
Thus
,
if m lat s o s ml- al , we have normalizable

so tht it, and ily , while it m lol so a ml-ol , we
have normalizable sotht it, and Ty .

The time - dependence is

1 ; ) eikyy e -iEtth =
eikyly - Ct ) r

,
Y = ti

= eikylytctj !
up - move

( if eikyy e- iEtth down -mower ,
'

Y = - I

• Lecture 4 IJan 14) : Adiabatic theorem and Berry 's phase
consider a Hamiltonian HII I dependent on a set
of parameters I -- l X , ,

. . .
,
kid

,
with eigenfunctions lentil) :

HII ) lentils = Enlil 14h15 ) )

Now let I -- THI be time - dependent. The adiabatic
theorem says that if IItt evolves very slowly , such
that DEN . t ish

,
where it is the time scale of

the variation , ice - t -- ill ill , and SEN = Ent , - En

is the gap between
consecutive levels

,
then the solutions

to the time -dependent Schrodinger equation

That I HI > = HIIHill #th

are proportional to the instantaneous adiabatic WES, with

titinlth = eik Itt e - it't
It 'Enlilt 'll

1915141 >



with corrections which vanish exponentially in SE
.
Ith .

We recognize the exp f- it
'Jatt ' EnHtt 'll) term as the

dynamical phase. accrued .
What is WH ? Taking the

time derivative and then the overlap with skill , we find

daffy = i chilltill It 1915 Ith )

= t.nlIHH . diff = Antti
where

AHH = i chill¥14151 '
is the Berry forgeometric ) connection . If Ift I traverses
a closed loop C in the space of parameters, then HEI't.I >
will accrue a geometric phase (also called Berry'sphase) ,

rn lol --Jodi . In lil

we can also eliminate the dynamical phase entirely by
dething Tt

n
ill I H - Enlil . Then if

its# EEith -

-
Ininth III. It I >

in the adiabatic limit we have fit; HIS = eiht" 1%15*117 .
Note that the geometric phase is invariant under time

re parameterization and depends only on the path
traversed by I in the parameter space manifold M .



Mathematical setting : Hermitian line bundle over M .

The parameter space manifold M is the base space ,
and the adiabatic Wfs this > are the fibers

,

which are projections of a Hilbert space It . The
adiabatic theorem furnishes us with a definition

of parallel transport of HnlIs > along a curve C .

The object Enlil is the connection and the Berry
phase Vnk ) is the hotonomg, which for a closed

loop does not depend on the starting point. The
curvature tensor of the bundle is given by

ninth - 7÷
=ic%÷P¥ , - iii.3¥



Using completeness of the adiabatic basis , we

may
write ye #n

sewn in = i q
" sent 3¥19 > He 13¥14 > - yuan
-
-

(Enlil - Ee 15112
Note that the connection is gauge

- covariant
,
viz

.

lentils → eitnhl lentils ⇒ A →A'iii. I - Hn
OX
,u

The curvature , however, is gauge - invariant . Can

we fix a gauge
andgive an unambiguous definition of

the connection A'
"

nil ? One way might be to choose a

particular point in space to and demand Troth > C- HI
+

for all I EM .

But this prescription fails if there exists
a value of I where irolihhl > = O .

I 2

The integral of the curvature rn II) over a closed
two -dimensional base space Is a topological invariant.

Using Stokes
' theorem

,
we may turn an area integral

of the curvature into a line integral of the connection :

join Mili = - §!
di - Enlil

m

where Ci encloses the ith singularity of A-nil) in a



counterclockwise fashion (M is assumed orientable )
.

Singularities occur at points I; where 14h15 .! > is
ill defined (using , for example, the prescription
( Follen II ) > E IBt ) . In the vicinity of a given
singularity , the connection has a vortex , behaving as

Enlil -- - ai tavi
' It tie'II )

which can be "unwound
"

by a singular gauge
transformation

,

←
*

t ⇐ r
,

Iceni , > = eioti 315
- Ii then , , >

't
a

vortex

with 315 - Ii ) -- tan'll da -hi
,
all(X . - Xin ) ) . Thus ,

Cn = Iffydir
"ill = ? g. i C- 27

.

In mathematical parlance , Cn is the Chern number

of the Hermitian line bundle corresponding to the
adiabatic wavefunction 141517

.

• Example : S --I object in a magnetic field
The Hamiltonian is

HIBTHI -- gyu, B . I =gµ,B foe; ol
si

?!!!!)



where B-HI = BIH in ft )
,
and in = (since cos 4, sinosin 4 , cosO) .

The adiabatic eigenfunctions are
.

let him = ( Y ) ,
H
-

Ims -- tf)
where u -- cos Oz and u = sin Feil . Then

HIB) 14,1in ) I = I gµ,B

The connections are :

A-
+
HI = is 4+11*19. > = iluutuil -- - th - cosold = - too

A. Itt -- is 9. I¥197 -- il virtual -- tht t- cosolio -- tti
where dw is the differential solid angle subtended by
the path Alt ) . Thus VIIC) = -Iwc is If times the
solid angle subtended Ay rich on the Bloch sphere .

We stress that Kfc ) is dependent only on the path
of in itself and is lime - reparameterization invariant.
The components of the connections are then

AE tint = O
,
Atl int -- I -' II - cos 01

2

and the curvature is

rooting -
- Fft - = I

'zsino



Integrating over the base space S2,

C
±

= Into to do no! lo, lol = I 1

For any rank
- 2 Hamiltonian Hill =D II ) in III. Et Eo (Il 11

the Chern numbers of the two bands are given by

C ± = ± Iansdin . II. x 37T
,

• Two -band models

The base space for 2B lattice tight - binding models is
the 2-Torus T2

,
coordinated by 10 . , Oz) , where

k -- ¥,
bit 0¥52

is the Bloch wavevector labeling the adiabatic eigenstates
of the Hamiltonian HIM .

We may then write

→
E t

= E
o
t D

'

HIM = EdO) t DIE) in to) - E → E
-

= Eo - D

and

c±=±¥!:io . on . z÷×a÷
.

Note that C+ t C
-

= O
.
For a Hamiltonian

H = do 181 to101 . in



U -- ICQ , Or )
we define

X -- X 101
,
Oz )

i
II -01 = (sino cost

,
sinus inX

,
cost) s-⑦To?,a,

where to avoid confusion with the Bloch phases we have
taken to , lol → Id, X ) . The adiabatic Wfs are

ten = III.x ) ,
ie
.

. -- fi:{steal
The singularity occurs when U --T, where X is ill -defined.
We must then find all points 10 , , Oz ) in the BZ torus T

'

such that Ula
,
Oz ) = IT

,
and then compute the winding

of 5 = - X as -0 winds counter-clockwise around Gi .

( we have to define 5 = - X because the singularity is at
the south pole on the Bloch sphere .

) Two models :

( il pxtipy superconductor :

µ,j , = (
M- 2 tooso ,

- ItcosOz Alsina - isin Oz )

Dls in O, tisin Oz ) - mt ItcosO, tht cosO
)

II -0 ) = (AsinO, , Ds inch , m - 2tooso, -ItcosOz )

= III (Sint cosX
,
sinusinX

,
cos I ) i do 181=0

Iii ) Haldane honeycomb lattice model :
do ( El = -2tzfcoso , t cosOztcosloitoz)) cos ¢
d
,
101 = - t , / It cosO , tcos Oz )

diol = t , Isin Q - sin Oz )
d
, 181 = m - 2h land , 1- sin Oz

- sin 10 , t Oz ) ) sin of



Analysis. : see lecture notes § 4. 4.6
IT
,
til

t""

iii. in ÷÷÷÷÷i¥¥¥¥E÷÷
.

10 , TT )

(i il phase diagram : In
,
ol

• Chera, numbers for Hofstadter 's model (square lattice) :

e
ice,

i
'

:

" .. - tf
"

:
'

""

'

"

'

"⇒ :
"

i
..
!.:tI e a o

ii. -

i

Recall Hofstadter 's butterfly , showing the spectra us . plaqueHe
flux for the square lattice : 44¥71 feztii Hot

of = 5



g-- 2 p = l

of =3

9- = 4

Each energygap is associated with a Chern number. Plotting
the Chern numbers in color yields the Arron - Hofstadterbutterfly :



Honeycomb lattice Arron -Hofstadter butterfly :

• Semiclassical dynamics of Bloch wavepackets
The Hamiltonian is

HH -

- Im tf tf Ali, til
'

+ VH1

with E =
- I 3¥ and B -- Fx I

.
We choose a

gauge in which there
is no scalar potential : 4=0 .

We are interested in describing the semiclassical
evolution of Bloch wave packets


