$$
\frac{\Delta \Omega}{V}=\frac{\hbar^{2} k_{F}^{3}}{69 \pi^{2} m^{*}} \sum_{\nu, \nu^{\prime} l, l^{\prime}} \sum_{l \ell^{\prime}} \Lambda_{m=-l}^{\nu^{\prime}}\left(\sum_{m=1}^{l}\left|A_{l m}^{\nu}\right|^{2}\right)\left(\sum_{m^{\prime}=-l^{\prime}}^{l^{\prime}}\left|A_{\left.l^{\prime} m^{\prime}\right|^{\prime}}\right|^{2}\right)
$$

- Lecture II (Feb. 9)
- Collective dynamics of the Fermi surface Landau-Boltzmann equation:

$$
\frac{\partial n_{k \sigma}}{\partial t}+\frac{1}{\hbar} \frac{\partial \tilde{\varepsilon}_{k \sigma}}{\partial \hbar} \cdot \frac{\partial n_{k \sigma}}{\partial \bar{x}}-\frac{1}{\hbar} \frac{\partial \tilde{\varepsilon}_{k \sigma}}{\partial \bar{x}} \cdot \frac{\partial n_{k \sigma}}{\partial \hbar}=I_{k \sigma}[n]
$$

We include a local potential $V_{\sigma}(\vec{r}, t)$, viz.

$$
\tilde{\varepsilon}_{k \sigma}(\vec{x}, t)=V_{\sigma}(\vec{x}, t)+\varepsilon_{k \sigma}+\sum_{\sigma^{\prime}} \int \frac{d^{3} k^{\prime}}{\left.(2 \pi)^{3}\right)^{\prime}} f_{\sigma \sigma, k^{\prime} \dot{k}^{\prime},} \delta_{k_{k^{\prime} \sigma^{\prime}}(\vec{x}, t)}
$$

Now linearize, writing $n_{k \sigma}=n_{k \sigma}^{o}+\delta n_{k \sigma}$:

$$
\frac{\partial \delta n_{\hbar \sigma}}{\partial t}+\frac{1}{\hbar} \frac{\partial \varepsilon_{k \sigma}}{\partial \vec{k}} \cdot \frac{\partial \delta n_{k \sigma}}{\partial \vec{x}}-\frac{1}{\hbar} \frac{\partial n_{k \sigma}^{0}}{\partial \hbar} \cdot \frac{\partial \tilde{\epsilon}_{k \sigma}}{\partial \dot{x}}=(\alpha \delta n)_{\hbar 0}
$$

Here

If $V_{\sigma}(\vec{x}, t)=\delta \hat{V}_{\sigma} e^{i(\vec{g} \cdot \vec{x}-\omega t)}$, then seek a solution with $\delta n_{k \sigma}(\vec{x}, t)=\delta \hat{n}_{k \sigma} e^{i(\vec{q} \cdot \vec{x}-\omega t) \text {, whence }}$

$$
\begin{aligned}
& =-[\mathcal{L} \delta \hat{n}]_{\hat{k} \sigma}
\end{aligned}
$$

where \mathcal{L} is the linearized collision operator.
Zero sound: Examine unforced, collisionless limit \Rightarrow

$$
\left(w-\vec{q} \cdot \vec{v}_{k \sigma}\right) \delta \hat{n}_{\hbar \sigma}+\vec{q} \cdot \vec{v}_{k \sigma}\left(\frac{\partial n_{k \sigma v}^{0}}{\partial \Sigma_{\hbar \sigma}}\right) \sum_{\sigma^{\prime}} \int_{d^{3} k^{\prime}}^{(2 \pi)^{3}} f_{\hbar \sigma, k^{\prime} \sigma^{\prime}} \delta_{n_{k^{\prime} \sigma^{\prime}}}=0
$$

This is an eigenvalue equation for $\omega(\vec{q})$, where the eigenvector is $\delta \hat{n} \vec{q} \sigma$. Assuming a small variation in the shape of the FS, write

$$
\delta \hat{n}_{k \sigma}=\hbar v_{F} \delta\left(\varepsilon_{F}-\varepsilon_{k_{\sigma}}\right) \delta k_{F}(\hat{k}, \sigma)
$$

So that we obtain

$$
\left(w-\vec{q} \cdot \vec{v}_{\hbar \sigma} \left\lvert\, \delta k_{F}(\hat{k}, \sigma)-\vec{q} \cdot \vec{v}_{k \sigma}\left(\left.\left.\frac{\partial n^{0}}{\partial \varepsilon}\right|_{\varepsilon_{k \sigma^{\prime}}} \sum \int \frac{d^{3} k^{\prime}}{(2 \pi)^{3}} \delta\left(\varepsilon_{F}-\varepsilon_{k^{\prime} \sigma^{\prime}}\right) f_{\vec{k} \sigma_{,}, \hbar^{\prime} \sigma^{\prime}} \delta k_{F} \right\rvert\, \hat{k}^{\prime} \sigma^{\prime}\right)=0\right.\right.
$$

Taking $v_{\hbar \sigma}=v_{F} \hat{k}$, we arrive at

$$
(\lambda-\vec{q} \cdot \hat{k}) \delta k_{F}(\hat{k}, \sigma)-\frac{1}{2} \vec{q} \cdot \hat{k} \int \frac{d \hat{k}^{\prime}}{4 \pi} F_{k_{F} \sigma, k_{F}^{\prime} \sigma^{\prime}} \delta k_{F}\left(\hat{k}^{\prime}, \sigma^{\prime}\right)=0
$$

where $\lambda \equiv \omega / v_{F} q$. We can resolve this into the familiar symmetric and antis ymmetric spin channels $\delta k_{F}^{s, a}(\hat{k})$, so

$$
\delta k_{F}^{v}(\hat{k})=\frac{\hat{q} \cdot \hat{k}}{\lambda-\hat{q} \cdot \hat{k}} \int \frac{d \hat{k}^{\prime}}{4 \pi} F^{v}\left(v_{h}, \hat{k}^{\prime}\right) \delta k_{F}^{\nu}\left(\hat{k}^{\prime}\right)
$$

and further writing

$$
\delta k_{F}^{v}(\hat{k})=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} A_{l m}^{v} Y_{l m}(\hat{k}), \quad F^{v}\left(v_{\hat{k}, k^{\prime}}\right)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{4 \pi F_{l}^{\nu}}{2 l+1} Y_{l m}(\hat{k}) Y_{l m}^{*}\left(\hat{k}^{\prime}\right)
$$

we find given \hat{q}, solve for the eigenvalue $\lambda(\hat{q})$, eigenvector $A_{l m}^{v}(\hat{q})$

$$
A_{l m}^{v}=\sum_{l^{\prime}=0}^{\infty} \sum_{m^{\prime}=-l^{\prime}}^{l^{\prime}} \frac{F_{l^{\prime}}^{v}}{2 l^{\prime}+1}\left[\int d \hat{h} \frac{\hat{q} \cdot \hat{k}}{\lambda-\hat{g} \cdot \hat{k}} Y_{l m}^{*}(\hat{k}) Y_{l^{\prime} m^{\prime}}(\hat{h})\right] A_{l^{\prime} m^{\prime}}^{v}
$$

This is still an eigenvalue equation, where λ is the eigenvalue and $A_{l m}^{v}$ the eigenvector.
Simple model for zero sound: take $F_{l}^{v}=F_{0}^{U} \delta_{l, 0}$. Then, dropping the v label,

$$
1=F_{0} \int \frac{d \hat{k}}{4 \pi} \frac{\hat{q} \cdot \hat{k}}{\lambda-\hat{q} \cdot \hat{k}}=F_{0}\left\{\frac{\lambda}{2} \ln \left(\frac{\lambda+1}{\lambda-1}\right)-1\right\}
$$

Equivalently,

$$
\beta=\tanh \left[\left(1+F_{0}^{-1}\right) \beta\right]
$$

with $\beta \equiv \lambda^{-1}$. This is a transcendental equation for $\beta\left(F_{0}\right)$. A nontrivial solution exists provided $F_{0}>0$, with real positive β.

$$
\begin{aligned}
& F_{0} \rightarrow 0^{+}: \quad \beta=1-2 e^{-2 / F_{0}} \\
& F_{0} \rightarrow \infty: \quad \beta \simeq \sqrt{\frac{3}{F_{0}}}
\end{aligned}
$$

For $F_{0} \in[-1,0]$ a solution with complex β exists, which corresponds to a damped oscillation.

Dynamical response of the Fermi liquid:
We now restore the driving term $\delta \hat{V}(\vec{q}, \omega) e^{i(\vec{q} \cdot \vec{x}-\omega t)}$. Again we work in the collisionless limit, where we have

$$
\delta k_{F}^{s}(\hat{k})=\frac{\hat{q} \cdot \hat{k}}{\lambda-\hat{q} \cdot \hat{k}}\left\{\int \frac{d \hat{h}^{\prime}}{4 \pi} F^{s}\left(v_{\hat{k}, \hat{k}^{\prime}}\right) \delta k_{F}^{s}\left(\hat{k}^{\prime}\right)+\frac{\delta \hat{V}(\vec{q}, \omega)}{\hbar v_{F}}\right\}
$$

with $\lambda=\omega / q v_{F}$ as before. The density response is related to the FS distortion by

$$
\delta \hat{n}(\stackrel{q}{q}, \omega)=\frac{k_{F}^{2}}{\pi^{2}} \int \frac{d \hat{k}}{4 \pi} \delta k_{F}^{s}(\hat{k})
$$

Note that $\delta k_{F}^{s}(\hat{k})$ is implicitly a function of ω as well. Unfortunately, the various angular momentum channels no longer decouple. Still, we may make progress if we assume $F^{S}(v)=F_{0}^{S}$ is isotropic, in which case

$$
\delta \hat{n}(\stackrel{\rightharpoonup}{q}, \omega)=\int \frac{d \hat{k}}{4 \pi} \frac{\hat{q} \cdot \hat{k}}{\lambda-\hat{q} \cdot \hat{k}}\left\{F_{0} \delta \hat{n}\left(\vec{q}_{, \omega}\right)+\frac{k_{F}^{2}}{\pi^{2}} \frac{\delta \hat{V}(\vec{q}, \omega)}{\hbar \nu_{F}}\right\}
$$

We may then solve for the susceptibility,

$$
\hat{X}(\vec{q}, \omega) \equiv-\frac{\delta \hat{n}(\vec{q}, \omega)}{\delta \hat{V}(\vec{q}, \omega)}=\frac{g\left(\varepsilon_{F}\right) G\left(\omega / v_{F} q\right)}{1+F_{0} G\left(\omega / v_{F} q\right)}
$$

where

$$
G(\lambda)=-\int \frac{d \hat{k}}{4 \pi} \frac{\hat{q} \cdot \hat{k}}{\lambda-\hat{q} \cdot \hat{k}}=1-\frac{\lambda}{2} \ln \left(\frac{\lambda+1}{\lambda-1}\right)
$$

The poles of the response function $\hat{\chi}(\vec{q}, \omega)$ correspond to solutions of $1+F_{0} G\left(w / v_{F} q\right)=0$, which is the equation for zero sound. Thus, as is familiar from the elementary physics of driven oscillators, the response diverges when the driving frequency matches the natural frequency.

- Linear response of quantum systems We have already described the linear response of systems described by DFT and by FLT. Here we consider the genera al context. Let our Hamiltonian be $\hat{H}=\hat{H}_{0}+\hat{H}_{1}(t)$, where

$$
\hat{H}_{1}(t)=-\sum_{i} \phi_{i}(t) \hat{Q}_{i}
$$

$\operatorname{Here}\left\{\hat{Q}_{i}\right\}$ are operators and $\left\{\phi_{i}(t)\right\}$ are time-dependent fields. Examples:

\hat{Q}_{i}	$\phi_{i}(t)$
$-\hat{M}^{\alpha}$	$B^{\alpha}(t)$
$\hat{\rho}(\vec{x})$	$\phi(x, t)$
$\vec{\jmath}(\vec{x})$	$-\frac{1}{C} \vec{A}(\vec{x}, t)$

We may subsume spatial labels \vec{x} in the operator index i. The wavefunction $|\Psi(t)\rangle$ evolves according to the

Schrödinger equation i $\hbar \partial_{t}|\Psi(t)\rangle=\hat{H}(t)|\Psi(t)\rangle$. We assume $\left\langle\Psi_{0}\right| \hat{Q}_{i}\left|\Psi_{0}\right\rangle=0$, where $\left|\Psi_{0}\right\rangle$ is the ground state of \hat{H}_{0}. The time-dependent expectation of \hat{Q}_{i} is given by

$$
\begin{aligned}
Q_{i}(t) & =\langle\Psi(t)| \hat{Q}_{i}|\Psi(t)\rangle \\
& \equiv \int_{-\infty}^{\infty} d t^{\prime} x_{i j}\left(t-t^{\prime}\right) \phi_{j}\left(t^{\prime}\right)+\theta\left(\phi^{2}\right)
\end{aligned}
$$

where $X_{i j}\left(t-t^{\prime}\right)$ is a response function describing how $Q_{i}(t)$ depends on $\phi_{j}\left(t^{\prime}\right)$. Thus we may write

$$
x_{i j}\left(t-t^{\prime}\right)=\left.\frac{\delta Q_{i}(t)}{\delta \phi_{j}\left(t^{\prime}\right)}\right|_{\vec{\phi}=0}
$$

Note that $X_{i j}\left(t-t^{\prime}\right)=0$ for $t<t^{\prime}$, which is a reflection of causality. Before deriving a general expression for $X_{i j}\left(t-t^{\prime}\right)$ we pause to discuss the important consequences of causality, Causality and Kramers-Kronig relations:
Let's drop the i and j indices and consider the case

$$
\begin{equation*}
x(t)=\int_{-\infty}^{\infty} d t^{\prime} x\left(t-t^{\prime}\right) f\left(t^{\prime}\right) \tag{*}
\end{equation*}
$$

For example, we could have a forced harmonic oscillator,

$$
\ddot{x}+2 \gamma \dot{x}+w_{0}^{2} x=f(t)
$$

The solution is of the form (*) plus an arbitrary solution to the homogeneous equation $\ddot{x}+2 \gamma x+\omega_{0}^{2} x=0$. Recall that the Fourier transform of a convolution is the product of Fourier transforms, hence

$$
\hat{x}(\omega)=\hat{x}(\omega) \hat{f}(\omega)
$$

where

$$
\hat{X}(\omega)=\int_{-\infty}^{\infty} d s X(s) e^{i \omega s}, \quad X(s)=\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} \hat{X}(\omega) e^{-i \omega s}
$$

With $s<0$, we can close the integral for $X(s)$ in the UHP, hence

$$
x(s<0)=0 \Rightarrow \hat{x}(z) \text { analytic in UHP }
$$

This means

$$
\oint_{c} \frac{d z}{2 \pi i} \frac{\hat{x}(z)}{z-\zeta}=0
$$

provided $\operatorname{Im}(\xi)<0$. For $\omega \in \mathbb{R}$, define

$$
\hat{X}(\omega) \equiv \lim _{\epsilon \rightarrow 0^{+}} \hat{X}(\omega+i \epsilon) \equiv \hat{X}^{\prime}(\omega)+i \hat{X}^{\prime \prime}(\omega)
$$

Ire.

$$
\hat{x}^{\prime}(\omega) \equiv \operatorname{Re} \hat{X}(\omega), \quad \hat{X}^{\prime \prime}(\omega) \equiv \operatorname{Im} \hat{X}(\omega)
$$

Assuming $\hat{X}(z)$ vanishes sufficiently rapidly along the are of the contour C that Jordan's lemma applies, we have

$$
0=\int_{-\infty}^{\infty} \frac{d v}{2 \pi i} \frac{\hat{X}(\nu)}{\nu-\omega+i \epsilon}=\int_{-\infty}^{\infty} \frac{d v}{2 \pi i}\left[\hat{X}^{\prime}(v)+i \hat{X}^{\prime \prime}(\nu)\right]\left[\frac{p}{\nu-\omega}-i \pi \delta(\nu-\omega)\right]
$$

Taking the real and imaginary parts of the above equation yield the Kramers - Kronig relations,

$$
\hat{\chi}^{\prime}(\omega)=p \int_{-\infty}^{\infty} \frac{d \nu}{\pi} \frac{\hat{\chi}^{\prime \prime}(\nu)}{\nu-\omega}, \quad \hat{X}^{\prime \prime}(\omega)=-p \int_{-\infty}^{\infty} \frac{d \nu}{\pi} \frac{\hat{\chi}^{\prime}(\nu)}{\nu-\omega}
$$

Note that

$$
\frac{1}{x+i \epsilon}=\frac{x}{x^{2}+\epsilon^{2}}-\frac{i \epsilon}{x^{2}+\epsilon^{2}}=P \frac{1}{x}-i \pi \delta(x)
$$

Since $\int_{-\infty}^{\infty} d x \frac{\epsilon}{x^{2}+\epsilon^{2}}=\pi$ and $p \int_{-\infty}^{\infty} d x \frac{f(x)}{x}=\lim _{\epsilon \rightarrow 0} \int_{-\infty}^{-\epsilon}+\int_{\epsilon}^{\infty} d x \frac{f(x)}{x}$
Furthermore, we may analytically continue $\hat{X}(v)$ off the $\nu \in \mathbb{R}$ axis, writing

$$
\hat{\chi}(z)=\int_{-\infty}^{\infty} \frac{d v}{\pi} \frac{\hat{\chi}^{\prime \prime}(\nu)}{v-z}=-i \operatorname{sgn}(\operatorname{Im} z) \int_{-\infty}^{\infty} \frac{d v}{\pi} \frac{\hat{\chi}^{\prime}(\nu)}{v-z}
$$

This guarantees the result

$$
\lim _{\epsilon \rightarrow 0}\{\hat{x}(w+i \epsilon)-\hat{x}(w-i \epsilon)\}=2 i \hat{x}^{\prime \prime}(w)
$$

Example: Suppose $\hat{\chi}^{\prime \prime}(\nu)=\frac{v}{\nu^{2}+\gamma^{2}}$. Then

$$
\hat{x}^{\prime}(v)=p \int_{-\infty}^{\infty} \frac{d \zeta}{\pi} \frac{\zeta}{3^{2}+\gamma^{2}} \frac{1}{3-v}=\frac{\gamma}{\nu^{2}+\gamma^{2}}
$$

Thus $\hat{X}^{\prime}(v)+i \hat{X}^{\prime \prime}(\nu)=\frac{1}{\gamma-i \nu}=\frac{i}{\nu+i \gamma}$ can be continued to an analytic function in the UHP. Note

$$
\hat{X}(z)=\int_{-\infty}^{\infty} \frac{d v}{\pi} \frac{v}{v^{2}+\gamma^{2}} \frac{1}{v-z}= \begin{cases}+i /(z+i \gamma) & \text { if } \operatorname{Im} z>0 \\ -i /(z-i \gamma) & \text { if } \operatorname{Im} z<0\end{cases}
$$

Thus there is a branch cut everywhere along the $\operatorname{Re} z$ axis, with $\hat{x}(\omega \pm i \epsilon)= \pm i /(\omega \pm i \gamma)$. If instead we analytically continue $\hat{X}(z)$ from the UHP into the LHP, we obtain $\hat{X}_{A c}(z)=i /(z+i \gamma)$ which has a simple pole at $z=-i \gamma$ and no branch cut
Explicit expression for $\hat{X}_{i j}(\omega)$:
Recall $\hat{H}(t)=\hat{H}_{0}+\hat{H}_{1}(t)$ and it $\partial_{t}|\Psi(t)\rangle=\hat{H}(t)|\Psi(t)\rangle$.
Formally integrating, we have

$$
|\Psi(t)\rangle=\hat{T} \exp \left\{-\frac{i}{\hbar} \int_{t_{0}}^{t} d t^{\prime} \hat{H}\left(t^{\prime}\right)\right\}\left|\Psi\left(t_{0}\right)\right\rangle
$$

time ordering operator, places
earliest times to right

$$
=\lim _{N \rightarrow \infty}\left(1-\frac{i \epsilon}{\hbar} \hat{H}\left(t_{0}+(N-1) \epsilon\right)\right) \cdots\left(1-\frac{i \epsilon}{\hbar} \hat{H}\left(t_{0}\right)\right)\left|\Psi\left(t_{0}\right)\right\rangle
$$

with $N E \equiv t-t_{0}$ fixed. Thus,

$$
\hat{U}\left(t_{2}, t_{1}\right)=\lim _{N \rightarrow \infty}\left(1-\frac{i \epsilon}{\hbar} \hat{H}\left(t_{0}+(N-1) \epsilon\right)\right) \cdots\left(1-\frac{i \epsilon}{\hbar} \hat{H}\left(t_{0}\right)\right)
$$

is the time-evolution operator, which satisfies

Scratch

$$
\begin{aligned}
& \ddot{x}+\omega_{0}^{2}(t) x=0 \\
& \frac{d x}{d t}=v \quad, \quad \frac{d v}{d t}=-\omega_{0}^{2}(t) x \\
& \frac{d}{d t} \underbrace{\binom{x}{v}}_{\vec{\varphi}(t)}=\underbrace{\left(\begin{array}{cc}
0 & 1 \\
-\omega_{0}^{2}(t) & 0
\end{array}\right)}_{M(t)}\binom{x}{v} \\
& \dot{\vec{\varphi}}(t)=M(t) \stackrel{\rightharpoonup}{\varphi}(t) \\
& \vec{\varphi}(t)=\underbrace{\exp \left\{\int_{t_{0}}^{t} d t^{\prime} M\left(t^{\prime}\right)\right\}}_{=U\left(t, t_{0}\right)} \stackrel{\rightharpoonup}{\varphi}\left(t_{0}\right) \\
& =\lim _{N \rightarrow \infty}\left(1+\epsilon M\left(t_{0}+(N-1) \epsilon\right)\right) \cdots\left(1+\epsilon M\left(t_{0}\right)\right) \vec{\varphi}\left(t_{0}\right) \\
& N_{E}=t-t_{0}
\end{aligned}
$$

If $\left[M(t), M\left(t^{\prime}\right)\right]=0$, then

$$
U\left(t, t_{0}\right)=T \exp \left\{\int_{t_{0}}^{t} d t^{\prime} M\left(t^{\prime}\right)\right\}=\exp \left\{\int_{t_{0}}^{t} d t^{\prime} M\left(t^{\prime}\right)\right\}
$$

Example: $M(t)=a(t) \mathbb{I}+b(t) \sigma^{z}$
the composition rule

$$
\hat{U}\left(t_{3}, t_{1}\right)=\hat{U}\left(t_{3}, t_{2}\right) \hat{U}\left(t_{2}, t_{1}\right)
$$

for any $t_{1}<t_{2}<t_{3}$. The solution to the Schrödinger equation satisfies $\left|\Psi\left(t_{2}\right)\right\rangle=\hat{U}\left(t_{2}, t_{1}\right)\left|\Psi\left(t_{1}\right)\right\rangle$. If $t_{1}<t<t_{2}$, we may functionally differentiate

$$
\frac{\delta \hat{U}\left(t_{2}, t_{1}\right)}{\delta \phi_{j}(t)}=\frac{i}{\hbar} \hat{U}\left(t_{2}, t\right) \hat{Q}_{j} \hat{U}\left(t, t_{1}\right)
$$

Our aim, recall, is to compute the response function

$$
X_{i j}\left(t-t^{\prime}\right)=\frac{\delta\langle\Psi(t)| \hat{Q}_{i}|\Psi(t)\rangle}{\delta \phi_{j}\left(t^{\prime}\right)}
$$

To this end, note that

$$
\begin{aligned}
\left.\frac{\delta|\Psi(t)\rangle}{\delta \phi_{j}\left(t^{\prime}\right)}\right|_{\vec{\phi}=0} & =\frac{i}{\hbar} \underbrace{e^{-i \hat{H}_{0}\left(t-t^{\prime}\right) / \hbar}}_{\hat{U}_{0}\left(t, t^{\prime}\right)} \hat{Q}_{j} \underbrace{e^{-i \hat{H}_{0}\left(t^{\prime}-t_{0}\right) / \hbar}\left|\Psi\left(t_{0}\right)\right\rangle \Theta\left(t-t^{\prime}\right)}_{\hat{U}_{0}\left(t_{1}^{\prime} t_{0}\right)} \\
& \left.\left.=\frac{i}{\hbar} e^{-i \hat{H}_{0} t / \hbar} \hat{Q}_{j}\left(t^{\prime}\right) e^{+i \hat{H}_{0} t_{0} / \hbar} \right\rvert\, \Psi\left(t_{0}\right)\right) \Theta\left(t-t^{\prime}\right)
\end{aligned}
$$

where $\hat{Q}_{j}\left(t^{\prime}\right)=e^{i \hat{H}_{0} t^{\prime} / \hbar} \hat{Q}_{j} e^{-i \hat{H}_{0} t^{\prime} / \hbar}$ is the operator \hat{Q}_{j} in the interaction representation. We now have

$$
\begin{aligned}
X_{i j}\left(t-t^{\prime}\right) & =\frac{\delta\langle\Psi(t)}{\delta \phi_{j}\left(t^{\prime}\right)} \hat{Q}_{i}|\Psi(t)\rangle+\langle\Psi(t)| \hat{Q}_{i} \frac{\delta|\Psi(t)\rangle}{\delta \phi_{j}\left(t^{\prime} \mid\right.} \\
& =\left\{-\frac{i}{\hbar}\left\langle\Psi_{0}\right| e^{-i \hat{H}_{0} t_{0} \mid \hbar} \hat{Q}_{j}\left(t^{\prime}\right) e^{+i \hat{H}_{0} t / \hbar} \hat{Q}_{i} e^{-i \hat{H}_{0} t / \hbar} e^{+i H t_{0} / \hbar}\left|\Psi_{0}\right\rangle\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\frac{i}{\hbar}\left\langle\Psi_{0}\right| e^{-i H_{0} t / \hbar} e^{i \hat{H}_{0} t / \hbar} \hat{Q}_{i} e^{-i \hat{H}_{0} t / \hbar} \hat{Q}_{j}\left(t^{\prime}\right) e^{i \hat{H}_{0} t_{0} / \hbar}\left|\Psi_{0}\right\rangle\right\} \times \Theta\left(t-t^{\prime}\right) \\
& \quad=\frac{i}{\hbar}\left\langle\left[\hat{Q}_{i}(t), \hat{Q}_{j}\left(t^{\prime}\right)\right]\right\rangle \Theta\left(t-t^{\prime}\right)
\end{aligned}
$$

where $\langle\cdots\rangle$ is taken in the state $\left|\tilde{\Psi}_{0}\right\rangle=e^{-i \hat{H}_{0} t_{0} \mid \hbar}\left|\Psi_{0}\right\rangle$ and where $t^{\prime}>t_{0}$ by assumption. We may take $t_{0} \rightarrow-\infty$. Thus we have obtained the important result

$$
X_{i j}\left(t-t^{\prime}\right)=\frac{i}{\hbar}\left\langle\left[\hat{Q}_{i}(t), \hat{Q}_{j}\left(t^{\prime}\right)\right]\right\rangle \Theta\left(t-t^{\prime}\right)
$$

The average $\langle\cdots\rangle$ may also be taken with respect to a Gibbs - weighted distribution of initial states, for the case when $T>0$.

- Lecture 12 (Feb. 11) Spectral representation:

Inserting a resolution of the identity $I=\sum_{n}|n\rangle\langle n|$, where $\hat{H}_{0}|n\rangle=E_{n}^{0}|n\rangle$, we have the spectral representation of the response function,

$$
\begin{aligned}
\hat{\chi}_{i j}(\omega+i \epsilon) & =\frac{i}{\hbar} \int_{0}^{\infty} d t\left\langle\left[\hat{Q}_{i}(t), \hat{Q}_{j}(0)\right]\right\rangle e^{i \omega t} e^{-\epsilon t} \\
& =\frac{1}{\hbar} \sum_{m, n} P_{m}\left\{\frac{\langle m| \hat{Q}_{j}|n\rangle\langle n| \hat{Q}_{i}|m\rangle}{\omega-\omega_{m}+\omega_{n}+i \epsilon}-\frac{\langle m| \hat{Q}_{i}|n\rangle\langle n| \hat{Q}_{j}|m\rangle}{\omega+\omega_{m}-\omega_{n}+i \epsilon}\right\}
\end{aligned}
$$

where $\omega_{m} \equiv\left(E_{m}^{0}-E_{0}^{0}\right) / \hbar$ is the $m^{\text {th }}$ excitation frequency. This is often called the retarded response function, because of the $\Theta\left(t-t^{\prime}\right)$ factor in $X_{i j}\left(t-t^{\prime}\right)$. A related

