We have use gap equation here

$$
\langle G| \hat{K}_{B C S}|G\rangle=\sum_{\vec{k}}\left(\xi_{k}-E_{\hat{k}}+\frac{\left|\Delta_{k_{k}}\right|^{2}}{2 E_{\hat{k}}}\right)
$$

To compare normal and superconducting ground state energies, we subtract the normal state energy, obtaining

$$
\begin{aligned}
E_{s}-E_{n} & =\sum_{\vec{k}}\left(\xi_{k}-E_{k_{k}}+\frac{\left|\Delta_{k}\right|^{2}}{2 E_{k_{k}^{\prime}}}-2 \xi_{k} \Theta\left(k_{F}-k \mid\right)\right. \\
& =2 \sum_{\frac{k}{k}}\left(\xi_{k}-E_{k}\right) \Theta\left(\xi_{k}\right) \Theta\left(\hbar \omega_{D}-\xi_{k}\right)+\sum_{k} \frac{\Delta_{0}^{2}}{2 E_{k}} \Theta\left(\hbar \omega_{0}-\left|\xi_{k_{k}}\right|\right)
\end{aligned}
$$

since

$$
\xi_{k}-E_{k}-2 \xi_{k}(4)\left(-\xi_{k}\right)=\left\{\begin{array}{lll}
0 & \text { if } & \xi_{k}>E_{k} \\
\xi_{k}-E_{k} & \text { if } 0<\xi_{k}<E_{k} \\
-\xi_{k}-E_{k} & \text { if }-E_{k}<\xi_{k}<0 \\
0 & \text { if } \xi_{k}<-E_{k}
\end{array}\right.
$$

We find

$$
\begin{aligned}
E_{s}-E_{n} & =\operatorname{Vg}\left(\varepsilon_{F}\right) \Delta_{0}^{2} \int_{0} d s\left(s-\sqrt{1+s^{2}}+\frac{1}{2 \sqrt{1+s^{2}}}\right) \\
& =\frac{1}{2} V g\left(\varepsilon_{F}\right) \Delta_{0}^{2}\left\{\left(\frac{\hbar \omega_{D}}{\Delta_{0}}\right)^{2}-\left(\frac{\hbar \omega_{0}}{\Delta_{0}}\right) \sqrt{1+\left(\frac{\hbar \omega_{0}}{\Delta_{0}}\right)^{2}}\right\} \\
& \approx-\frac{1}{4} V g\left(\varepsilon_{F}\right) \Delta_{0}^{2}
\end{aligned}
$$

assuming $\Delta_{0} \ll \hbar \omega_{D}$, which is valid for weak attraction. So the condensation energy density is

$$
\Delta g=-\frac{1}{4} g\left(\varepsilon_{F}\right) \Delta_{0}^{2}=-\frac{H_{c}^{2}}{8 \pi} \Rightarrow H_{c}(0)=\sqrt{2 \pi g\left(\varepsilon_{F}\right)} \Delta_{0}
$$

- Coherence factors: We found

$$
\gamma_{k \sigma}^{+}=\cos v_{k} c_{k \sigma}^{+}+\sigma \sin v_{k} e^{i \phi_{k}} c_{-k-\sigma}
$$

and

$$
\cos ^{2} v_{k}=\frac{1}{2}\left(1+\frac{\xi_{k}}{E_{k}}\right), \quad \sin ^{2} v_{k}=\frac{1}{2}\left(1-\frac{\xi_{k}}{E_{k}}\right)
$$

with

$$
\xi_{k}=\varepsilon_{k}-\mu, \quad E_{k}=\sqrt{\xi_{k}^{2}+\Delta_{0}^{2}}, \quad \phi_{k}=0
$$

and where μ and Δ_{k} are fixed by the conditions

$$
N=\sum_{k}\left(1-\frac{\xi_{k}}{E_{k}}\right), \quad \sum_{k^{\prime}} V_{k, k^{\prime}} \frac{1}{2 \sqrt{\xi_{k}^{2}+\Delta_{0}^{2}}}=1
$$

at $T=0$.

When $\hbar \omega_{D} \ll \varepsilon_{F}$, there is a narrow window about $k=k_{F}$ where E_{k} differs from $\left|\xi_{k}\right|$. Typically $\Delta_{0} \simeq 10^{-4} \varepsilon_{F}$ in conventional superconductors. So the Bogolivbov operator $\gamma_{k \sigma}^{+}$ creates a linear combination of electron and hole when $\left|k-k_{F}\right| \leqslant \Delta_{0} / \hbar v_{F} \simeq 10^{-3} k_{F}$.

BCS coherence factors
$N B$: When $V_{k, \hbar^{\prime}}=-V \Theta\left(\hbar \omega_{D}-\mid \xi_{k}\right) \Theta\left(\hbar \omega_{D}-\left|\xi_{k^{\prime}}\right|\right)$ the dispersion E_{k} is discon finuous when $\left|\xi_{k}\right|=\hbar \omega_{D} \Rightarrow k=k_{ \pm}^{*}=k_{F} \pm \omega_{D} / v_{F}$. However, the magnitude of the discontinuity is ting:

$$
\delta E=\sqrt{\left(\hbar \omega_{D}\right)^{2}+\Delta_{0}^{2}}-\hbar \omega_{D} \approx \frac{\Delta_{0}^{2}}{2 \hbar \omega_{D}} \Rightarrow \frac{\delta E}{\hbar \omega_{D}} \simeq 2 e^{-4 / g\left(\varepsilon_{F}\right) v} \ll 1
$$

- Number and phase: Consider the state

$$
|G(\alpha)\rangle=\prod_{k}\left(\cos v_{k}-e^{i \alpha} e^{i \phi_{k}} \sin v_{k} c_{k \uparrow}^{+} c_{-k+}^{+}\right)|0\rangle
$$

Abbreviate $|G(\alpha)\rangle \equiv|\alpha\rangle$. Consider action of \hat{N} on $|\alpha\rangle$:

$$
\left.\begin{array}{rl}
\hat{N}|\alpha\rangle & =\sum_{k}\left(c_{k \uparrow ⿱}+1\right. \\
c_{k T}
\end{array} c_{-k \downarrow}^{+} c_{-k \downarrow}\right)|\alpha\rangle{ }^{k^{\prime} \neq k}
$$

$$
\hat{M}=\frac{1}{2} \hat{N}=\# \text { Cooper pairs } \Rightarrow \hat{M} \leftrightarrow \frac{1}{i} \frac{\partial}{\partial \alpha}
$$

Project onto state of definite particle number $N=2 M$:

$$
|M\rangle=\int_{-\pi}^{\pi} \frac{d \alpha}{2 \pi} e^{-i M \alpha}|\alpha\rangle
$$

Number fluctuations:

$$
\frac{\langle\alpha| \hat{N}^{2}|\alpha\rangle-\langle\alpha| \hat{N}|\alpha\rangle^{2}}{\langle\alpha| \hat{N}|\alpha\rangle}=\frac{2 \int d^{3} k \sin ^{2} V_{k} \cos ^{2} v_{k}}{\int d^{3} k \sin ^{2} v_{k}}
$$

Thus, $\Delta N_{\text {RMS }} \propto \sqrt{\langle N\rangle}$

