Lecture 16 (Feb. 24) BCS Theory of Superconductivity Bound states: Consider a ballistic particle in an attractive potential V(x). The Schrödinger equation is $-\frac{t^2}{2m}\vec{\nabla}^2\Psi(\vec{x}) + V(\vec{x})\Psi(\vec{x}) = E\Psi(\vec{x})$ Fourier transform to obtain $E(t_{\parallel}\hat{\Psi}(t_{\parallel}) + \int \frac{d^d k'}{(2\pi)^d} \hat{V}(t_{\parallel}-t')\hat{\Psi}(t'_{\parallel}) = E\hat{\Psi}(t_{\parallel})$ with $E(t_{\parallel}) = t_{\parallel}^2 t_{\parallel}^2/2m$. Since $\hat{V}_{t_{\parallel},t'_{\parallel}} = \hat{V}(t'_{\parallel}-t'_{\parallel})$ is a Hermitian matrix, we may express it as a sum over its eigenspace projectors, viz.

 $\hat{V}(t_{\ell}-t_{\ell}') = \sum_{n} \lambda_{n} \alpha_{n}(t_{\ell}) \alpha_{n}^{*}(t_{\ell}')$

Let's approximate the above sum by the contribution from the lowest eigenvalue, which we call λ . Thus, we take

 $\hat{\vee}(k,k') \approx \lambda \alpha(k) \alpha^{*}(k')$

Such a potential is called separable. We then have

 $\mathcal{E}(\mathbf{k})\,\hat{\psi}(\mathbf{k})\,+\,\lambda\,\alpha(\mathbf{k})\int_{(2\pi)/d}^{d^{\alpha}\mathbf{k}'}\,\alpha^{*}(\mathbf{k}')\,\hat{\psi}(\mathbf{k}')\,=\,E\,\hat{\psi}(\mathbf{k}')$

which entails

 $\hat{\psi}(t_{k}) = \frac{\lambda \alpha(t_{k})}{E - \varepsilon(t_{k})} \int \frac{d^{q}h'}{(2\pi)^{q}} \alpha^{*}(t_{k}') \hat{\psi}(t_{k}')$

Now multiply by a *(*) and integrate to obtain $-\frac{1}{\lambda} = \int \frac{d^4 k}{(2\pi)^4} \frac{|\alpha(t_k)|^2}{\varepsilon(t_k) - \varepsilon}$

If $\hat{V}_{4,4'}$ is isotropic, i.e. if $\hat{V}(t_{i}-t_{i}') = \hat{V}(Rt_{i}-Rt_{i}')$ where $R \in SO(d)$, then the lowest eigenvector $\alpha(t_{i})$ is generally isotropic, i.e. we may write $\alpha(t_{i}) = \alpha(\varepsilon(t_{i}))$, which is a function only of the magnitude of t_{i} . Then with $g(\varepsilon) = \int_{(2\pi)^{\alpha}}^{d^{\alpha}k} \delta(\varepsilon - \varepsilon(t_{i})) = DOS$, we have

 $(\bullet) \quad \frac{1}{1\lambda I} = \int_{0}^{\infty} d\varepsilon \frac{g(\varepsilon)}{1\varepsilon I + \varepsilon} \left[\alpha(\varepsilon) \right]^{2}$

where we assume $\lambda < 0$ and E < 0. If $\alpha(\varepsilon)$ and $g(\varepsilon)$ are finite as $\varepsilon \to 0$, then we have, as $\varepsilon \to 0^-$,

 $\frac{1}{|\lambda|} = g(0) |\alpha|0|^2 \ln\left(\frac{B}{|E|}\right) + finishe$

where B is the bandwidth (i.e. $g(\mathcal{E}) = 0$ for $\mathcal{E} > B$). This equation has a solution for arbitrily small values of $|\lambda|$, since the RHS diverges logarithmically as $E \rightarrow 0^-$. Thus, as $\lambda \rightarrow 0^-$ we have

 $E(\lambda) = -cB \exp\left(-\frac{1}{g(0) |\alpha(0)|^2 |\lambda|}\right)$

where C>0 is a constant. If $g(\varepsilon) \propto \varepsilon^P$ with P>0, then the RHS of (•) is finite as $E \rightarrow 0^-$. In this

case, a bound state solution with E < 0 exists only d=3 M = 1 where $Weak \lambda$ F resonance Efor $|\lambda| > \lambda_c$, where $\lambda_c = 1 / \int_0^\infty d\varepsilon \frac{g(\varepsilon)}{\varepsilon} |\alpha(\varepsilon)|^2 \xrightarrow{\text{Dos}} \frac{1}{\varepsilon} \frac{1}{\varepsilon} \int_0^\infty d\varepsilon \frac{g(\varepsilon)}{\varepsilon} |\alpha(\varepsilon)|^2$ For a ballistic dispersion, $g(\mathcal{E}) \propto \mathcal{E}^{(d-2)/2}$, so q(0) vanishes for d>2 and is finite for d=2. For d<2, g(z -> 0+) diverges as g(z) ~ z-r with $P=1-\frac{1}{2}d$, i.e. $P=\frac{1}{2}$ in d=1. The RHS of (•) then diverges as $|E|^{-p}$ as $E \rightarrow 0^{-}$ and so $E(\lambda) = -C|\lambda|^{Vp}$ as $\lambda \to 0^-$.

 Cooper's problem (1956): Cooper considered the problem of two electrons with a weak attraction in the presence of a quiescent Fermi sea, described by a variational wavefunction

 $|\Psi\rangle = \int_{\pi}^{1} \sum_{|\mathbf{k}| > k_{F}} A_{\mathbf{k}} \left(C_{\mathbf{k}\uparrow}^{\dagger} C_{-\mathbf{k}\downarrow}^{\dagger} - C_{\mathbf{k}\downarrow}^{\dagger} C_{-\mathbf{k}\uparrow}^{\dagger} \right) |F\rangle \qquad \stackrel{k_{F}}{\longrightarrow} \stackrel{\circ}{\longrightarrow}$

where $|F\rangle$ is the filled Fermi sphere. Note that $|\Psi\rangle$ has total momentum K = 0 and total spin S = 0(i.e. a singlet). The electrons in the Fermi sea only enter the problem through Pauli blocking. In real space, the wavefunction for Cooper's pair is

 $\Psi(\vec{x}_{1},\vec{x}_{2}) = \frac{1}{\sqrt{2}} \sum_{|\vec{k}| > k_{F}} A_{\vec{k}} e^{i\vec{k} \cdot (\vec{x}_{1} - \vec{x}_{2})} (|\hat{T}_{1}, \hat{U}_{2}\rangle - |\hat{U}_{1}, \hat{T}_{2}\rangle)$ where A = A - te. The Hamiltonian is $H = \sum_{k,\sigma} \mathcal{E}_{k\sigma} C_{k\sigma}^{\dagger} + \frac{1}{2} \sum_{k_{1},\sigma_{1}} \sum_{k_{4},\sigma_{4}} \langle k_{1}\sigma_{1}, k_{2}\sigma_{2} | \mathcal{V} | k_{3}\sigma_{3}, k_{4}\sigma_{4} \rangle$ $\times C_{k_1\sigma_1}^{\dagger} C_{k_2\sigma_3}^{\dagger} C_{k_4\sigma_4} C_{k_3\sigma_3}$ We treat 14 > as a variational state, so we set $S \frac{\langle \Psi | \hat{\mu} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{\delta \langle \Psi | \hat{\mu} | \Psi \rangle}{\langle \Psi | \Psi \rangle} - \frac{\langle \Psi | \hat{\mu} | \Psi \rangle}{\langle \Psi | \Psi \rangle} \cdot \frac{\delta \langle \Psi | \Psi \rangle}{\langle \Psi | \Psi \rangle} = 0$ We take the variation wrt A. We have $\langle \Psi | \Psi \rangle = \sum_{\mu} A_{\mu}^{*} A_{\mu}$ $\langle \Psi | \hat{\mu} | \Psi \rangle = E_o + \sum_{\sharp} 2 \mathcal{E}_{\sharp} | A_{\sharp} |^2 + \frac{1}{2} \sum_{\sharp, \sharp'} V_{\sharp, \sharp'} A_{\sharp} A_{\sharp'} A_{\sharp'}$ where Eo = < F | Ĥ | F > and $V_{\sharp,\sharp'} = \langle \sharp \uparrow, -\sharp \downarrow | \upsilon | \sharp' \uparrow, -\sharp' \downarrow \rangle = \frac{1}{V} \int d^3 x \, \upsilon(\vec{x}) \, e^{i(\pounds - \xi') \cdot \vec{x}}$ Thus, we obtain the eigenvalue equation $(E_{o} + 2E_{k}) A_{k} + \sum_{k'} V_{k_{i}k'} A_{k'} = E A_{k}$ Now define $\Sigma_{H} = \Sigma_{F} + \tilde{S}_{H}$ and $E = E_{O} + 2\Sigma_{F} + W_{s}$ so that $2\tilde{s}_{\sharp}A_{\sharp} + \sum_{\sharp'}V_{\sharp,\sharp'}A_{\sharp'} = WA_{\sharp}$

Assuming $v(\vec{x}) = v(|\vec{x}|)$, we may write

 $V_{\mu,\mu'} = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} V_{l}(k,k') Y_{l,m}(\hat{k}) Y_{l,m}(\hat{k}')$

We fur ther assume separability, i.e.

 $V_{\ell}(k,k') = \frac{1}{\sqrt{\lambda_{\ell}}} \chi_{\ell} \chi_{\ell}(k) \chi_{\ell}^{*}(k')$

and we seek a solution $A_{\frac{1}{k}} = A_{\frac{1}{k}} Y_{\frac{1}{k},m}(\hat{k})$ in the angular momentum l channel. This results in

 $2\xi_k A_k + \lambda_\ell \alpha_\ell(k) \cdot \frac{1}{V} \sum_{k'} \alpha_\ell^*(k) A_{k'} = W_\ell A_k$

This may be recast as

 $A_{k} = \frac{\lambda_{\ell} \alpha_{\ell}(k)}{W_{\ell} - 2\tilde{s}_{k}} \cdot \frac{1}{V} \sum_{k'} \alpha_{\ell}^{*}(k') A_{k'}$

Now multiply by at (k) and sum over Itl> kF to obtain

1 ~	151	$ \alpha_l(k) ^2$		$\pi(u)$
λ_l	Vte	$\frac{ \alpha_l(k) ^2}{W_l - 2\tilde{s}_k}$	1	Y(We)

We can solve this graphically. Since $|\mathbf{k}| > \mathbf{k}_F$, $\mathbf{k}_K > O$ The denominator passes through zero as W_ℓ passes through each value of \mathbf{k}_k . As we see from the plot below, when $\lambda_\ell < O$ there is a bound state solution with $W_\ell < O$. This is true for arbitrarily weak attractive λ_ℓ .

We saw previously how in d=3 dimensions bound states vequire a critical attraction strength. The difference here is that we are not interested in states near k = 0, where the Dos vanishes as \sqrt{E} , but rather in states near $|k| = k_F$, where $g(\mathcal{E}_F) = m^*k_F/\pi^2 h^2$ is constant, as it is for a d=2 system near $\mathcal{E}=0$. To solve further, assume $\alpha_e(k) = \mathfrak{E}(B_e - \tilde{s}_k)$ so

because $g(z) \rightarrow B_{\ell} = \frac{B_{\ell}}{2} |\lambda_{\ell}| \int d\bar{s} \frac{g(z_{F} + \bar{s})}{|W_{\ell}| + \bar{s}}$

Now assume $g(\varepsilon_F + \tilde{s}) \approx g(\varepsilon_F)$, integrate, and find $|W_{\ell}| = \frac{2B_{\ell}}{exp(4/|\lambda_{\ell}|g(\varepsilon_F)) - 1}$ weak covpling

In the weak coupling limit, where 12,19(2=) << 1,

 $W_l = -2B_r c^{-4/|\lambda_l|g(\mathcal{E}_r)}$

As we shall see when we study BCS theory, the factor of 4 in the exponent is twice too large. For strong $\operatorname{Coupling}$, $|\lambda_{\ell}|g(\mathcal{E}_{F}) >> 1$, and

strong coupling $W_{\ell} = -\frac{1}{2} |\lambda_{\ell}| B_{\ell} g(\mathcal{E}_{F})$

The energy scale Be will be shown to be the Debye energy of the phonons for conventional phonon-mediated superconductivity. The effective attractive interaction exists only over a very thin energy shell about the Fermi surface. Two additional features of the Cooper problem:

- One can construct a finite momentum Cooper pair, viz. $|\Psi_{\vec{q}}\rangle = \int_{\vec{z}} \sum_{\#} A_{\#} \left(c^{\dagger}_{\# + \frac{1}{2}\vec{q}\uparrow} c^{\dagger}_{-\# + \frac{1}{2}\vec{q}\downarrow} - c^{\dagger}_{\# + \frac{1}{2}\vec{q}\downarrow} c^{\dagger}_{-\# + \frac{1}{2}\vec{q}\uparrow} \right) |F\rangle$ The total momentum is $\vec{P} = \vec{h}\vec{q}$. This results in the K+ 19 eigenvalue equation -t+ 1,9 kr 1 k $(\tilde{s}_{k+\frac{1}{2}\tilde{q}} + \tilde{s}_{k-\frac{1}{2}\tilde{q}})A_{tk} + \sum_{k'} V_{k,k'}A_{tk'} = WA_{tk}$ Now

 $(\vec{3}_{\vec{k}+\frac{1}{2}\vec{q}} + \vec{3}_{\vec{k}-\frac{1}{2}\vec{q}}) = 2\vec{3}_{\vec{k}} + \frac{1}{4} \frac{\partial^2 \vec{3}_{\vec{k}}}{\partial k_{\sigma} \partial h_{\beta}} q_{\sigma} q_{\beta} + \dots$

and thus the binding energy is reduced by $O(q^2)$. The $\dot{q}=0$ Cooper pair has the greatest binding energy. - The mean square radius of the Cooper pair is $\langle \vec{r}^{2} \rangle = \frac{\int d^{3}r \left[\Psi(\vec{r}) \right]^{2} \vec{r}^{2}}{\int d^{3}k \left[\nabla_{\#} A_{\#} \right]^{2}} \frac{\int d^{3}k \left[\nabla_{\#} A_{\#} \right]^{2}}{\int d^{3}k \left[A_{\#} \right]^{2}} \frac{\int d^{3}k \left[A_{\#} \right]^{2}}{\int d^{3}k \left[A_{\#} \right]^{2}} \frac{g(\mathcal{E}_{F}) \vec{s}'(\mu_{F})^{2} \int d\vec{s} \left[\partial A/\partial \vec{s} \right]^{2}}{g(\mathcal{E}_{F}) \int d\vec{s} \left[A(\vec{s}) \right]^{2}}$

We have $A(\overline{s}) = -C\lambda_{1} \propto (\overline{s})/(|W|+2\overline{s})$, and $\overline{s}/k_{F}) = \hbar v_{F}$. For weak binding, $W \rightarrow 0^{-}$, and we have

 $\langle \vec{r}^2 \rangle \simeq \frac{4}{3} (\hbar v_F)^2 |W|^{-2}$

Thus, for weak attractive interactions, $W \rightarrow 0^$ and the radius of the Cooper pair diverges. This is why BCS turns out to be such a successful mean field theory. The **Ginzburg criterion** (§11.4.5) says that mean field theory is qualitatively accurate down to a reduced temperature

 $t_{G} = \frac{|T - T_{c}|}{T_{c}} = \left(\frac{a}{R_{*}}\right)^{2d/(4-d)}$

where a is a microscopic length (e.g., the lattice constant)

and R* the mean Cooper pair size. Typically we have $R_{*}/a \approx 10^{2} - 10^{3}$, so in d = 3, $t_{G} \approx 10^{-6} - 10^{-9}$.

· Phonon - mediated attraction

Please read §12.3 for details. The electron-phonon Hamiltonian for small momentum transfer and longitudinal phonons is

$$H_{el-ph} = \prod_{k,\hat{q}} \sum_{\sigma} \sum_{q_{\hat{q}}} (a_{\hat{q}}^{\dagger} + a_{-\hat{q}}) c_{t\sigma}^{\dagger} c_{t+\hat{q}\sigma}$$

with $g_{\bar{q}} = \lambda_{el-ph} \frac{\hbar c_L q}{q} \frac{q}{\epsilon_F}$. We compute an effective indirect electron-electron interaction by working to second order in \hat{H}_{el-ph} . Starting with a pair of electrons in states $|k\sigma, -k-\sigma\rangle$, we transition to either of the two intermediate states *longitudinal phonon*

$$|I_1\rangle = |\overleftarrow{k}\sigma, -\overleftarrow{k}-\sigma\rangle \otimes |-\overrightarrow{q}\rangle$$

$$I_2 > = |\overline{k}\sigma, -\overline{k}-\sigma > \otimes |+\overline{q}$$

where $\vec{q} = \vec{k}' - \vec{k}$. Another application of H_{el-ph} takes us to $|\vec{k}'\sigma, -\vec{k}' - \sigma \rangle$. The intermediate state energies are given by

$$E_{1} = \vec{s}_{-\vec{k}} + \vec{s}_{\vec{k}'} + \vec{h} w_{-\vec{q}}$$
$$E_{2} = \vec{s}_{\vec{k}} + \vec{s}_{-\vec{k}'} + \vec{h} w_{\vec{q}}$$

The second order matrix element is then $\langle \mathbf{k}'\sigma, -\mathbf{k}'-\sigma|\hat{H}_{indirect}|\mathbf{k}\sigma, -\mathbf{k}'-\sigma\rangle = \sum \langle \mathbf{k}'\sigma, -\mathbf{k}'-\sigma|\hat{H}_{el-ph}|n\rangle$ $\times \langle n | \hat{H}_{el-ph} | \hat{k}\sigma, -\hat{k}-\sigma \rangle \times \left(\frac{1}{E_{f}-E_{n}} + \frac{1}{E_{i}-E_{n}} \right)$ $= |g_{\vec{q}}|^{2} \left(\frac{1}{3_{t'}^{2} - 3_{t'}^{2} - 5_{t'}^{2} - 5_{t'}^{2}} + \frac{1}{3_{t'}^{2} - 3_{t'}^{2} - 5_{t'}^{2} - 5_{t'}^{2}} \right)$ Adding in the direct Coulomb interaction $\hat{\upsilon}(\mathbf{\tilde{q}}) = \frac{4\pi e^2}{\mathbf{\tilde{q}}^2}$, we obtain the effective interaction $\langle \mathbf{k}'\sigma, -\mathbf{k}'-\sigma | \hat{H}_{eff} | \mathbf{k}\sigma, -\mathbf{k}\sigma \rangle = \hat{\mathcal{U}}(\mathbf{q}) + |\mathbf{g}\mathbf{q}|^2 \times \frac{2\hbar \mathcal{U}\mathbf{q}}{(\mathbf{s}\mathbf{t}_t - \mathbf{s}\mathbf{t}_t')^2 - (\hbar \mathcal{U}\mathbf{q})^2}$ Thus for $|\underline{3}_{\underline{k}} - \underline{3}_{\underline{k}'}| < \hbar w_{\underline{q}}$ the second term is negative and can dominate the first, yielding an effective attraction. • Reduced BCS Hamiltonian: The operator that creates a Cooper pair with total momentum $h\vec{q}$ is $b^{\dagger}_{\vec{k},\vec{q}} + b^{\dagger}_{-\vec{k},\vec{q}}$ $b_{\vec{k},\vec{q}} = C^{\dagger}_{\vec{k}+\vec{2}\vec{q}\uparrow}C^{\dagger}_{-\vec{k}+\vec{2}\vec{q}\downarrow}$ Since $\vec{q} = 0$ pairs have the greatest binding energy, we consider the reduced BCS Hamiltonian, Hred = Si Et Cto tho + Si Vti, t' bt, o bti, o

We may assume V#, # = V#,-# = V-#, #', which is required

by spin rotational invariance. Since $2C_{kr}^{\dagger}C_{-kl}^{\dagger}C_{-kl}C_{kr}|\psi\rangle = (C_{kr}^{\dagger}C_{kr}^{\dagger}+C_{-kl}^{\dagger}C_{-kl})|\psi\rangle$ $b_{k,0}^{\dagger}$

provided all the pair states (#7, -#1) in 14? are either empty or doubly occupied. Thus, we consider

 $H_{red} = \sum_{k} 2 \mathcal{E}_{k} b_{k,o} b_{k,o} + \sum_{k,k'} V_{k,k'} b_{k,o} b_{k',o}$

This has the alluring appearance of a noninteracting bosonic Hamiltonian, which would render it exactly solvable. However, $b_{k,o}$ is a composite operator that is not a true boson in that it doesn't satisfy bosonic commutation relations. If β_{k}^{\dagger} is a bosonic creation operator, then $[\beta_{k}, \beta_{k'}] = [\beta_{k}^{\dagger}, \beta_{k'}^{\dagger}] = 0$, $[\beta_{k}, \beta_{k'}^{\dagger}] = \delta_{kk'}$. But while $[b_{k,o}, b_{k',o}] = [b_{k,o}^{\dagger}, b_{k',o}^{\dagger}] = 0$,

 $[b_{h,o}, b_{h,o}^{\dagger}] = (I - C_{hT}^{\dagger} C_{hT} - C_{-tJ}^{\dagger} C_{-tJ}) \delta_{tt}'$

Furthermore, $(b_{\#,o}^{\dagger})^2 = (b_{\#,o})^2 = 0$. So we need another approach, as \hat{H}_{red}° can't be diagonalized by any known methods.

Mean field theory: While by, doesn't satisfy bosonic commutation relations, it is still a

composite boson and can take on an expectation value. So let's do the mean field thing and write $b_{k,0} = \langle b_{k,0} \rangle + (b_{k,0} - \langle b_{k,0} \rangle)$ Sbk,0 We now have c-number $H_{red} = \sum_{k,\sigma} \mathcal{E}_{k} C_{k\sigma}^{\dagger} C_{k\sigma} + \sum_{k,k'} V_{k,k'} \left(-\langle b_{k,\sigma}^{\dagger} \rangle \langle b_{k,\sigma} \rangle \right)$ $+ \langle b_{\vec{k},0}^{\dagger} \rangle b_{\vec{k}',0}^{\dagger} + b_{\vec{k},0}^{\dagger} \langle b_{\vec{k}',0} \rangle + \delta b_{\vec{k},0}^{\dagger} \delta b_{\vec{k}',0} \rangle$ $(flucts)^{2} drop!$ Thus our mean field Hamiltonian is $H_{red}^{MF} = \sum_{k,\sigma} \mathcal{E}_{k\sigma} C_{k\sigma}^{\dagger} + \sum_{k} \left(\Delta_{k} C_{k\gamma}^{\dagger} C_{-kl}^{\dagger} + \Delta_{k}^{\dagger} C_{-kl} C_{k\gamma} \right)$ where $\Delta_{k} = \sum_{k'} V_{k,k'} < C_{-k'} C_{k'} > , \quad \Delta_{k'}^{*} = \sum_{k'} V_{k,k'}^{*} < C_{kT}^{+} C_{-k'} >$ One highly note worthy aspect of Hred : it does not conserve particle number! Therefore we need to work in the grand canonical ensemble, with

 $\hat{K}_{BCS} = \hat{H}_{red}^{MF} - \hat{\mu}\hat{N}, \quad \hat{N} = \sum_{\vec{k},\sigma} C_{\vec{k}\sigma}^{\dagger} C_{\vec{k}\sigma}^{\dagger}$