
Applications of DFT (see Girvin and Yang ) :

• structural determination : the external potential is

Next txt = - {
7¥
II -Eel

The total energy
is

Eto+Kiel , n ) = Eje , In ] tfdknlxluexthlte.EE , ftp.tekpe?
Given { Eel , extreme Eto+ Kiel , next] wrtnlx) to
obtain an energy toll Rel ) .

Then minimize wrt nuclear

positions like } . Typically use pbc , large xtal unit cell .

• cohesive energy : Econ = Ecrystal - Eatomic is the

crystalline binding energy (when Eco h s o )

• elastic constants : Vary Ill Eel ) wrt nuclear positions

• phase diagram under pressure : At T
'

- O
,
G -- H = Etp V

Including pv term ,
obtain G at finite pressure .

Lecture 9 (Feb .

2 ) : Linear response theory
Response functions of jell ium system to an external

potential : expand Eje , Inot8h ) about uniform density no :



E- (not Sn ) -- Eje , Ino ) t
'zfd3xfdkignEL.gg#Ey-/n8onlxl8nlx ')

+ fd3x (not Sntxl ) Vextlxl t . . ..

Thus
,

= Vexthat folk ' X
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YEI 't 8h15 't = o
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X
- '

II , I
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IEje
8h15) 8h15'll

no

is the inverse density susceptibility .
We define the

susceptibility Xk, T ) according to p like §X"ijXjh -- Sik

Idf ' X
- '

Ii
,

I ' ) Xli ', I
'

't = Str- T
")

an external potential
we may now

write
←

results in a density response

8h51 = - folk ' XK, I 't text txt

Due to translation invariance
, we must have

XII , it = XII - I ' I ⇒ X ta ) -- fopr Xk ) e- '
'

E't

we then have 85191 = -XIII 've* LEI . Now



X
- '

II
,

= XI ix.I 't t Xii Ix , x'l t XIII , I 't

where

x.innit -- s.sn?.iYn'alniTxixi
and

xinhai = Sntxlsnlx 't
no

and

XI. hi, I 't = Itsy8h15) 8h15 ' )
no

Later on we shall derive

Xo
- '

Kix 't = tug. Ii
' eight -I"

Kofi it = zfgtIY.to#E-f4k1Eotkl-EothtIf
where GN -

- hit
'

1am and: folk) = fexplfft.FI/i- I]
"

.

At T -- O
, folk ) = ④ the

- k ) and in d =3 dimensions



Koto ,
T -- O ) = glee ) 49-124=1

where glee ) = mheh
'ti with he = 13h 'n )

"3

,
and

Lexi =
'
z
t
'II Int 'i I

is the Lindhard function .

For translationally invariant
systems , we have

X - '

lot = II III t 4I÷ t IIc III
= 4I t A-

'

III

where the inverse polarization function is

A- 'III =
'

III tix
- '

xdEl

static screening : We saw above how the linear

response to an external potential next txt is a otensity
perturbation Sin III = - III) 've* loft . This means
that the potential is screened, and the effective

potential experienced by an electron at 5 is

User txt = Next txt t folk ' ,÷×y 8h14 ' )



Taking the Fourier transform ,

Jarl El = text III -
"III XIII Text III

= text IIYEIEI
✓ static dielectric functionwhere

E- ' top -

- l - 4I XIII = -11
t.
4h22

and thus
.

Erik

Etat = It 47¥ rita
Recall the definition of the polarization function III) :

E*=÷*t¥ii
Ok

.
So suppose we approximate Atg - Alot = Q'14Tie,

where Q has dimensions of E
'

. Then we have

C- tql = It
QI
I
'

and hence for 4×+151 = - Ze4151 we have

-

41T Zee
Jarlath = -

I
'
t Q2



Transforming back to real space ,

Next Irl = - II e-Qr

which is a Yukawa potential . The total number of screening
electrons is

8N = fd3xsntxl-lg.im. Sinton = lying tillEtuext IED
Z
.=¥Io¥÷iiEt

Therefore
,
if ETA III → 0 as E-so , we have

8N = I
, corresponding to perfect screening .

Approximations to Atg) :

Thus far we have been pushing around our ignorance
and giving it different names , ultimately coalescing in the
unknown polarization function A loft . Two commonly
invoked approximate forms :

- Lindh and approximation :

Here we set loft → no
,
in which case

itch = axolotl = that



Then

XIII - I , =
H
It in

- I t
41Te
'
n

Etat a It = Find
In the Ift O limit , from our earlier expression for Io CI)

one computes Koto = gleet total ) , which entails perfect
screening .

But when the full of - dependence is accounted
for

,
one obtains not a Yukawa form for Igor lr ) , but

rather

Usct (r ) a coskkr.my
✓
3

at long distances . This arises from the logarithmic
singularity in the Lindhard function L lat2het at q --Zhe ,
which is a consequence of the sharpness of the Fermi surface .

- Thomas - Fermi (TF) approximation :
Here we ignore the E - dependence of Io III and take

i. lat Kolo ) -- gleet =
Q
41Te2

Thus Q = 14Tie'gleet )
"
is the TF screening wavevector,

and Etf III = It Q If , resulting in a screened potential
of the Yukawa form ,

viz .

Iser k ) = - ERI e
- OTE r



• Landau Fermi liquid theory
' He = 2 ptt ht 2e

-

,
an I =

'

z fermion (at sufficiently
low energy scales) . Compare phase diagrams of

'He

and 4He la boson ) :

FCC
FCC

HCP HCP

BCC
BCC

3HeN

'He A- and 3He B are superfluid phases differing in the symmetry
of their order parameters . 'HEN is a normal fluid which

behaves much as a degenerate Fermigas , but in which interaction
effects play an important role : there is a linear in. Tspecific
heat cult ) a T and a Pauli - like magnetic susceptibility
XITI a To (i - e . constant ) . Because Mj 5.01×10-249 = 6000me ,
and its typical density is n = I . 64×10

-22cm- 3
,
one has

Tp 13HEN) =
h 13T'n )

"'
= 4.97k

2MzkB

Compare TelCu ) a 81,000 K and TelAl ) = 135,000k .



What this means is that one begins to see a crossover
to Curie behavior XdTl = nµ3/kBT , with pas -

-

- 1.16yips is

the 3He magneton . For free fermions 15=42 ) ,

he = (stint
"'

cu
-

- I
n,

= glee)kit t 0h31

gleet -- MkeHigh X = 13M¥, =p: gleet t OCT 4

Hel --
test,

- K = n
- 213ft, = n -2gleft toIt4

Let Cj (T, .nl , Xo IT, n ) , and Kott, n ) be the IFG values
.

One finds that the ratios Cv/Ci , XIX
'

,
and KIKO for SHEN

all tend to different values as T → O .

With only one adjusts
'

ble parameter, m
't

,
it is impossible

to bring these data into agreement .
3He N is not

an ideal Fermi gas .



Theory of the normal Fermi liquid :

The core concept behind Landau 's Fermi liquid theory is
the notion of adiabatic continuity . Imagine a Hamiltonian

'

Hill -- thot XII ,
where Ito is a free particle (i.e . non interacting ) term
and it

,
is the interaction part. We're interested in

the eigenspectrum of It ft -- it . Imagine starting at

t = - o with H - al -- O
,
and adiabatically evolving

to f- 0 where Ho ) = 1 .
If there are no level

crossings, then we have a lil correspondence between
States of the IFC, lit -- to ) and the fully interacting
system ft -- hot it, l :

I

-#

-
--

X -- o tttnlxl ) X =L

The IFA States are given by ←
N =Ff Nko

II. KNW ) = h.IT#oTkol07
with Nao E lo , 1) . Upon adiabatic evolution , the



interacting state energy is then a function of the

occupancies :

Eo -- fi. Nono Eko ,
E -- EffNied )

More generally , we can consider the density matrix ,

Do = q④oµ - n-ko ) 107 so I t now Ctholo > colczo)
where nyo E fo , t ) t te,o .

In this case
, Into } may

be considered a smooth distribution on B for each o.

First law of thermodynamics : The entropy of the

distribution is

Sunnis) = - kpstripolnipo
= - ↳↳ Into In huo t (t

- neo) In (t- n#of
The first variation of S is then

SS = - ↳Ewtn (Itn) Shao
the particle number is

NllniioD-Tr@f.Inh.o) = ⇐ neo
-

is



and therefore

8N =↳ Senko

Note that S and N are adiabatic invariants .
But

the energy E is not an adiabatic invariant . While

Eo = Trio to ) -- E ntnfho
Ti
,
o

the energy of the adiabatically evolved density matrix
is written as a functional of the distributions Into } ,
and

SE --f.otho Shiro , Eto -- 4¥
The quantity Eyo is thus both a function of thot as

well as a functional of the distributions lmao} .

We shall define

%÷. -

- sn÷÷.

I Iman
Here ftp.eo.hr , itas dimensions of energy x volume, and
is itself a functional of Inyo ) .

We're now ready to write the First Law :



TSS = SE -µ 8N

Since the 18nA are all independent variations,
we conclude

1
- hot in Exo -µ ⇒ neo

-

- e¥tuktT
This last expression is vastly more complex than it

might first appear . Since Eyo is itself a functional

of the Info )
,
this relation is in fact an implicit

nonlinear equation for the individual occupations noo .

At T-- O
, though , we have

↳ IT
-

- o ) = ④ (gu
- Iho ) = n't

,

In an isotropic system with no magnetic field, we have

nino = ⑦ (ke - k )

with he = (3h
'
n )
"3
as for the IFG .

We now define

Shoko I nfo - nFo

and write the energy E as



E Isn] = Eo tf; Eto 8h-hot # ¥g§;ofqho , Shao Shin t . . .

It turns out that we needgo no farther than 018N 2) to

obtain the low -T thermodynamic properties of the
Fermi liquid . Note Geo -- (SEI Shiro )gn=o ,

while

Eto =g8÷o = Eliot ftp.ftio,# 'o, Shahi t - "

and hence

[
*
-

- §n¥gn
-

- o

SE
tfioiio .

-
-

-ES.info/gn=o8n--
0

In isotropic systems,

taxation
.

. ii. "
i

with u
,
the Fermi velocity .

The Fermi energy is E-
= Etiolate

,and the Dos at the Fermi level is

gleet -- Eff:# Her. - cool -- TITI



In systems with spin isotropy , we define

tho
,
Tio ,

= tsh
,
ti too

'ff
,
uh
,

Thus
,

tht
,
fit

= tht
,
te
'

f
= the

,
t
' t tha

tht
,
t 't
= this

,
tip = ffs

,#
t - tf

,
#
I

Recall Itho#o ,] = E - V
..

Thus
, multiplying by glee ) ,

we obtain the dimensionless functions

'

Esta = gleet ft:&.

Far
,
hi
'

o
'
=

g left tho, K'o '

with ti and ti both on the Fermi surface
,
i.e . I --kIh and

ti '- ketc
'

,
we may write

Fn!:L
, hey

,
I F
"
Hi

,
it = E.off'apai - i 't

where Unni , = cos
- ' II . I '!

.

From either function

F' 'ath
,
we can obtain the coefficients Ff" by

Ffa = 24 fdr Ffl) P, Kosal

where dr = sinnedOdd is the differential solid angle .


