
Sfteft ) = §m Am Itt Yim (Tel
Hillototllnimpl =L

T
'

we obtain
I

9-of c- Vet -1

Mjf t l l - thinimp Ufotot Air = O

and

ti
'
= l l - th ) nimpveotot Va -- O

1

Note I
transport

= It =L and Tsingle particle
= Thao . Thus ,

A- Lmk I = Aim lol e
-Hii

• Lecture 6 (Jan . 211

Screening : For a Coulomb impurity of charge t Ze ,

Utri = -ZE ⇒ Otoh = - 4t¥
This results in the Rutherford differential cross section

,

9=101 = ( Ze
' 2

⇒in'zoT)
for electrons at the Fermi level

.
There is a strong

U
- 4

divergence as I→ O
,
and the expression for

the transport lifetime diverges logarithmically . What
went wrong ?



The problem here is that we have not accounted for

screening .
There are many

electrons
,
and they rearrange

themselves so as to screen an impurity charge . The

resulting potential arising from the impurity and the
rearranged electrons is of the Yukawa form

,

•

+ e
-

UH = - II e-ri ⇒ Off ) = - 4tZI
It
'
t 52

where X is the screening length . The resulting
differential scattering cross section is

2

a. lot = III. '

The nasty VE
4
divergence is thus cut off, and the

transport life time is finite :

z
2

÷ = 2Thimpor. (7¥ ) ! a sin all -coshsina.li#z-/--2TnimpVffFIY4nhtal
- ¥ }

where a = 4h: I .

The main theory for (static ) screening in metals is
called Thomas - Fermi theory .

A weak electrostatic



potential del induces a change in the local electron
density Snlit = gleet cloth , where gkrl is the
DOS at the Fermi level

.
In d =3

,
we have gleet ⇐ FIFI

for ballistic dispersion .
This imbalance is in torn related

to 4kt through Poisson 's equation :

e¢ ¥
.

*
Sn --geol
- EF

Pol = 4h e 8h ¥¥= 4h e'glee lol I IIe ¢

where He = fire 'gleet )
"? With an impurity test charge

Q = t Ze at the origin ,

024 = XIE ¢ - 4ThZe 8kt ⇒ left it To III -- 4TH

Thus
, Ota = -civil = - IgI¥÷ ⇒ UH = - II e-rite

The electrical resistivity is then

p
-

- nm÷¥ -- ha - Eating - lnimplnl . FITheats )

where

at =tm¥ie = Ea Meza. .
Flat -- IIP Huhta ) - Fa)

with ht e ' = 25.8128 KR and for atf = aB = 0.529 Ao
,

if = I .
37×10-4R - cm x Z

'

(himpm) Flt heard



• Boltzmann equation for holes

Filled bands carry no current! For each band n ,

jlr.tt = - 2e.LI#TtnlrikitIInlhI=t2effItTpfk.k.ttu..n
where

Ink
,
hi
,
t) = I - fate,Kitt

is the distribution function for holes
.

A hole is a fictitious

particle of charge te , also fermionic . Four Laws of Holes :

1
.
Under the influence of an applied electromagnetic
field

,
the unoccupied levels of a band evolve as

if they were occupied by real electrons of charge
of =

- e
.
The evolution of a Bloch wavepacket is

thus described by the same semiclassical dynamics .

2 . The current density due to a hole at wavevector
ti is given by t e In thyV .

3
.
The crystal momentum of a hole at wavevector Te is D= - Tik .

4 . Any given band can be described in terms of either
electrons or holes

,
but not both . It is often

convenient to treat bands lying below or mostly
below the Fermi level using the hole description



(e.g. , for core or valence bands ), and
' bands

lying above or mostly above the Fermi level

using the electron (particle ) description .

Example- :

e
E

e

of

.¥ ¥.
- nl h h

F.as = ethhth to > ftp.g-etkhthlo >

Conduction band : Echl = Edo ) t }hY ,
Volk ) = HI , Pdkthk

Valence band : Elk ) -- Elo ) - }mh ,
Uu Ik ) = - tm¥ , Rr Ik) = -5k

Band gap : Eg = Edo ) - Ev lol

• State I
a
> :

y = - e vdkyvteuhlkllv = - f the th ) k
P = Pc (k ) t Pel k ) -- O

• State HI, > :
y
-

-
- eudkllvteuhl-HIV =

- E ( the - II )
P = Pdh ) t Pel- k ) = 2-hk

In d=3 dimensions
, expanding about the valence and



conduction band extrema
,

Erik ) -- Edin - HI (mt Tap (ka - killKB-KP ) -t
. . .

Vim = th }÷ = - IMEILp (KB - KP ) * . . .

E th ) -- Edith + HI (m't Tap (ka - ka ) (KB- KB ) -t
. . .

i:HI -- Ingi = +1mi: pike - I? ) * !

Boltzmann equation for holes :

We recast the BE for particles ,

3ft t ii. ftp.t.tn?otz=IhlfI

in terms of the hole distribution I = I - f :

IIT tr . It t ii. III = - Ihill - I]

Now we linear ite , writing f -- f
°

+Sf and I = Iot f-I
,

where Io is the local equilibrium distribution for holes :

t!
I

⇒ F -
-
- = I -- fo

Thus we have 5-I = - Sf
,
hence

- I tell - I ] = - Inf fo -SII = -Lf-Sf ) =L Sf

Thus
,
the Boltzmann equation for holes is



off - Enix B. FIT + i. le Et Tiff- II) -- Lsto
which is of the same form as for particles , with the n. B .

important difference that to = I - fo
,
hence - III = 18k - eel .

In addition , the relation between JIM and hi
,
as we have

seen
,
is reversed for holes vis-a-vis particles .

• Magnetoresistance and Hall effect
The Boltzmann egn . reads Ifor holes

, fo-s ft , Sf → Sf )

off - et - I IIe - # Ix B . 3¥ =LSf
'

Approximations : lil L Sf = - 8ftI
,
Iii ) Elk ) = t tf m pkdk?

Electric field : ETH = E e- iwt
. Let's try a solution of

the form

Sfthitt = I. A' leches ) e
- int

= g.fly, e
-
int.

From. the BE
,
we obtain

It
"
- iwl-k.tt - fo C-

µ,
ud BB fqfk.AE ) -- et . E 0¥

Now we may easily show that ( Eqn . 5.251 )

C-
app
MBB# th . At = Easy v

"BBAt

whence



Tap A
's
= the off E

"

with

Tap = (t
' '
- iw ) map ± E Eapy Bt

Therefore
,

Sf -- hi . A = the Ite ka II's CB
= ± evmap Tpj Er DI2E

the current density is

ja = F 2e

,
÷, onSf

aejauum.at) on
0am

We may further simplify to obtain

oaplw , BI
-

- I e? Idi Egle I Ija f- FI)
= ne 's TIP 7

Here Tap le ) gets its E - dependence through IK) . We have

stats , =
-10%914 Itskit-III
-

Ide e gcell- II)



The carrier density is

n :#gk ) x ft
"" electrons.

I- f%) holes

- High field Hall effect
Take w

-

- O
. Then the B E is

negligible it
- e i - E ft - E Jx B . 3¥ = -7¥ we > it i wi-¥

(cyclotron frequency )
Take E = Ey yn and D= Bz I . Then the solution is

Sf = HILT k× OI2C
2-

This should alarm us since I is only defined modulo a RLV .

However
,
if TKTF , the Hot OE = - SIE - EFI factor confines

ti to the Fermi surface
,
which we presume lies completely

within the first Brillouin zone
.
Then

sx.
-

- see It!¥¥pkx # 3¥ -

- see ,¥.fi#pkx3I.
£

Integrate by parts , assuming to= o on the surface of the BZ
.

This yields
y.ie?ecp#fYa.hpfo---neBT.

Thus we obtain one
,
= - oyex = - 757 , completely independent



of the details of the band structure (other than the

requirement that there be no open orbits on the FS,
which in general result in non - saturating magneto -
resistance

.
IRecall p××lw ,Bal =n7# Ii - iwt l which is

field - independent. I For holes , we have

ohxy = - ok,× = t ne
Bz

we define. the Hall coefficient RH = -pxylBz and
the Hall number 2-

*
= - Y nio.n.ec RH .

At high fields

where wet >71 , the conductivity tensor is almost

diagonal , i. e .

o -1%981
,

⇒ p
-

- o
- 'f.%
,

- "
o

" ')
Thus RH = It/nec and Zt, I InInion .

The high field

Hall effect tells us about the number density and the

sign of the charge carriers .
The Hall number is then

a measure of valency .

• Thermal transport
consider a small region DV in thermodynamic equilibrium
at temperature T and chemical potential µ . The first

law says TAS
-

- AE - pi DN .

Divide by DV to get



DfE Tds = de -µ dn

with s
,
e
,
n the densities of entropy , energy , and number .

Thus
,
for the corresponding currents , we must have (continuity ! )

Jg : Tj , = je - µJn
where

, assuming spin degeneracy ,

j n -- 2.197¥. ist = Ill- et
je = 2.191¥, EI Sf
Jg
.

-
- Je - Iujn -

- 21¥77 K -MISf
The linearized Boltzmann equation , in the presence of an

electric field and a temperature gradient , has the following
time - independent solution :

Sf = - reel i. (eEt TITTY- II)
(As before , for hole transport replace ¥0⇒ I

°

and Sf → SF
.
)

we then have

j -- -2qf9z¥p Off I 4. E - 428T

jq -

- 2,191¥, K -NJ Sf = Lz ,
I - Luft



where Lu , Liz , La ,
and Lu are each 3×5 matrices :

ii. =I÷aIoktHfEHdscYff
L% -

- Thi -- - ¥afEktklk-mf3I)fdscYff
EE -

- taffeta le-tuff- II ) false YET
we define the integrals

J:B -=¥qfg%tHk.mn/-If4fdseYfT
in which case

49 = e 'T:B
,
Li -- TIP = - e Tim , Li? - FIB

The linear relations

j =L , ,E - 428T , Joe L, ,I - Luft

may now be recast as

E=pjtQJT , jgnj - KJT

where

p
-

- Ii, = resistivity , Q -- Li, Liz = thermopower
- i Peltier

=

thermal
M = Lz , Lil = coefficient ,

K =L
22
- Laith 42 conductivity



Note the following :

• FT = o ⇒ E -
-pj and jq= Mj

• J -- o ⇒ E -- Q FIT and jg = -K FT

To measure the thermopower Q (also called the Seebeck

coefficient )
,
fashion a junction between two dissimilar

metals A and B .
Hold the junction at T, and the

ends of the metals at To .

A voltage develops :

Va - VB -- -a)Bdt . I = (QB - Qa ) (T, - To )

thermocouple Peltier effect device

such a device is called a thermocouple .

To elicit the Peltier

effect
, pass an electrical current I through a junction

between two dissimilar metals
.

This results in a net heat

flux into the junction of I (ha - n B) I . Note that this
effect is linear in I

,
as opposed to Joule heating which



goes as I
? If one forms an ABA bijunction , the

heat absorbed at the first junction will be released at
the second . Application : Peltier effect refrigerator.

- Heat equation
We start with the continuity equations for p = - en and E :

Ift t F -J -- O , ft +Jj =j . E
←NB note !

Now invoke local thermodynamics : E -- E(n,t) from Gibbs -Duhem ⇒

Et -- In feet # It
= - Eff t Cv 3¥

Thus
,

crazy = # t- EFF
= j . E - J -je - ET - j
= j . I - T.jo

Now consider the case j -- o . Since Jg = Mj - KJT = - KOT,
we have

Cv IIT = F. (KOT) = Kap }××f Cheat equation )

assuming the thermal conductivity tensor is spatially non varying .

This equation says that there is a time scale it
= CecilK



over which temperature relaxes exponentially in a system
of characteristic linear dimension L (assuming k isotropic ) .
For a cube C = 1/3TR .

- Calculation of transport coefficients

we have

f-et si
'

Q = -# Ji's,
A = - te J, Tj

'
k = FITZ - T, Ji'T, )

with

J:B = ¥+1144 Kyun f- III false YET
For isotropic systems , J!

B
= In 8dB , with

Tn -- Fish Inde itself IIe ) false lil
To evaluate these expressions , use the Sommerfeld expansion ,

Idc HH f- off ) -- TD cschD)Hk ) le =µ
N.B. : D= kBT¥ = HIM t tfIkBT)

'

H'
'

ful t Oft4)

For a parabolic band with energy - independent scattering time I,
we have 1

In = 0¥ EIHT D cschD) (E"(e-µ)
") )
E-fu



with Oo = ne'tImt and

EE" = TID cschD) 23/2 I
[ =µ

implicitly yields juice ,T ) . We obtain the following :

Jo -- Oz ,
I
,
= CETI METI , Ti FAI Kott

'

with q -- them ,
whence

,
to lowest nontrivial order in T

,

g
-

- too , Q = - II 43¥ ,
K -- JI the knit

and 19
.

= QT . The prediction of a universal ratio ,

Iot = If lk.de/=2.45xlO-8V4k2

is known as the Wiedemann - Franz law
.
Note that Q so

here is predicted to be negative . In fact , several

nearly free electron metals such as Cs and Li have positive
low -T thermo powers . What went wrong ? We have neglected
electron - phonon scattering .

- Onsager relations : Ji = Lij Fj ; Ji = current f- =

,
flux

Then Lij (B ) =

yiyj ↳ it
-B) where yi

-

- II describes the parity
of the current Ji under time reversal T

,
i.e .

TJi = Mi Ji



Consequences : for 13=0
,
K -- Kt regardless of crystal structure!

When Ito ,

pplB) =ppal -B ) , KplB) = Kpal-B) , NyplB) = Topal-B )

, weak magnetic fields in isotropic systems
Expand to first order in B :

Pap (B) =p Sap t a Eapy Bt

Kap (B) = K Sap t b taps Bt

Q 1151=08apt C C-
app
Bt

Hap IB) = 17 Sap t di Eapy BY

Onsager reciprocity entails D= TQ and d -- Tc .

We now have

E -- pjtajxBt -QJTtcFTxB

jq= Mj tdjxb - KOT - BJTXB

New phenomena !
e- → J TE

,
O B

• Hall effect JT = Ty = 0 It

j=y×x and B- =Bz 't ⇒ Ey = RHy×Bz with RH -- - a

• Ettingshausen effect oxT=jy=Jg,y=O
j -- 1×5 and B-=BzI ⇒ fIy=Py×Bz with P

-

- -DIK



. Nernst effect J -- ayT -- O

JT = Text I and B- =Bz I ⇒ Ey = A QT Bz with A-
- c

. Righi - Leduc effect j -- Ey = O

FT = AT I and I = Bz I ⇒ 2yT= L AT Bz with L=4Q


