Thus, if $m(\infty)>0>m(-\infty)$, we have normalizable sol $\stackrel{n}{ } \vec{\psi}_{1}$ and $\vec{\psi}_{\psi}$, while if $m(\infty)<0<m(-\infty)$, we have normalizable sol $n s \vec{\psi}_{2}$ and $\vec{\psi}_{3}$. The time-dependence is
(i) $e^{i k_{y} y} e^{-i E t / \hbar}=e^{i k_{y}(y-c t)}$: up-mover, $Y=+1$
(ii) $e^{i k_{y} y} e^{-i E t / \hbar}=e^{i k_{y}(y+c t)}$: down-mover, $Y=-1$

- Lecture $4(J a n ~ 14):$ Adiabatic theorem and Berry's phase Consider a Hamiltonian $H(\vec{\lambda})$ dependent on a set of parameters $\vec{\lambda}=\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$, with eigenfunction $\left\{\varphi_{n}(\vec{\lambda})\right\}$:

$$
H(\vec{\lambda})\left|\varphi_{n}(\vec{\lambda})\right\rangle=E_{n}(\vec{\lambda})\left|\varphi_{n}(\vec{\lambda})\right\rangle
$$

Now let $\vec{\lambda}=\vec{\lambda}(t)$ be time-dependent. The adiabatic theorem says that if $\vec{\lambda}(t)$ evolves very slowly, such that $\Delta E_{n} \cdot \tau \gg \hbar$, where τ is the time scale of the variation, i.e. $\tau=|\vec{\lambda}| /|\dot{\lambda}|$, and $\Delta E_{n}=E_{n+1}-E_{n}$ is the gap between consecutive levels, then the solutions to the time-dependent Schrödinger equation

$$
i \hbar \frac{\partial}{\partial t}|\Psi(t)\rangle=H(\vec{\lambda}(t))|\Psi(t)\rangle
$$

are proportional to the instantaneous adiabatic WFs, with

$$
\left|\Psi_{n}(t)\right\rangle=e^{i \gamma_{n}(t)} e^{-i \hbar^{-1} \int^{t} d t^{\prime} E_{n}\left(\vec{\lambda}\left(t^{\prime}\right)\right)}\left|\varphi_{n}(\vec{\lambda}(t))\right\rangle
$$

with corrections which vanish exponentially in $\Delta E_{n} \tau / \hbar$. We recognize the $\exp \left[-i \hbar^{-1} \int_{d t^{\prime}}^{t} E_{n}\left(\tilde{\lambda}\left(t^{\prime}\right)\right)\right]$ term as the dynamical phase accrued. What is $\gamma_{n}(t)$? Taking the time derivative and then the overlap with $\left\langle\varphi_{n}(\vec{\lambda})\right|$, we find

$$
\begin{aligned}
\frac{d \gamma_{n}}{d t} & =i\left\langle\varphi_{n}(\vec{\lambda}(t))\right| \frac{d}{d t}\left|\varphi_{n}\right| \vec{\lambda}(t)| \rangle \\
& \equiv \vec{A}_{n}(\vec{\lambda}(t)) \cdot \frac{d \vec{\lambda}(t)}{d t} \equiv A_{n}(t)
\end{aligned}
$$

where

$$
A_{n}^{\mu}(\vec{\lambda})=i\left\langle\varphi_{n}(\vec{\lambda})\right| \frac{\partial}{\partial \lambda_{\mu}}\left|\varphi_{n}(\vec{\lambda})\right\rangle
$$

is the Berry (or geometric) connection. If $\tilde{\lambda}(t)$ traverses a closed loop C in the space of parameters, then $\left|\Psi_{n}(t)\right\rangle$ will accrue a geometric phase (also called Berry's phase),

$$
\gamma_{n}(C)=\oint_{C} d \vec{\lambda} \cdot \vec{A}_{n}(\vec{\lambda})
$$

We can also eliminate the dynamical phase entirely by dething $\tilde{H}_{n}(\vec{\lambda}) \equiv H-E_{n}(\vec{\lambda})$. Then if

$$
i \hbar \frac{\partial}{\partial t}\left|\tilde{\Psi}_{n}(t)\right\rangle=\tilde{H}_{n}(\tilde{\lambda}(t))\left|\tilde{\Psi}_{n}(t)\right\rangle
$$

in the adiabatic limit we have $\left|\tilde{\Psi}_{n}(t)\right\rangle=e^{i \gamma_{n}(t)}\left|\varphi_{n}\right| \vec{\lambda}(t)| \rangle$. Note that the geometric phase is invariant under time reparameterization and depends only on the path traversed by $\vec{\lambda}$ in the parameter space manifold M.

Mathematical setting: Hermitian line bundle over M. The parameter space manifold M is the base space, and the adiabatic WFs $\left|\varphi_{n}(\vec{\lambda})\right\rangle$ are the fibers, which are projections of a Hilbert space \mathcal{H}. The adiabatic theorem furnishes us with a definition of parallel transport of $\left|\varphi_{n}(\vec{\lambda})\right\rangle$ along a curve C. The object $\vec{A}_{n}(\vec{\lambda})$ is the connection and the Berry phase $\gamma_{n}(C)$ is the holonomy, which for a closed loop does not depend on the starting point. The curvature tensor of the bundle is given by

$$
\begin{aligned}
\Omega_{n}^{\mu \nu}(\vec{\lambda}) & =\frac{\partial A_{n}^{\nu}}{\partial \lambda_{\mu}}-\frac{\partial A_{n}^{\mu}}{\partial \lambda_{\nu}} \\
& =i\left\langle\left.\frac{\partial \varphi_{n}}{\partial \lambda_{\mu}} \right\rvert\, \frac{\partial \varphi_{n}}{\partial \lambda_{\nu}}\right\rangle-i\left\langle\left.\frac{\partial \varphi_{n}}{\partial \lambda_{\nu}} \right\rvert\, \frac{\partial \varphi_{n}}{\partial \lambda_{\mu}}\right\rangle
\end{aligned}
$$

Using completeness of the adiabatic basis, we may write

$$
\Omega_{n}^{\mu \nu}(\vec{\lambda})=i \sum_{l}^{\prime} \frac{\left\langle\varphi_{n}\right| \frac{\partial H}{\partial \lambda_{\mu}}\left|\varphi_{l}\right\rangle\left\langle\varphi_{l}\right| \frac{\partial H}{\partial \lambda_{\nu}}\left|\varphi_{n}\right\rangle-(\mu \leftrightarrow \nu)}{\left(E_{n}(\vec{\lambda})-E_{l}(\vec{\lambda})\right)^{2}}
$$

Note that the connection is gavge-covariant, viz.

$$
\left.\left.\left|\varphi_{n}(\vec{\lambda})\right\rangle \rightarrow e^{i f_{n}(\vec{\lambda})}\left|\varphi_{n}\right| \vec{\lambda}\right)\right\rangle \Rightarrow A_{n}^{\mu}(\vec{\lambda}) \rightarrow A_{n}^{\mu}(\vec{\lambda})-\frac{\partial f_{n}(\vec{\lambda})}{\partial \lambda_{\mu}}
$$

The curvature, however, is gauge-invariant. Can we fix a gauge and give an unambiguous definition of the connection $A_{n}^{M}(\vec{\lambda})$? One way might be to choose a particular point in space \vec{r}_{0} and demand $\left\langle\vec{r}_{0} \mid \vec{\varphi}_{n}(\vec{\lambda})\right\rangle \in \mathbb{R}_{+}$ for all $\vec{\lambda} \in M$. But this prescription fails if there exists a value of $\vec{\lambda}$ where $\left\langle\vec{r}_{0} \mid \vec{\varphi}_{n}(\vec{\lambda})\right\rangle=0$.

The integral of the curvature $\Omega_{n}^{12}(\vec{\lambda})$ over a closed two-dimensional base space is a topological invariant. Using stokes' theorem, we may tum an area integral of the curvature into a line integral of the connection:

$$
\begin{equation*}
\int_{M} d^{2} \lambda \Omega_{n}^{\prime 2}(\vec{\lambda})=-\sum_{i} \oint_{c_{i}} d \vec{\lambda} \cdot \vec{A}_{n}(\vec{\lambda}) \tag{M}
\end{equation*}
$$

where C_{i} encloses the $i^{\text {th }}$ singularity of $\vec{A}_{n}(\vec{\lambda})$ in a
counterclockwise fashion (M is assumed orientable). Singularities occur at points $\vec{\lambda}_{i}$ where $\left|\varphi_{n}\left(\vec{\lambda}_{i}\right)\right\rangle$ is ill defined (using, for example, the prescription $\left.\left\langle\vec{r}_{0} \mid \varphi_{n}(\vec{\lambda})\right\rangle \in \mathbb{R}_{+}\right)$. In the vicinity of a given singularity, the connection has a vortex, behaving as

$$
\vec{A}_{n}(\vec{\lambda})=-q_{i} \vec{\nabla}_{\vec{\lambda}} \tan ^{-1}\left(\frac{\lambda_{2}-\lambda_{i, 2}}{\lambda_{1}-\lambda_{i, 1}}\right)+\vec{A}_{n}^{r e g}(\vec{\lambda})
$$

which can be "unwound" by a singular gauge transformation,

$$
\left|\varphi_{n}(\vec{\lambda})\right\rangle \equiv e^{i q_{i} \zeta\left(\vec{\lambda}-\vec{\lambda}_{i}\right)}\left|\widetilde{\varphi}_{n}\left(\vec{\lambda}_{i}\right)\right\rangle
$$

with $\zeta\left(\vec{\lambda}-\vec{\lambda}_{i}\right)=\tan ^{-1}\left[\left(\lambda_{2}-\lambda_{i, 2}\right) /\left(\lambda_{1}-\lambda_{i, 1}\right)\right]$. Thus,

$$
C_{n} \equiv \frac{1}{2 \pi} \int_{M} d^{2} \lambda \Omega^{\prime 2}(\vec{\lambda})=\sum_{i} q_{i} \in \mathbb{Z}
$$

In mathematical parlance, C_{n} is the Chern number of the Hermitian line bundle corresponding to the adiabatic wave function $\left|\psi_{n}(\vec{\lambda})\right\rangle$.

- Example: $S=\frac{1}{2}$ object in a magnetic field The Hamiltonian is

$$
H(\vec{B}(t))=g \mu_{B} \vec{B} \cdot \vec{\sigma}=g \mu_{B} B\left(\begin{array}{cc}
\cos \theta & \sin \theta e^{-i \phi} \\
\sin \theta e^{i \phi} & -\cos \theta
\end{array}\right)
$$

where $\vec{B}(t)=B(t) \hat{n}(t)$, and $\hat{n}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$.
The adiabatic eigenfunction are

$$
\left|\varphi_{+}(\hat{n})\right\rangle=\binom{u}{v}, \quad\left|\varphi_{-}(\hat{n})\right\rangle=\binom{-\bar{v}}{\bar{u}}
$$

where $u=\cos \frac{\theta}{2}$ and $v=\sin \frac{\theta}{2} e^{i \phi}$. Then

$$
H(\vec{B})\left|\varphi_{ \pm}(\hat{n})\right\rangle= \pm g \mu_{B} B
$$

The connections are:

$$
\begin{aligned}
& A_{+}(t)=i\left\langle\varphi_{+}\right| \frac{d}{d t}\left|\varphi_{t}\right\rangle=i(\bar{u} \dot{u}+\bar{v} \dot{v})=-\frac{1}{2}(1-\cos \theta) \dot{\phi}=-\frac{1}{2} \dot{\omega} \\
& \left.\left.A_{-}(t)=i\left\langle\varphi_{-}\right| \frac{d}{d t}\left|\varphi_{-}\right\rangle=i \right\rvert\, v \dot{v}+u \dot{u}\right)=+\frac{1}{2}(1-\cos \theta) \dot{\phi}=+\frac{1}{2} \dot{\omega}
\end{aligned}
$$

where $d w$ is the differential solid angle subtended by the path $\hat{n}(t)$. Thus $\gamma_{ \pm}(C)=-\frac{1}{2} \omega_{c}$ is $\mp \frac{1}{2}$ times the solid angle subtended by $\hat{n}_{c}(t)$ on the Bloch sphere.
We stress that $\gamma_{ \pm}(C)$ is dependent only on the path of \hat{n} itself and is time-reparameterization invariant. The components of the connections are then

$$
A_{ \pm}^{\theta}(\hat{n})=0, \quad A_{ \pm}^{\phi}(\hat{n})=\mp \frac{1}{2}(1-\cos \theta)
$$

and the curvature is

$$
\Omega_{ \pm}^{\theta \phi}(\hat{n})=\frac{\partial A_{ \pm}^{\phi}}{\partial \theta}-\frac{\partial A_{ \pm}^{\theta}}{\partial \phi}=\mp \frac{1}{2} \sin \theta
$$

Integrating over the base space S^{2},

$$
C_{ \pm}=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} d \theta \Omega_{ \pm}^{\theta \phi}(\theta, \phi)=\mp 1
$$

For any rank -2 Hamiltonian $H(\vec{\lambda})=\Delta(\vec{\lambda}) \hat{n}(\vec{\lambda}) \cdot \vec{\sigma}+E_{0}(\vec{\lambda}) \mathbb{1}$ the Chen numbers of the two bands are given by

$$
C_{ \pm}= \pm \frac{1}{4 \pi_{M}} \int_{M} d^{2} \lambda \hat{n} \cdot \frac{\partial \hat{n}}{\partial \lambda_{1}} \times \frac{\partial \hat{n}^{\partial}}{\partial \lambda_{2}}
$$

- Two-band models

The base space for 2D lattice fight-binding models is the 2 -torus T^{2}, coordinatized by $\left(\theta_{1}, \theta_{2}\right)$, where

$$
\vec{k}=\frac{\theta_{1}}{2 \pi} \vec{b}_{1}+\frac{\theta_{2}}{2 \pi} \vec{b}_{2}
$$

is the Bloch wavevector labeling the adiabatic eigenstates of the Hamiltonian $H(k)$. We may then write

$$
\hat{H}(k)=E_{0}(\vec{\theta})+\Delta(\vec{\theta}) \hat{n}(\vec{\theta}) \cdot \vec{\sigma} \xrightarrow{\nearrow} E_{1}=E_{0}+\Delta
$$

and

$$
C_{ \pm}= \pm \frac{1}{4 \pi} \int_{0}^{2 \pi} d \theta_{1} \int_{0}^{2 \pi} d \theta_{2} \hat{n} \cdot \frac{\partial \hat{n}}{\partial \theta_{1}} \times \frac{\partial \hat{n}}{\partial \theta_{2}}
$$

Note that $C_{+}+C_{-}=0$. For a Hamiltonian

$$
H=d_{0}(\vec{\theta})+\vec{d}(\vec{\theta}) \cdot \hat{n}
$$

we define

$$
\begin{aligned}
& v=V\left(\theta_{1}, \theta_{2}\right) \\
& x=x\left(\theta_{1}, \theta_{2}\right)
\end{aligned}
$$

$$
\hat{d}(\vec{\theta})=(\sin \vartheta \cos x, \sin \vartheta \sin x, \cos \vartheta) \leftarrow \sigma_{\left(\theta_{1}, \theta_{2}\right)}^{T^{2}}
$$

where to avoid confusion with the Bloch phases we have taken $(\theta, \phi) \rightarrow(v, x)$. The adiabatic WFs are

$$
\left|\varphi_{t}\right\rangle=\binom{\cos \frac{1}{2} v}{\sin \frac{1}{2} v e^{i x}} \quad, \quad\left|\varphi_{-}\right\rangle=\binom{-\sin \frac{1}{2} v e^{-i x}}{\cos \frac{1}{2} v}
$$

The singularity occurs when $V=\pi$, where X is ill-defined. We must then find all points $\left(\theta_{1}, \theta_{2}\right)$ in the $B Z$ torus T^{2} such that $V\left(\theta_{1}, \theta_{2}\right)=\pi$, and then compute the winding of $\zeta=-X$ as $\vec{\theta}$ winds counterclockwise around $\vec{\theta}_{i}$. (We have to define $3=-X$ because the singular it is at the south pole on the Bloch sphere.) Two models:
(i) pxtipy superconductor:

$$
\begin{aligned}
H(\vec{\theta}) & =\left(\begin{array}{cc}
m-2 t \cos \theta_{1}-2 t \cos \theta_{2} & \Delta\left(\sin \theta_{1}-i \sin \theta_{2}\right) \\
\Delta\left(\sin \theta_{1}+i \sin \theta_{2}\right) & -m+2 t \cos \theta_{1}+2 t \cos \theta_{2}
\end{array}\right) \\
\vec{d}(\vec{\theta}) & =\left(\Delta \sin \theta_{1}, \Delta \sin \theta_{2}, m-2 t \cos \theta_{1}-2 t \cos \theta_{2}\right) \\
& =|\vec{d}|(\sin \vartheta \cos x, \sin v \sin x, \cos \vartheta) ; d_{0}(\vec{\theta})=0
\end{aligned}
$$

(ii) Haldane honeycomb lattice model:

$$
\begin{aligned}
& d_{0}(\vec{\theta})=-2 t_{2}\left[\cos \theta_{1}+\cos \theta_{2}+\cos \left(\theta_{1}+\theta_{2}\right)\right] \cos \phi \\
& d_{1}(\vec{\theta})=-t_{1}\left(1+\cos \theta_{1}+\cos \theta_{2}\right) \\
& d_{2}(\vec{\theta})=t_{1}\left(\sin \theta_{1}-\sin \theta_{2}\right) \\
& d_{3}(\vec{\theta})=m-2 t_{2}\left[\sin \theta_{1}+\sin \theta_{2}-\sin \left(\theta_{1}+\theta_{2}\right)\right] \sin \phi
\end{aligned}
$$

Analysis: see lecture notes § 4.4.6
Results:
(i) $C_{ \pm}(m)= \begin{cases}0 & \text { if } m<-4 t \\ \pm 1 & \text { if } m \in[-4 t, 0] \\ \mp 1 & \text { if } m \in[0,4 t] \\ 0 & \text { if } m>4 t\end{cases}$

(ii) phase diagram:

- Chern numbers for Hofstadter's model (square lattice):

$$
H=-t\left(\begin{array}{cccccc}
2 \cos \theta_{2} & 1 & 0 & \cdots & e^{i \theta_{1}} \\
1 & 2 \cos \left(\theta_{2}+\frac{2 \pi p}{q}\right) & 1 & & \vdots \\
0 & 1 & & \cdots & \cdots & 0 \\
\vdots & & \cdots & \cdots & 1 \\
e^{-i \theta_{1}} & 0 & \cdots & 1 & 2 \cos \left(\theta_{2}+\frac{2 \pi(q-1) p}{q}\right)
\end{array}\right)
$$

Recall Hofstadter's butterfly, showing the spectra vs. plaquette flux for the square lattice:

$$
t e_{q=5}^{2 \pi i p / q}
$$

Each energy gap is associated with a Cher number. Plotting the Chern numbers in color yields the Avron-Hofstadterbuttertly:

Honeycomb lattice Avron-Hofstadter butterfly:

- Semiclassical dynamics of Bloch wavepackets The Hamiltonian is

$$
H(t)=\frac{1}{2 m}\left(\vec{p}+\frac{e}{c} \vec{A}(\vec{r}, t)\right)^{2}+V(\vec{r})
$$

with $\vec{E}=-\frac{1}{c} \frac{\partial \vec{A}}{\partial t}$ and $\vec{B}=\vec{\nabla} \times \vec{A}$. We choose a gauge in which there is no scalar potential: $\phi=0$. We are interested in describing the semiclassical evolution of Bloch wave packets

