$$
F=F_{0}+\int d^{3} x\left\{\frac{\vec{B}^{2}}{8 \pi}+\frac{\lambda_{L}^{2}}{8 \pi}(\vec{\nabla} \times \vec{B})^{2}\right\}
$$

whence

$$
\frac{\delta F}{\delta \vec{B}(\vec{x})}=0 \Rightarrow \vec{B}-\lambda_{L}^{2} \stackrel{\rightharpoonup}{\nabla} \times \stackrel{\rightharpoonup}{B}=0
$$

- Ginzburg - Landau theory

In the, the order parameter is $\Psi(\vec{x})=\langle\psi(\vec{x})\rangle$. $\Psi \neq 0 \Leftrightarrow$ Bose-Einstein condensation. Fermions cannot condense! Rather, the order parameter of an s-wave superconductor is

$$
\Psi(\vec{x})=\underbrace{\left\langle\psi_{\hat{\imath}}(\vec{x}) \psi_{\downarrow}(\vec{x})\right\rangle}_{\begin{array}{c}
\text { composite operator } \\
\text { with } B E \text { statistics }
\end{array}}
$$

Lecture 14 (Feb. 18)
Landau theory: The SC order parameter $\Psi(\vec{x})$ is a complex scalar. Assuming a homogeneous $\Psi(\vec{x})=$ canst., we write the Landau free energy as an expansion in powers of Ψ, viz.

$$
f\left|\Psi, \Psi^{*}\right|=a|\Psi|^{2}+\frac{1}{2} b|\Psi|^{4}
$$

with $a, b \in \mathbb{R}$ and $b>0$ for stability. The free energy has an $O(2)$ symmetry under $\Psi \rightarrow e^{i \alpha} \Psi, \Psi^{*} \rightarrow e^{-i \alpha} \Psi^{*}$. Minimizing f, we find

$$
\Psi=\left\{\begin{array}{ccc}
\sqrt{-a / b} e^{i \varphi}, & \text { if } a<0 \\
0, & \text { if } a>0
\end{array}\right.
$$

When $a<0$, the order parameter chooses a direction $e^{i \varphi}$ which spontaneously breaks $O(2)$. Recall $a(T)=\alpha\left(T-T_{c}\right)$ near $T=T_{c}$ so $T<T_{c}$ is the ordered phase. The free energy is then

$$
f=\left\{\begin{array}{ccc}
-a^{2} / 2 b & \text { if } & a<0 \\
0 & \text { if } & a>0
\end{array}\right.
$$

and since $f_{s}-f_{n}=-\frac{1}{8 \pi} H_{c}^{2}(T)$, we identify

$$
\frac{a^{2}(T)}{b(T)}=\frac{H_{c}^{2}(T)}{4 \pi}
$$

From London theory, $\lambda_{L}^{2}=m c^{2} / 4 \pi n_{S} e^{2}$, so if we normalize $|\Psi|^{2}=n_{s} / n$ then

$$
|\Psi(T)|^{2}=\frac{\lambda_{L}^{2}(0)}{\lambda_{L}^{2}(T)}=-\frac{a(T)}{b(T)}
$$

Combined, these results yield

$$
a(T)=-\frac{H_{c}^{2}(T)}{4 \pi} \cdot \frac{\lambda_{2}^{2}(T)}{\lambda_{L}^{2}(0)} \quad, \quad b(T)=\frac{H_{c}^{2}}{4 \pi} \cdot \frac{\lambda_{L}^{4}(T)}{\lambda_{2}^{4}(0)}
$$

in the superconducting phase. Close to the transition, $H_{c}(T)$ vanishes in proportion to $\lambda_{L}^{-2}(T)$, so $a\left(T_{c}\right)=0$, while $b\left(T_{c}\right)>0$. We have for $c=-T \partial^{2} f / \partial T^{2}$

$$
\Delta c=C_{s}\left(T_{c}\right)-C_{n}\left(T_{c}\right)=\frac{T_{c}\left[a^{\prime}\left(T_{c}\right)\right]^{2}}{b\left(T_{c}\right)}
$$

In the vicinity of T_{c}, we may write $a(T) \approx a^{\prime}\left(T_{c}\right)\left(T-T_{c}\right)$.
Ginzburg - Landau theory: Gradients in the order parameter must cost energy, so write

$$
f=a|\Psi|^{2}+\frac{1}{2} b|\Psi|^{4}+K|\vec{\nabla} \Psi|^{2}+\ldots
$$

From K we can derive a length scale, $\xi \equiv \sqrt{K /|a|}$, which is the coherence length. Since superconductors are charged, we extend the above using minimal coupling, viz.

$$
f=a|\Psi|^{2}+\frac{1}{2} b|\Psi|^{\psi}+k\left|\left(\vec{\nabla}+\frac{i e^{*}}{\hbar c} \vec{A}\right) \Psi\right|^{2}+\frac{1}{8 \pi}(\vec{\nabla} \times \vec{A})^{2}
$$

Here $e^{*}=2 e=$ condensate charge. Under a local gauge transformation, $\vec{A} \rightarrow \vec{A}-\frac{\hbar c}{e^{*}} \stackrel{\rightharpoonup}{\nabla}$ and $\Psi \rightarrow e^{i \alpha} \Psi$. Since gauge transformations result in no physical consequences, we conclude that longitudinal phase fluctuations of a charged system's order parameter don't physically exist.
Equations of motion: With $F=\int d^{3} x f\left(\Psi, \Psi^{*}, \vec{\nabla} \Psi, \vec{\nabla} \Psi^{*}\right)$ we compute
(1) $\frac{\delta F}{\delta \Psi^{*}}=a \Psi+b|\Psi|^{2} \Psi-k\left(\vec{\nabla}+\frac{i e^{*}}{\hbar c} \vec{A}\right)^{2} \Psi$
(2) $\frac{\delta F}{\delta \vec{A}}=\frac{2 K e^{*}}{\hbar c}\left\{\frac{1}{2 i}\left(\Psi^{*} \vec{\nabla} \Psi-\Psi \vec{\nabla} \Psi^{*}\right)+\frac{e^{*}}{\hbar c}|\Psi|^{2} \vec{A}\right\}+\frac{\vec{\nabla} \times \vec{B}}{4 \pi}$

The second of these is the Ampère-Maxwell law, $\vec{\nabla} \times \vec{B}=\frac{9 \pi}{c} \vec{\jmath}$,
with

$$
\vec{\jmath}=-c \frac{\delta F_{\text {matter }}}{\delta \vec{A}}=-\frac{2 K e^{*}}{\hbar^{2}}\left\{\frac{\hbar}{2 i}\left(\Psi^{*} \vec{\nabla} \Psi-\Psi \vec{\nabla} \Psi^{*}\right)+\frac{e^{*}}{c}|\Psi|^{2} \vec{A}\right\}
$$

When $\Psi=$ const., we then have $\vec{\jmath}=-\frac{2 K e^{* 2}}{\hbar^{2} c}|\Psi|^{2} \vec{A}$ and taking the curl again yields

$$
-\nabla^{2} \vec{B}=\vec{\nabla} \times(\vec{\nabla} \times \vec{B})=\frac{4 \pi}{c} \stackrel{\rightharpoonup}{\nabla} \times \vec{j}=-8 \pi K\left(\frac{e^{*}}{\hbar c}\right)^{2}|\Psi|^{2} \vec{B}=-\lambda_{L}^{2} \vec{B}
$$

with

$$
\lambda_{L}^{-2}=8 \pi K\left(\frac{e^{*}}{\hbar c}\right)^{2}|\Psi|^{2}=\frac{8 \pi a^{2}}{b} \cdot \frac{K}{|a|} \cdot\left(\frac{e^{*}}{\hbar c}\right)^{2}
$$

since $|\Psi|^{2}=-a / b$. Now from our previous results, we have that $a^{2} / b=H_{c}^{2} / 4 \pi$, thus

$$
\lambda_{L}^{-2}=2 H_{c}^{2} \xi^{2}\left(\frac{e^{*}}{\hbar c}\right)^{2} \Rightarrow H_{c}=\frac{\phi_{L}}{\sqrt{8} \pi \xi \lambda_{L}}
$$

Critical current: Let $\Psi=\Psi_{0}=$ cons. Then

$$
f=a\left|\Psi_{0}\right|^{2}+\frac{1}{2} b\left|\Psi_{0}\right|^{4}+k\left(\frac{e^{*}}{\hbar c}\right)^{2} \vec{A}^{2}\left|\Psi_{0}\right|^{2}
$$

Consider $a<0$, i.e. $T<T_{c}$. Minimizing wot $\left|\Psi_{0}\right|^{2}$ gives

$$
\begin{gathered}
\left|\Psi_{0}\right|^{2}=\frac{|a|-K\left(e^{*} \mid \hbar c\right)^{2} \vec{A}^{2}}{b}>0 \\
\vec{\jmath}=-2 K c\left(\frac{e^{*}}{\hbar c}\right)^{2}\left(\frac{|a|-K\left(e^{*} \mid \hbar c\right)^{2} \vec{A}^{2}}{b}\right) \vec{A}
\end{gathered}
$$

and

In other words, in Cartesian coordinates,

$$
\lambda_{L}^{2} \nabla^{2} \vec{B}=\vec{B}+\frac{\phi_{L}}{2 \pi} \vec{\nabla} \times \vec{\nabla} \varphi
$$

Normally $\vec{\nabla} \times \vec{\nabla} \varphi=0$. However this fails when φ is not single valued! Assume $\vec{B}=B \hat{z}$. Then φ has singularities in the form of vortex lines. Write $\vec{x}=(\vec{\rho}, z)$, whence

$$
\lambda_{L}^{2} \nabla^{2} B(\vec{\rho})=B(\vec{\rho})+\phi_{L} \sum_{i} n_{i} \delta\left(\stackrel{\rightharpoonup}{\rho}-\vec{\rho}_{i}\right)
$$

where $n_{i} \in \mathbb{Z}$ is the dimensionless quantized vorticity of the $i^{\text {th }}$ singularity. Here we assume no spatial variations along \hat{z}. To solve, take the Fourier transform:

$$
\begin{aligned}
& \hat{B}(\vec{q})=-\frac{\phi_{L}}{1+\lambda_{L}^{2} \vec{q}^{2}} \sum_{i} n_{i} e^{-i \vec{q} \cdot \vec{p}_{i}} \\
& \Rightarrow \quad B(\vec{p})=-\left.\frac{\phi_{L}}{2 \pi \lambda_{L}^{2}} \sum_{i} n_{i} K_{0}\left(\frac{\left|\vec{p}-\vec{p}_{i}\right|}{\lambda_{L}}\right)\right|^{|\Psi|^{2}} \\
& \text { Limits of } K_{0}(z): \\
& K_{0}(z)= \begin{cases}-C-\ln (z / 2) & \text { as } z \rightarrow 0 \\
(\pi / 2 z)^{1 / 2} e^{-z} & \text { as }|z| \rightarrow \infty\end{cases}
\end{aligned}
$$

where $C=0.5772166 \ldots$ is the Euler constant. The log divergence as $p \rightarrow 0$ is an artifact of the London limit, in which the vortex core size goes to zero. Better to impose a smooth cutoff on a scale ξ. The current
density for a single vortex at the origin is then

$$
\vec{\jmath}(\vec{x})=\frac{n c}{4 \pi} \vec{\nabla} \times \vec{B}=-\frac{c}{4 \pi \lambda_{L}^{2}} \cdot \frac{\phi_{L}}{2 \pi \lambda_{L}^{2}} K_{1}\left(\rho / \lambda_{L}\right) \hat{\varphi}
$$

with $K_{1}(z)=-K_{0}^{\prime}(z)$. The total magnetic flux carried by the $i^{\text {th }}$ vortex is $n_{i} \phi_{L}$.
Domain walls: Let's take $\vec{B}=0$ and set $\vec{A}=0$ everywhere, and consider the equation

$$
\frac{\delta F}{\delta \Psi^{*}(\vec{x})}=a \Psi(\vec{x})+b|\Psi(\vec{x})|^{2} \Psi(\vec{x})-K \nabla^{2} \Psi(\vec{x})=0
$$

Lets scale, writing $\Psi=(|a| / b)^{1 / 2} \psi$, yielding

$$
-\xi^{2} \nabla^{2} \psi+\operatorname{sgn}\left(T-T_{c}\right) \psi+|\psi|^{2} \psi=0
$$

Consider $T<T_{c}$. Let $\psi(\vec{x})=f(x) e^{i \alpha}$ with a constant. So the only variation is along x. Thus,

$$
-\xi^{2} f^{\prime \prime}-f+f^{3}=0 \Rightarrow \xi^{2} \frac{d^{2} f}{d x^{2}}=\frac{\partial}{\partial f}\left[\frac{1}{4}\left(1-f^{2}\right)^{2}\right]
$$

This looks just like $F=m a$, i.e, $m \ddot{q}=-V^{\prime}(q)$, if we set $q=f, t=x, V(q)=-\frac{1}{4}\left(1-q^{2}\right)^{2}, m=3^{2}$.
Familiar to us as motion in an inverted double well. Integrate once:

$$
\xi^{2}\left(\frac{d f}{d x}\right)^{2}=\frac{1}{2}\left(1-f^{2}\right)^{2}+C
$$

Since $f(\infty)=1$, we have $C=0$. Now integrate a
second time to obtain

$$
f(x)=\tanh \left(\frac{x-x_{0}}{\sqrt{2} \xi}\right)
$$

Thus, we interpolate between $f(0)=0$ and $f(\pm \infty)= \pm 1$ in a smooth fashion. This is called a domain wall.
The energy per unit length of the domain wall is

$$
\begin{aligned}
\tilde{\sigma} & =\int_{0}^{\infty} d x\left\{k\left|\frac{d \Psi}{d x}\right|^{2}+a|\Psi|^{2}+\frac{1}{2} b|\Psi|^{4}\right\} \\
& =\frac{a^{2}}{b} \int_{0}^{\infty} d x\left\{\xi^{2}\left(\frac{d f}{d x}\right)^{2}-f^{2}+\frac{1}{2} f^{4}\right\}
\end{aligned}
$$

How does this compare with the energy of the bulk super conducting state? The difference is

$$
\begin{aligned}
\sigma & =\tilde{\sigma}-\int_{0}^{\infty} d x\left(-\frac{H_{c}^{2}}{8 \pi}\right) \\
& =\frac{a^{2}}{b} \int_{0}^{\infty} d x\left\{\xi^{2}\left(\frac{d f}{d x}\right)^{2}+\frac{1}{2}\left(1-f^{2}\right)^{2}\right\} \equiv \frac{H_{c}^{2}}{8 \pi} \cdot \delta
\end{aligned}
$$

Here

$$
\delta=2 \int_{0}^{\infty} d x\left(1-f^{2}\right)=\frac{4}{3} \sqrt{2} \xi
$$

If we allowed a field to penetrate a distance λ_{2} in the DW state, weld have obtained

$$
\delta(T)=\frac{4}{3} \sqrt{2} \xi(T)-\lambda_{L}(T) \quad \text { (approximation!) }
$$

Detailed calculations show

$$
\delta=\left\{\begin{array}{cl}
\frac{4}{3} \sqrt{2} \xi \approx 1.89 \xi & \text { if } \xi \gg \lambda_{L} \\
0 & \text { if } \xi=\sqrt{2} \lambda_{L} \\
-\frac{8}{3}(\sqrt{2}-1) \lambda_{L} & \text { if } \xi \ll \lambda_{L}
\end{array}\right.
$$

Recall $K \equiv \lambda_{L} / \xi$. So:

- Type-I: $K<\frac{1}{\sqrt{2}}$ and $\delta>0$; surface energy prefers a spatially homogeneous sample for $T<T_{c}$
- Type-II: $K>\frac{1}{\sqrt{2}}$ and $\delta<0$; negative surface energy causes the sample to break into domains, which are vortex solutions.

Applications of Ginzburg-Landau theory:
First, let's get rid of some constants by rescaling:

$$
\Psi \equiv \sqrt{\frac{|a|}{b}} \psi, \quad \vec{x} \equiv \lambda_{L} \vec{r}, \quad \vec{A} \equiv \sqrt{2} \lambda_{L} H_{c} \vec{a}, \quad \vec{H}=\sqrt{2} H_{c} \vec{h}
$$

so that ψ, \vec{r}_{1} and \vec{a} are all dimensionless. Recall

$$
K=\frac{\lambda_{L}}{\xi}=\frac{\sqrt{2} e^{*}}{\hbar c} H_{c} \lambda_{L}^{2}=\sqrt{8} \pi \frac{H_{C} \lambda_{L}^{2}}{\phi_{L}}
$$

Then we may write

$$
\lambda_{L} \stackrel{\rightharpoonup}{\nabla} \equiv \stackrel{\rightharpoonup}{\partial}
$$

$$
\begin{aligned}
& G=\frac{H_{c}^{2} \lambda_{L}^{3}}{4 \pi} \int d^{3} r\left\{-|\psi|^{2}+\frac{1}{2}|\psi|^{4}+\left|\left(k^{-1} \vec{\partial}+i \vec{a}\right) \psi\right|^{2}\right. \\
& \\
& \quad+\left(\vec{\partial} \times\left.\vec{a}\right|^{2}-2 \vec{h} \cdot \vec{\partial} \times \vec{a}\right\}
\end{aligned}
$$

Setting $\delta G=0$, we obtain
(1) $\left(k^{-1} \stackrel{\rightharpoonup}{\partial}+i \vec{a}\right)^{2} \psi+\psi-|\psi|^{2} \psi=0$
(2) $\vec{\partial} \times(\vec{\partial} \times \vec{a}-\vec{h})+|\psi|^{2} \vec{a}-\frac{i}{2 k}\left(\psi^{*} \vec{\partial} \psi-\psi \vec{\partial} \psi^{*}\right)=0$

In addition, we have the boundary condition

$$
\text { (3) }\left.\hat{n} \cdot(\vec{\partial}+i k \vec{a}) \psi\right|_{\partial \Omega}=0
$$

We'll consider one application of GLT, to magnetic properties of type - II superconductors.

Consider the behavior when SC is just beginning to set in, so $|\psi| \ll 1$. In this case, (1) gives

$$
-\left(k^{-1} \vec{\partial}+i \vec{a}\right)^{2} \psi=\psi+\overbrace{\theta\left(|\psi|^{2} \psi\right)}^{\text {neglect }}
$$

(2) then gives

$$
\vec{\partial} \times(\vec{b}-\vec{h})=\theta\left(|\psi|^{2}\right)
$$

and so $\vec{b}=\vec{h}+\vec{\partial} \zeta$, but from free energy considerations we conclude $J=0$. Assume $\vec{b}=\vec{h}=b \hat{z}$ and choose a gauge

$$
\vec{a}=-\frac{1}{2} b y \hat{x}+\frac{1}{2} b x \hat{y}
$$

Now define the operators

$$
\pi_{x}=\frac{1}{i k} \frac{\partial}{\partial x}-\frac{1}{2} b y, \quad \pi_{y}=\frac{1}{i k} \frac{\partial}{\partial y}+\frac{1}{2} b x
$$

which satisfy $\left[\pi_{x}, \pi_{y}\right]=$ b/ik. Note that

$$
-\left(k^{-1} \vec{\partial}+\vec{a}\right)^{2}=-\frac{1}{k^{2}} \frac{\partial^{2}}{\partial z^{2}}+\pi_{x}^{2}+\pi_{y}^{2}
$$

Ladder operators:

$$
\gamma \equiv \sqrt{\frac{k}{2 b}}\left(\pi_{x}-i \pi_{y}\right), \quad \gamma^{+}=\sqrt{\frac{k}{2 b}}\left(\pi_{x}+i \pi_{y}\right)
$$

with $\left[\gamma, \gamma^{f}\right]=0$. Then

$$
\hat{L} \equiv-\left(k^{-1} \vec{\partial}+\vec{a}\right)^{2}=-\frac{1}{k^{2}} \frac{\partial^{2}}{\partial z^{2}}+\frac{2 b}{k}\left(\gamma^{+} \gamma+\frac{1}{2}\right)
$$

The lowest eigenvalue of \hat{L} is then b / K, corresponding to $\gamma^{t} \gamma=0$. The full set of eigenvalues is given by

$$
\varepsilon_{n}\left(k_{z}\right)=\frac{k_{z}^{2}}{k^{2}}+(2 n+1) \frac{b}{k}
$$

The lowest eigenvalue crosses the threshold of 1 when $b=h=k$, i.e, when $B=H=\sqrt{2} k H_{c} \equiv H_{c 2}$.
Conclusion: If $H_{C 2}<H_{C}=\frac{\phi_{L}}{\sqrt{8} \pi \xi \lambda_{L}}$ ("thermodynamic critical field") then a complete Meissner effect occurs when H is decreased below H_{c}. The order parameter ψ then jumps discontinuously, and the transition is first order.
This is the case $K\left\langle 2^{-1 / 2}\right.$. But if $\left.H_{C 2}\right\rangle H_{C}$ and $K>2^{-1 / 2}$, a complete Meissner effect cant occur for $H>H_{c}$, hence $H \in\left[H_{c}, H_{c 2}\right]$ is a mixed phase.

$$
\text { type }-I \quad(K<1 / \sqrt{2})
$$

$$
\text { type - II }(K>1 / \sqrt{2})
$$

Find $H_{c 1}=\frac{H_{c}}{\sqrt{2} K} \ln \left(2 e^{-C} K\right)=\frac{\ln (1.23 K)}{\sqrt{2} K} H_{c} \quad(K \gg 1)$

$$
H_{c 2}=\sqrt{2} k H_{c}
$$

