Lecture 16 (Feb. 24)
BCS Theory of Superconductivity

- Bound states: Consider a ballistic particle in an attractive potential $V(\vec{x})$. The Schrödinger equation is

$$
-\frac{\hbar^{2}}{2 m} \vec{\nabla}^{2} \psi(\vec{x})+V(\vec{x}) \psi(\vec{x})=E \psi(\vec{x})
$$

Fourier transform to obtain

$$
\varepsilon(k) \hat{\psi}(k)+\int \frac{d^{d} k^{\prime}}{(2 \pi) d} \hat{V}\left(k-k^{\prime}\right) \hat{\psi}\left(k^{\prime}\right)=E \hat{\psi}(k)
$$

with $\varepsilon(k)=\hbar^{2} \hbar^{2} / 2 m$. Since $\hat{V}_{k, k^{\prime}} \equiv \hat{V}\left(k-k^{\prime}\right)$ is a
Hermitian matrix, we may express it as a sum over its eigenspace projectors, viz.

$$
\hat{V}\left(k-k^{\prime}\right)=\sum_{n} \lambda_{n} \alpha_{n}(k) \alpha_{n}^{*}\left(k^{\prime}\right)
$$

Let's approximate the above sum by the contribution from the lowest eigenvalue, which we call λ. Thus, we take

$$
\hat{V}\left(k_{1}, k^{\prime}\right) \approx \lambda \alpha\left(k^{\prime}\right) \alpha^{*}\left(k^{\prime}\right)
$$

Such a potential is called separable. We then have

$$
\varepsilon(k) \hat{\psi}(k)+\lambda \alpha(k) \int \frac{d^{d} k^{\prime}}{(2 \pi)^{d}} \alpha^{*}\left(k^{\prime}\right) \hat{\psi}\left(k^{\prime}\right)=E \hat{\psi}\left(k^{\prime}\right)
$$

which entails

$$
\dot{\psi}(k)=\frac{\lambda \alpha(k)}{E-\varepsilon\left(k^{\prime}\right)} \int \frac{d^{d} k^{\prime}}{(2 \pi)^{d}} \alpha^{*}\left(k^{\prime}\right) \tilde{\psi}\left(k^{\prime}\right)
$$

Now multiply by $\alpha^{*}(k)$ and integrate to obtain

$$
-\frac{1}{\lambda}=\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{|\alpha(\hbar)|^{2}}{\varepsilon(k)-E}
$$

If $\hat{V}_{k, k^{\prime}}$ is isotropic, i.e. if $\hat{V}\left(\hbar^{\prime}-\hbar^{\prime}\right)=\hat{V}\left(R \neq R k^{\prime}\right)$ where $R \in S O(d)$, then the lowest eigenvector $\alpha(k)$ is generally isotropic, i.e. we may write $\alpha(t)=\alpha(\varepsilon(t))$, which is a function only of the magnitude of k. Then with $g(\varepsilon)=\int \frac{d^{d} k}{(2 \pi)^{d}} \delta(\varepsilon-\varepsilon(k))=$ DoS, we have

$$
\text { (•) } \frac{1}{|\lambda|}=\int_{0}^{\infty} d \varepsilon \frac{g(\varepsilon)}{|E|+\varepsilon}|\alpha(\varepsilon)|^{2}
$$

where we assume $\lambda<0$ and $E<0$. If $\alpha(\varepsilon)$ and $g(\varepsilon)$ are finite as $\varepsilon \rightarrow 0$, then we have, as $E \rightarrow 0^{-}$,

$$
\frac{1}{|\lambda|}=g(0)|\alpha(0)|^{2} \ln \left(\frac{B}{|E|}\right)+\text { finite }
$$

where B is the bandwidth (i.e. $g(\varepsilon)=0$ for $\varepsilon>B$). This equation has a solution for arbitrily small values of $|\lambda|$, since the RHS diverges logarithmically as $E \rightarrow 0^{-}$. Thus, as $\lambda \rightarrow 0^{-}$we have

$$
E(\lambda)=-c B \exp \left(-\frac{1}{g(0)|\alpha(0)|^{2}|\lambda|}\right)
$$

where $c>0$ is a constant. If $g(\varepsilon) \propto \varepsilon^{P}$ with $p>0$, then the RHS of (0) is finite as $E \rightarrow 0^{-}$. In this
case, a bound state solution with $E<0$ exists only for $|\lambda\rangle \lambda_{C}$, where

$$
\lambda_{c}=1 / \int_{0}^{\infty} d \varepsilon \frac{g(\varepsilon)}{\varepsilon}|\alpha(\varepsilon)|^{2}
$$

For a ballistic dispersion, $g(\varepsilon) \propto \varepsilon^{(d-2) / 2}$, so $g(0)$ vanishes for $d>2$ and is finite for $d=2$.
For $d<2, g\left(\varepsilon \rightarrow 0^{+}\right)$diverges as $g(\varepsilon) \propto \varepsilon^{-p}$ with $p=1-\frac{1}{2} d$, i.e. $p=\frac{1}{2}$ in $d=1$. The RHS of (0) then diverges as $|E|^{-P}$ as $E \rightarrow 0^{-}$and so $E(\lambda)=-c|\lambda|^{1 / P}$ as $\lambda \rightarrow 0$.

- Cooper's problem (1956): Cooper considered the problem of two electrons with a weak attraction in the presence of a quiescent Fermi sea, described by a variational wavefunction

$$
|\Psi\rangle=\frac{1}{\sqrt{2}} \sum_{|k|>k_{k}} A_{k}\left(C_{k \uparrow}^{+} C_{-k \downarrow}^{+}-C_{k \downarrow}^{+} C_{-k T}^{+}\right)|F\rangle
$$

where $|F\rangle$ is the filled Fermi sphere. Note that $|\Psi\rangle$ has total momentum $\vec{K}=0$ and total spin $S=0$ (i.e. a singlet). The electrons in the Fermi sea only enter the problem through Pauli blocking. In real space, the wavefunction for Cooper's pair is

$$
\dot{\Psi}\left(\vec{x}_{1}, \vec{x}_{2}\right)=\frac{1}{\sqrt{2}} \sum_{|k|>h_{F}} A_{k} e^{i \vec{k}_{k} \cdot\left(\vec{x}_{1}-\vec{x}_{2}\right)}\left(\left|\hat{\imath}_{1}, \downarrow_{2}\right\rangle-\left|\downarrow_{1} \hat{\imath}_{2}\right\rangle\right)
$$

where $A_{k}=A_{-k}$. The Hamiltonian is

$$
\begin{aligned}
& \hat{H}=\sum_{k_{1} \sigma} \varepsilon_{k} C_{k_{0} \sigma}^{+} C_{k_{\sigma}}+\frac{1}{2} \sum_{k_{1}, \sigma_{1}} \cdots \sum_{k_{4}, \sigma_{4}}\left\langle k_{1} \sigma_{1}, k_{2} \sigma_{2}\right| v\left|k_{3} \sigma_{3}, k_{4} \sigma_{4}\right\rangle \\
& \\
& \quad \times C_{k_{1} \sigma_{1}}^{+} C_{k_{2} \sigma_{2}}^{+} C_{k_{4} \sigma_{4}} C_{k_{3} \sigma_{3}}
\end{aligned}
$$

We treat $|\Psi\rangle$ as a variational state, so we set

$$
\delta \frac{\langle\Psi| \hat{H}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}=\frac{\delta\langle\Psi| \hat{H}|\Psi\rangle}{\langle\tilde{\Psi} \mid \Psi\rangle}-\underbrace{\frac{\langle\Psi| \hat{H}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}}_{E} \cdot \frac{\delta\langle\Psi \mid \Psi\rangle}{\langle-\Psi \mid \Psi\rangle}=0
$$

We take the variation writ A_{k}^{*}. We have

$$
\begin{aligned}
\langle\Psi \mid \Psi\rangle & =\sum_{k^{\prime}} A_{k}^{*} A_{k} \\
\langle\Psi| \hat{H}|\Psi\rangle & =E_{0}+\sum_{k} 2 \varepsilon_{k}\left|A_{k}\right|^{2}+\frac{1}{2} \sum_{k, \hbar^{\prime}} V_{k^{\prime}, \hbar^{\prime}} A_{\hbar^{*}}^{*} A_{k^{\prime}}
\end{aligned}
$$

where $E_{0}=\langle F| \hat{H}|F\rangle$ and

$$
V_{k, k^{\prime}}=\langle k \hat{\imath},-k \downarrow| v\left|k^{\prime} \hat{\jmath},-k^{\prime} \downarrow\right\rangle=\frac{1}{V} \int d^{3} x v(\vec{x}) e^{i\left(k-k^{\prime}\right) \cdot \vec{x}}
$$

Thus, we obtain the eigenvalue equation

$$
\text { prime means }\left|⿺^{\prime}\right|>k_{F}
$$

$$
\left(E_{0}+2 \varepsilon_{k}\right) A_{k^{\prime}}+\sum_{\hbar^{\prime}}^{\prime} V_{k_{1} k^{\prime}} A_{\hbar^{\prime}}=E A_{k}
$$

Now define $\varepsilon_{k} \equiv \varepsilon_{F}+\xi_{\hbar}$ and $E \equiv E_{0}+2 \varepsilon_{F}+W$, so that

$$
2 \xi_{k} A_{k}+\sum_{\hbar^{\prime}}^{\prime} V_{\hbar_{1}, \hbar^{\prime}} A_{\hbar^{\prime}}=W A_{\hbar}
$$

Assuming $v(\vec{x})=v(|\vec{x}|)$, we may write

$$
V_{h, k^{\prime}}=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} V_{l}\left(k, k^{\prime}\right) Y_{l, m}(\hat{k}) Y_{l, m}^{*}\left(\hat{k}^{\prime}\right)
$$

We fur the assume separability, i.e.

$$
V_{l}\left(k, k^{\prime}\right)=\frac{1}{V} \lambda_{l} \alpha_{l}(k) \alpha_{l}^{*}\left(k^{\prime}\right)
$$

and we seek a solution $A_{k}=A_{h} Y_{l, m}(\hat{k})$ in the angular momentum l channel. This results in

$$
2 \xi_{k} A_{k}+\lambda_{l} \alpha_{l}(k) \cdot \frac{1}{V} \sum_{k^{\prime}}^{\prime} \alpha_{l}^{*}\left(k^{\prime}\right) A_{k^{\prime}}=W_{l} A_{k}
$$

This may be recast as

$$
A_{k}=\frac{\lambda_{l} \alpha_{l}(k)}{W_{l}-2 \xi_{k}} \cdot \frac{1}{V} \sum_{k^{\prime}}^{\prime} \alpha_{l}^{*}\left(k^{\prime}\right) A_{k^{\prime}}
$$

Now multiply by $\alpha_{l}^{*}(k)$ and sum over $|k|>k_{F}$ to obtain

$$
\frac{1}{\lambda_{l}}=\frac{1}{V} \sum_{k}^{1} \frac{\left|\alpha_{l}(k)\right|^{2}}{W_{l}-2 \xi_{k}} \equiv \Phi\left(W_{l}\right)
$$

We can solve this graphically. Since $|k|>k_{F}, \xi_{k}>0$ The denominator passes through zero as W_{l} passes through each value of ξ_{k}. As we see from the plot below, when $\lambda_{l}<0$ there is a bound state solution with $W_{l}<0$. This is true for arbitrarily weak attractive λ_{l}.

We saw previously how in $d=3$ dimensions bound states require a critical attraction strength. The difference here is that we are not interested in states near $t=0$, where the DoS vanishes as $\sqrt{\varepsilon}$, but rather in states near $|k|=k_{F}$, where $g\left(\varepsilon_{F}\right)=m^{*} k_{F} / \pi^{2} \hbar^{2}$ is constant, as it is for a $d=2$ system near $\varepsilon=0$. To solve further, assume $\alpha_{l}(k)=巴\left(B_{l}-\xi_{k}\right)$ so

$$
\begin{aligned}
& \text { because } g(\varepsilon) \longrightarrow \\
& \text { includes spin } 1=\frac{1}{2}\left|\lambda_{l}\right| \int_{0}^{B_{l}} d \xi \frac{g\left(\varepsilon_{F}+\xi\right)}{\left|W_{l}\right|+\xi}
\end{aligned}
$$

Now assume $g\left(\varepsilon_{F}+\xi\right) \approx g\left(\varepsilon_{F}\right)$, integrate, and find

$$
\left|W_{l}\right|=\frac{2 B_{l}}{\exp \left(4 /\left|\lambda_{l}\right| g\left(\varepsilon_{F}\right)\right)-1}
$$

weak coupling

In the weak coupling limit, where $\left|\lambda_{l}\right| g\left(\varepsilon_{F}\right) \ll 1$,

$$
W_{l}=-2 B_{l} e^{-4 / \mid \lambda_{l} \lg \left(\varepsilon_{F}\right)}
$$

As we shall see when we study BCS theory, the factor of 4 in the exponent is twice too large. For strong coupling, $\left|\lambda_{l}\right| g\left(\varepsilon_{f}\right) \gg 1$, and

$$
W_{l} \simeq-\frac{1}{2}\left|\lambda_{l}\right| B_{l} g\left(\Sigma_{F}\right)
$$

The energy scale B_{l} will be shown to be the Debye energy of the phonons for conventional phonon - mediated superconductivity. The effective attractive interaction exists only over a very thin energy shell about the Fermi surface. Two additional features of the Cooper problem:

- One can construct a finite momentum Cooper pair, viz.

$$
\left|\Psi_{\vec{q}}\right\rangle=\frac{1}{\sqrt{2}} \sum_{k}^{1} A_{k}\left(c_{k+1 \frac{1}{2} \uparrow}^{+} C_{-k+\frac{1}{2} \downarrow}^{t}-C_{k+\frac{1}{2} \frac{1}{2} \downarrow}^{+} c_{-k+\frac{1}{2} \uparrow}^{+}\right)|F\rangle
$$

The total momentum is $\vec{P}=\hbar \stackrel{\rightharpoonup}{q}$. This results in the eigenvalue equation

Now

$$
\left(\xi_{k+\frac{1}{2} \vec{q}}+\xi_{k-\frac{1}{2} \vec{q}}\right)=2 \xi_{k}+\frac{1}{4} \frac{\partial^{2} \xi_{k}}{\partial k_{\alpha} \partial k_{\beta}} q_{\alpha} q_{\beta}+\ldots
$$

and thus the binding energy is reduced by $\theta\left(q^{2}\right)$. The $\vec{q}=0$ Cooper pair has the greatest binding energy.

- The mean square radius of the Cooper pair is

$$
\begin{aligned}
\left\langle\vec{r}^{2}\right\rangle & =\frac{\int d^{3} r|\Psi(\vec{r})|^{2} \vec{r}^{2}}{\int d^{3} r|\Psi(\vec{r})|^{2}}=\frac{\int d^{3} k\left|\vec{\nabla}_{\hbar} A_{\hbar}\right|^{2}}{\int d^{3} k\left|A_{\hbar}\right|^{2}} \\
& \simeq \frac{g\left(\varepsilon_{F}\right) \xi^{\prime}\left(\left.k_{F}\right|^{2} \int_{0}^{\infty} d \xi|\partial A / \partial \xi|^{2}\right.}{g\left(\varepsilon_{F}\right) \int_{0}^{\infty} d \xi|A(\xi)|^{2}}
\end{aligned}
$$

We have $A(\xi)=-\left(\lambda_{L} \alpha(\xi) /(|W|+2 \xi)\right.$, and $\xi^{\prime}\left(k_{F}\right)=\hbar v_{F}$.
For weak binding, $W \rightarrow 0^{-}$, and we have

$$
\left\langle\vec{r}^{2}\right\rangle \simeq \frac{4}{3}\left(\hbar v_{F}\right)^{2}|w|^{-2}
$$

Thus, for weak attractive interactions, $W \rightarrow 0^{-}$ and the radius of the Cooper pair diverges. This is why BCS turns out to be such a successful mean field theory. The Ginzburg criterion (§11.4.5) says that mean field theory is qualitatively accurate down to a reduced temperature

$$
t_{G}=\frac{\left|T-T_{c}\right|}{T_{c}}=\left(\frac{a}{R_{*}}\right)^{2 d /(4-d)}
$$

where a is a microscopic length (e.g., the lattice constant)
and R_{*} the mean Cooper pair size. Typically we have $R_{*} / a \approx 10^{2}-10^{3}$, so in $d=3, t_{G} \approx 10^{-6}-10^{-9}$.

- Phonon -mediated attraction

Please read §12.3 for details. The electron-phon on Hamiltonian for small momentum transfer and longitudinal phonons is

$$
\hat{H}_{\text {el-ph }}=\frac{1}{\sqrt{V}} \sum_{k, \vec{q}} \sum_{\sigma} g_{\vec{q}}\left(a_{\vec{q}}^{+}+a_{-\vec{q}}\right) c_{k, \sigma}^{+} c_{k+\vec{q} \sigma}
$$

with $g_{\vec{q}}=\lambda_{e l-p h} \hbar c_{L} q / g\left(\varepsilon_{F}\right)$. We compute an effective indirect electron-electron interaction by working to second order in $\hat{H}_{e l}$-ph. Starting with a pair of electrons in states $|\vec{k} \sigma,-k-\sigma\rangle$, we transition to either of the two intermediate states
longitudinal phonon

$$
\begin{aligned}
& \left.\left|I_{1}\right\rangle=|\vec{k}| \sigma,-k-\sigma\right\rangle(\otimes|-\stackrel{\rightharpoonup}{q}\rangle \\
& \left|I_{2}\right\rangle=\left|k=,-k^{\prime}-\sigma\right\rangle(\otimes|+\stackrel{\rightharpoonup}{q}\rangle
\end{aligned}
$$

where $\vec{q}=\vec{k}^{\prime}-\vec{k}$. Another application of $\hat{H}_{e l}-p h$ takes us to $\left|k^{\prime} \sigma,-k^{\prime}-\sigma\right\rangle$. The intermediate state energies are given by

$$
\begin{aligned}
& E_{1}=\xi_{-k}+\xi_{k^{\prime}}+\hbar \omega_{-\vec{q}} \\
& E_{2}=\xi_{k}+\xi_{-k^{\prime}}+\hbar \omega_{\vec{q}}
\end{aligned}
$$

The second order matrix element is then

$$
\begin{aligned}
\left\langle k^{\prime} \sigma,-k^{\prime}-\sigma\right| \hat{H}_{\text {indirect }}\left|k_{k} \sigma,-k_{k}-\sigma\right\rangle= & \sum_{n}\left\langle k^{\prime} \sigma,-k^{\prime}-\sigma\right| \hat{H}_{e l-p h}|n\rangle \\
& x\langle n| \hat{H}_{e l-p h}|k \sigma,-k-\sigma\rangle \times\left(\frac{1}{E_{f}-E_{n}}+\frac{1}{E_{i}-E_{n}}\right) \\
= & \left|g_{\vec{q}}\right|^{2}\left(\frac{1}{\xi_{k} \prime-\xi_{k}-\hbar \omega_{q}}+\frac{1}{\xi_{k}-\xi_{k^{\prime}}-\hbar \omega \vec{q}}\right)
\end{aligned}
$$

Adding in the direct Coulomb interaction $\hat{v}(\vec{q})=\frac{4 \pi e^{2}}{\vec{q}^{2}}$, we obtain the effective interaction

$$
\left\langle k^{\prime} \sigma,-k^{\prime}-\sigma\right| \hat{H}_{\text {eff }}\left|k \sigma,-k^{\prime} \sigma\right\rangle=\hat{v}(\stackrel{\rightharpoonup}{q})+\left|g_{\dot{q}}\right|^{2} \times \frac{2 \hbar \omega \vec{q}^{\prime}}{\left(\xi_{k}-\xi_{k_{k}^{\prime}}\right)^{2}-\left(\hbar \omega_{q}^{\prime}\right)^{2}}
$$

Thus for $\left|\xi_{k}-\xi_{k^{\prime}}\right|<\hbar w_{\vec{q}}$ the second term is negative and can dominate the first, yielding an effective attraction.

- Reduced BCS Hamiltonian: The operator that creates a Cooper pair with total momentum $\hbar \vec{q}$ is $b_{k, \vec{q}}^{f}+b_{-k}^{+}, \vec{q}$

$$
b_{\vec{k}, \vec{q}}=c_{k+\frac{1}{2} \vec{q} \uparrow}^{+} c_{-\vec{k}+\frac{1}{2} \vec{q} \downarrow}^{+}
$$

Since $\vec{q}=0$ pairs have the greatest binding energy, we consider the reduced BCS Hamiltonian,

$$
\hat{H}_{\text {red }}=\sum_{k, \sigma} \varepsilon_{k} C_{k \sigma}^{+} C_{h \sigma}+\sum_{k, k^{\prime}} V_{k_{k}, k^{\prime}} b_{k_{k}^{\prime}, 0}^{+} b_{k^{\prime}, 0}
$$

We may assume $V_{k_{k}, k^{\prime}}=V_{k_{1},-k^{\prime}}=V_{-k_{1}, k^{\prime}}$, which is required
by spin rotational invariance. Since

$$
2 \underbrace{C_{k \uparrow}^{+} C_{-k \downarrow}^{+}}_{b_{k, 0}^{+}} \underbrace{C_{-k \downarrow} c_{k \uparrow}}_{b_{k, 0}}|\psi\rangle=\left(c_{k \uparrow}^{+} c_{k \uparrow}+C_{-k \downarrow}^{+} C_{-k \downarrow}\right)|\psi\rangle
$$

provided all the pair states ($k T,-k \downarrow$) in $|\psi\rangle$ are either empty or doubly occupied. Thus, we consider

$$
\hat{H}_{r e d}^{0}=\sum_{\hbar}^{1} 2 \varepsilon_{\hbar} b_{k, 0}^{+} b_{k, 0}+\sum_{k, k^{\prime}} V_{k, k^{\prime}} b_{k^{2}, 0}^{+} b_{k^{\prime}, 0}
$$

This has the alluring appearance of a noninteracting bosonic Hamiltonian, which would render it exactly solvable. However, $b_{k, 0}$ is a composite operator that is not a true boson in that it doesn't satisfy bosonic commutation relations. If β_{k}^{+}is a bosonic creation operator, then $\left[\beta_{k}, \beta_{k^{\prime}}\right]=\left[\beta_{k}^{+}, \beta_{k^{\prime}}^{+}\right]=0,\left[\beta_{k}, \beta_{k^{\prime}}^{+}\right]=\delta_{t k^{\prime}}$. But while $\left[b_{k, 0}, b_{k^{\prime}, 0}\right]=\left[b_{k, 0}^{+}, b_{k^{\prime}, 0}^{+}\right]=0$,

$$
\left[b_{\hbar, 0}, b_{\hbar, 0}^{+}\right]=\left(1-c_{k T}^{+} c_{\hbar \uparrow}-C_{-\hbar \iota}^{+} C_{-\hbar \downarrow}\right) \delta_{k^{\prime}}
$$

Furthermore, $\left(b_{k, 0}^{+}\right)^{2}=\left(b_{\hbar, 0}\right)^{2}=0$. So we need another approach, as $\hat{H}_{r e d}^{0}$ cant be diagonalized by any known methods.
Mean field theory: While $b_{k, 0}$ doesn't satisfy bosonic commutation relations, it is still a
composite boson and can take on an expectation value. So left's do the mean field thing and write

$$
b_{k, 0}=\left\langle b_{k, 0}\right\rangle+\underbrace{\left(b_{k, 0}-\left\langle b_{\grave{k}, 0}\right\rangle\right)}_{\delta b_{k, 0}}
$$

We now have

$$
\begin{aligned}
& \hat{H}_{\text {red }}=\sum_{k, \sigma} \varepsilon_{k} c_{t, \sigma}^{+} c_{k, \sigma}+\sum_{k, k^{\prime}} V_{k_{k}, k^{\prime}}(-\langle\overbrace{b_{k, 0}}^{+}\rangle\left\langle b_{k, 0}\right\rangle \\
& +\left\langle b_{k, 0}^{+}\right\rangle b_{k^{\prime}, 0}+b_{k_{1,0}}^{+}\left\langle b_{k^{\prime}, 0}\right\rangle+\underbrace{\delta b_{k, 0}^{+} \delta b_{k^{\prime}, 0}}_{(\text {flucts })^{2} \text { drop! }})
\end{aligned}
$$

Thus our mean field Hamiltonian is

$$
\begin{aligned}
& \hat{H}_{\text {red }}^{M F}=\sum_{k, \sigma} \varepsilon_{k} C_{k \sigma}^{+} C_{k \sigma}+\sum_{k}\left(\Delta_{k} C_{k \uparrow}^{+} C_{-k \downarrow}^{+}+\Delta_{k}^{*} C_{-k \downarrow \downarrow} C_{k \uparrow}\right) \\
&-\sum_{k, k^{\prime}} V_{k, k^{\prime}}\left\langle C_{k \uparrow \uparrow}^{+} C_{-k \downarrow}^{+}\right\rangle\left\langle C_{-k^{\prime} \downarrow}^{\prime} C_{k^{\prime} \uparrow}\right\rangle
\end{aligned}
$$

where

$$
\Delta_{k^{k}}=\sum_{k^{\prime}} V_{k^{\prime}, k^{\prime}}\left\langle C_{-k^{\prime} \downarrow} C_{k^{\prime} \uparrow}\right\rangle, \quad \Delta_{k^{\prime}}^{*}=\sum_{k^{\prime}} V_{k^{\prime}, k^{\prime}}^{*}\left\langle C_{k^{\prime} \uparrow}^{+} C_{-k^{\prime} \downarrow \downarrow}\right\rangle
$$

One highly noteworthy aspect of $\hat{H}_{\text {red }}$: it does not conserve particle number! Therefore we need to work in the grand canonical ensemble, with

$$
\hat{K}_{B C S}=\hat{H}_{\text {red }}^{M F}-\mu \hat{N}, \quad \hat{N}=\sum_{k, \sigma} C_{\hbar \sigma}^{+} C_{\hbar \sigma}
$$

