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Chapter 1

Broken Symmetry

1.1 Introduction

What is the world made of? To a philosopher, this question lies at the intersection of ontol-
ogy (the ‘study’ of being and existence) and mereology (the ‘study’ of parts and wholes). To a
physicist, the answer very much depends on whom you ask, because ultimately it is a matter
of energy scales. To a condensed matter physicist, the world consists of electrons, nuclei, and
photons. That’s pretty much it1. The characteristic energy scales in condensed matter typi-
cally range from milli-electron volts (meV) to electron volts (eV)2. By contrast, the protons and
neutrons which constitute nuclei typically have binding energies on the order of MeV. The nu-
cleons themselves consist of quarks and gluons. Quarks acquire their masses from coupling to
the Higgs field, but some 99% of the nucleon mass is due to gluons and virtual quark-antiquark
pairs, i.e. to the physics of QCD binding3.

1.1.1 The mother of all Hamiltonians

The Hamiltonian for a single electron in the presence of a static external potential V (r) and
electromagnetic vector potential A(r) is given by

H =
π2

2m
+ V (r) +

e~

2mc
σ ·H +

~

4m2c2
σ ·∇V × π +

~2

8m2c2
∇

2V +
(π2)2

8m3c2
+ . . . , (1.1)

1Sometimes experimentalists use muons or even positrons to probe their samples, but the samples themselves
consist of electrons and nuclei.

2Sometimes higher energy probes on the order of keV are used, for example in photoemission spectroscopy.
3So the next time you overhear someone holding forth about how the Higgs field (or, worse still, the Higgs boson)
gives mass to everything in the universe, you can tell them that they are full of shit.

1
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Figure 1.1: What is the world made of? It depends on whom you ask.

where π = p+ e
c
A. Where did this come from? From the Dirac equation,

i~
∂Ψ

∂t
=

(
mc2 + V cσ · π
cσ · π −mc2 + V

)
Ψ = EΨ . (1.2)

The wavefunction Ψ is a four-component Dirac spinor. Since mc2 is the largest term for our
applications, the upper two components of Ψ are essentially the positive energy components.
However, the Dirac Hamiltonian mixes the upper two and lower two components of Ψ. One
can ‘unmix’ them by making a canonical transformation,

H −→ Ĥ ′ ≡ eiS Ĥ e−iS , (1.3)

where S is Hermitian, to render Ĥ ′ block diagonal. WithE = mc2+ε, the effective Hamiltonian
is given by (14.3). This is known as the Foldy-Wouthuysen transformation, the details of which
may be found in many standard books on relativistic quantum mechanics and quantum field
theory (e.g. Bjorken and Drell, Itzykson and Zuber, etc.) and are recited in §14.11 below. Note
that the Dirac equation leads to g = 2. If we go beyond “tree level” and allow for radiative
corrections within QED, we obtain a perturbative expansion,

g = 2

{
1 +

α

2π
+O(α2)

}
, (1.4)
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Figure 1.2: What is the world made of? Another point of view.

where α = e2/~c ≈ 1/137 is the fine structure constant4.

There are two terms in (14.3) which involve the electron’s spin:

Zeeman interaction : ĤZ =
e~

2mc
σ ·H

Spin-orbit interaction : ĤSO =
~

4m2c2
σ ·∇V ×

(
p+ e

c
A
)

.
(1.5)

The numerical value for µ
B

is

µB =
e~

2mc
= 5.788× 10−9 eV/G

µ
B
/k

B
= 6.717× 10−5K/G .

(1.6)

4Note that with µn = e~/2mpc for the nuclear magneton, gp = 2.793 and gn = −1.913. These results immediately
suggest that there is composite structure to the nucleons, i.e. quarks.
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So on the scale of electron volts, laboratory scale fields (H <∼ 106G) are rather small (and∼2000
times smaller for nucleons).

In condensed matter, the potential V (r) for the electron is a sum of terms from individual ion
cores, i.e. V (r) =

∑
a va(r −Ra) where va(r) is the atomic potential and Ra is the location of the

ath nucleus. For Coulomb interactions, va(r) = −Zae2/r. The ion cores interact as well, with a
potential uab(r) = ZaZbe

2/r. Putting it all together, we have5

H =
∑

i

π2
i

2m
− e~

2mc
H ·

∑

i

σi −
∑

i<j

e2

|ri − rj|
+
∑

i,a

va(ri −Ra)

+
~

4m2c2

∑

i,a

σi ·∇iva(ri −Ra)× πi +
∑

a

Π2
a

2Ma

+
∑

a<b

uab(Ra − Rb) ,

(1.7)

with Πa = Pa − ZaeA(Ra)/c, and subject to the commutation relations,

[
pαi , r

β
j

]
= −i~δijδαβ ,

[
P α
a , R

β
b

]
= −i~δabδαβ ,

[
σµi , σ

ν
j

]
= 2iδijǫ

µνλ σλi . (1.8)

We may call Eqn. 1.7 the Mother of all Hamiltonians.

In a crystal, we may write Ra = R0
a + δRa, where {R0

a} are the mean locations of the ion cores.
These form a regular lattice. The deviations δRa describe quantum mechanical fluctuations
about the fixed crystalline coordinates. The quantized vibrations of a crystalline lattice are
called phonons. Thus, the mother of all Hamiltonians describes electrons, which possess quan-
tized spin, interacting among themselves and with fluctuating ion cores.

1.2 Classical and Quantum Statistical Physics

While the Mother of all Hamiltonians is too complex for us to attack directly, progress can
oftentimes be made by examining parts of it, such as the spectrum of lattice vibrations, or the
electronic energy spectrum in the presence of a crystalline lattice potential, possibly including
spin-orbit effects. For such noninteracting systems, where the Hamiltonian is quadratic in
electron or phonon operators, we can often go quite far in obtaining complete solutions. The
problem becomes complicated when we consider the effects of quenched impurities, such as
vacancies or substitutional defects in the crystalline lattice, which are random in nature. We
must then consider how observable quantities are distributed with respect to an ensemble of
configurations of the randomness. This can give rise to interesting, robust, and fundamentally
new possibilities, such as localization.

In order to account for phonon-phonon, electron-phonon, and/or electron-electron interac-
tions, there are few useful techniques at our disposal. We can always resort to perturbation

5We drop the last two and all following terms in Eqn. 14.3.
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theory in the interactions, but this can lead us astray if the true ground state of the interacting
system lies on the other side of a phase boundary from the noninteracting ground state. For
gapless systems, such as metals, the situation is particularly tricky and we generally have no
good reason why perturbation theory should converge6.

Suppose we have an idealized system described by a model Hamiltonian H which is simpler
than H and where we might hope to make some progress. The thermodynamic properties of
the system are calculable from the Helmholtz free energy F = −k

B
T lnTr exp(−H/k

B
T ) or one

of its Legendre transforms, such as the grand potential7 Ω = −kBT lnTr exp(−K/kBT ), where
K = H − µN . We write the Hamiltonian as

H = H0 −
∑

α

hαQα , (1.9)

where Qα is a Hermitian operator and hα is a conjugate field for each index α. Then the free
energy F is a function of the fields, i.e. F = F

(
{hα}

)
and we have that the thermodynamic

average of Qα is
〈
Qα

〉
= − ∂F

∂hα
. (1.10)

One can now define the susceptibility

χαβ =
∂〈Qα〉
∂hβ

= − ∂2F

∂hα ∂hβ
. (1.11)

Dynamical responses are defined for Hamiltonians of the form

H(t) = H0 −
∑

α

hα(t)Qα . (1.12)

Time-dependent first order perturbation theory then yields

〈
Qα(t)

〉
=

∞∫

−∞

dt′ χαβ(t− t′) hβ(t′) +O(h2) (1.13)

with

χαβ(t− t′) =
i

~

〈[
Qα(t), Qβ(t

′)
]〉

Θ(t− t′) . (1.14)

6Oftentimes in quantum field theory, perturbation theory yields an asymptotic series in the coupling parameter(s).
In this case the series expansions for physical quantities may be formally divergent, but provided the couplings
are not too large, yield better and better approximations up until a particular order in the expansion. For exam-
ple, in quantum electrodynamics, the relevant coupling is the fine structure constant α = e2/~c ≈ 1/137, and
perturbation theory, typically evaluated using Feynman diagrams, is expected to start diverging at order α−1.

7Also called the Landau free energy.
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Note that the response is causal, i.e. the value of
〈
Qα(t)

〉
depends only on the values of

{
hβ(t

′)
}

for t′ < t. The spectral representation of the response function χαβ(t− t′) is defined via its Fourier
transform,

χ̂αβ(ω + iǫ) ≡ i

~

∞∫

0

dt
〈
[Qα(t), Qβ(0)]

〉
eiωt e−ǫt (1.15)

=
1

~Z

∑

m,n

e−βE
0
m

{〈
m
∣∣Qβ

∣∣n
〉 〈

n
∣∣Qα

∣∣m
〉

ω + (E0
n − E0

m)/~+ iǫ
−
〈
m
∣∣Qα

∣∣n
〉 〈

n
∣∣Qβ

∣∣m
〉

ω − (E0
n − E0

m)/~+ iǫ

}
,

where Z = Tr exp(−H0/kB
T ) and where H0 |n〉 = E0

n |n〉.
Finally, the indices α and β may be appended by spatial coordinates in the case of local opera-
tors Qα(r), in which case we write

H(t) = H0 −
∑

α

∫
ddr hα(r, t)Qα(r) . (1.16)

For example, Qα(r) could be taken to be the local density n(r) or a component Sα(r) of the local
spin density. One then defines the response function

χαβ(r, t | r; , t′) ≡
δ
〈
Qα(r, t)

〉

δhβ(r
′, t′)

. (1.17)

1.2.1 Correspondence between quantum and classical statistical mechanics

In classical statistical physics, in systems where spontaneous symmetry breaking results in an
ordered phase in which the local order parameter field takes on a finite average, i.e. 〈φ(r)〉 6= 0,
the connected correlation function at large distances in the vicinity of the transition behaves as
(for r fixed and T → Tc)

C(r, T ) =
〈
φ(r)φ(0)

〉
− 〈φ(r)〉 〈φ(0)〉 ∼ Ar2−d e−r/ξ , (1.18)

where ξ(T ) ∼ |T −Tc|−ν is the spatial correlation length and ν the correlation length exponent8.
Pretty much all classical phase transitions are described by a continuum field theory of sorts,
with a free energy functional

F
[
φ(r)

]
=

∫
ddx f(φ,∇φ) . (1.19)

8Precisely at T = Tc, the correlation function behaves as
〈
φ(r)φ(0)

〉
∼ r−(d−2+η), where η is the so-called anoma-

lous dimension.
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Here φ(x) = {φ1, . . . , φN} is an N-component real field, and by ∇φ we mean the set of dN first
derivatives ∂φa/∂xi with a ∈ {1, . . . , N} and i ∈ {1, . . . , d}. The partition function is given by
the functional integral

Z =

∫
Dφ(r) e−F [φ(r)] . (1.20)

For the Ising model, one generally has N = 1 and one may take

fIsing(φ,∇φ) = 1
2
(∇φ)2 + 1

2
aφ2 + 1

4
bφ4 , (1.21)

i.e. a scalar φ4 theory in d dimensions.

For bosonic quantum systems, the path integral formulation results in the following prescrip-
tion. The partition function is once again given by a functional integral,

Z =

∫
Dφ(r, τ) e−SE

[φ(r,τ)] , (1.22)

but now the field φ(r, τ) is dependent both on spatial coordinates r as well as a ”Euclidean
time” coordinate τ ∈

[
0, ~/kBT

]
, where T is the temperature. SE[φ] is the Euclidean action,

SE[φ(r, t)] =

~β∫

0

dτ

∫
ddx LE(φ,∇φ, ∂τφ) , (1.23)

where LE(φ,∇φ, ∂τφ) is the Euclidean Lagrangian density. Note that spacetime consists of a ’slice’
of finite temporal width ~/k

B
T . If we define the coordinate x0 ≡ cτ , where c is a (possibly

arbitrary) constant with dimensions of velocity, then we see that the action is given by a (d+1)-
dimensional integral over a slab of finite width Lτ = cτ/k

B
T in the x0 dimension. Hence

the oft-heard maxim, quantum mechanics in d (space) dimensions is equivalent to classical statistical
mechanics in (d+1) dimensions. While this is essentially true, it may be the case, as we emphasize
below, that the resulting (d + 1)-dimensional classical model derived from a given quantum
theory will be anisotropic in that the x0 direction is special, both due to its finite extent for
T > 0 systems and also due to the form of the derivative terms in the Lagrangian density.
Indeed, nonrelativistic quantum theories generally result in such anisotropic classical models,
although an emergent low-energy relativistic symmetry is sometimes present for particular
systems, such as quantum antiferromagnets or acoustic phonons, or perhaps in the vicinity of
a quantum critical point, such as near the tips of the ’Mott lobes’ of the Bose Hubbard model.

For bosonic systems, φ(r, τ) may be taken to be an N-component real field, or a complexified
version thereof9. As an example of a Euclidean Lagrangian density, consider the case

LE(φ,∇φ, ∂τφ) =
1

2

(
∂φ

∂τ

)2
+ 1

2
K(∇φ)2 + V (φ) . (1.24)

9For example (φ1, φ2)→ φ ≡ φ1 + iφ2.
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Figure 1.3: Spatial and temporal correlations in the vicinity of a quantum phase transition.
(The parameter c carries dimensions of velocity and may be arbitrary.)

This model may possess various discrete or continuous symmetries. For example, if we let
g ∈ O(N) be an arbitrary rotation in the internal space of the field φ, and if V (gφ) = V (φ)
for all such g, then the model is said to possess an O(N) symmetry (which may be broken -
see below. Another important symmetry of the model is the O(d+ 1) symmetry resulting from
mixing space and time coordinates (with appropriate rescaling so as to render them of the same
dimension). The real time correlations of this model will then exhibit a Lorentz symmetry. But
not all QFTs have such a relativistic symmetry. Consider the case N = 2, for example, with

LE(φ,∇φ, ∂τφ) = i φ1 ∂τ φ2 − i φ2 ∂τ φ1 +
1
2
K(∇φ)2 + V (φ2) . (1.25)

Here φ = (φ1, φ2). The ’kinetic’ term is only linear in time derivatives, while the spatial deriva-
tive terms appear quadratically. This model has no relativistic symmetry, but it does have a
global O(2) symmetry.

For fermionic systems, one also has a path integral, but it is over anticommuting Grassmann
fields ψσ(r, t) and their conjugates ψ̄σ(r, τ), which we shall discuss in due time10. An example
might be

LE(ψσ, ψ̄σ,∇ψσ,∇ψ̄σ, ∂τψσ, ∂τ ψ̄σ) = ψ̄σ

(
~ ∂τ − µ−

~2

2m
∇

2
)
ψσ + Uψ̄↑ψ̄↓ψ↓ψ↑ (1.26)

Note that the Laplacian term may be spatially integrated by parts to yield a term proportional
to ∇ψ̄σ ·∇ψσ. This LE corresponds to the Hubbard model.

As we approach a quantum phase transition, which occurs at temperature T = 0 and a critical
value g = gc of some coupling, the spatial correlation length ξ(g) grows as ξ(g) ∼ |g − gc|−ν .
For systems with relativistic invariance, the correlation length in the imaginary time direction

10Real time, rest assured.
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ξτ (g) behaves in the same way, i.e. with the same correlation length exponent. But in general,
the temporal exponent is different and may be written as ντ = zν, where z is the dynamic critical
exponent. Thus, ξτ(g) ∼ |g − gc|−zν . As g → gc, both ξ(g) and ξτ (g) will diverge. But at finite
temperature, the width of the time slice is finite, given by ~/kBT . Thus, when g is sufficiently
close to gc such that ξτ(g)≫ Lτ = ~c/k

B
T , where c is an arbitrary measure of velocity, the fields

will be ’locked’ in the imaginary time direction. In this case, the expression for the partition
function reverts to the classical result. What this tells us is that quantum mechanics is irrelevant at
any finite temperature T , i.e. QM does not change the critical exponents at any finite temperature
phase transitions. It should be emphasized that the above argument presumes the existence of
a local order parameter field φ(r) whose correlations asymptotically decay on the scale of the
correlation length ξ(g, T ). In the case of topological phases, where there is no such local order
parameter, this argument may not apply.

1.3 Phases of matter

Condensed matter physicists are not interested in electrons, nuclei, and photons in isolation.
Rather it is the collective properties of these interacting constituents which leads to the remark-
ably rich phenomenology of condensed matter. This richness is manifested by the bewildering
array of phases of matter that can be conjured. Until relatively recently, phases of matter were
described based on the Landau paradigm, in which an ordered phase is described by one or more
nonzero order parameters, each of which describes a broken global symmetry.

1.3.1 Spontaneous symmetry breaking

In quantum mechanics, the eigenstates of a Hamiltonian H0 which commutes with all the gen-
erators of a symmetry group G may be classified according to the representations of that group.
Typically this entails the appearance of degeneracies in the eigenspectrum, with degenerate
states transforming into each other under the group operations. Adding a perturbation V to
the Hamiltonian which breaks G down to a subgroup H will accordingly split these degenera-
cies, and the new multiplets of H = H0 + V are characterized by representations of the lower
symmetry group H.

In quantum field theory, or in the thermodynamic limit of a classical system, as a consequence
of the infinite number of degrees of freedom, symmetries may be spontaneously broken. This
means that even if the Hamiltonian H (or action S) for the field theory is invariant under a
group G of symmetry transformations, the ground state or thermodynamic density matrix may
not be invariant under the full symmetry group G. The presence or absence of spontaneous
symmetry breaking (SSB), and its detailed manifestations, will in general depend on the cou-
plings, or the temperature in the case of quantum statistical mechanics. SSB is usually asso-
ciated with the presence of a local order parameter which transforms nontrivially under some
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Figure 1.4: Left: Phase diagram of H2O in the (T, p) plane. Right: Low temperature (T ≈
150mK) longitudinal resistivity ρxx and Hall resistivity ρxy as a function of applied magnetic
field in a two-dimensional electron gas system (GaAs/AlGaAs heterostructure), from R. Wil-
lett et al., Phys. Rev. Lett. 59, 1776 (1987). Each dip in ρxx and concomitant plateau in ρxy
corresponds to a distinct phase of matter.

group operations, and whose whose quantum statistical average vanishes in a fully symmet-
ric phase, but takes nonzero values in symmetry-broken phase11. The parade example is the
Ising model, H = −∑i<j Jij σi σj , where each σi = ±1, the subscript i indexes a physical lo-
cation in space, such as a site Ri on a particular lattice. The model is explicitly Z2 symmetric
under σi → εσi for all i, where ε ∈ {+1,−1}, yet if the interaction matrix Jij = J(Ri − Rj)
is short-ranged a nd the space dimension d is greater than one, there is a critical temperature
Tc below which SSB sets in, and the system develops a spontaneous magnetization φ = 〈σi〉.
You know how in quantum mechanics, the eigenstates of a particle moving in one-dimensional
double-well potential V (x) = V (−x) can be classified by their parity eigenvalues P, and the
lowest two energy states are respectively symmetric (P = +1) and antisymmetric (P = −1) ,
and are delocalized among both wells. For a quantum field theory, however, with (Euclidean)
Lagrangian density LE = 1

2
(∇φ)2 + V (φ), for d > 1 and T < Tc , the system actually picks the

left or the right well, so that 〈φ(r)〉 6= 0. Another example is the spontaneously broken O(2)
invariance of superfluids, where the boson annihilation operator ψ(r) develops a spontaneous
average

〈
ψ(r)

〉
=
√
n0 e

iθ, where n0 is the condensate density and θ the condensate phase.

Truth be told, the above description is a bit of a swindle. In the ferromagnetic (Jij > 0) Ising
model, for example, at T = 0, there are still two ground states, |⇑ 〉 ≡ |↑↑↑ · · · 〉 and |⇓ 〉 ≡
|↓↓↓ · · · 〉 . The (ergodic) zero temperature density matrix is ρ0 = 1

2
|⇑ 〉〈 ⇑| + 1

2
|⇓ 〉〈 ⇓| , and

11While SSB is generally associated with the existence of a phase transitions, not all phase transitions involve SSB.
Exceptions include the Kosterlitz-Thouless transition, and also those topological phases which have no local
order parameter.
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therefore 〈σi〉 = Tr
(
ρ0 σi

)
= 0. The order parameter apparently has vanished. WTF?! There are

at least two compelling ways to resolve this seeming conundrum:

(a) First, rather than defining the order parameter of the Ising model, for example, to be the
expected value m = 〈σi〉 of the local spin12, consider instead the behavior of the correlation
function Cij = 〈σi σj〉 in the limit dij = |Ri − Rj | → ∞ . In a disordered phase, there
is no correlation between infinitely far separated spins, hence limdij→∞Cij = 0 . In the
ordered phase, this is no longer true, and we define the spontaneous magnetization m from
the long distance correlator: m2 ≡ limdij→∞〈σi σj〉 . In this formulatio, SSB is associated
with the emergence of long-ranged order in the correlators of operators which transform
nontrivially under the symmetry group.

(ii) Second, we could impose an external field which explicitly breaks the symmetry, such as a
Zeeman term H ′ = −h∑i σi in the Ising model. We now compute the magnetization (per
site) m(T, h, V ) = 〈σi〉 as a function of temperature T , the external field h, and the volume
V of our system. The order parameter m(T ) in zero field is then defined as

m(T ) = lim
h→0

lim
V→∞

m(T, h, V ) . (1.27)

The order of limits here is crucially important. The thermodynamic limit V →∞ is taken
first, which means that the energy difference between |⇑ 〉 and |⇓ 〉, being proportional to
hV , diverges, thus infinitely suppressing the |⇓ 〉 state if h > 0 (and the |⇑ 〉 state if h < 0).
The magnitude of the order parameter will be independent on the way in which we take
h → 0, but its sign will depend on whether h → 0+ or h → 0−, with sgn(m) = sgn(h).
Physically, the direction in which a system orders can be decided by the presence of small
stray fields or impurities. An illustration of how this works in the case of ideal Bose gas
condensation is provided in the appendix §1.7 below.

Note that in both formulations, SSB is necessarily associated with the existence of a local oper-
ator Oi which is identified as the order parameter field. In (i) the correlations

〈
OiOj

〉
exhibit

long-ranged order in the symmetry-broken phase. In (ii) Oi is the operator to which the exter-
nal field hi couples.

For a ferromagnet, the order parameter is the magnetization density,m, and the broken symme-
try is the group of rotations O(3) or SU(2), or possibly Z2. Under a group operation g ∈ G, the
order parameter transforms asm→ gm. For a crystal or charge density wave, the order param-
eters are the Fourier components ̺G of the density at a series of wavevectors which comprise
the reciprocal lattice of the structure. The broken symmetry is that of continuous translation,
i.e. the group Rd under addition, and under the group operation ta corresponding to translation
by a ∈ R

d, we have ̺G → ta ̺G = ̺G e
iG·a. A given order parameter φ will in general depend

on temperature T , pressure p, applied magnetic field H , various coupling parameters which

12We assume translational invariance, which means 〈σi〉 is independent of the site index i.
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enter the Hamiltonian {gi}, etc. A multidimensional plot which labels the various phases of a
system as a function of all these parameters is known as a phase diagram. Points, lines, or sur-
faces separating different phases are the loci of phase transitions, where the free energy and the
order parameters of the system exhibit singularities. At a first order transition, certain proper-
ties change discontinuously. The canonical example of a first order transition is the freezing or
boiling of liquid water to solid ice or gaseous vapor. These transitions involve a discontinuous
change in the density as T or p is varied so as to cross a phase boundary13. At a second order
transition, one or more order parameters vanish as a phase boundary is approached. Within the
Landau paradigm, a nonzero order parameter is associated with the spontaneous breaking of a
symmetry, such as spin rotation (in a magnet), space translation (in a crystal), etc. Furthermore,
a second order transition between phases A and B is possible only if the symmetry groups GA

of the A phase and GB of the B phase, both of which must be subgroups of the symmetry group
G of the Hamiltonian, satisfy GA ⊂ GB or GB ⊂ GA. A phase transition which takes place at
T = 0 as a function of other parameters (p, H , etc.) is called a quantum phase transition.

1.3.2 Beyond the Landau paradigm

The classical O(2) model in d = 2 is precluded from achieving long-ranged order and sponta-
neous O(2) symmetry breaking at any finite temperature by the Hohenberg-Mermin-Wagner
theorem, which we shall discuss below in §1.5.3. Nevertheless, the model does exhibit a second
order phase transition, known as the Berezinskii-Kosterlitz-Thouless (BKT) transition14. The
energy density in the continuum model is written as ε(r) = 1

2
ρs(∇Θ)2, where ρs is the stiffness

parameter and Θ(r) is a planar angle, with Θ and Θ+2πn identified for all integers n. The model
features point defects which are known as vortices, about which the winding number

∮
C dr ·∇Θ

along a small loop C enclosing the vortex is 2πq, where q ∈ Z is the vorticity. Integrating the en-
ergy density for a single q = 1 vortex with Θ(r) = tan−1(y/x) yields E = πρs ln(R/a), where R
is the system radius and a an ultraviolet cutoff, which is naturally imposed in any lattice-based
model. Since a vortex can be in any location, its entropy is S = k

B
ln(R2/a2), and we see that free

vortices should proliferate when F = E−TS = (πρs−2kBT ) ln(R/a) < 0, i.e. T > Tc = πρs/2kB .
This very crude derivation, which neglects interactions between the vortices, is essentially cor-
rect. The phase transition is associated with an unbinding of vortex-antivortex pairs. In the
confined phase, where T < Tc , the correlation function C(r, T ) = 〈eiΘ(r) e−iΘ(0)〉 decays as a
power law, and there is no long-ranged order associated with a spontaneous breaking of O(2).
In the plasma phase, where T > Tc , free vortices and antivortices (i.e. defects with qi < 0) are
present, and C(r, T ) decays exponentially with a finite correlation length ξ. We will discuss the
BKT transition and its analysis via the renormalization group later in this course.

13The phase boundary between liquid and vapor terminates in a critical point, and it is therefore possible to con-
tinuously evolve from liquid to vapor without ever encountering a singularity. Thus, from the point of view of
order parameters and broken symmetry, there is no essential distinction between liquid and vapor phases.

14V. L. Berezinskii, Sov. Phys. JETP 32, 493 (1971); J. M. Kosterlitz and D. J. Thouless, J. Phys. C: Solid State Phys.
6, 1181 (1973).
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Over the past 25 years or so, a new paradigm has emerged for certain phases of matter which
have no order parameter in the conventional sense. These are called topological phases, and are
exemplified by the phases of the quantum Hall effect. Typically topological phases exhibit a
bulk excitation gap, meaning it requires a finite amount of energy in order to excite these systems
in their bulk, and in this respect, they are akin to insulators. However, at the edges of finite sys-
tems, there exist gapless edge states which may carry current. The structure of the edge states is
intimately related to the nature of the bulk phase, which despite being a condensate of sorts,
has no local order parameter. Topological phases are of intense current interest, both theoreti-
cally and experimentally, but they remain somewhat exotic, as compared with, say, metals. Yet
the metallic phase, which is an example of a Landau Fermi liquid, is difficult to characterize in
terms of a conventional order parameter15. Another violation of the Landau paradigm which
has been revealed in recent years is the (at this point purely theoretical) notion of deconfined
quantum criticality. A deconfined quantum critical point violated the Landau requirement that
the symmetry groups on either side of the transition have a subgroup relation.

Experimental probes

We will initially study two important phases of condensed matter in the solid state: metals
and insulators16. Later we shall expand our horizons and consider magnets, superconductors,
quantum Hall phases, and spin liquids. These various phases are revealed through various ex-
perimental probes, including thermodynamic measurements such as specific heat and magnetic
susceptibility, transport measurements such as electrical resistivity and thermal conductivity,
and spectroscopies such as Auger, photoemission and scanning probe measurements, and optical
properties as measured in reflectivity, Kerr effect, dichroism, etc. The theoretical understanding
of such probes typically involves the computation of correlation (or, equivalently, response)
functions within the framework of quantum statistical physics.

When falsifiable theoretical models and their solutions are in harmonious agreement with ex-
periment, and predict new observable phenomena, we can feel confident that we are indeed
beginning to understand what the world is made of.

1.4 Landau Theory of Phase Transitions

Landau’s theory of phase transitions is based on an expansion of the free energy of a thermo-
dynamic system in terms of an order parameter, which is nonzero in an ordered phase and zero
in a disordered phase. For example, the magnetization M of a ferromagnet in zero external

15The order parameter of a Fermi liquid is usually taken to be the quasiparticle weight Z , which, in isotropic sys-
tems, characterizes the discontinuous drop in the momentum occupation function n(k) as one crosses the Fermi
surface at k = kF.

16As we shall see, semiconductors form a sub-class of insulators.
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Figure 1.5: Phase diagram for the quartic Landau free energy f = f0 +
1
2
am2 + 1

4
bm4 − hm,

with b > 0. There is a first order line at h = 0 extending from a = −∞ and terminating in
a critical point at a = 0. For |h| < h∗(a) (dashed red line) there are three solutions to the
mean field equation, corresponding to one global minimum, one local minimum, and one local
maximum. Insets show behavior of the free energy f(m).

field but at finite temperature typically vanishes for temperatures T > Tc, where Tc is the crit-
ical temperature, also called the Curie temperature in a ferromagnet. A low order expansion in
powers of the order parameter is appropriate sufficiently close to the phase transition, i.e. at
temperatures such that the order parameter, if nonzero, is still small.

1.4.1 Quartic free energy with Ising symmetry

The simplest example is the quartic free energy,

f(m, h = 0, θ) = f0 +
1
2
am2 + 1

4
bm4 , (1.28)

where f0 = f0(θ), a = a(θ), and b = b(θ). Here, θ is a dimensionless measure of the temperature.
If for example the local exchange energy in the ferromagnet is J , then we might define θ =
k

B
T/zJ , where z is the lattice coordination number. Let us assume b > 0, which is necessary if
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the free energy is to be bounded from below17. The equation of state ,

∂f

∂m
= 0 = am+ bm3 , (1.29)

has three solutions in the complex m plane: (i) m = 0, (ii) m =
√
−a/b , and (iii) m = −

√
−a/b .

The latter two solutions lie along the (physical) real axis if a < 0. We assume that there exists a
unique temperature θc where a(θc) = 0. Minimizing f , we find

θ < θc : f(θ) = f0 −
a2

4b
θ > θc : f(θ) = f0 .

(1.30)

The free energy is continuous at θc since a(θc) = 0. The specific heat, however, is discontinuous
across the transition, with

c
(
θ+c
)
− c
(
θ−c
)
= −θc

∂2

∂θ2

∣∣∣∣
θ=θc

(
a2

4b

)
= −θc

[
a′(θc)

]2

2b(θc)
. (1.31)

The presence of a magnetic field h breaks the Z2 symmetry of m → −m. The free energy
becomes

f(m, h, θ) = f0 +
1
2
am2 + 1

4
bm4 − hm , (1.32)

and the mean field equation is

bm3 + am− h = 0 . (1.33)

This is a cubic equation for m with real coefficients, and as such it can either have three real so-
lutions or one real solution and two complex solutions related by complex conjugation. Clearly
we must have a < 0 in order to have three real roots, since bm3 + am is monotonically increas-
ing otherwise. The boundary between these two classes of solution sets occurs when two roots
coincide, which means f ′′(m) = 0 as well as f ′(m) = 0. Simultaneously solving these two
equations, we find

h∗(a) = ± 2

33/2
(−a)3/2
b1/2

, (1.34)

or, equivalently,

a∗(h) = − 3

22/3
b1/3 |h|2/3. (1.35)

If, for fixed h, we have a < a∗(h), then there will be three real solutions to the mean field
equation f ′(m) = 0, one of which is a global minimum (the one for which m · h > 0). For

17It is always the case that f is bounded from below, on physical grounds. Were b negative, we’d have to consider
higher order terms in the Landau expansion.
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a > a∗(h) there is only a single global minimum, at which m also has the same sign as h. If we
solve the mean field equation perturbatively in h/a, we find

m(a, h) =
h

a
− b

a4
h3 +O(h5) (a > 0)

= ±|a|
1/2

b1/2
+

h

2 |a| ±
3 b1/2

8 |a|5/2 h
2 +O(h3) (a < 0) .

(1.36)

1.4.2 Cubic terms in Landau theory : first order transitions

Next, consider a free energy with a cubic term,

f = f0 +
1
2
am2 − 1

3
ym3 + 1

4
bm4 , (1.37)

with b > 0 for stability. Without loss of generality, we may assume y > 0 (else send m→ −m).

Note that we no longer have m → −m (i.e. Z2) symmetry. The cubic term favors positive m.
What is the phase diagram in the (a, y) plane?

Extremizing the free energy with respect to m, we obtain

∂f

∂m
= 0 = am− ym2 + bm3 . (1.38)

This cubic equation factorizes into a linear and quadratic piece, and hence may be solved sim-
ply. The three solutions are m = 0 and

m = m± ≡
y

2b
±
√( y

2b

)2
− a

b
. (1.39)

We now see that for y2 < 4ab there is only one real solution, at m = 0, while for y2 > 4ab there
are three real solutions. Which solution has lowest free energy? To find out, we compare the
energy f(0) with f(m+)

18. Thus, we set

f(m) = f(0) =⇒ 1
2
am2 − 1

3
ym3 + 1

4
bm4 = 0 , (1.40)

and we now have two quadratic equations to solve simultaneously:

0 = a− ym+ bm2

0 = 1
2
a− 1

3
ym+ 1

4
bm2 = 0 .

(1.41)

Eliminating the quadratic term givesm = 3a/y. Finally, substitutingm = m+ gives us a relation
between a, b, and y:

y2 = 9
2
ab . (1.42)

18We needn’t waste our time considering the m = m− solution, since the cubic term prefers positive m.
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Figure 1.6: Behavior of the quartic free energy f(m) = 1
2
am2 − 1

3
ym3 + 1

4
bm4. A: y2 < 4ab ; B:

4ab < y2 < 9
2
ab ; C and D: y2 > 9

2
ab. The thick black line denotes a line of first order transitions,

where the order parameter is discontinuous across the transition.

Thus, we have the following:

a >
y2

4b
: 1 real root m = 0

y2

4b
> a >

2y2

9b
: 3 real roots; minimum at m = 0

2y2

9b
> a : 3 real roots; minimum at m =

y

2b
+

√( y
2b

)2
− a

b

(1.43)

The solution m = 0 lies at a local minimum of the free energy for a > 0 and at a local maximum

for a < 0. Over the range y2

4b
> a > 2y2

9b
, then, there is a global minimum at m = 0, a local

minimum at m = m+, and a local maximum at m = m−, with m+ > m− > 0. For 2y2

9b
> a > 0,

there is a local minimum at a = 0, a global minimum at m = m+, and a local maximum at
m = m−, again with m+ > m− > 0. For a < 0, there is a local maximum at m = 0, a local
minimum at m = m−, and a global minimum at m = m+, with m+ > 0 > m−. See fig. 1.6.

With y = 0, we have a second order transition at a = 0. With y 6= 0, there is a discontinuous
(first order) transition at ac = 2y2/9b > 0 andmc = 2y/3b . This occurs before a reaches the value
a = 0 where the curvature atm = 0 turns negative. If we write a = α(T −T0), then the expected
second order transition at T = T0 is preempted by a first order transition at Tc = T0 + 2y2/9αb.
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1.4.3 Magnetization dynamics

Suppose we now impose some dynamics on the system, of the simple relaxational type

∂m

∂t
= −Γ ∂f

∂m
, (1.44)

where Γ is a phenomenological kinetic coefficient. Assuming y > 0 and b > 0, it is convenient
to adimensionalize by writing

m ≡ y

b
· u , a ≡ y2

b
· r , t ≡ b

Γy2
· s . (1.45)

Then we obtain
∂u

∂s
= −∂ϕ

∂u
, (1.46)

where the dimensionless free energy function is

ϕ(u) = 1
2
ru2 − 1

3
u3 + 1

4
u4 . (1.47)

We see that there is a single control parameter, r. The fixed points of the dynamics are then the
stationary points of ϕ(u), where ϕ′(u) = 0, with

ϕ′(u) = u (r − u+ u2) . (1.48)

The solutions to ϕ′(u) = 0 are then given by

u∗ = 0 , u∗ = 1
2
±
√

1
4
− r . (1.49)

For r > 1
4

there is one fixed point at u = 0, which is attractive under the dynamics u̇ = −ϕ′(u)
since ϕ′′(0) = r. At r = 1

4
there occurs a saddle-node bifurcation and a pair of fixed points

is generated, one stable and one unstable. As we see from fig. 1.5, the interior fixed point
is always unstable and the two exterior fixed points are always stable. At r = 0 there is a
transcritical bifurcation where two fixed points of opposite stability collide and bounce off one
another (metaphorically speaking).

At the saddle-node bifurcation, r = 1
4

and u = 1
2
, and we find ϕ(u = 1

2
; r = 1

4
) = 1

192
, which

is positive. Thus, the thermodynamic state of the system remains at u = 0 until the value of
ϕ(u+) crosses zero. This occurs when ϕ(u) = 0 and ϕ′(u) = 0, the simultaneous solution of
which yields r = 2

9
and u = 2

3
.

Suppose we slowly ramp the control parameter r up and down as a function of the dimen-
sionless time s. Under the dynamics of eqn. 1.46, u(s) flows to the first stable fixed point
encountered – this is always the case for a dynamical system with a one-dimensional phase
space. Then as r is further varied, u follows the position of whatever locally stable fixed point
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Figure 1.7: Fixed points for ϕ(u) = 1
2
ru2− 1

3
u3 + 1

4
u4 and flow under the dynamics u̇ = −ϕ′(u).

Solid curves represent stable fixed points and dashed curves unstable fixed points. Magenta
arrows show behavior under slowly increasing control parameter r and dark blue arrows show
behavior under slowly decreasing r. For u > 0 there is a hysteresis loop. The thick black curve
shows the equilibrium thermodynamic value of u(r), i.e. that value which minimizes the free
energy ϕ(u). There is a first order phase transition at r = 2

9
, where the thermodynamic value of

u jumps from u = 0 to u = 2
3
.

it initially encountered. Thus, u
(
r(s)

)
evolves smoothly until a bifurcation is encountered. The

situation is depicted by the arrows in fig. 1.7. The equilibrium thermodynamic value for u(r) is
discontinuous; there is a first order phase transition at r = 2

9
, as we’ve already seen. As r is in-

creased, u(r) follows a trajectory indicated by the magenta arrows. For an negative initial value
of u, the evolution as a function of r will be reversible. However, if u(0) is initially positive, then
the system exhibits hysteresis, as shown. Starting with a large positive value of r, u(s) quickly
evolves to u = 0+, which means a positive infinitesimal value. Then as r is decreased, the sys-
tem remains at u = 0+ even through the first order transition, because u = 0 is an attractive
fixed point. However, once r begins to go negative, the u = 0 fixed point becomes repulsive,

and u(s) quickly flows to the stable fixed point u+ = 1
2
+
√

1
4
− r. Further decreasing r, the

system remains on this branch. If r is later increased, then u(s) remains on the upper branch

past r = 0, until the u+ fixed point annihilates with the unstable fixed point at u− = 1
2
−
√

1
4
− r,

at which time u(s) quickly flows down to u = 0+ again.
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1.4.4 Sixth order Landau theory : tricritical point

Finally, consider a model with Z2 symmetry, with the Landau free energy

f = f0 +
1
2
am2 + 1

4
bm4 + 1

6
cm6 , (1.50)

with c > 0 for stability. We seek the phase diagram in the (a, b) plane. Extremizing f with
respect to m, we obtain

∂f

∂m
= 0 = m (a+ bm2 + cm4) , (1.51)

which is a quintic with five solutions over the complex m plane. One solution is obviously
m = 0. The other four are

m = ±

√√√√− b

2c
±
√(

b

2c

)2

− a

c
. (1.52)

For each ± symbol in the above equation, there are two options, hence four roots in all.

If a > 0 and b > 0, then four of the roots are imaginary and there is a unique minimum at
m = 0.

For a < 0, there are only three solutions to f ′(m) = 0 for real m, since the − choice for the ±
sign under the radical leads to imaginary roots. One of the solutions is m = 0. The other two
are

m = ±

√

− b

2c
+

√( b
2c

)2
− a

c
. (1.53)

The most interesting situation is a > 0 and b < 0. If a > 0 and b < −2√ac, all five roots are real.
There must be three minima, separated by two local maxima. Clearly if m∗ is a solution, then
so is −m∗. Thus, the only question is whether the outer minima are of lower energy than the
minimum at m = 0. We assess this by demanding f(m∗) = f(0), where m∗ is the position of the
largest root (i.e. the rightmost minimum). This gives a second quadratic equation,

0 = 1
2
a+ 1

4
bm2 + 1

6
cm4 , (1.54)

which together with equation 1.51 gives

b = − 4√
3

√
ac . (1.55)

Thus, we have the following, for fixed a > 0:

b > −2√ac : 1 real root m = 0

−2√ac > b > − 4√
3

√
ac : 5 real roots; minimum at m = 0 (1.56)

− 4√
3

√
ac > b : 5 real roots; minima at m = ±

√

− b

2c
+

√( b
2c

)2
− a

c

The point (a, b) = (0, 0), which lies at the confluence of a first order line and a second order
line, is known as a tricritical point.
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Figure 1.8: Behavior of the sextic free energy f(m) = 1
2
am2 + 1

4
bm4 + 1

6
cm6. A: a > 0 and

b > 0 ; B: a < 0 and b > 0 ; C: a < 0 and b < 0 ; D: a > 0 and b < − 4√
3

√
ac ; E: a > 0 and

− 4√
3

√
ac < b < −2√ac ; F: a > 0 and −2√ac < b < 0. The thick dashed line is a line of second

order transitions, which meets the thick solid line of first order transitions at the tricritical point,
(a, b) = (0, 0).

The case of barium titanate

The compound BaTiO3 is a ferroelectric in which, at sufficiently low temperatures, a sponta-
neous electric polarization density P develops. The Landau free energy density may be written
as

f(P, ε) = f0 +
1
2
aP 2 + 1

4
bP 4 + 1

6
cP 6 − dEP + εP 2 +

ε2

2k
, (1.57)

whereE is the electric field and ε is a component of the the strain field19. Note that the coupling
between strain and polarization is linear in the former and quadratic in the latter, which is a

19Recall the strain tensor in a solid is given by εij =
1
2

( ∂ui

∂xj +
∂uj

∂xi

)
, where u(r) is the local displacement field.
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Ti
4+

Ba
2+

O
2−

Figure 1.9: High temperature cubic perovskite crystal structure of BaTiO3. Ba2+ sites are in
green, Ti4+ in blue, and O2− in red. The yellow arrow shows the direction in which the Ti4+ ion
moves as the material is cooled below Tc within the displacive model. Image credit: Wikipedia.

consequence of symmetry associated with the displacive transition. In other materials such as
KH2PO4, where the symmetry is lower, the coupling is of the form εP .

Setting ∂f/∂ε = 0 we obtain ε = −kdP 2, resulting in the the effective free energy density

feff(P ) = f0 +
1
2
aP 2 + (1

4
b− 1

2
kd2)P 4 + 1

6
cP 6 − EP . (1.58)

If b > 0, and dk2 > 1
2
b, the second order transition is driven to become first order due to the

coupling to strain. However, it is oftentimes possible under experimental conditions to ensure
that the strain is always zero, for example in the case of a thin epitaxial film whose lattice
constants are perfectly matched to a substrate. In this case, stresses develop which constrain
the strain to be ε = 0, and in the absence of an electric field E the transition is second order.

1.4.5 Hysteresis for the sextic potential

Once again, we consider the dissipative dynamics ṁ = −Γ f ′(m). We adimensionalize by
writing

m ≡
√
|b|
c
· u , a ≡ b2

c
· r , t ≡ c

Γ b2
· s . (1.59)

Then we obtain once again the dimensionless equation

∂u

∂s
= −∂ϕ

∂u
, (1.60)
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Figure 1.10: Free energy ϕ(u) = 1
2
ru2 − 1

4
u4 + 1

6
u6 for several different values of the control

parameter r.

where

ϕ(u) = 1
2
ru2 ± 1

4
u4 + 1

6
u6 . (1.61)

In the above equation, the coefficient of the quartic term is positive if b > 0 and negative if
b < 0. That is, the coefficient is sgn(b). When b > 0 we can ignore the sextic term for sufficiently
small u, and we recover the quartic free energy studied earlier. There is then a second order
transition at r = 0.

New and interesting behavior occurs for b > 0. The fixed points of the dynamics are obtained
by setting ϕ′(u) = 0. We have

ϕ(u) = 1
2
ru2 − 1

4
u4 + 1

6
u6

ϕ′(u) = u (r − u2 + u4) .
(1.62)

Thus, the equation ϕ′(u) = 0 factorizes into a linear factor u and a quartic factor u4 − u2 + r
which is quadratic in u2. Thus, we can easily obtain the roots:

r < 0 : u∗ = 0 , u∗ = ±
√

1
2
+
√

1
4
− r

0 < r < 1
4

: u∗ = 0 , u∗ = ±
√

1
2
+
√

1
4
− r , u∗ = ±

√
1
2
−
√

1
4
− r

r > 1
4

: u∗ = 0 .

(1.63)
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Figure 1.11: Fixed points ϕ′(u∗) = 0 for the sextic potential ϕ(u) = 1
2
ru2 − 1

4
u4 + 1

6
u6, and cor-

responding dynamical flow (arrows) under u̇ = −ϕ′(u). Solid curves show stable fixed points
and dashed curves show unstable fixed points. The thick solid black and solid grey curves in-
dicate the equilibrium thermodynamic values for u; note the overall u→ −u symmetry. Within
the region r ∈ [0, 1

4
] the dynamics are irreversible and the system exhibits the phenomenon of

hysteresis. There is a first order phase transition at r = 3
16

.

In fig. 1.11, we plot the fixed points and the hysteresis loops for this system. At r = 1
4
, there are

two symmetrically located saddle-node bifurcations at u = ± 1√
2
. We find ϕ(u = ± 1√

2
, r = 1

4
) =

1
48

, which is positive, indicating that the stable fixed point u∗ = 0 remains the thermodynamic
minimum for the free energy ϕ(u) as r is decreased through r = 1

4
. Setting ϕ(u) = 0 and

ϕ′(u) = 0 simultaneously, we obtain r = 3
16

and u = ±
√
3
2

. The thermodynamic value for u

therefore jumps discontinuously from u = 0 to u = ±
√
3
2

(either branch) at r = 3
16

; this is a first
order transition.

Under the dissipative dynamics considered here, the system exhibits hysteresis, as indicated
in the figure, where the arrows show the evolution of u(s) for very slowly varying r(s). When
the control parameter r is large and positive, the flow is toward the sole fixed point at u∗ = 0.
At r = 1

4
, two simultaneous saddle-node bifurcations take place at u∗ = ± 1√

2
; the outer branch

is stable and the inner branch unstable in both cases. At r = 0 there is a subcritical pitchfork
bifurcation, and the fixed point at u∗ = 0 becomes unstable.

Suppose one starts off with r ≫ 1
4

with some value u > 0. The flow u̇ = −ϕ′(u) then rapidly
results in u → 0+. This is the ‘high temperature phase’ in which there is no magnetization.
Now let r increase slowly, using s as the dimensionless time variable. The scaled magnetization
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u(s) = u∗
(
r(s)

)
will remain pinned at the fixed point u∗ = 0+. As r passes through r = 1

4
, two

new stable values of u∗ appear, but our system remains at u = 0+, since u∗ = 0 is a stable fixed
point. But after the subcritical pitchfork, u∗ = 0 becomes unstable. The magnetization u(s) then

flows rapidly to the stable fixed point at u∗ = 1√
2
, and follows the curve u∗(r) =

(
1
2
+(1

4
−r)1/2

)1/2

for all r < 0.

Now suppose we start increasing r (i.e. increasing temperature). The magnetization follows the

stable fixed point u∗(r) =
(
1
2
+ (1

4
− r)1/2

)1/2
past r = 0, beyond the first order phase transition

point at r = 3
16

, and all the way up to r = 1
4
, at which point this fixed point is annihilated at

a saddle-node bifurcation. The flow then rapidly takes u → u∗ = 0+, where it remains as r
continues to be increased further.

Within the region r ∈
[
0, 1

4

]
of control parameter space, the dynamics are said to be irreversible

and the behavior of u(s) is said to be hysteretic.

1.4.6 Weak crystallization

That weak crystallization, meaning crystallization in a weakly first-order transition, should result
in a triangular lattice in d = 2 was argued by Alexander and McTague20 based on a Landau
theory of the transition. The argument is as follows. Let ̺G be the amplitude of the Fourier
component of the density ̺(r) with wavevector G, which is a reciprocal lattice vector of the
incipient crystalline phase. Then construct the free energy

F
[
{̺G}

]
=

1

2

∑

G

χ−1(G) |̺G|2 −
1

3
B
∑

G1

∑

G2

∑

G3

̺G1
̺G2

̺G3
δG1+G2+G3,0

+
1

4
C
∑

G1

∑

G2

∑

G3

∑

G4

̺G1
̺G2

̺G3
̺G4

δG1+G2+G3+G4,0
+ . . . ,

(1.64)

where

χ−1(k) = r + b (k2 −G2)2 (1.65)

is the inverse static susceptibility at wavevector k, which for fixed r is minimized for |k| = G.
The quadratic term determines the magnitude of the preferred wavevectors at which conden-
sation takes place at r = rc = 0, but this energy is degenerate over the circle (or sphere in d = 3)
of radius G. For weak crystallization, then, the cubic term determines the crystal structure,
and evidently prefers structures whose reciprocal lattices contain the maximum number of tri-
angles, in order to satisfy the G1 + G2 + G3 = 0 condition. In d = 2 this prefers a reciprocal
lattice which is triangular, hence the underlying direct Bravais lattice is also triangular (or hon-
eycomb). In d = 3, this condition prefers the fcc structure among all regular lattices, and the

20S. Alexander and J. McTague, Phys. Rev. Lett. 41, 702 (1978). See also E. I. Kats, V. V. Lebedev, and A. R.
Muranov, Phys. Rep. 228, 1 (1993).
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corresponding direct lattice is thus bcc. It should be emphasized that the Alexander-McTague
theory applies to the weak crystallization of a fluid, and really describes the formation of a
charge density wave structure, rather than a Wigner crystal of point particles.

1.5 Four Vignettes

1.5.1 Lower critical dimension

Depending on whether the global symmetry group of a model is discrete or continuous, there
exists a lower critical dimension dℓ at or below which no phase transition may take place at finite
temperature. That is, for d 6 dℓ, the critical temperature is Tc = 0. Owing to its neglect of
fluctuations, mean field theory generally overestimates the value of Tc because it overestimates
the stability of the ordered phase21. Indeed, there are many examples where mean field theory
predicts a finite Tc when the actual critical temperature is Tc = 0. This happens for d 6 dℓ.

Let’s test the stability of the ordered (ferromagnetic) state of the one-dimensional Ising model
at low temperatures. We consider order-destroying domain wall excitations which interpolate
between regions of degenerate, symmetry-related ordered phase, i.e. ↑↑↑↑↑ and ↓↓↓↓↓. For a
system with a discrete symmetry at low temperatures, the domain wall is abrupt, on the scale
of a single lattice spacing. If the exchange energy is J , then the energy of a single domain wall is
2J , since a link of energy −J is replaced with one of energy +J . However, there are N possible
locations for the domain wall, hence its entropy is k

B
lnN . For a system with M domain walls,

the free energy is

F = 2MJ − k
B
T ln

(
N

M

)

= N ·
{
2Jx+ kBT

[
x ln x+ (1− x) ln(1− x)

]}
,

(1.66)

21One can concoct models for which the mean field transition temperature underestimates the actual critical tem-
perature. Consider for example an Ising model with interaction u(σ, σ′) = −ǫ−1 ln(1 + ǫσσ′), where the spins
take values σ, σ′ = ±1, and where 0 < ǫ < 1. If we write σ = 〈σ〉+ δσ at each site and neglect terms quadratic in
fluctuations, the resulting mean field Hamiltonian is equivalent to a set of decoupled spins in an external field
h = zm/(1+ ǫm2), where m = 〈σ〉. From the mean field equation m = tanh(h/T ), one obtains the MF transition
temperature is TMF

c = z, the lattice coordination number, independent of ǫ. On the other hand, we may also write
u(σ, σ′) = uǫ−Jǫ σσ′, where uǫ = − ln(1− ǫ2)/2ǫ and Jǫ = ǫ−1 tanh−1(ǫ). On the square lattice, where z = 4, one
has the exact result Tc(ǫ) = 2Jǫ/ sinh

−1(1) = 2.269 Jǫ , which diverges as ǫ→ 1, while TMF

c = 4 remains finite. For
ǫ > 0.9265, one has Tc(ǫ) > TMF

c . Finally, if instead of deriving the MFT via the ’neglect of fluctuations’ method

one uses a local variational density matrix of the form ̺ =
∏

i

[
1
2 (1 +mi) δσ

i
,+1 +

1
2 (1−mi) δσ

i
,−1

]
, with m as a

variational parameter, from the variational free energy density f = N−1
[
Tr(̺H) + T Tr(̺ ln ̺)

]
, one obtains the

MF equation zJǫm = T tanh−1(m), whence TMF

c = zJǫ which does exceed the exact result on the square lattice.
So in this example, it depends on the method employed to derive the MF Hamiltonian.
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Figure 1.12: Domain walls in the two-dimensional (left) and three-dimensional (right) Ising
model.

where x =M/N is the density of domain walls, and where we have used Stirling’s approxima-
tion for k! when k is large. Extremizing with respect to x, we find

x

1− x = e−2J/kBT =⇒ x =
1

e2J/kBT + 1
. (1.67)

The average distance between domain walls is x−1, which is finite for finite T . Thus, the ther-
modynamic state of the system is disordered, with no net average magnetization.

Consider next an Ising domain wall in d dimensions. Let the linear dimension of the system be
L · a, where L is a real number and a is the lattice constant. Then the energy of a single domain
wall which partitions the entire system is 2J · Ld−1. The domain wall entropy is difficult to
compute, because the wall can fluctuate significantly, but for a single domain wall we have
S >∼ kB lnL. Thus, the free energy F = 2JLd−1 − kBT lnL is dominated by the energy term if
d > 1, suggesting that the system may be ordered. We can do a slightly better job in d = 2 by
writing

Z ≈ exp

(
Ld
∑

P

NP e
−2PJ/kBT

)
, (1.68)

where the sum is over all closd loops of perimeter P , and NP is the number of such loops. An
example of such a loop circumscribing a domain is depicted in the left panel of fig. 1.12. It
turns out that

NP ≃ κPP−θ ·
{
1 +O(P−1)

}
, (1.69)

where κ = z − 1 with z the lattice coordination number, and θ is some exponent. We can
understand the κP factor in the following way. At each step along the perimeter of the loop,
there are κ = z−1 possible directions to go (since one doesn’t backtrack). The fact that the loop
must avoid overlapping itself and must return to its original position to be closed leads to the
power law term P−θ, which is subleading since κPP−θ = exp(P ln κ− θ lnP ) and P ≫ lnP for
P ≫ 1. Thus,

F ≈ − 1

β
Ld
∑

P

P−θ e(lnκ−2βJ)P , (1.70)
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which diverges if ln κ > 2βJ , i.e. if T > 2J/kB ln(z − 1). We identify this singularity with
the phase transition. The high temperature phase involves a proliferation of such loops. The
excluded volume effects between the loops, which we have not taken into account, then enter
in an essential way so that the sum converges. Thus, we have the following picture:

ln κ < 2βJ : large loops suppressed ; ordered phase

ln κ > 2βJ : large loops proliferate ; disordered phase .

On the square lattice, we obtain

kBT
approx
c =

2J

ln 3
= 1.82 J

k
B
T exact
c =

2J

sinh−1(1)
= 2.27 J .

The agreement is better than we should reasonably expect from such a crude argument.

Nota bene : Beware of arguments which allegedly prove the existence of an ordered phase.
Generally speaking, any approximation will underestimate the entropy, and thus will overesti-
mate the stability of the putative ordered phase.

Continuous symmetries

When the global symmetry group is continuous, the domain walls interpolate smoothly be-
tween ordered phases. Consider the classical continuum O(N) model

H = 1
2
ρs

∫
d dr (∂µn

a)2 , (1.71)

where n̂(x) = (n1, . . . , nN) with n̂2 = 1. The quantity ρs is called the stiffness parameter and has
dimensions of [ρs] = EL2−d. Any ground state configuration, such as n̂(x) = ê1, breaks the O(N)
symmetry.

Consider now a domain wall configuration

n̂(x) = cos
(
θ(x)

)
ê1 + sin

(
θ(x)

)
ê2 , (1.72)

where θ(x) = 2πqx1/L , which describes a slow q-fold (q ∈ Z) twist of the unit vector n̂(x) in
the (ê1, ê2) plane with period L, which we take to be the linear dimension of the sample22. The
domain wall then resembles the sketch in Fig. 1.13, and its energy is computed to be

E = 1
2
ρs L

d−1

L∫

0

dx1
(
2πq

L

)2
= 2π2q2ρs L

d−2 . (1.73)

22Periodic boundary conditions are presumed.
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Figure 1.13: A domain wall in an XY ferromagnet.

Recall that in the case of discrete symmetry, the domain wall energy scaled as E ∝ Ld−1. Thus,
with S >∼ kB

lnL for a single wall, we see that the entropy term dominates if d 6 2, in which case
there is no finite temperature phase transition. Thus, the lower critical dimension dℓ depends
on whether the global symmetry is discrete or continuous, with

discrete global symmetry =⇒ dℓ = 1

continuous global symmetry =⇒ dℓ = 2 .

Note that all along we have assumed local, short-ranged interactions. Long-ranged interactions
can enhance order and thereby suppress dℓ.

Thus, we expect that for models with discrete symmetries, dℓ = 1 and there is no finite tem-
perature phase transition for d 6 1. For models with continuous symmetries, dℓ = 2, and we
expect Tc = 0 for d 6 2. In this context we should emphasize that the two-dimensional XY
model does exhibit a phase transition at finite temperature, called the Kosterlitz-Thouless tran-
sition. However, this phase transition is not associated with the breaking of the continuous
global O(2) symmetry and rather has to do with the unbinding of vortices and antivortices. So
there is still no true long-ranged order below the critical temperature T

KT
, even though there is

a phase transition!

1.5.2 Random systems : Imry-Ma argument

In condensed matter systems, intrinsic randomness often exists due to quenched impurities,
grain boundaries, immobile vacancies, etc. How does this quenched randomness affect a sys-
tem’s attempt to order at T = 0? This question was taken up in a beautiful and brief paper
by J. Imry and S.-K. Ma, Phys. Rev. Lett. 35, 1399 (1975). Imry and Ma considered models in
which there are short-ranged interactions and a random local field coupling to the local order
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Figure 1.14: Left panel : Imry-Ma domains for an O(2) model. The arrows point in the direction
of the local order parameter field 〈n̂(r)〉. Right panel : free energy density as a function of
domain size Ld. Keep in mind that the minimum possible value for Ld is the lattice spacing a.

parameter:

HRFI = −J
∑

〈ij〉
σi σj −

∑

i

hi σi (1.74)

HRFO(n) = −J
∑

〈ij〉
n̂i · n̂j −

∑

i

hαi n
α
i , (1.75)

where

〈〈 hαi 〉〉 = 0 , 〈〈 hαi hβj 〉〉 = Γ δαβ δij , (1.76)

where 〈〈 · 〉〉 denotes a configurational average over the disorder. Imry and Ma reasoned that
a system could try to lower its free energy by forming domains in which the order parameter
takes advantage of local fluctuations in the random field. The size of these domains is assumed
to be Ld , a length scale to be determined. See the sketch in the left panel of fig. 1.14.

There are two contributions to the energy of a given domain: bulk and surface terms. The bulk
energy is

Ebulk = −hrms (Ld/a)
d/2 , (1.77)

where a is the lattice spacing. This is because when we add together (Ld/a)
d random fields,

the magnitude of the result is proportional to the square root of the number of terms, i.e. to

(Ld/a)
d/2. The quantity hrms =

√
Γ is the root-mean-square fluctuation in the random field at a

given site. The surface energy is

Esurface ∝
{
J (Ld/a)

d−1 (discrete symmetry)

J (Ld/a)
d−2 (continuous symmetry) .

(1.78)
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We compute the critical dimension dc by balancing the bulk and surface energies,

d− 1 = 1
2
d =⇒ dc = 2 (discrete)

d− 2 = 1
2
d =⇒ dc = 4 (continuous) .

The total free energy is F = (V/Ldd) · ∆E, where ∆E = Ebulk + Esurf . Thus, the free energy per
unit cell is

f =
F

V/ad
≈ J

(
a

Ld

)1
2
dc

− hrms

(
a

Ld

)1
2
d

. (1.79)

If d < dc, the surface term dominates for small Ld and the bulk term dominates for large Ld

There is global minimum at

Ld

a
=

(
dc
d
· J

hrms

) 2
dc−d

. (1.80)

For d > dc, the relative dominance of the bulk and surface terms is reversed, and there is a
global maximum at this value of Ld.

Sketches of the free energy f(Ld) in both cases are provided in the right panel of fig. 1.14. We
must keep in mind that the domain size Ld cannot become smaller than the lattice spacing a.
Hence we should draw a vertical line on the graph at Ld = a and discard the portion Ld < a
as unphysical. For d < dc, we see that the state with Ld = ∞, i.e. the ordered state, is never
the state of lowest free energy. In dimensions d < dc, the ordered state is always unstable to domain
formation in the presence of a random field.

For d > dc, there are two possibilities, depending on the relative size of J and hrms . We can see
this by evaluating f(Ld = a) = J − hrms and f(Ld = ∞) = 0. Thus, if J > hrms , the minimum
energy state occurs for Ld = ∞. In this case, the system has an ordered ground state, and we
expect a finite temperature transition to a disordered state at some critical temperature Tc > 0.
If, on the other hand, J < hrms, then the fluctuations in h overwhelm the exchange energy at
T = 0, and the ground state is disordered down to the very smallest length scale (i.e. the lattice
spacing a).

Please read the essay, Memories of Shang-Keng Ma.

1.5.3 Hohenberg-Mermin-Wagner theorem

The Hohenberg-Mermin-Wagner (HMW) theorem is a powerful result which establishes the
absence of broken continuous symmetry for systems at any finite temperature in dimensions
d 6 2. Extensions of the theorem have been applied to certain d = 1 quantum systems at
T = 0, such as antiferromagnets, crystals, and Bose superfluids. As we shall see, it is related to
Goldstone’s theorem, which we shall discuss below in §1.5.4.

Before getting into the details, a plea for proper attribution. Historically, the HMW theorem
has often been referred to as the ”Mermin-Wagner theorem”, but in fact it should rightly be

http://physics.clarku.edu/sip/skma.html
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called the ”Hohenberg-Mermin-Wagner theorem”23. For a latter day perspective, including a
brief recounting of the history, see B. I. Halperin, J. Stat. Phys. 175, 521 (2019).

For a poor man’s derivation of the HMW theorem, we proffer the following argument. Ex-
panding in quadratic fluctuations for a translationally invariant quantum system in the ther-
modynamic limit, consider the model Hamiltonian

H =
∑

k

H
k︷ ︸︸ ︷{

pk p−k
2mk

+ 1
2
mkω

2
k xk x−k

}
=
∑

k

(a†kak +
1
2
) ~ωk , (1.81)

where
[
pk, xk′

]
= −i~δk+k′,0 and [ak, a

†
k′

]
= δk,k′ . The average energy per k mode is given by

〈Hk〉 = (nk +
1
2
)~ωk , with nk = 1/

(
exp(β~ωk)− 1

)
the mode occupancy. Now let’s compute the

fluctuations in the local coordinate xr:

〈x2r〉 =
1

N

∑

k

〈xkx−k〉 =
1

N

∑

k

(nk +
1
2
)~ωk

mkω
2
k

= vol(Ω)

∫

Ω̂

ddk

(2π)2

(
1

exp(β~ωk)− 1
+

1

2

)
~

mkωk
,

(1.82)
where N is the number of unit cells in the system, Ω is the unit cell, and Ω̂ is the Brillouin zone.

We presume the dispersion ωk behaves as ωk = c|k| as k → 0, and further assume that mk→0 is
finite. At finite temperature, the integrand therefore diverges as T/ω2

k ∼ T/k2 as k → 0, and
thus the integral is IR-divergent for d 6 2. This means that we have expanded about the wrong
vacuum. Note that the same considerations apply at T = 0 in d = 1, where nk = 0, due to the
intrinsic quantum fluctuations.

Formal proof of the HMW theorem

We follow here the original Mermin-Wagner treatment of the HMW theorem. Consider the
Heisenberg model,

H = −
∑

R,R′

J(R− R′)SR · SR′ −
∑

R

hR S
z
R . (1.83)

Here the positions {R} are sites on some Bravais lattice, the spin operators obey the SU(2)
algebra24

[
SαR, S

β
R′

]
= i δRR′ ǫαβγ S

γ
R , (1.84)

and the coupling J(R − R′) = J(R′ − R) is inversion symmetric, and satisfies J(0) = 0. The

Fourier components ĥk of the magnetic field satisfy ĥ−k = ĥ∗k , since the Hamiltonian must be

23P. C. Hohenberg, Phys. Rev. 158, 383 (1967); N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
24We set ~ = 1 for convenience.
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Hermitian. We will also need to require that the interaction kernel J(R − R′) be sufficiently
short-ranged, decaying faster than |R− R′|−(d+2), as shall become clear below.

The proof proceeds by finding a bound for the magnitude |m̂k| , where m̂k ≡ 〈Szk〉/N , with

Szk =
∑

R

SzR e
−ik·R . (1.85)

The quantity mk is the order parameter at wavevector k. For example, at k = 0 we have

m̂0 = N−1
∑

R〈SzR〉, which is the moment per site. The goal is to show that in the limit ĥk → 0
of vanishing external field that the order parameter must vanish if the spatial dimension d is
sufficiently small.

Bogoliubov’s inequality

The proof utilizes the Bogoliubov inequality,

∣∣〈[A,C]
〉∣∣2 6 1

2
β
〈
{A,A†}

〉 〈[
C†, [H,C]

]〉
, (1.86)

for any operators A and C, where
〈
O
〉
= Tr

(
O e−βH

)
/Tr e−βH is the thermodynamic expec-

tation value of the operator O. To prove Eqn. 1.86, we start by defining the operator scalar
product,

(A,B) ≡
∑

m6=n
〈n |A† |m 〉〈m |B |n 〉

(
Wm −Wn

En −Em

)
, (1.87)

where Wm = e−βEm/Tr e−βH is the Boltzmann weight for the state |m〉. One can check that
(•, •) satisfies (i) (A,B) = (B,A)∗ (conjugation symmetry), (ii) (A, λ1B1 + λ2B2) = λ1(A,B1) +
λ2(A,B2) (linearity), and (iii) (A,A) > 0 (positive semidefiniteness). Under these conditions,
the Schwarz inequality, ∣∣(A,B)

∣∣2 6 (A,A) (B,B) , (1.88)

holds.

Let’s evaluate the Schwarz inequality with B = [C†, H ]. We have

(A,B) =
(
A, [C†, H ]

)
=
∑

m6=n
〈n |A† |m 〉〈m | (C†H −HC†) |n 〉

(
Wm −Wn

En − Em

)

=
∑

m,n

〈n |A† |m 〉〈m |C† |n 〉 (Wm −Wn) =
〈
[C†, A†]

〉
.

(1.89)

Substituting A = B in this result, we have

(B,B) =
〈
[C†, B†]

〉
=
〈[
C†, [H,C]

]〉
, (1.90)
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and thus the Schwarz inequality guarantees

∣∣〈[C†, A†]
〉∣∣2 =

∣∣〈[A,C]
〉∣∣2 6 (A,A)

〈[
C†, [H,C]

]〉
. (1.91)

Next, note that

Wm −Wn

En − Em
=

(
Wm +Wn

En − Em

)(
Wm −Wn

Wm +Wn

)

=

(
Wm +Wn

En − Em

)
tanh

(
1
2
β(En −Em)

)
6
β

2
(Wm +Wn) ,

(1.92)

since 0 6 x−1 tanh x 6 1. Thus we have

(A,A) 6
β

2

∑

m6=n
〈n |A† |m 〉〈m |A |n 〉 (Wm +Wn) 6

β

2

〈
{A,A†}

〉
, (1.93)

thereby establishing the Bogoliubov inequality of Eqn. 1.86.

Application to quantum Heisenberg model

Consider now the quantum Heisenberg model of Eqn. 1.83. Define the Fourier variables

Sαk =
∑

R

SαR e
−ik·R , Ĵ(k) =

∑

R

J(R) e−ik·R , ĥk =
1

N

∑

R

hR e
−ik·R (1.94)

and their inverses

SαR =
1

N

∑

k

Sαk e
ik·R , J(R) =

1

N

∑

k

Ĵ(k) eik·R hR =
∑

k

hk e
ik·R . (1.95)

Note the placement of the 1/N factors differs in the definitions of Ĵ(k) and ĥk. The commutation
relations among the Fourier spin components are

[S+
k , S

−
k′ ] = 2Szk+k′ , [Szk , S

±
k′] = ±S±

k+k′ . (1.96)

We apply the Bogoliubov inequality of Eqn. 1.86 with

A = S−
−k1 , A† = S+

k1
, C = S+

k2
, C† = S−

−k2 . (1.97)

Thus, our version of the inequality may be written

∣∣〈[S−
−k1, S

+
k2
]
〉∣∣2 6 1

2
β
〈
{S−

−k1 , S
+
k1
}
〉 〈[

S−
−k2 , [H,S

+
k2
]
]〉

, (1.98)
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Note that we may write H = H0 +H1 where

H0 = −
1

2N

∑

q

Ĵ(q)
{

1
2
S+
q S

−
−q +

1
2
S−
q S

+
−q + Szq S

z
−q

}

H1 = −
∑

q

ĥ−q S
z
q .

(1.99)

We begin by computing the commutator

[H0, S
+
k2
] =

1

2N

∑

q

Ĵ(q)
{
S+
q S

z
k2−q + Szk2+q S

+
−q − S+

k2+q
Sz−q − Szq S+

k2−q

}
, (1.100)

from which we obtain, with a little work,

[
S−
−k2 , [H0, S

+
k2
]
]
=

1

2N

∑

q

(
Ĵ(q)− Ĵ(q + k2)

)(
S+
q S

−
−q + S−

q S
+
−q + 4Szq S

z
−q

)
(1.101)

and where we have invoked
∑

k Ĵ(k) = 0, which follows from the condition J(0) = 0 .

Second we compute [H1, S
+
k2
] = −∑q ĥ−q S

+
q+k2

, and thus

[
S−
−k2 , [H1, S

+
k2
]
]
= 2

∑

q

ĥ−q S
z
q . (1.102)

Third, [S−
−k1 , S

+
k2
] = −Szk2−k1 . Finally, we have {S−

−k1 , S
+
k1
} = S−

−k1S
+
k1

+ S+
k1
S−
−k1 . Note that

∣∣〈[S−
−k1 , S

+
k2
]
〉∣∣2 =

∣∣〈Szk2−k1〉
∣∣2 = N2 |m̂k2−k1|

2 . (1.103)

We define the quantity Γ (k2) ≡ Γ0(k2) + Γ1(k2), where

Γ0(k2) =
[
S−
−k2 , [H0, S

+
k2
]
]

=
1

2N

∑

q

(
Ĵ(q)− 1

2
Ĵ(q + k2)− 1

2
Ĵ(q − k2)

) 〈
4Szq S

z
−q + S+

q S
−
−q + S−

q S
+
−q
〉

=
∑

R1,R2

J(R1)
(
1− cos(k2 · R1)

) 〈
SxR2

SxR1+R2
+ SyR2

SyR1+R2
+ 2SzR2

SzR1+R2

〉
(1.104)

and
Γ1(k2) =

〈[
S−
−k2, [H0, S

+
k2
]
]〉

= 2N
∑

q

ĥ−q m̂q . (1.105)

We may now easily derive the following bounds:

Γ0(k2) 6 NS(S + 1
2
) k22

∑

R

R
2J(R) ≡ 4NJ k22 a2

Γ1(k2) 6 2N
∑

q

|ĥ−q| · |m̂q| .
(1.106)
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with J ≡ 1
4
S(S + 1

2
)
∑

R(R/a)
2 J(R), where we presume a d-dimensional cubic lattice of lattice

constant a.

We are almost ready to claim our prize. At this point we have the inequality

〈
S−
K−k2S

+
k2−K + S+

k2−K S
−
K−k2

〉
>
N

2β
· |m̂K |2
J k22 a2 + 1

2

∑
q |ĥ−q| · |m̂q|

, (1.107)

with k1 ≡ k2−K. We now sum both sides of the equation over k2, which owing to presumed pe-
riodic boundary conditions takes a discrete set of values k2 =

(
2πn1/N1a, 2πn2/N2a, 2πn3/N3a

)
,

with N = N1N2N3 where nj ∈ {1, . . . , Nj}. The system is thus a cubic rectangle of dimensions
N1 ×N2 ×N3 cells, with each cell of volume a3. On the LHS, we obtain

∑

k2

〈
S−
K−k2S

+
k2−K + S+

k2−K S
−
K−k2

〉
= 2N

∑

R

〈
(SxR)

2 + (SyR)
2
〉
< 2N2S(S + 1) . (1.108)

Thus,

|m̂K |2 <
4S(S + 1)

k
B
T

/
ad
∫

Ω̂

ddk

(2π)d
1

J k2a2 + 1
2

∑
q |ĥ−q| · |m̂q|

(1.109)

Consider the case where ĥq = ĥ−K δq,−K + ĥK δq,K . The Brillouin zone is a d-dimensional cube
of side length 2π/a. We are free to underestimate the integral, since this overestimates the RHS
of the above inequality, and to this end we integrate instead over a d-dimensional sphere of
radius b = π/a, yielding

|m̂K |2 <
4S(S + 1)

kBT

/
Ωd

(2π)d

π∫

0

du ud−1

J u2 + |ĥK | · |m̂K |
, (1.110)

where Ωd = 2πd/2/Γ(d/2) is the total solid angle in d space dimensions and u = |k|a. We sim-

plify notion by defining h ≡ |ĥK | andm ≡ |m̂K |. We may now derive the following inequalities.

d = 1 : m < C1

(
hJ

(k
B
T )2

)1/3

d = 2 : m < C2

(J /k
B
T )1/2

ln1/2(J /hm)

h = 0, d > 2 : m < Cd J /kB
T ,

(1.111)

where the C1,2,... are numerical constants. In the limit h → 0, we see that m must vanish for
d = 1 and d = 2. For d > 2, there is no such requirement.
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1.5.4 Goldstone’s theorem

Goldstone’s theorem says that whenever the ground state |Ψ0〉 of a thermodynamically large
quantum system (or QFT) breaks a continuous symmetry of the Hamiltonian H , there is a
branch of gapless excitations in the spectrum of H , known as Goldstone bosons. Let’s illustrate
this phenomenon with the explicit example of the spin-S quantum Heisenberg ferromagnet,

H = −
∑

i<j

Jij Si · Si . (1.112)

We assume Jij = J(Ri−Rj) > 0, i.e. the system is ferromagnetic, preferring all pairs of interact-
ing spins to align. Each component of the total spin operator S =

∑
i Si commutes with each

term of H , i.e.
[Sα,Si · Sj] = 0 (1.113)

because Si · Sj is rotationally invariant and the Sα are the generators of rotations. The global
symmetry group is SU(2), which is continuous. It is clear that any state |Ψ0〉 for which Si ·
Sj |Ψ0〉 = S2 |Ψ0〉 is a ground state of H , since each individual term in the sum is separately

minimized. The ground state energy is then E0 = −1
2
NĴ(0)S2, where Ĵ(k) =

∑
R J(R) e

−ik·R.

Consider then the state |⇑ 〉 in which Szi |⇑ 〉 = S |⇑ 〉 , i.e. all spins maximally polarized in
the ẑ direction. Clearly |⇑ 〉 is a ground state. But so is |⇓ 〉. Indeed, so is any state of the

form |Ψ0(n̂)〉 = ⊗i |n̂〉i in which each spin is in a coherent state maximally polarized along the
direction n̂, i.e. n̂ · Si |Ψ0(n̂)〉 = S |Ψ0(n̂)〉25. Thus, we have an entire manifold of states, all with
energy E0, corresponding to total spin S = NS. The degeneracy of this ground state sector is
S(S + 1), and states with different values of Sz are of course orthogonal. In the coherent state
basis, we have

∣∣〈Ψ0(n̂) |Ψ0(n̂
′) 〉
∣∣2 =

(
1 + n̂ · n̂′

2

)N
, (1.114)

where N is the total number of spins. In the thermodynamic limit, these states are macroscopi-
cally distinct

∣∣〈Ψ0(n̂)
∣∣OiOj

∣∣Ψ0(n̂
′)
〉∣∣2 =

(
1 + n̂ · n̂′

2

)N−2 ∣∣〈 n̂, n̂ | OiOj | n̂, n̂ 〉
∣∣2 , (1.115)

which vanishes in the thermodynamic limit.

Next, consider the operator Sα(k) = N−1
∑

i S
α
i e

−ik·Ri , which we met in Eqn. 1.95. It is straight-
forward to derive the result

[H,S−(k)] =
∑

i,j

J(Ri − Rj)
(
1− eik·(Rj−Ri)

)
S−
j e

−ik·Rj Szi . (1.116)

25In this notation, our previously defined state |Ψ0〉 = |⇑ 〉 is expressed as |Ψ0〉 = |Ψ0(ẑ)〉 .
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We assume that the diagonal elements of Jij all vanish, i.e. J(0) =
∑

k Ĵ(k) = 0. The above
identity, acting on the state |⇑ 〉, then yields

[H,S−(k)] |⇑ 〉 = S
[
Ĵ(0)− Ĵ(k)

]
S−(k) |⇑ 〉 , (1.117)

which establishes that S−
k |⇑ 〉 is an eigenstate of H , with eigenvalue Ek = E0 + S

[
Ĵ(0)− Ĵ(k)

]
.

Thus, the excitation spectrum of this branch, which has one state for each wavevector k, is

~ωk = Ek −E0 = S
[
Ĵ(0)− Ĵ(k)

]
. (1.118)

These excitations are called spin waves, and they are examples of Goldstone bosons. Note that
the k = 0 spin wave state,

S−(0) |⇑ 〉 =
∑

i

S−
i |⇑ 〉 , (1.119)

is among the ground state manifold, with total spin S = NS and polarization Sz = NS − 1.

Note that in systems with a discrete symmetry, such as the Ising model, with symmetry group
Z2, there are in general no Goldstone bosons. For the Ising ferromagnet H = −∑i<j Jij σi σj ,
where each σi = ±1, there are two degenerate ground states, |⇑ 〉 and |⇓ 〉, each of which has

total energy E0 = −1
2
NĴ(0). In dimensions d > 1, the lowest-lying excitation in either case

is a single spin flip, with excitation energy ∆E = 2Ĵ(0) . (In d = 1, with nearest-neighbor

interactions, the lowest-lying excitation is a domain wall, with energy Ĵ(0) = 2J .)

Field theories and Goldstone’s theorem

Consider the |φ|4 field theory for the real n-component field φ = (φ1, . . . , φn), with relativistic
Lagrangian density

L = 1
2
(∂µφ)(∂

µ
φ)− 1

2
m2

φ
2 − 1

4
λ (φ2)2 . (1.120)

The metric used to raise and lower indices is gµν = diag(+,−, · · · ,−). The equations of motion
are found to be

∂µ∂
µ
φ+m2

φ+ λφ2
φ = 0 . (1.121)

If m2 > 0, we can obtain solutions when |φ| ≪ 1 by dropping the cubic term. The solutions are
plane waves: φ(x, t) = Aei(k·x−ωt) where ω2 = k2 +m2. The spectrum is massive.

What happens when m2 < 0? In this case the potential V (φ) = 1
2
m2φ2 + 1

4
λ(φ2)2 is minimized

when |φ| = φ0 =
√
−m2/λ . Let’s write φ = φ0 (1 + η)1/2 ω̂, where ω̂ is a unit vector. One then

obtains

L = 1
8
φ2
0

(∂µη)(∂
µη)

1 + η
+ 1

2
φ2
0 (1 + η) (∂µω̂)(∂

µ
ω̂)− 1

4
m2 φ2

0(1− η2) . (1.122)

The linearized EL equations are then

∂µ∂
µη = 2m2η

∂µ∂
µ
ω̂ = 0 .

(1.123)
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The first equation results in a massive relativistic dispersion ω2 = k2 + 2m2, while the second,
as we have seen, yields gapless solutions with ω = |k|, which are the Goldstone bosons. Note
that if φ has n = 1 component, then there is no ω̂ field and there are no Goldstone bosons.

Consider next the example of the nonrelativistic complex |ψ|4 theory, otherwise known as the
Gross-Pitaevskii model, with

L = i~ ψ̄ ∂t ψ −
~2

2m
|∇ψ|2 − 1

2
g
(
|ψ|2 − n0

)2
(1.124)

We write ψ =
√
n0 (1 + η) eiξ, which yields

L = −~n0(1 + η)2 ∂tξ −
~2n0

2m
(∇η)2 − ~2n0

2m
(1 + η)2 (∇ξ)2 − 1

2
gn2

0 (4η
2 + 4η3 + η4) . (1.125)

The linearized equations of motion are then found to be

−2~n0 ∂tξ = −
~2n0

m
∇2η + 4gn2

0 η

+2~n0 ∂tη = −~
2n0

m
∇2ξ .

(1.126)

We now obtain plane wave solutions of the form

(
η(x, t)
ξ(x, t)

)
=

(
η̂

ξ̂

)
ei(k·x−ωt) , (1.127)

which, when inserted into the EL equations, yields the pair

2i~ω ξ̂ =

(
~2k2

m
+ 4gn0

)
η̂

−2i~ω η̂ =
~2k2

m
ξ̂ .

(1.128)

The solutions are

ω = ± c |k|
√
1 +

~2k2

4m2c2
. (1.129)

Note that as k → 0 we obtain a massless relativistic dispersion ω = ±c |k|, while for |k| → ∞we
recover the ballistic dispersion ω = ~k2/2m . These massless excitations are Goldstone modes
of the broken U(1) symmetry and correspond to phonons in a superfluid.

Finally, let’s get crazy and consider the gauged, relativistic |ψ|4 theory, with

L =
1

2g
(∂µ + ieAµ)ψ̄ (∂µ + ieAµ)ψ − m2

2gn0

(
ψ̄ψ − n0)

2 − 1
4
FµνF

µν , (1.130)
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Figure 1.15: Left: double well potential V (φ) for the scalar field φ ∈ R. Right: Mexican hat

potential for the complex scalar field φ ∈ C with V (φ, φ̄) = 1
2
m2
(
|φ|2 − n0

)2
.

where the field strength tensor is written in terms of the gauge field as Fµν = ∂µAν−∂νAµ . This
theory has a local gauge symmetry whereby the combined operations

ψ → ψ eiα , Aµ → Aµ − e−1 ∂µα , (1.131)

where α(x, t) is a field, leaves L invariant.

If we drop the gauge field, i.e. set e = 0, we may again expand about one of the local minima at

|ψ| = n
1/2
0 , writing

ψ =
√
n0 (1 + η) eiξ , (1.132)

as above. Then

L =
n0

2g
(∂µη)(∂

µη) +
n0

2g
(1 + η)2 (∂µξ)(∂

µξ)− m2n0

2g

(
4η2 + 4η3 + η4

)
. (1.133)

The linearized equations of motion are then

∂µ∂
µη = (2m)2η , ∂µ∂

µξ = 0 , (1.134)

yielding two modes. The η mode carries a massive relativistic dispersion ω2 = k2+(2m)2, while
the ξ mode is the gapless Goldstone boson with ω2 = k2.

When e 6= 0, we may take advantage of the gauge invariance to define a shifted gauge field

Ãµ ≡ Aµ − e−1∂µξ . (1.135)

The transformed Lagrangian becomes

L =
n0

2g
(∂µη)(∂

µη) +
n0 e

2

2g
(1 + η)2 ÃµÃ

µ − m2n0

2g

(
4η2 + 4η3 + η4)− 1

4
F̃µνF̃

µν , (1.136)

from which we can read off the following features:
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• The photon has become a massive triplet Ãµ, with m
Ã
= e
√
n0/g.

• There is no ξ particle! It has been eaten by the photon field.

• The Higgs field η has a mass which is independent of e, with mη = 2m.

To reiterate what we have learned in this section: Classically, a particle in a double well po-
tential exhibits spontaneous symmetry breaking. It must choose which well in which to lie.
But quantum mechanically, we know that the ground state is a symmetric superposition of left
and right well states. A similar consideration holds in the case of continuous symmetries, for
the Mexican hat potential. A classical particle will minimize its energy at any point along the
trough of the potential, but the quantum ground state is a rotationally symmetric s-wave state
with no nodes. In a field theory setting, there are an infinite number of degrees of freedom, and
the double well or Mexican hat exists at every point in space. This kills tunneling between the

different broken symmetry ’pure’ states, viz. 〈 L |R 〉 ∼ 〈ϕL |ϕR 〉V → 0 in the V → ∞ limit of
infinite system volume. This state of affairs is described in Fig. 1.15.

1.6 Appendix : The Foldy-Wouthuysen Transformation

1.6.1 The Dirac Hamiltonian

Let us write
Ĥ = mc2 γ0 + cγ0 γ · π + V , (1.137)

where
π = p+ e

c
A (1.138)

is the dynamical momentum and where the γµ are the Dirac matrices,

γ0 =

(
12×2 02×2

02×2 −12×2

)
, γ =

(
02×2 σ2×2

−σ2×2 02×2

)
. (1.139)

Here σ is the vector of Pauli matrices.

The idea behind the FW transformation is to unitarily transform to a different Hilbert space

basis such that the coupling in Ĥ between the upper and lower components of the Dirac spinor
vanishes. This may be done systematically as an expansion in inverse powers of the electron

mass m. We begin by defining K ≡ cγ0γ ·π+V so that Ĥ = mc2 γ0+K. Note that K is of order
m0. We then write

˜̂
H = eiS Ĥ e−iS

= Ĥ + i
[
S, Ĥ

]
+

(i)2

2!

[
S, [S, Ĥ ]

]
+ . . . ,

(1.140)
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where S itself is written as a power series in (mc2)−1:

S =
S0

mc2
+

S1

(mc2)2
+ . . . . (1.141)

The job now is to write
˜̂
H as a power series in m−1. The first few terms are easy to find:

˜̂
H = mc2 γ0 +K + i

[
S0, γ

0
]
+

1

mc2

(
i
[
S0, K

]
+ i
[
S1, γ

0
]
− 1

2

[
S0, [S0, γ

0]
])

+ . . . (1.142)

We choose the operators Sn so as to cancel, at each order in m−1, the off-diagonal terms in
˜̂
H

that couple the upper two components of Ψ to the lower two components of Ψ. To order m0,
we then demand

cγ0γ · π + i
[
S0, γ

0
]
= 0 . (1.143)

Note that we do not demand that i
[
S0, γ

0
]

completely cancel K – indeed it is impossible to find
such an S0, and one way to see this is to take the trace. The trace of any commutator must
vanish, but TrK = 4V , which is in general nonzero. But this is of no concern to us, since we
only need cancel the (traceless) off-diagonal part of K, which is to say cγ0γ · π.

To solve for S0, one can write it in terms of its four 2 × 2 subblocks, compute the commutator
with γ0, and then impose eqn. 14.341. One then finds S0 = − i

2
c γ · π.

STUDENT EXERCISE: Derive the result S0 = − i
2
c γ · π.

At the next level, we have to deal with the term in the round brackets in eqn. 14.340. Since we
know S0 , we can compute the first and the third terms therein. In general, this will leave us
with an off-diagonal term coupling upper and lower components of Ψ. We then choose S1 so
as to cancel this term. This calculation already is tedious, and we haven’t even gotten to the
spin-orbit interaction term yet, since it is of order m−2.

1.6.2 Emergence of the spin-orbit and Zeeman interaction terms

Here’s a simpler way to proceed to orderm−2. Let a, b be block indices and i, j be indices within
each block. Thus, the component Ψai is the ith component of the ath block; Ψa=1,i=2 is the lower
component of the upper block, i.e. the second component of the four-vector Ψ.

Write the Hamiltonian as
Ĥ = mc2 τ z + cσ · π τx + V (r) , (1.144)

where τµ are Pauli matrices with indices a, b and σν are Pauli matrices with indices i, j. The σ
and τ matrices commute because they act on different indices.

A very important result regarding Pauli matrices:

eiθ n̂·τ/2 τα e−iθ n̂·τ/2 = nαnβ τβ + cos θ (δαβ − nαnβ) τβ + sin θ ǫαβγ nβ τγ . (1.145)
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STUDENT EXERCISE: Verify and interpret the above result.

Using this result, we can write

Aτ z +B τx =
√
A2 +B2 · e−i tan−1(B/A) τy/2 τ z ei tan

−1(B/A) τy/2 , (1.146)

and, for our specific purposes,

mc2 τ z + cσ · π τx =
√
(mc2)2 + (cσ · π)2 · U τ z U † , (1.147)

where

U = exp

{
− i

2
tan−1

(
σ · π
mc

)
τ y
}
. (1.148)

The fact that σ · π is an operator is no obstacle here, since it commutes with the τµ matrices. We
can give meaning to expressions like tan−1(σ · π/mc) in terms of their Taylor series expansions.

We therefore have the result,

U † Ĥ U =
√

(mc2)2 + (cσ · π)2 · τ z + U † V (r)U . (1.149)

The first term is diagonal in the block indices. Expanding the square root, we have

mc2
√
1 +

(
σ · π
mc

)2
= mc2 +

(σ · π)2
2m

+O(m−3)

= mc2 +
π2

2m
+

e~

2mc
B · σ +O(m−3) ,

(1.150)

since

(σ · π)2 = σµσν πµπν = (δµν + iǫµνλσλ) πµπν

= π
2 + i

2
ǫµνλ

[
pµ + e

c
Aµ, pν + e

c
Aν
]
= π

2 +
e~

c
B · σ .

(1.151)

We next need to compute U † V (r)U to order m−2. To do this, first note that

U = 1− i

2

σ · π
mc

τ y − 1

8

(
σ · π
mc

)2
+ . . . , (1.152)

Thus,

U † V U = V +
i

2mc

[
σ · π, V

]
τ y − 1

8m2c2
[
σ · π, [σ · π, V ]

]
+ . . . . (1.153)

Upon reflection, one realizes that, to this order, it suffices to take the first term in the Taylor
expansion of tan−1(σ · π/mc) in eqn. 14.346, in which case one can then invoke eqn. 14.338 to
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obtain the above result. The second term on the RHS of eqn. 14.351 is simply ~

2mc
σ ·∇V τ y.

The third term is

i~

8m2c2
[
σµπµ, σν∂νV

]
=

i~

8m2c2

{
σµ
[
πµ, σν∂νV

]
+
[
σµ, σν∂νV

]
πµ
}

=
i~

8m2c2

{
~

i
∂µ∂νV σµσν + 2iǫµνλσλ∂νV πµ

}

=
~
2

8m2c2
∇

2V +
~

4m2c2
σ ·∇V × π .

(1.154)

Therefore,

U † Ĥ U =

(
mc2 +

π2

2m
+

e~

2mc
B · σ

)
τ z + V +

~

2mc
σ ·∇V τ y

+
~2

8m2c2
∇

2V +
~

4m2c2
σ ·∇V × π +O(m−3) .

(1.155)

This is not block-diagonal, owing to the last term on the RHS of the top line. We can elimi-
nate this term by effecting yet another unitary transformation. However, this will result in a
contribution to the energy of order m−3, so we can neglect it. To substantiate this last claim,
drop all the block-diagonal terms except for the leading order one, mc2 τ z, and consider the
Hamiltonian

K = mc2 τ z +
~

2mc
σ ·∇V τ y . (1.156)

We now know how to bring this to block-diagonal form. The result is

K̃ = mc2

√

1 +

(
~ σ ·∇V

2m2c3

)2
τ z =

(
mc2 +

~2(∇V )2

8m3c4
+ . . .

)
τ z , (1.157)

and the correction is of order m−3, as promised.

We now assume all the negative energy (τ z = −1) states are filled. The Hamiltonian for the
electrons, valid to O(m−3), is then

˜̂
H = mc2 + V +

π2

2m
+

e~

2mc
B · σ +

~2

8m2c2
∇

2V +
~

4m2c2
σ ·∇V × π . (1.158)

1.7 Appendix : Ideal Bose Gas Condensation

We begin with the grand canonical Hamiltonian K = H − µN for the ideal Bose gas,

K =
∑

k

(εk − µ) b†kbk −
√
N
∑

k

(
νk b

†
k + ν̄k bk

)
. (1.159)
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Here b†k is the creation operator for a boson in a state of wavevector k, hence
[
bk , b

†
k′

]
= δkk′ . The

dispersion relation is given by the function εk, which is the energy of a particle with wavevector
k. We must have εk − µ > 0 for all k, lest the spectrum of K be unbounded from below. The
fields {νk, ν̄k} break a global O(2) symmetry.

Students who have not taken a course in solid state physics can skip the following paragraph,
and be aware that N = V/v0 is the total volume of the system in units of a fundamental ”unit
cell” volume v0. The thermodynamic limit is thenN →∞. Note thatN is not the boson particle
number, which we’ll call Nb.

Solid state physics boilerplate : We presume a setting in which the real space Hamiltonian is
defined by some boson hopping on a Bravais lattice. The wavevectors k are then restricted to

the first Brillouin zone, Ω̂, and assuming periodic boundary conditions are quantized according
to the condition exp

(
iNl k · al

)
= 1 for all l ∈ {1, . . . , d}, where al is the lth fundamental direct

lattice vector andNl is the size of the system in the al direction; d is the dimension of space. The
total number of unit cells is N ≡ ∏lNl . Thus, quantization entails k =

∑
l(2πnl/Nl) bl , where

bl is the lth elementary reciprocal lattice vector (al · bl′ = 2πδll′) and nl ranges over Nl distinct

integers such that the allowed k points form a discrete approximation to Ω̂ .

To solve, we first shift the boson creation and annihilation operators, writing

K =
∑

k

(εk − µ) β†
kβk −N

∑

k

|νk|2
εk − µ

, (1.160)

where

βk = bk −
√
N νk

εk − µ
, β†

k = b†k −
√
N ν̄k

εk − µ
. (1.161)

Note that
[
βk , β

†
k′

]
= δkk′ so the above transformation is canonical. The Landau free energy

Ω = −kBT lnΞ , where Ξ = Tr e−K/kBT , is given by

Ω = Nk
B
T

∞∫

−∞

dε g(ε) ln
(
1− e(µ−ε)/kbT

)
−N

∑

k

|νk|2
εk − µ

, (1.162)

where g(ε) is the density of energy states per unit cell,

g(ε) =
1

N

∑

k

δ
(
ε− εk

)
−−−−→
N→∞

v0

∫

Ω̂

ddk

(2π)d
δ
(
ε− εk

)
. (1.163)

Note that

ψk ≡
1√
N

〈
bk
〉
= − 1

N

∂Ω

∂ν̄k
=

νk
εk − µ

. (1.164)

In the condensed phase, ψk is nonzero.
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The Landau free energy (grand potential) is a function Ω(T,N, µ, ν, ν̄). We now make a Legen-
dre transformation,

Y (T,N, µ, ψ, ψ̄) = Ω(T,N, µ, ν, ν̄) +N
∑

k

(
νkψ̄k + ν̄kψk

)
. (1.165)

Note that
∂Y

∂ν̄k
=
∂Ω

∂ν̄k
+Nψk = 0 , (1.166)

by the definition of ψk. Similarly, ∂Y/∂νk = 0. We now have

Y (T,N, µ, ψ, ψ̄) = Nk
B
T

∞∫

−∞

dε g(ε) ln
(
1− e(µ−ε)/kbT

)
+N

∑

k

(εk − µ) |ψk|2 . (1.167)

Therefore, the boson particle number per unit cell is given by the dimensionless density,

n =
Nb

N
= − 1

N

∂Y

∂µ
=
∑

k

|ψk|2 +
∞∫

−∞

dε
g(ε)

e(ε−µ)/kBT − 1
, (1.168)

and the relation between the condensate amplitude ψk and the field νk is given by

νk =
1

N

∂Y

∂ψ̄k
= (εk − µ)ψk . (1.169)

Recall that νk acts as an external field. Let the dispersion εk be minimized at k = K . Without
loss of generality, we may assume this minimum value is εK = 0 . We see that if νk = 0 then
one of two must be true:

(i) ψk = 0 for all k

(ii) µ = εK , in which case ψK can be nonzero.

Thus, for ν = ν̄ = 0 and µ > 0, we have the usual equation of state,

n(T, µ) =

∞∫

−∞

dε
g(ε)

e(ε−µ)/kBT − 1
, (1.170)

which relates the intensive variables n, T , and µ. When µ = 0, the equation of state becomes

n(T, µ = 0) =

n0︷ ︸︸ ︷∑

K

|ψK |2 +

n>(T )︷ ︸︸ ︷
∞∫

−∞

dε
g(ε)

eε/kBT − 1
, (1.171)
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where now the sum is over only those K for which εK = 0 . Typically this set has only one
member, K = 0, but it is quite possible, due to symmetry reasons, that there are more such
K values. This last equation of state is one which relates the intensive variables n, T , and n0 ,
where

n0 =
∑

K

|ψK |2 (1.172)

is the dimensionless condensate density. If the integral n>(T ) in Eqn. 1.171 is finite, then for
n > n0(T ) we must have n0 > 0. Note that, for any T , n>(T ) diverges logarithmically whenever
g(0) is finite. This means that Eqn. 1.170 can always be inverted to yield a finite µ(n, T ), no
matter how large the value of n, in which case there is no condensation and n0 = 0. If g(ε) ∝ εα

with α > 0, the integral converges and n>(T ) is finite and monotonically increasing for all
T . Thus, for fixed dimensionless number n, there will be a critical temperature Tc for which
n = n>(Tc). For T < Tc , Eqn. 1.170 has no solution for any µ and we must appeal to eqn. 1.171.
The condensate density, given by n0(n, T ) = n− n>(T ) , is then finite for T < Tc , and vanishes
for T > Tc .

In the condensed phase, the phase of the order parameter ψ inherits its phase from the external
field ν, which is taken to zero, in the same way the magnetization in the symmetry-broken
phase of an Ising ferromagnet inherits its direction from an applied field h which is taken to
zero. The important feature is that in both cases the applied field is taken to zero after the
approach to the thermodynamic limit.

1.8 Appendix : Asymptotic Series in a Zero-Dimensional Field

theory

In this appendix we will solve numerically for a zero-dimensional field theory, i.e. an integral
F (λ), which depends parametrically on a dimensionless parameter λ, with F (0) = 1, and com-
pare the results with expansions from diagrammatic perturbation theory, We will see that the
perturbation expansion is asymptotic, meaning that it is formally divergent, i.e. with a vanish-
ing radius of convergence. However, if the results of summing the first N terms results in a
relative error SN (λ) = RN (λ)/F (λ), where RN (λ) is the remainder after N terms, is minimized
by setting N = N∗(λ), where N∗(λ)→∞ as λ→ 0.

Problem : The normalized Gaussian distribution P (x) = 1√
2π
e−x

2/2 has the nth moment

〈xn〉 = 1√
2π

∞∫

−∞

dx xn e−x
2/2
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Clearly 〈xn〉 = 0 if n is a nonnegative odd integer. Next consider the generating function

Z(j) =
1√
2π

∞∫

−∞

dx e−x
2/2 ejx = exp

(
1
2
j2
)
.

(a) Show that 〈xn〉 = (dnZ/djn)
∣∣
j=0

and provide an explicit result for 〈x2k〉 where k ∈ N.

(b) Now consider the following integral:

F (λ) =
1√
2π

∞∫

−∞

dx exp

(
−1

2
x2 − λ

4!
x4
)
.

Clearly F (0) = 1, but for general λ > 0 the integral has no known analytic form26, but we
may express the result as a power series in the parameter λ by Taylor expanding exp

(
−

λ
4 !
x4
)

and then using the result of part (a) for the moments 〈x4k〉. Find the coefficients in
the perturbation expansion,

F (λ) =

∞∑

k=0

Ck λ
k .

(c) Define the remainder after N terms as

RN(λ) = F (λ)−
N∑

k=0

Ck λ
k .

Compute RN(λ) by evaluating numerically the integral for F (λ) (using Mathematica or
some other numerical package) and subtracting the finite sum. Then define the ratio
SN(λ) = RN (λ)/F (λ), which is the relative error from the N term approximation and plot
the absolute relative error

∣∣SN (λ)
∣∣ versus N for several values of λ. (I suggest you plot

the error on a log scale.) What do you find?? Try a few values of λ including λ = 0.01,
λ = 0.05, λ = 0.2, λ = 0.5, λ = 1, λ = 2.

(d) Repeat the calculation for the integral

G(λ) =
1√
2π

∞∫

−∞

dx exp

(
−1

2
x2 − λ

6!
x6
)
.

(e) Reflect meaningfully on the consequences for weakly and strongly coupled quantum field
theories.

26In fact, it does. According to Mathematica, F (λ) =
√

2u
π exp(u)K1/4(u), where u = 3/4λ and Kν(z) is the

modified Bessel function. I am grateful to Prof. John McGreevy for pointing this out.
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Solution

(a) Clearly 〈xn〉 = (dnZ/djn)
∣∣
j=0

, and so 〈 xn 〉 =
(
dnZ/djn

)
j=0

. With Z(j) = exp
(
1
2
j2
)
, only the

kth order term in j2 in the Taylor series for Z(j) contributes, and we obtain

〈 x2k 〉 = d2k

dj2k

(
j2k

2k k!

)
=

(2k)!

2k k!
.

(b) We have

F (λ) =
∞∑

n=0

1

n!

(
− λ

4!

)n
〈 x4n 〉 =

∞∑

n=0

(4n)!

4n (4!)n n! (2n)!
(−λ)n .

This series is asymptotic. It has the properties

lim
λ→0

RN (λ)

λN
= 0 (fixed N) , lim

N→∞

RN (λ)

λN
=∞ (fixed λ) ,

where RN (λ) is the remainder after N terms, defined in part (c). The radius of convergence is
zero. To see this, note that if we reverse the sign of λ, then the integrand of F (λ) diverges badly
as x→ ±∞. So F (λ) is infinite for λ < 0, which means that there is no disk of any finite radius
of convergence which encloses the point λ = 0. Note that by Stirling’s rule,

Cn ≡
(−1)n (4n)!

4n (4!)n n! (2n)!
∼ (−1)n nn ·

(
2
3

)n
e−n · (πn)−1/2 ,

and we conclude that the magnitude of the summand reaches a minimum value when n =
n∗(λ), with n∗(λ) ≈ 3/2λ for small values of λ. For large n, the magnitude of the coefficient Cn
grows as |Cn| ∼ en lnn+O(n), which dominates the λn term, no matter how small λ is.

(c) Results are plotted in fig. 1.16.

It is worth pointing out that the series for F (λ) and for lnF (λ) have diagrammatic interpreta-
tions. For a Gaussian integral, one has

〈 x2k 〉 = 〈 x2 〉k · A2k

where A2k is the number of contractions. For our integral, 〈 x2 〉 = 1. The number of contractions
A2k is computed in the following way. For each of the 2k powers of x, we assign an index
running from 1 to 2k. The indices are contracted, i.e. paired, with each other. How many pairings
are there? Suppose we start with any from among the 2k indices. Then there are (2k−1) choices
for its mate. We then choose another index arbitrarily. There are now (2k − 3) choices for its
mate. Carrying this out to its completion, we find that the number of contractions is

A2k = (2k − 1)(2k − 3) · · ·3 · 1 =
(2k)!

2k k!
,
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Figure 1.16: Relative error versus number of terms kept for the asymptotic series for F (λ)
(quartic theory). Note that the optimal number of terms to sum is N∗(λ) ≈ 3

2λ
.

exactly as we found in part (a). Now consider the integral F (λ). If we expand the quartic
term in a power series, then each power of λ brings an additional four powers of x. It is
therefore convenient to represent each such quartet with the symbol×. At order N of the series
expansion, we have N ×’s and 4N indices to contract. Each full contraction of the indices may
be represented as a labeled diagram, which is in general composed of several disjoint connected
subdiagrams. Let us label these subdiagrams, which we will call clusters, by an index γ. Now
suppose we have a diagram consisting of mγ subdiagrams of type γ, for each γ. If the cluster γ
contains nγ vertices (×), then we must have

N =
∑

γ

mγ nγ .

How many ways are there of assigning the labels to such a diagram? One might think (4!)N ·N !,
since for each vertex × there are 4! permutations of its four labels, and there are N ! ways to
permute all the vertices. However, this overcounts diagrams which are invariant under one or
more of these permutations. We define the symmetry factor sγ of the (unlabeled) cluster γ as the
number of permutations of the indices of a corresponding labeled cluster which result in the
same contraction. We can also permute the mγ identical disjoint clusters of type γ.

Examples of clusters and their corresponding symmetry factors are provided in fig. 1.17, for all
diagrams with nγ 6 3. There is only one diagram with nγ = 1, resembling©•©. To obtain sγ = 8,
note that each of the circles can be separately rotated by an angle π about the long symmetry
axis. In addition, the figure can undergo a planar rotation by π about an axis which runs
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Figure 1.17: Cluster symmetry factors for the quartic theory. A vertex is represented as a black
dot (•) with four ‘legs’.

through the sole vertex and is normal to the plane of the diagram. This results in sγ = 2·2·2 = 8.
For the cluster ©•©•©, there is one extra circle, so sγ = 24 = 16. The third diagram in figure
shows two vertices connected by four lines. Any of the 4! permutations of these lines results in
the same diagram. In addition, we may reflect about the vertical symmetry axis, interchanging
the vertices, to obtain another symmetry operation. Thus sγ = 2 · 4! = 48. One might ask
why we don’t also count the planar rotation by π as a symmetry operation. The answer is
that it is equivalent to a combination of a reflection and a permutation, so it is not in fact a
distinct symmetry operation. (If it were distinct, then sγ would be 96.) Finally, consider the
last diagram in the figure, which resembles a sausage with three links joined at the ends into
a circle. If we keep the vertices fixed, there are 8 symmetry operations associated with the
freedom to exchange the two lines associated with each of the three sausages. There are an
additional 6 symmetry operations associated with permuting the three vertices, which can be
classified as three in-plane rotations by 0, 2π

3
and 4π

3
, each of which can also be combined with

a reflection about the y-axis (this is known as the group C3v). Thus, sγ = 8 · 6 = 48.

Now let us compute an expression for F (γ) in terms of the clusters. We sum over all possible
numbers of clusters at each order:

F (γ) =

∞∑

N=0

1

N !

∑

{mγ}

(4!)NN !
∏

γ s
mγ
γ mγ !

(
− λ

4!

)N
δN,

∑
γmγnγ

= exp

(∑

γ

(−λ)nγ
sγ

)
. (1.173)

Thus,

lnF (γ) =
∑

γ

(−λ)nγ
sγ

,

and the logarithm of the sum over all diagrams is a sum over connected clusters. It is instructive to
work this out to order λ2. We have, from the results of part (b),

F (λ) = 1− 1
8
λ+ 35

384
λ2 +O(λ3) =⇒ lnF (λ) = −1

8
λ+ 1

12
λ2 +O(λ3) .
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λ 10 2 0.5 0.2 0.1 0.05 0.02
F 0.92344230 0.97298847 0.99119383 0.996153156 0.99800488 0.99898172 0.99958723
n∗ 0.68 1.3 2.6 4.1 5.8 8.2 13

Table 1.1: F (λ) and n∗(λ) for part d.

Note that there is one diagram with N = 1 vertex, with symmetry factor s = 8. For N = 2
vertices, there are two diagrams, one with s = 16 and one with s = 48 (see fig. 1.17). Since
1
16

+ 1
48

= 1
12

, the diagrammatic expansion is verified to order λ2.

(d) We now have27

G(λ) =
1√
2π

∞∫

−∞

dx exp

(
−1

2
x2 − λ

6!
x6
)

=

∞∑

n=0

1

n!

(
− λ
6!

)n
〈x6n〉 ≡

∞∑

n=0

Cn λ
n , (1.174)

with

Cn =
(−1)n (6n)!

(6!)n n! 23n (3n)!
.

Invoking Stirling’s approximation, we find ln |Cn| ∼ 2n lnn−
(
2+ ln 5

3

)
n . Thus we see that the

magnitude of the contribution of the nth term in the perturbation series is given by

Cn λ
n = (−1)n exp

(
2n lnn−

(
2 + ln 10

3

)
n+ n lnλ

)
.

Differentiating, we find that this contribution is minimized for n = n∗(λ) = (10/3λ)1/2 . Via
numerical integration using FORTRAN subroutines from QUADPACK, one obtains the results
in Fig. 1.18 and Tab. 1.1.

The series for G(λ) and for lnG(λ) again have diagrammatic interpretations. If we expand
the sextic term in a power series, each power of λ brings an additional six powers of x. It is
natural to represent each such sextet with as a vertex with six legs. At order N of the series
expansion, we have N such vertices and 6N legs to contract. As before, each full contraction
of the leg indices may be represented as a labeled diagram, which is in general composed of
several disjoint connected clusters. If the cluster γ contains nγ vertices, then for any diagram
we again must have N =

∑
γmγnγ , where mγ is the number of times the cluster γ appears. As

with the quartic example, the number of ways of assigning labels to a given diagram is given

by the total number of possible permutations (6!)N·N ! divided by a correction factor
∏

γ s
mγ
γ mγ !,

where sγ is the symmetry factor of the cluster γ, and the mγ! term accounts for the possibility
of permuting among different labeled clusters of the same type γ.

27According to Mathematica, the G(λ) has the analytic form G(λ) = π
√
u
[
Ai2(u) + Bi2(u)

]
, where u = (15/2λ)1/3

and Ai(z) and Bi(z) are Airy functions. The definitions and properties of the Airy functions are discussed in §9.2
of the NIST Handbook of Mathematical Functions.
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Figure 1.18: Logarithm of ratio of remainder after N terms RN (λ) to the value of the integral
G(λ) for the sextic theory, for various values of λ.

Examples of clusters and their corresponding symmetry factors are provided in Fig. 1.19. There
is only one diagram with nγ = 1, shown panel (a), resembling a three-petaled flower. To obtain
sγ = 48, note that each of the petals can be rotated by 180◦ about an axis bisecting the petal,
yielding a factor of 23. The three petals can then be permuted, yielding an additional factor of
3!. Hence the total symmetry factor is sγ = 23 · 3! = 48. Now we can see how dividing by the
symmetry factor saves us from overcounting. In this case, we get 6!/sγ = 720/48 = 15 = 5 · 3 · 1,
which is the correct number of contractions. For the diagram in panel (b), the four petals and
the central loop can each be rotated about a symmetry axis, yielding a factor 25. The two left
petals can be permuted, as can the two right petals. Finally, the two vertices can themselves be
permuted. Thus, the symmetry factor is sγ = 25 · 22 · 2 = 28 = 256. In panel (c), the six lines
can be permuted (6!) and the vertices can be exchanged (2), hence sγ = 6! · 2 = 1440. In panel
(d), the two outer loops each can be twisted by 180◦, the central four lines can be permuted,
and the vertices can be permuted, hence sγ = 22 · 4! · 2 = 192. Finally, in panel (e), each pair of
vertices is connected by three lines which can be permuted, and the vertices themselves can be
permuted, so sγ = (3!)3 · 3! = 1296.

Now let us compute an expression for F (γ) in terms of the clusters. We sum over all possible
numbers of clusters at each order:

G(γ) =
∞∑

N=0

1

N !

∑

{mγ}

(6!)NN !
∏

γ s
mγ
γ mγ !

(
− λ

6!

)N
δN,

∑
γmγnγ

= exp

(∑

γ

(−λ)nγ
sγ

)
. (1.175)
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Figure 1.19: Diagrams and their symmetry factors for the 1
6!
λ x6 zero-dimensional field theory.

Thus,

lnG(γ) =
∑

γ

(−λ)nγ
sγ

,

and the logarithm of the sum over all diagrams is a sum over connected clusters. It is instructive to
work this out to order λ2. We have, from the results of part (a),

G(λ) = 1− λ

26 ·3 +
7·11·λ2
29 ·3·5 +O(λ3) =⇒ lnG(λ) = − λ

26 ·3 +
113·λ2
28 ·32 ·5 +O(λ3) .

Note that there is one diagram with N = 1 vertex, with symmetry factor s = 48. For N = 2
vertices, there are three diagrams, one with s = 256, one with s = 1440, and one with s = 192
(see Fig. 1.19). Since 1

256
+ 1

1440
+ 1

192
= 113

28325
, the diagrammatic expansion is verified to order λ2.

(e) In quantum field theory (QFT), the vertices themselves carry space-time labels, and the con-
tractions, i.e. the lines connecting the legs of the vertices, are propagators G(xµi −xµj ), where xµi is
the space-time label associated with vertex i. It is convenient to work in momentum-frequency

space, in which case we work with the Fourier transform Ĝ(pµ) of the space-time propagators.
Integrating over the space-time coordinates of each vertex then enforces total 4-momentum
conservation at each vertex. We then must integrate over all the internal 4-momenta to ob-
tain the numerical value for a given diagram. The diagrams, as you know, are associated with
Feynman’s approach to QFT and are known as Feynman diagrams. Our example here is equiv-
alent to a (0+0)-dimensional field theory, i.e. zero space dimensions and zero time dimensions.
There are then no internal 4-momenta to integrate over, and each propagator is simply a num-
ber rather than a function. The discussion above of symmetry factors sγ carries over to the
more general QFT case.
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There is an important lesson to be learned here about the behavior of asymptotic series. As we
have seen, if λ is sufficiently small, summing more and more terms in the perturbation series
results in better and better results, until one reaches an optimal order when the error is mini-
mized. Beyond this point, summing additional terms makes the result worse, and indeed the
perturbation series diverges badly as N →∞. Typically the optimal order of perturbation the-
ory is inversely proportional to the coupling constant. For quantum electrodynamics (QED),
where the coupling constant is the fine structure constant α = e2/~c ≈ 1

137
, we lose the ability to

calculate in a reasonable time long before we get to 137 loops, so practically speaking no prob-
lems arise from the lack of convergence. In quantum chromodynamics (QCD), however, the
effective coupling constant is about two orders of magnitude larger, and perturbation theory is
a much more subtle affair.

1.9 Appendix : Derivation of Ginzburg-Landau Functional

1.9.1 Discrete symmetry : Z2

We start with the Ising Hamiltonian,

H = −1
2

∑

i,j

Jij σi σj −
∑

i

hi σi +
1
2

∑

i

Jii , (1.176)

where σi ∈ {+1,−1} for all i. By subtracting the last term, we eliminate the constant contri-
bution from the diagonal elements of the coupling matrix Jij . You might well wonder why
we simply don’t specify that Jii = 0 for all i from the outset. The reason for this will be made
apparent at an important moment, and the suspense should motivate you to read further!

We define Kij ≡ Jij/kB
T and gi ≡ hi/kB

T , so the density matrix is28

̺(σ) = exp
(

1
2
Kij σi σj + gi σi − 1

2
TrK

)
. (1.177)

We now invoke the following identity:

∞∫

−∞

dm1 · · ·
∞∫

−∞

dmN exp
[
− 1

2
K−1
ij mimj + bimi

]
= (2π detK)1/2 exp

[
1
2
Kij bi bj

]
. (1.178)

This licenses us to write

̺(σ) = (2π detK)−1/2 e−
1
2
TrK

∫
dNm exp

[
− 1

2
K−1
ij mimj + (mi + gi) σj

]
. (1.179)

28In fact what we call ̺(σ) is really the diagonal element ̺(σ |σ) = 〈σ | ̺ |σ 〉 of the density matrix, whose off-
diagonal matrix elements all vanish since all operators σi commute for our noninteracting Hamiltonian.
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Now trace over the {σi} to obtain the partition function:

Z =

∫
dNm exp

[
− Φ(m)

]
, (1.180)

where
Φ(m) = Φ0 +

1
2

∑

i,j

K−1
ij mimj −

∑

i

ln
[
cosh(mi + gi)

]
, (1.181)

where Φ0 =
1
2
ln(2π detK) + 1

2
TrK −N ln 2 . Note also that 〈σi〉 =

〈
tanh(mi + gi)

〉
.

We consider the situation where we are close to a second order phase transition and we apply
a very weak field. In this case, we may expand Φ(m) in powers of the mi and gi to obtain

Φ(m) = Φ0 +
1
2
K−1
ij mimj +

∑

i

(
− gimi − 1

2
m2
i +

1
12
m4
i + . . .

)
, (1.182)

valid to fourth order in the {φi} and first order in the {gi}. Now define the Fourier transforms,

mi =
1√
N

∑

k

m̂k e
−k·Ri , m̂k =

1√
N

∑

i

mi e
−ik·Ri (1.183)

as well as K̂(k) ≡∑RK(R) e−ik·R, with Kij = K(Rj − Ri) . We obtain

Φ(m) = Φ0 +
1
2

∑

k

(
K̂−1(k)− 1

)
|m̂k|2 + 1

12

∑

i

m4
i −

∑

i

gimi , (1.184)

where K̂−1(k) = 1/K̂(k). On a d-dimensional cubic lattice with lattice constant a, assuming Jij
has isotropic nearest neighbor interactions only, we have

K̂(k) = 2K

d∑

µ=1

cos(kµa) = 2dK −Kk2a2 +O(k4µ) , (1.185)

where K = J/kBT and J is the nearest neighbor coupling. One might think we could simply

expand about the global maximum of K̂(k) lying at k = 0 and then invert, to obtain

K̂(k) ≈ 1

2dK
+

1

4d2K
k
2a2 + . . . (1.186)

In the absence of an external field, the coefficient of the quadratic term in each mi would then
be 1

2
α with Landau parameter α = (2dK)−1−1. This would predict an ordered phase for a < 0,

or k
B
T < zJ , where z = 2d is the lattice coordination number, which is indeed the classic mean

field theory result.

However, there is a disturbing aspect to our derivation, which thus far has been exact. The

determinant of K is given by detK =
∏
k K̂(k), and this vanishes when any of the eigenvalues
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K(k) vanishes. It is easy to conjure up a vanishing eigenvalue, for example by taking kµ =

π/2a for all µ ∈ {1, . . . , d}. Indeed, the eigenspectrum of K extends over the interval K̂(k) ∈
[−2dK,+2dK], hence there are negative eigenvalues as well. We can escape this problem by
noting that our formulation allows us to include arbitrary diagonal elements in the matrix K.
They are guaranteed not to affect our final result – if it is obtained exactly – since each diagonal
element Jii cancels in the expression for H in Eqn. 1.201. Thus, we may take

Jij = J0 + J1 δ|Ri−Rj |,a , (1.187)

which yields

K̂(k) = K0 + 2K1

d∑

µ=1

cos(kµa) = K0 + 2dK1 −K1k
2a2 + . . . . (1.188)

Provided K0 > 2dK1, all the eigenvalues K̂(k) are positive, and we may safely expand about
k = 0, obtaining

K̂−1(k) =
k

B
T

J0 + zJ1

(
1 +

J1
J0 + zJ1

k
2a2 + . . .

)
. (1.189)

The low temperature phase occurs for K̂(0) < 1, which means kBT < J0 + zJ1 . Thus we have
k

B
Tc = J0 + zJ1 , which unfortunately depends on the (almost29) arbitrary constant J0. This

is perhaps unsatisfying, since adding J0 increases Tc, and mean field theory already tends to
overestimate the critical temperature. However, we shouldn’t be too alarmed by any of this. We
have no right to trust in low order expansions when it comes to predicting Tc. However, from
the standpoint of the renormalization group, we may expect the corresponding continuum
field theory, with free energy

F [m] =

∫
ddx
(

1
2
am2 + 1

4
bm4 + 1

2
κ |∇m|2 − hm

)
, (1.190)

to yield the correct critical exponents.

The Euler-Lagrange equations derived from the free energy in Eqn. 1.190 are

am+ bm3 − κ∇2m = h . (1.191)

Consider the case a < 0 and h = 0, in which case the lowest free energy solution corresponds to

m(x) = ±m0 with m0 =
√
|a|/b , and write m(x) = m0 µ(x). Let’s solve for the case of a domain

wall, where µ(x) = µ(x1) is a function of only one coordinate and interpolates between the two
vacuua, with µ(−∞) = −1 and µ(+∞) = +1. We then have

ξ2
d2µ

dx21
= −µ + µ3 = −dU

dµ
(1.192)

29Recall J0 > 2dJ1 must be imposed in order to avoid a vanishing of the determinant detK .
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where ξ =
√
κ/|a| is the correlation length, and

U(µ) = −1
4

(
1− µ2

)2
. (1.193)

Thus, we have

2ξ
dµ

dx1
= 1− µ2 , (1.194)

with solution

µ(x1) = tanh(x1/2ξ) , (1.195)

which satisfies the boundary conditions µ(±∞) = ±1. Thus, our domain wall profile is given
by the expression m(x) = m0 tanh(x1/2ξ), and the total domain wall energy is found to be

∆F =
a2

2b
Ld−1

∞∫

−∞

dx1

{
1
2

(
1− µ2

)2
+

(
ξ
dµ

dx1

)2}
=

4a2

b
ξ Ld−1 , (1.196)

which has the same L dependence as what we found in §1.5.1 for the Ising case.

1.9.2 Continuous symmetry : O(n)

A general n-dimensional unit vector φ = (φ1, . . . , φn) may be expressed in terms of n− 2 polar
angles {θ1, . . . , θn−2 and one azimuthal angle ϕ, viz.

φ1 = sin θ1 · · · sin θn−3 sin θn−2 cosϕ

φ2 = sin θ1 · · · sin θn−3 sin θn−2 sinϕ

φ3 = sin θ1 · · · sin θn−3 cos θn−2

...

φn−1 = sin θ1 cos θ2
φn = cos θ1 .

(1.197)

Here θj ∈ [0, π] with j ∈ {1, . . . , n − 2} and ϕ ∈ [0, 2π]. The total solid angle in n dimensions is
then

Ωn = 2π

π∫

0

dθ1 · · ·
π∫

0

dθn−2 sinn−2 θ1 · · · sin θn−2 (1.198)

Now
π∫

0

dθ sinpθ =

√
π Γ(p+1

2
)

Γ(p+2
2
)

, (1.199)
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and therefore

Ωn = 2π ·
√
π Γ(n−1

2
)

Γ(n
2
)
·
√
π Γ(n−2

2
)

Γ(n−1
2
)
· · ·
√
π Γ(1)

Γ(3
2
)

=
2πn/2

Γ(n
2
)

. (1.200)

This agrees with the following method of calculation:

πn/2 =

( ∞∫

−∞

dx e−x
2

)n
=

∫
dnr e−r

2

= Ωn

∞∫

0

dr rn−1 e−r
2

= 1
2
Ωn

∞∫

0

du u
n
2
−1 e−u = 1

2
Ωn Γ(

n
2
) .

Consider now the O(n) model Hamiltonian,

H = −1
2

∑

i,j

Jij φ̂i · φ̂j −
∑

i

hi · φ̂i + 1
2

∑

i

Jii , (1.201)

Using the Gaussian integral identity of Eqn. 1.178 n times, we obtain

Z =

∫
dnm1 · · ·

∫
dnmN exp

[
− Φ(m1, . . . ,mN)

]
(1.202)

where each mj = (m1
j , . . . , m

n
j ) is a real valued n-component vector, and

Φ(m1, . . . ,mn) = Φ0 +
1
2

∑

i,j

Kijmi ·mj −
∑

i

lnYn
(
|mi + gi|

)
, (1.203)

with Φ0 =
n
2
ln(2π detK) + 1

2
TrK, gi = hi/kB

T , and

Yn(y) = ln




π∫

0

dθ
[
sin θ

]n−2
ey cos θ

/ π∫

0

dθ
[
sin θ

]n−2


 =

y2

2n
− y4

8n2(n+ 1)
+O(y6) . (1.204)

Expanding to linear order in the fields {gi} and quadratic order in the local order parameter
values {mi}, we obtain

Φ(m1, . . . ,mN) = Φ0 +
1
2

∑

k

(
K̂−1(k)− 1

n

)
|m̂k|2 +

∑

i

|mi|4
8n2(n + 1)

− 1

N

∑

i

gi ·mi + . . . (1.205)

which, in the continuum limit, corresponds to the dimensionless free energy density

βf(m,∇m) = f0 +
1
2
a(T )m2 + 1

4
b (m2)2 + 1

2
κ (∇m)2 − j ·m+ . . . . (1.206)

Assuming a(T ) < 0, we find the equilibrium value |m| = m0 =
√
|a|/b . Writing m = m0̂ ω,

where ω̂(x) is a unit vector field, and setting the external field to j = 0, we find the free energy
density for twists of the direction vector ω̂ to be

ftwist(ω̂) =
1
2
ρs (∇ω̂)2 , (1.207)

where the spin stiffness is ρs = κm2
0 kB

T , which has dimensions EL2−d. As shown in §1.5.1, a full
twist in ω̂(x) in a single plane (ω1, ω2) across the width L of the system yields an energy which
is proportional to Ld−2.
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Chapter 2

Crystal Math

2.1 Classification of Crystalline Structures

Crystallography is the classification of spatially periodic structures according to their trans-
lational and rotational symmetries. It is a mature field1, and the possible crystalline symme-
tries of two and three dimensional structures have been exhaustively classified. We shall not
endeavor to prove, e.g., that there are precisely 230 three-dimensional space groups. Rather,
our proximate goal is to economically describe the most relevant aspects of the classification
scheme, so that we may apply methods of group theory to analyze experimentally relevant
physical processes in crystals.

2.1.1 Bravais Lattices

The notion of a Bravais lattice was discussed in §4.1.1. To review, a Bravais lattice L in d space
dimensions is defined by a set of linearly independent vectors {aj} with j ∈ {1, . . . , d} which
define a unit cell. A general point R in the Bravais lattice is written as R =

∑
j njaj , where each

nj ∈ Z. The unit cell volume is given by

Ω = ǫ
µ1···µd

a
µ1
1 · · ·a

µd
d , (2.1)

and is by definition positive2. The choice of the vectors {aj} is not unique, for one can always
replace ai with ai + aj for any j 6= i, and, due to the antisymmetry of the determinant, Ω is
unchanged. It is then conventional to choose the {aj} so that they have the shortest possible

1Crystallography has enjoyed something of a resurgence in its relevance to recent theories of topological classifi-
cation of electronic band structures. The interplay between symmetry and topology leads to a new classification
for materials known as crystalline topological insulators, for example.

2One can always reorder the aj so that Ω > 0.
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length, though even this prescription is not necessarily unique. The lattice of points {R} is
called the direct lattice, and the {aj} are the elementary (or primitive) direct lattice vectors.

One can then define the elementary (primitive) reciprical lattice vectors,

bνk ≡
2π

Ω
ǫµ1···µk−1 ν µk+1···µda

µ1
1 · · · a

µk−1

k−1 a
µk+1

k+1 · · · a
µd
d , (2.2)

which satisfy ai · bj = 2π δij . Indeed, we must have

d∑

µ=1

aµi b
µ
j = 2π δij ,

d∑

j=1

aµj b
ν
j = 2π δµν , (2.3)

because if the square matrices Aj,µ ≡ aµj and BT

µ,j ≡ bµj are inverses, they are each other’s right
as well as left inverse. For example, with d = 3 we have Ω = a1 · a2 × a3 and

b1 =
2π

Ω
a2 × a3 , b2 =

2π

Ω
a3 × a1 , b3 =

2π

Ω
a1 × a2 . (2.4)

The set of vectors K =
∑d

j=1mj bj , with each mi ∈ Z , is called the reciprocal lattice, L̂. The
reciprocal lattice is therefore also a Bravais lattice, though not necessarily the same Bravais
lattice as the direct lattice. For example, while the reciprocal lattice of a simple cubic lattice is
also simple cubic, the reciprocal lattice of a body-centered cubic lattice is face-centered cubic.
Constructing the reciprocal lattice of the reciprocal lattice, one arrives back at the original direct
lattice. The unit cell volume of the reciprocal lattice is

Ω̂ = ǫ
µ1···µd

b
µ1
1 · · · b

µd
d =

(2π)d

Ω
. (2.5)

The repeating unit cells in the direct and reciprocal lattices may be written as the collection of
points r and k, respectively, where

r =
d∑

j=1

xj aj , k =
d∑

j=1

yj bj , (2.6)

where each xj , yj ∈ [0, 1]. The symmetries of the direct and reciprocal lattices are more fully
elicited by shifting each r and k point by a direct or reciprocal lattice vector so that it is as close
as possible to the origin. Equivalently, sketch all the nonzero shortest direct/reciprocal lattice
vectors emanating from the origin3, and bisect each such vector with a perpendicular plane.
The collection of points lying within all the planes will form the first Wigner-Seitz cell of the
direct lattice, and the first Brillouin zone of the reciprocal lattice.

3There may be more than d shortest direct/reciprocal lattice vectors. For example, the triangular lattice is two-
dimensional, but it has six nonzero shortest direct/reciprocal lattice vectors.
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Figure 2.1: First panel shows construction of the first Wigner-Seitz cell or first Brillouin zone
for the triangular lattice. Second, third, and fourth panels show first Brillouin zones for the
simple cubic, body-centered cubic, and face-centered cubic direct lattices, respectively, with
high symmetry points identified. Image credit: Wikipedia and Setyawan and Curtarolo, DOI:
10.1016/j.commatsci.2010.05.010.

a
0

a
0

a
0

bcc fccsc

Figure 2.2: Simple cubic (sc), body-centered cubic (bcc), and face-centered cubic (fcc) lattices.

Finally, we cannot resist mentioning the beautiful and extremely important application of the
Poisson summation formula to Bravais lattice systems:

∑

K

eiK·r = Ω
∑

R

δ(r −R) ,
∑

R

eik·R = Ω̂
∑

K

δ(k −K) . (2.7)

Example: fcc and bcc lattices

The primitive direct lattice vectors for the fcc structure may be taken as

a1 =
a√
2
(0, 1, 1) , a2 =

a√
2
(1, 0, 1) , a3 =

a√
2
(1, 1, 0) . (2.8)

The unit cell volume is Ω = a1 · a2 × a3 = 2a3. Note that |aj| = a. Each FCC lattice point has

twelve nearest neighbors, located at ±a1 , ±a2 , ±a3 , ±(a1 − a2) , ±(a2 − a3) , and ±(a3 − a1) .
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Figure 2.3: Examples of Miller planes. Image credit: Wikipedia.

The corresponding primitive reciprocal lattice vectors are

b1 =
b√
3
(−1, 1, 1) , b2 =

b√
3
(1,−1, 1) , b3 =

b√
3
(1, 1,−1) , (2.9)

with b =
√
6π/a. These primitive vectors form a bcc structure, in which each site has eight

nearest neighbors, located at ±b1 , ±b2 , ±b3 , and ±(b1 + b2 + b3) . The simple, body-centered,
and face-centered cubic structures are depicted in Fig. 2.2.

Be forewarned that in some texts, distances are given in terms of the side length of the cube.
In the fcc lattice, if the cube has side length a0 , then the fcc lattice constant, i.e. the distance
between nearest neighbor sites, is a = a0/

√
2. Similarly, for the bcc case, if the cube has side

length b0, the corresponding bcc lattice constant is b =
√
3 b0/2.

In Fig. 2.1, the two rightmost panels show the first Brillouin zones corresponding to the bcc and
fcc direct lattices, respectively. It follows that the same shapes describe the first Wigner-Seitz
cells for the fcc and bcc lattices, respectively.

2.1.2 Miller indices

This eponymous notation system, first introduced by the British minerologist William H. Miller
in 1839, provides a convenient way of indexing both directions and planes of points in a Bravais
lattice. Briefly,

• [ h k l ] represents a direction in the direct lattice given by the vector ha1 + ka2 + la3. For
negative numbers, one writes, e.g., 2̄ instead of −2. Thus, [ 1 2̄ 0 ] is the direction parallel
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to a1 − 2a2. Only integers are used, so the direction parallel to 1
4
a1 +

1
2
a2 − 1

3
a3 is written

as [ 3 6 4̄ ].

• 〈 h k l 〉 denotes the set of all directions which are related to [ h k l ] by a rotational symme-
try.

• ( h k l ) represents a set of lattice planes which lie perpendicular to the vector hb1+kb2+ lb3.
Again, only integers are used, and any negative numbers are written with bars rather
than minus signs.

• { h k l } denotes all families of lattice planes related to ( h k l ) by a rotational symmetry.

We can think of the Miller planes in terms of plane waves, i.e. as sets of points of constant
phase φ(r) = Khkl · r, where Khkl = hb1 + kb2 + lb3 is a reciprocal lattice vector. If we write
R = ra1+sa2+ ta3 , we have φ(r, s, t) = 2π(hr+ks+ lt) ≡ 2πN , and thus the intersection of this
plane with the a1, a2, and a3 axes, which in general are not mutually orthogonal, lie at Na1/h ,
Na2/k, and Na3/l, respectively. In this way, one can identify the Miller indices of any lattice
plane by taking the inverses of the respective coefficients and inverting them, then multiplying
by the least common denominator if the results turn out to be fractional. From the formula
exp(iK · r) = 1, we also see that the distance between consecutive Miller planes is 2π/|K|.

Cubic and hexagonal systems

For cubic systems, it is conventional to index the lattice planes based on the underlying simple
cubic Bravais lattice. The bcc lattice is then viewed as a simple cubic lattice with a two element
basis (see §2.1.5 below), and the fcc lattice as simple cubic with a four element basis. In hexag-
onal systems, typically one chooses the primary direct lattice vectors a1 and a2 to subtend an
angle of 120◦, in which case b1 and b2 subtend an angle of 60◦. Then defining b0 ≡ b2 − b1, we
have that b0 is rotationally equivalent to b1 and b2. Thus, if we define i ≡ −(h + k), then we
have the following rotations:

h b1 + k b2 = R120◦

(
k b1 + i b2

)
= R240◦

(
i b1 + h b2

)

= R60◦

(̄
i b1 + h̄ b2

)
= R180◦

(
h̄ b1 + k̄ b2

)
= R300◦

(
k̄ b1 + ī b2

)
.

(2.10)

To reveal this rotational symmetry, the redundant fourth index i is used, and the Miller in-
dices are reported as ( h k i l ). The fourth index is always along the c-axis. The virtue of this
four index notation is that it makes clear the relations between, e.g., ( 1 1 2̄ 0 ) ≡ ( 1 1 0 ) and
( 1 2̄ 1 0 ) ≡ ( 1 2̄ 0 ), and in general

( h k i l ) → ( ī h̄ k̄ l )→ ( k i h l ) → ( h̄ k̄ ī l ) → ( i h k l ) → ( k̄ ī h̄ l ) → ( h k i l ) (2.11)

gives the full sixfold cycle.
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2.1.3 Crystallographic restriction theorem

Consider a Bravais lattice and select one point as the origin. Now consider a general rotation
R ∈ SO(3) and ask how the primary direct lattice vectors transform. If the Bravais lattice is
symmetric under the operation R, then each aj must transform into another Bravais lattice
vector, i.e.

Rµν a
ν
i = Kij a

µ
j , (2.12)

where Kij is a matrix composed of integers. Now multiply both sides of the above equation by
bρi and sum on the index i. From Eqn. 2.3, we have aνi b

ρ
i = 2πδνρ , hence 2πRµρ = Kij a

µ
j b

ρ
i . Now

take the trace over the indices µ and ρ, again invoking Eqn. 2.3, to get Tr R = Tr K. Now the
trace of any matrix is invariant under similarity transformation, and in d = 3 dimensions, and
if R = R(ξ, n̂) we can always rotate n̂ so that it lies along ẑ, in which case

S R(ξ, n̂)S−1 =



cos ξ − sin ξ 0
sin ξ cos ξ 0
0 0 1


 , (2.13)

in which case Tr R = 2 cos ξ + 1. In d = 2 we have Tr R = 2 cos ξ for proper rotations. Thus,
Tr R ∈ Z is possible only for ξ = 2π/n where n = 1, 2, 3, 4, or 6. Fivefold, sevenfold, etc. sym-
metries are forbidden! Note that it is perfectly possible to have a fivefold symmetric molecule,
such as C20H10 , also known as corannulene. But when we insist on having both rotational as
well as translational symmetries, the former are strongly restricted. Remarkably, there exists a
family of three-dimensional structures, called quasicrystals, which exhibit forbidden fivefold or
tenfold rotational symmetries. They elude the restriction theorem by virtue of not being true
crystals, i.e. they are quasiperiodic structures. See Fig. 2.4.

The result Tr R = Tr K ∈ Z is valid in all dimensions and does impose restrictions on the
possible rotational symmetries. However, rotations in higher dimensions are in general not
planar. Consider that it takes d− 1 angles to specify an axis in d dimensions, but the dimension
of SO(d) is 1

2
d(d − 1), so an additional 1

2
(d − 1)(d − 2) parameters in addition to specifying

an axis are required to fix an element of SO(d). For example, the four-dimensional F4 lattice
is a generalization of the three-dimensional bcc structure, consisting of two interpenetrating
four-dimensional hypercubic lattices, and exhibits 12-fold rotational symmetries.

2.1.4 Enumeration of two and three-dimensional Bravais lattices

The complete classification of two and three Bravais lattices is as follows4. In two dimensions,
there are four lattice systems: square, oblique, hexagonal, and rectangular. Of these, the rectan-
gular system supports a subvariety called center rectangular, resulting in a total of five distinct
two-dimensional Bravais lattices, shown in Fig. 2.5.

4To reinforce one’s memory, there is even a song: https://ww3.haverford.edu/physics/songs/bravais.htm.

https://ww3.haverford.edu/physics/songs/bravais.htm.
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Figure 2.4: Left: Molecular structure of corannulene, C20H10. Center: Tenfold-symmetric
diffraction pattern from a quasicrystalline alloy of aluminum, copper, and iron. Right: A
Ho-Mg-Zn icosahedral quasicrystal forms a beautiful pentagonal dodecahedron (20 sites, 12
pentagonal faces, 30 edges, 3-fold coordinated), a structure dual to the icosahedron (12 sites, 20
triangular faces, 30 edges, 5-fold coordinated). Image credits: Wikipedia.

Figure 2.5: The five two-dimensional Bravais lattices.

In three dimensions, there are seven lattice systems: triclinic, monoclinic, orthorhombic, tetrag-
onal, trigonal, hexagonal, and cubic5. Of these, monoclinic supports two subvarieties or types
(simple and base-centered), orthorhombic four subvarieties (simple, base-centered, body-centered,
and face-centered), and cubic three subvarieties (simple, face-centered, and body-centered),

5The systematic enumeration of three-dimensional lattices based on symmetry was first done by M. L. Franken-
heim in 1842. Frankenheim correctly found there were 32 distinct crystal classes, corresponding to the 32 distinct
three-dimensional point groups, but he erred in counting 15 rather than 14 distinct lattices. A. L. Bravais, in 1845,
was the first to get to 14, and for this he was immortalized. The identity of Frankenheim’s spurious 15th lattice
remains unclear.
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amounting to a grand total of 14 three-dimensional Bravais lattices:

(i) Cubic : this system is the most symmetric, with symmetry group Oh
∼= S4 × Z2, which

has 48 elements6. The Z2 factor arises from the inversion symmetry exhibited by all Bra-
vais lattices. Recall inversion takes (x, y, z) to (−x,−y,−z). The three cubic subvarieties
(simple, body-centered, and face-centered) are depicted in the first three panels of 2.6.

(ii) Tetragonal : Lowering the cubic symmetry by stretching or compressing along one of the
axes, one arrives at the tetragonal system, whose unit cell is a cubic rectangle with side
lengths a = b 6= c. There are two sub-varieties: simple and body-centered, depicted in the
left two panels of Fig. 2.8. Why is there not a face-centered subvariety as well? Because it
is equivalent to the body-centered case7. The symmetry group is D4h

∼= Z4 × Z2 × Z2 .

(iii) Orthorhombic : Further lowering the symmetry by stretching or compressing in along
a second axis, we obtain the orthorhombic system. The only rotational symmetries are
the three perpendicular mirror planes bisecting each of the unit cell sides, resulting in a
D2h = Z2 × Z2 × Z2 symmetry. There are four subvarieties, depicted in Fig. 2.7: simple,
base-centered, body-centered, and face-centered.

(iv) Monoclinic : Take an orthorhombic lattice and shear it so that the c-axis is no longer along
ẑ, but lies in the (y, z) plane at an angle β 6= 90◦ with respect to the horizontal. There
are two distinct subvarieties, simple and base-centered, which are shown in the third and
fourth panels of Fig. 2.8. The only remaining symmetries are reflection in the (y, z) plane
and inversion, hence the symmetry group is Z2 × Z2 .

(v) Triclinic : Shearing in a second direction, one obtains the triclinic system, depicted in the
right panel of Fig. 2.8. At least two of the angles ϑij = cos−1

(
âi · âj

)
are not 90◦, and all the

axes are of unequal lengths. The only remaining symmetry is inversion, so the symmetry
group is Z2 .

(vi) Trigonal : Starting with the cubic system, rather than squashing it along one of its three
orthogonal axes, imagine stretching it along the cube’s diagonal. The resulting Bravais
lattice is generated by three nonorthogonal primitive vectors which make the same angle
with respect to one another, as depicted in the fourth panel of Fig. 2.6. The stretched cube
diagonal becomes a threefold axis, and the symmetry group is D3d , which is of order 12.

(vii) Hexagonal : Finally, we come to the hexagonal system, which is unrelated to the cube. The
simple hexagonal lattice, depicted in the last panel of Fig. 2.6, is its only representative.
Two of the primitive direct lattice vectors are of equal length a and subtend a relative
angle of 60◦ or 120◦. The third lies perpendicular to the plane defined by the first two,
with an independent length c . The symmetry group is D6h , which has 24 elements.

6Why is the symmetry group of the cube called O (or Oh with inversion)? Because the cube and the octahedron
have the same symmetries. Hence O is sometimes called the octahedral group.

7See Ashcroft and Mermin, Solid State Physics, pp. 116-118.
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(a) sc (b) bcc (c) fcc (d) trigonal (e) hex

Figure 2.6: Simple cubic, body-centered cubic, face-centered cubic, trigonal, and hexagonal
Bravais lattices. Image credits: Wikipedia.

(a) so (b) baco (c) bco (d) fco

Figure 2.7: (Simple orthorhombic, base-centered orthorhombic, body-centered orthorhombic,
and face-centered orthorhombic Bravais lattices. Image credits: Wikipedia.

2.1.5 Crystals

A Bravais lattice is a tiling of space with empty unit cells. We are in the position of a painter
staring at a beautifully symmetric but otherwise empty canvas. The art with which we fill
our canvas is the crystalline unit cell, and it consists of a number r of atoms or ions, where
ions of species j are located at positions δj relative to any given direct lattice point R, with
j ∈ {1, . . . , r}. If the direct lattice points R themselves represent the positions of a class of ion,
we write δ1 ≡ 0. The set of vectors {δj} is called a basis, and without loss of generality, we
restrict the basis vectors so they do not lie outside the unit cell.

⋆ In a crystal, ions of species j are located at positions R + δj , where R is a Bravais lattice vector
and δj is a basis vector. All basis vectors are taken to lie within a single unit cell of the Bravais
lattice.

Obviously the existence of a basis, unless it is one of spherical symmetry with respect to each



70 CHAPTER 2. CRYSTAL MATH

(a) st (b) bct (c) sm (d) bacm (e) tri

Figure 2.8: Simple tetragonal, body-centered tetragonal, monoclinic, base-centered monoclinic,
and triclinic Bravais lattices. Image credits: Wikipedia.

Bravais lattice point, will have consequences for the allowed rotational symmetries of the crys-
tal, in general reducing them to a subgroup of the symmetry group of the Bravais lattice itself.
A vivid illustration of this is provided in Fig. 2.9 for the cubic lattice. When our canvas is
completely blank, the cube is entirely white, and the symmetry group is Oh, with 48 elements,
as shown in the middle bottom panel of the figure. If one of the reflection generators is broken,
but all other generators are preserved, the symmetry is reduced from Oh to O, which has 24
elements. By breaking different symmetry operations, Oh can be reduced to the tetrahedral
groups Td and Th, which also have 24 elements. Finally, each of O, Td , and Th may be broken
down to the 12 element tetrahedral group T , depicted in the upper left panel. It all depends on
how we paint the canvas.

As an example of a filled canvas, consider Fig. 2.10, which shows the unit cells of four high
temperature cuprate superconductors. It is a good exercise to verify the stoichiometry in at least
one example. Consider the unit cell for LSCO. The blue Cu ions at the top and bottom of the
cell are each shared by eight of these cubic rectangular cells, so the eight Cu ions at the corners
amount to one per cell. The Cu ion in the center belongs completely to this cell, so we have a
total of two Cu per cell. Each of the eight green La/Sr ions lying along the vertical columns at
the cell edges is shared by four cells, so they amount to a total of two per cell. The two La/Sr
ions within the cell toward the top and bottom each count as one, for a total of four La/Sr per
cell. Lastly, we come to the oxygen ions, shown in red. Each of the O ions along any of the 12
edges of the cell is shared by four cells. There are 16 such O sites, thus accounting for four O
per cell. If you think about the periodic repetition of the cell, you should realize that each Cu
ion is surrounded by six O ions arranged in an octahedron. There is also such an octahedron
in the center of the cell, on which we now focus. Two of its O ions are displaced vertically with
respect to the central Cu ion, and are therefore wholly part of our cell. The other four each lie
in the center of a face, and are each shared by two cells. Thus, this central octahedron accounts
for an additional four O ions, for a grand total of 8 per cell. Our final tally: two Cu, four La/Sr,
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T T
d

T
h

O O
h I

Figure 2.9: Tetrahedral, cubic, and icosahedral group symmetry operations. Twofold, three-
fold, fourfold, and sixfold axes are shown. The blue fins extend into discs, slicing the cube in
two along reflection planes. Image credits: http://azufre.quimica.uniovi.es/d-MolSym/.

and eight O per cell, which is to say La2−xSrxCuO4. In the three other compounds, the oxygen
stoichiometry is given as 4 + δ (Hg1201) or 6 + δ (YBCO and Ti2201). The deviation of δ from
an integer value (either 0 or 1) accounts for the presence of oxygen vacancies8.

In an electron diffraction experiment, an incident beam of electrons with wavevector q is scat-
tered from a crystal, and the scattering intensity I(k) as a function of the wavevector transfer
k = q′ − q is measured. If the scattering is elastic, |q′| = |q|, which means k is related to the
scattering angle ϑ = cos−1(q̂ · q̂′) by k = 2q sin(1

2
ϑ). Let us model the T = 0 density9 of the

crystal ρ(r) as

ρ(r) =
∑

R

∑

j

cj δ(r − R− δj) , (2.14)

where cj is the weight for ionic species j. The total scattering intensity I(k) is proportional to
|ρ̂(k)|2/N , where ρ̂(k) is the Fourier transform of ρ(r) and N is the total number of unit cells in

8It is a good exercise to determine the stoichiometry of these compounds based on the figures.
9What matters for electron diffraction is the electron density.

http://azufre.quimica.uniovi.es/d-MolSym/


72 CHAPTER 2. CRYSTAL MATH

Figure 2.10: Unit cells of four high temperature cuprate superconductors. Lower left shows a
sketch of the active electronic orbitals in the Cu-O planes. Image credit: N. Baris̆ić et al., Proc.
Nat. Acad. Sci. 110, 12235 (2013).

the crystal. Choosing units where the prefactor is unity, we have

I(k) =
1

N

∣∣ρ̂(k)
∣∣2 = 1

N

∑

R,R′

e−ik·(R−R′)
∑

j,j′

cj cj′ e
−ik·(δj−δj′ )

= F (k)
∑

R

e−ik·R = Ω̂
∑

K

F (K) δ(k−K) ,
(2.15)

where we have invoked the Poisson summation formula of Eqn. 2.7, and where we have de-
fined the form factor

F (K) =

∣∣∣∣
r∑

j=1

cj e
−iK·δj

∣∣∣∣
2

. (2.16)

Thus we expect δ-function Bragg peaks in the scattering intensity at values of the wavevector
transfer equal to any reciprocal lattice vector K. The form factor F (K) modifies the intensity
and can even lead to systematic extinctions of certain reciprocal lattice vectors. Consider, for
example, a one-dimensional lattice with lattice spacing a and basis elements δ1 = 0 and δ2 =

1
2
a.
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If c1 = c2 ≡ c, the form factor is

F (K) = |c|2
∣∣1 + eiKa/2

∣∣2 . (2.17)

This vanishes for K = 2πj/a whenever j is odd. So the lesson here is that the T = 0 scattering
intensity from a crystal is given by a sum of δ-functions and is singular whenever the wavevec-
tor transfer is equal to a reciprocal lattice vector. The presence of a basis modifies each Bragg
peak by the form factor F (K), which in some cases can even extinguish the peak completely10.

2.1.6 Trigonal crystal system

While the trigonal point group D3d is a normal subgroup of the hexagonal point group D6h, the
trigonal Bravais lattice does not result from an infinitesimal distortion of the simple hexagonal
lattice. Contrast this situation with that for, e.g., tetragonal vis-a-vis cubic, where a tetragonal
lattice is obtained by an infinitesimal stretching along one of the principal axes of the cubic
lattice. Any trigonal lattice, however, can be expressed as a hexagonal lattice with a three
element basis. To see this, define the vectors

s1 =
1√
3
a
(√

3
2
x̂− 1

2
ŷ
)

, s2 =
1√
3
aŷ , s3 =

1√
3
a
(
−

√
3
2
x̂− 1

2
ŷ
)

. (2.18)

Then a1 ≡ s1−s3 = ax̂ and a2 ≡ s2−s3 = a
(
1
2
x̂+

√
3
2
ŷ
)

are primitive DLVs for a two-dimensional
hexagonal lattice. The vectors dj ≡ sj +

1
3
cẑ for j = 1, 2, 3 then constitute three primitive

DLVs for the trigonal lattice, each of length d = 1
3

√
3a2 + c2. They also correspond to a three

element basis within the first Wigner-Seitz cell of the simple hexagonal lattice. Conventionally,
and equivalently, the three element basis may be taken to be δ1 = 0, 1

3
a1 + 1

3
a2 +

1
3
cẑ, and

2
3
a1 +

2
3
a3 +

2
3
cẑ, all of which are associated with the hexagonal unit cell spanned by vectors a1,

a2, and cẑ. Note that this is not a Wigner-Seitz cell, and its projection onto the (x, y) plane is a
rhombus rather than a hexagon. Although describing the trigonal Bravais lattice as a hexagonal
Bravais lattice with a three element basis might seem an unnecessary complication, in fact it
proves to be quite convenient because two pairs of axes in the hexagonal system are orthogonal.
Similarly, it is convenient to describe the bcc and fcc cubic lattices as simple cubic with a two
and four element basis, respectively, to take advantage of the mutually orthogonal primitive
direct lattice vectors of the simple cubic structure.

10It is a good exercise to compute I(k) for the bcc and fcc structures when they are described in terms of a simple
cubic lattice with a two or four element basis. The resulting extinctions limit the Bragg peaks to those wavevec-
tors which are in the bcc or fcc reciprocal lattice.
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CRYSTALLOGRAPHY d = 2 d = 3

systems 4 7

lattices 5 14

point groups 10 32

space groups 17 230

symmorphic 13 73

non-symmorphic 4 157

Table 2.1: True Facts about two and three-dimensional crystallography.

2.1.7 Point groups, space groups and site groups

A group P ⊂ O(3) of symmetry operations of a structure which leaves one point fixed is known
as a point group11. The point group P

L
of a Bravais lattice is the group of rotational symmetries

which fix any of the the Bravais lattice sites. This group is shared by all lattices in the same
lattice system, and is known as the holohedry of the lattice.

In crystals, not every lattice site is equivalent. This may be due to the fact that different ions
occupy different sites, but it is also the case for certain monatomic crystals, such as diamond,
which consists of two interpenetrating fcc lattices that are not related by Bravais lattice transla-
tion. That is, the diamond structure is an fcc Bravais lattice with a two element basis. The full
symmetry group of a crystal consists of both rotations and translations and is called the space
group S. A space group is a subgroup of the Euclidean group: S ⊂ E(3), and a general space
group operation

{
g
∣∣ t
}

acts as {
g
∣∣ t
}
r = g r + t , (2.19)

where g ∈ O(3). The identity element in S is
{
E
∣∣ 0
}

, where E is the identity in O(3), and the
inverse is given by {

g
∣∣ t
}−1

=
{
g−1

∣∣ − g−1
t
}

. (2.20)

In order that S be a group, we must have that

{
g2
∣∣ t2
}{

g1
∣∣ t1
}
r =

{
g2
∣∣ t2
}(
g1 r + t1

)

= g2 g1 r + g2 t1 + t2 =
{
g2 g1

∣∣ g2 t1 + t2

}
r ,

(2.21)

is also in S. This requires that the matrices g themselves form a group, called the crystallographic
point group P. For a Bravais lattice, P = P

L
, but in general a crystal is of lower symmetry

than its underlying Bravais lattice, and the crystallographic point group is a subgroup of the
holohedry: P ⊂ P

L
. Note that S 6≡ P × T, i.e. the space group is not simply a direct product

11Mathy McMathstein says that a point group is a group of linear isometries which have a common fixed point. An
isometry is a distance-preserving transformation on a metric space.
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of the point group and the translation group, because multiplication of (g, t) ∈ P × T satisfies
(g2, t2) (g1, t1) = (g2 g1, t2 + t1). The abelian group T ∼= Zd of Bravais lattice translations

{
E
∣∣R
}

forms an invariant subgroup of S. If all the symmetry operations of a particular crystal can
be written as

{
g
∣∣R
}

, the crystal’s space group is then said to be symmorphic and we write
S = P ⋊ T, where the symbol ⋊ indicates a semi-direct product of two groups. In a symmorphic
crystal, one may choose an origin about which all point group symmetries are realized.

However, it turns out that many crystals have space group elements
{
g
∣∣ t
}

where g ∈ P but t 6∈
T. Rather, for these symmetry operations, t is a fraction of a Bravais lattice translation. In some
cases, with a different choice of origin, these operations can be expressed as a rotation followed
by Bravais lattice translation12. For crystals with nonsymmorphic space groups, however, there
is no possible choice of origin about which all elements of S can be decomposed into a point
group operation followed by a Bravais lattice translation. Two examples are shown in Fig.
2.11: the three-dimensional hexagonal close packed (hcp) structure, and the two-dimensional
Shastry-Sutherland lattice. An hcp crystal is a simple hexagonal lattice with a two element basis.
It occurs commonly in nature and describes, for example, the low temperature high pressure
phase of 4He just above its melting curve (about 25 atmospheres at T = 0K). The primitive
direct lattice vectors of the hcp structure are

a1 =
(
1
2
x̂−

√
3
2
ŷ
)
a , a2 =

(
1
2
x̂+

√
3
2
ŷ
)
a , a3 = cẑ , (2.22)

with c =
√

8
3
a. The basis vectors are δ1 = 0 and δ2 =

1
3
a1 +

2
3
a2 +

1
2
a3. In the figure, A sublattice

sites are depicted in red and B sublattice sites in blue. Note that the B sites lie in the centers of
the up-triangles in each A sublattice plane, and displaced by half a unit cell in the ẑ diraction.
The nonsymmorphic operation in the hcp point group is known as a screw axis and it involves a
rotation by 60◦ about the ẑ axis through the centers of the A sublattice down triangles, followed
by a translation by 1

2
a3. The crystallographic symbol for a screw operation is nm, corresponding

to a rotation by 2π/n followed by a translation by m/n of a unit cell along the screw axis. In the
hcp structure, the screw operation is thus denoted by 63.

The second example is that of the Shastry-Sutherland lattice, which describes the CuBO3 layers

in the magnetic compound SrCu2(BO3)2. Here we have four sublattices, and the nonsymmor-
phic operation is known as a glide mirror, which involves translation along a plane (or a line in
two dimensions) by a half unit cell, followed by a reflection in the plane. See if you can spot
the nonsymmorphic symmetry.

A third example is that of diamond, which consists of two interpenetrating fcc lattices, and has
a zincblende structure shown in Fig. 2.16. Diamond possesses both a fourfold (41) screw axis
as well as a glide mirror. While the point group is Oh, there is no point in the diamond lattice
about which all operations in Oh are realized. The maximum symmetry at any site is Td.

In a symmorphic crystal, it is always possible to find some origin within the structural unit

12In such cases, the putative nonsymmorphic operation is called removable. Otherwise, the nonsymmorphic oper-
ation is essential.
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Figure 2.11: Two nonsymmorphic crystal lattices. Left: The hexagonal close packed lattice
(space group P63/mmc) has a two site unit cell (red and blue) and a screw axis symmetry,
given by a rotation by 60◦ followed by a translation of 1

2
a3 along the c-axis. The underlying

Bravais lattice is simple hexagonal. Right: The Shastry-Sutherland lattice (space group p4g) has
a four site unit cell (shown in center) and a glide mirror (blue line). Translation by half a unit
cell along the mirror line followed by a mirror reflection is a lattice symmetry. The underlying
Bravais lattice is square.

cell about which all point group symmetries are realized. In a Bravais lattice, this is true with
respect to every lattice point, but obviously it is possible to choose an origin about which the
group of rotational symmetries is reduced. For example, the point group of the square lattice
is C4v, but by choosing an origin in the center of one of the links the symmetry is reduced to
C2v. It is sometimes convenient to speak of the group of rotational symmetries with respect to
a specific point r in the crystal structure. We call this the site group P(r). When r = R + δj is a
site in the crystal, i.e. a location of one of the ions, we may denote the site group as P(R, j).

In a nonsymmorphic crystal, in general no sites will realize the symmetry of the point group P.
Consider, for example, the Shastry-Sutherland lattice in Fig. 2.11. Choosing the origin as the
center of the magenta square unit cell, the site group is P(0) = C2v. But the crystallographic
point group for this structure is C4v. Since P is the group of all rotational symmetries about all
possible origins, necessarily P(r) ⊂ P for all sites r.

Our crystallographer forbears have precisely tabulated for us all the possible lattices, point
groups, and space groups in two and three dimensions (see Tab. 2.1). Proving these results is
quite tedious, so we shall be content to take them as received wisdom. Note that a bit more
than two thirds (157 out of 230) of the three-dimensional space groups are nonsymmorphic. Of
those, all but two involve either a screw axis or a glide plane13.

13Space groups no. 24 (also known as I212121) and no. 199 (I213) have removable screw axes, but nevertheless
there is no single origin about which every symmetry operation can be expressed as

{
g
∣∣ t
}

with g ∈ P and
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2.2 More on Point Groups

2.2.1 Standard notation for point group operations

A list of point group operations is provided in Tab. 2.2. We’ll also start to use Cn to denote
a group element, i.e. a rotation by 2π/n about a primary axis. If we need to distinguish this
element from the cyclic group, which we’ve thus far also called Cn, we’ll instead refer to the
group as Cn. Note that inversion can be written as I = S2 , and that I commutes with all
elements of the point group P, i.e. I ∈ Z(P) is in the center of P.

Any improper operation g ∈ O(3) has det(g) = −1. This entails that g must have an eigenvalue
λ = −1, and the corresponding eigenvector m̂, for which gm̂ = −m̂, is known as a reversal
axis. It also follows in all odd dimensions that if g is proper, i.e. if det(g) = +1, then g has an
eigenvalue λ = +1, and the corresponding eigenvector n̂ which satisfies gn̂ = n̂ is an invariant
axis. Improper elements of O(n) can be written as Ig(ξ, n̂), where I is the inversion operator. In
even dimensions, the inversion I is equivalent to C2, but one can form improper rotations via
a reflection σ.

The rotoreflection operation is Sn = σ−1
h Cn = Cn σ

−1
h . The reason we write σ−1

h rather than σh
has to do with what happens when we account for electron spin, in which case σ−1

h = E σh ,
where E is spinor reversal, i.e. rotation of the spinor component through 2π. Without spin, we
have σ−1

h = σh , and for n odd, one then has (Sn)
n = σh and (Sn)

n+1 = Cn , which says that if
Sn ∈ P then so are both σh and Cn . If, on the other hand, n is even, this may not be the case.

2.2.2 Proper point groups

A proper point group P is a subgroup of SO(3)14. The following are the proper point groups:

(i) Cyclic groups : The cyclic group Cn (order n) describes n-fold rotations about a fixed axis.
The restriction theorem limits crystallographic cyclic groups to the cases n = 1, 2, 3, 4,
and 6. Again, molecules, which have no translational symmetries, are not limited by the
restriction theorem.

(ii) Dihedral groups : The group Dn (order 2n) has a primary n-fold axis and n twofold axes
perpendicular to the primary axis. Note that if one started with only one such perpen-
dicular twofold axis, the Cn operations would generate all the others. For n even, the
alternating twofold axes break up into two conjugacy classes, whereas for n odd there is
only one such class.

t ∈ T.
14Two-dimensional point groups are much simpler to classify as they always involve at most a single rotation axis

and/or a planar reflection. They form a subset of the three-dimensional point groups.
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SYMBOL OPERATION

E identity

Cn rotation through 2π/n about primary axis n̂ ;

operator equivalent: e−2πin̂·J/n~ where J = L+ S

I inversion (r → −r) ; leaves spinor coordinates invariant

and commutes with all other point group operations

σ C2 rotation followed by reflection in plane perpendicular

to the axis of rotation ; equivalent to IC2 or C2 I

σh reflection in a ‘horizontal’ plane perpendicular to a primary axis

σv reflection in a ‘vertical’ plane which contains a primary axis

σd reflection in a ‘diagonal’ plane containing the primary

axis of symmetry and which bisects the angle between

neighboring twofold axes perpendicular to the primary axis

Sn rotoreflection: Sn = σ−1
h Cn , i.e. rotation by 2π/n followed

by reflection in the plane perpendicular to that axis (note I = S2 )

Ē spinor rotation through 2π ; Ē = e−2πin̂·S (S = 1
2
) ;

leaves spatial coordinates (x, y, z) invariant

ḡ any point group operation g followed by Ē

Table 2.2: Standard notation for point group operations.

(iii) Tetrahedral, octahedral, and icosahedral groups : When there is more than one n-fold
axis with n > 2, the rotations about either axis will generate new axes. Geometrically,
this process run to its conclusion traces out a regular spherical polygon when one traces
the intersections of the successively-generated axes on the unit sphere. There are only
five possible such regular polyhedra: tetrahedron, cube, octahedron, dodecahedron, and
icosahedron. The second two have the same symmetry operations, as do the last two, so
there are only three such groups: T , O, and I .

(iiia) Tetrahedral group : T is the symmetry group of proper rotations of the tetrahedron.
Embedding the tetrahedron in a cube, as in Fig. 2.12, there are three two-fold axes
through the cube faces, plus four threefold axes through the cube diagonals, for a
total of 12 operations including the identity. Note T ∼= A4, the alternating group on
four symbols.

(iiib) Octahedral group : O consists of all the symmetry operations from T plus 12 more,
arising from six new twofold axes running through the centers of each edge, not
parallel to any face, and six more operations arising from extending the twofold
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Figure 2.12: Left: Proper rotational symmetries of the tetrahedron, forming the group T . Right:
Proper rotational symmetries of the octahedron (or cube), forming the group O.

axes through the faces to fourfold axes (see Fig. 2.9). So, 24 elements in all, shown in
Fig. 2.12. Note O ∼= S4 , the symmetric group on four symbols.

(iiic) Icosahedral group : I is the symmetry group of the dodecahedron or icosahedron.
There are six fivefold axes, ten threefold axes, and 15 twofold axes, so including the
identity there are 1 + 6 · (5 − 1) + 10 · (3 − 1) + 15 · (2 − 1) = 60 elements. We also
have I ∼= A5, the alternating group on five symbols.

2.2.3 Commuting operations

The following operations commute:15

• Rotations about the same axis.

• Reflections in mutually perpendicular planes. In general the product of reflections in two
planes which intersect at an angle α is σv σv′ = C(2α), where the rotation is about the axis
defined by their intersection line in the direction from the v′ plane to the v plane. Thus
σv′ = σv C(2α).

• Rotations about perpendicular twofold axes: C2C
′
2 = C ′

2C2 = C ′′
2 , where the resulting

rotation is about the third perpendicular axis.

• A rotation Cn and a reflection σh in a plane perpendicular to the n-fold axis.

15See M. Lax, Symmetry Principles in Solid State and Molecular Physics, p. 54.
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Figure 2.13: Stereographic projections of simple point groups Cn , Cnv , Cnh , and Sn. Dark
lines correspond to reflection planes. C6v looks like what I found the last time I sliced open a
kiwi. Note S1

∼= C1h and S3
∼= C3h. Adapted from Table 4.2 of M. Tinkham, Group Theory and

Quantum Mechanics.

• Inversion I and any point group operation g (with g a rotation relative to the inversion
point)

• A twofold rotation C2 and a reflection σv in a plane containing the rotation axis.

2.2.4 Improper point groups

First, some notation. Since we will start to use Cn to denote the generator of rotations about the
primary axis, we’ll write Cn to denote the cyclic group with n elements. Similarly we’ll use S2n
to denote the rotoreflection group. In addition to the proper point group C2 = {E,C2} ∼= Z2 , we
will also define two improper Z2 clones: Ci = {E, I}, containing the identity and the inversion
operation, and Cs ≡ {E, σh} containing the identity and the horizontal reflection σh. All will
play a role in our ensuing discussion.
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Figure 2.14: Stereograms of simple point groups Dn , Dnd , and Dnh. Dark lines correspond to
reflection planes. Dashed lines correspond to 2-fold rotation axes. Adapted from Table 4.2 of
M. Tinkham, Group Theory and Quantum Mechanics.

In §2.10 of Lax, the relations between proper and improper point groups are crisply discussed.
Suppose a group G contains both proper and improper elements. We write G = H ∪M where
H⊳G is a normal subgroup containing all the proper elements, andM , which is not a group (no
identity!) contains all the improper elements. Let m ∈ M be any of the improper operations.
Then mH = M since multiplying any proper element by an improper one yields an improper
element, and we conclude that H and M contain the same number of elements. Thus G ∼= H ∪
mH and only one improper generator is needed. Since the inversion operator commutes with
all elements of O(3), we can always form an improper group which contains I by constructing
G = H ∪IH = H⊗Ci. If G = H ∪mH does not contain the inversion operator I , we can always

form a proper group G̃ = H ∪mIH which is isomorphic to G. Consider the case of the improper
point group G = C3v, where H = C3 =

{
E , C3 , C

−1
3

}
and m = σv is a vertical reflection plane

containing the threefold axis16. Then G̃ = D3 , which is proper, and which is isomorphic to C3v.
Finally, if G is proper, and if it contains an index two subgroup, i.e. a subgroup H ⊂ G such
that NG = 2NH , then we can construct G̃ = H ∪ I (G\H), where G\H is G with the elements
from H removed. Then G̃ is an improper group with no inversion operation.

OK let’s finally meet the improper point groups:

S2n : The rotoreflection group S2n is a cyclic group of order 2n generated by S2n ≡ σ−1
h C2n. In

16Acting with C3 generates the additional vertical reflections: C3 σv = σv′ and C3 σv′ = σv′′ .
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the absence of spin, σ−1 = σ for any reflection. Then for n odd, (S2n)
n = σhC2 = I , hence

Sn ∼= Cn ⊗ Ci.

Cnh : The 2n element group Cnh ∼= Cn ⊗ Cs has two commuting generators, Cn and σh. For n
odd, Cnh is cyclic and is generated by the single element σh Cn.

Cnv : The 2n element group Cnv has two noncommuting generators, Cn and σv, where σv is a
reflection in a plane containing the n-fold axis. Repeated application of Cn creates (n− 1)
additional vertical reflection planes. One has Cnv ∼= Dn.

Dnh : Adding a horizontal reflection plane to Dn, one obtains Dnh
∼= Dn ⊗ Cs . For n even, one

also has Dnh
∼= Dn ⊗ Ci. The group has 4n elements.

Dnd : If instead of adding a horizontal reflection σh we add a ’diagonal’ reflection σd in a plane
which bisects the angle between neighboring twofold axes, we arrive at Dnd, which also
has 4n elements.

Td : Adding a reflection plane passing through one of the edges of the tetrahedron, we double
the size of the tetrahedral group from 12 to 24. In Fig. 2.12, such a reflection might
permute the vertices 3 and 4. Thus while T ∼= A4, we have Td

∼= S4.

Th : Adding inversion to the proper rotational symmetries of the tetrahedron, we obtain Th
∼=

T ⊗ Ci , which has 24 elements.

Oh : Adding inversion to the proper rotational symmetries of the cube, we obtainOh
∼= O⊗Ci ,

which has 48 elements.

Ih : Adding inversion to the proper rotational symmetries of the icosahedron, we obtain Ih
∼=

I ⊗ Ci , which has 60 elements.

Stereographic projections of the simple point groups are depicted in Figs. 2.13 and 2.14. The
subgroup structure of the point groups, which tells us the hierarchy of symmetries, is shown
in Fig. 2.17.

Why don’t we consider the rotoreflection groups Sn for n odd? Because for n odd, Sn ∼= Cnh.
For n odd, both Sn and S2n generate cyclic groups of order 2n. It is perhaps instructive to
consider the simplest nontrivial case, n = 3:

S3 =
{
E , σh C3 , C

−1
3 , σh , C3 , σh C

−1
3

}

S6 =
{
E , σh C6 , C3 , σhC2 , C

−1
3 , σh C

−1
6

}
.

(2.23)

We see that C3h , which is generated by the pair (C3 , σh), contains the same elements as S3. This
result holds for all odd n, because in those cases σh ∈ Sn.
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Figure 2.15: Stereograms of tetrahedral and cubic point groups and legend for symbols.

2.2.5 The ten two-dimensional point groups

There are ten two-dimensional point groups, listed in Tab. 2.3. As the only allowed elements
are 2, 3, 4, and 6-fold rotations about the z-axis, plus vertical (line) mirrors, the only possible
groups are C1 , C2 , C3 , C4 , C6 and their mirrored extensions C1v , C2v , C3v , C4v , and C6v. Note
that the group C1v is equivalent to C1h , since in d = 3 both have a single reflection plane.

2.2.6 The achiral tetrahedral group, Td

Many materials such as GaAs occur in an AB zincblende structure, which consists of two in-
terpenetrating fcc lattices A and B, separated by (a

4
, a
4
, a
4
), where a is the side length of the cube;

see Fig. 2.16. As the figure shows, the B sublattice sites within the cube form a tetrahedron. The

LATTICE SYSTEM POINT GROUPS

oblique C1 C2

rectangular C1h C2v

centered
rectangular C1h C2v

square C4 C4v

hexagonal C3 C3v C6 C6v

Table 2.3: The ten two-dimensional point groups. Note C1h
∼= C1v.
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Figure 2.16: Left: The zincblende structure. Right: Proper and improper elements of the group
Td.

crystallographic point group for this structure is Td, the achiral tetrahedral group. A notewor-
thy feature is that the zincblende structure has no center of inversion symmetry, hence I /∈ Td.
If all the atoms are identical, i.e. A = B, then we get the diamond structure, which is the
structure of silicon and of course carbon diamond. The diamond lattice is inversion symmetric,
with the point of inversion halfway between the A and B sublattice sites. The point group for
diamond is the cubic group Oh. This might be surprising upon staring at the structure for a
time, because it doesn’t possess a cubic symmetry. However, the space group for diamond is
non-symmorphic – it has a glide plane and a screw axis.

The group Td has 24 elements; these are listed in Tab. 2.5. Its character table is provided in Tab.
2.4. These are arranged in five group classes. One class is the identity, E. Another class consists
of three 180◦ rotations about the x̂, ŷ, and ẑ axes, respectively. A third class, with eight elements,

Td E 8C3 3C2 6σd 6S4

A1 1 1 1 1 1

A2 1 1 1 −1 −1
E 2 −1 2 0 0

T1 3 0 −1 −1 1

T2 3 0 −1 1 −1

Table 2.4: Character table for the group Td.
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class x y z g ∈ O(3) class x y z g ∈ O(3)

E x y z 1 6IC2 −y −x z IR[110](π) = σ(110)

3C2 x −y −z R[100](π) (6σd) y x z IR[11̄0](π) = σ(11̄0)

−x y −z R[010](π) −z y −x IR[101](π) = σ(101)

−x −y z R[001](π) z y x IR[101̄](π) = σ(101̄)

8C3 z x y R[111](+
2π
3
) x −z −y IR[011](π) = σ(011)

y z x R[111](−2π
3
) x z y IR[011̄](π) = σ(011̄)

z −x −y R[11̄1](+
2π
3
) 6IC4 −x z −y IR[100](+

π
2
) = σ(100)R[100](−π

2
)

−y −z x R[11̄1](−2π
3
) (6S4) −x −z y IR[100](−π

2
) = σ(100)R[100](+

π
2
)

−z x −y R[111̄](+
2π
3
) −z −y x IR[010](+

π
2
) = σ(010)R[010](−π

2
)

y −z −x R[111̄](−2π
3
) z −y −x IR[010](−π

2
) = σ(010)R[010](+

π
2
)

−z −x y R[11̄1̄](+
2π
3
) y −x −z IR[001](+

π
2
) = σ(001)R[001](−π

2
)

−y z −x R[11̄1̄](−2π
3
) −y x −z IR[001](−π

2
) = σ(001)R[001](+

π
2
)

Table 2.5: Table of elements and classes for Td. Here I : (x, y, z) → (−x,−y,−z) is in-
version and σ(h,k,l) is a reflection in the plane perpendicular to hx̂ + kŷ + lẑ. For example

σ(110) : (x, y, z) → (−y,−x, z). Note that each fourfold rotoinversion can be expressed as a ro-
toreflection, i.e. 6IC4

∼= 6S4, comprising a ±π
2

rotation about one of the C2 axes followed by a
reflection in the plane perpendicular to that axis. Similarly, each twofold rotoinversion can be
expressed as a reflection 6IC2

∼= 6σd in one of the six diagonal mirror planes.

consists of rotations by±120◦ about each of the four body diagonals. This amounts to 12 group
operations, all of which are proper rotations. The remaining 12 elements involve the inversion
operator, I , which takes (x, y, z) to (−x,−y,−z), and are therefore improper rotations, with
determinant −1.17 These elements fall into two classes, one of which consists of 180◦ rotations
about diagonals parallel to one of the sides of the cube (e.g. the line y = x, z = 0), followed
by inversion. The last class consists of rotations by ±π

2
about x̂, ŷ, and ẑ, also followed by an

inversion, or, respectively, rotations by ∓π
2

about x̂, ŷ, and x̂ followed by a reflection in the
plane perpendicular to the rotation axis.

Rotoreflections versus rotoinversions

In general every rotoinversion IR(n̂, α) may be written as a rotoreflection σn̂R(n̂,−α) where
σn̂ is a reflection in the plane perpendicular to n̂. Both are improper rotations, i.e. elements

17Note that I itself is not an element of Td.
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Γ dΓ basis functions ψΓµ for Td basis functions ψΓµ for O

A1 1 1 or xyz 1

A2 1 x4(y2 − z2) + y4(z2 − x2) + z4(x2 − y2) xyz

E 2
{√

3 (x2 − y2) , 2z2 − x2 − y2
} {√

3 (x2 − y2) , 2z2 − x2 − y2
}

T1 3
{
x (y2 − z2) , y (z2 − x2) , z (x2 − y2)

} {
x , y , z

}

T2 3
{
x , y , z

} {
yz , zx , xy

}

Table 2.6: Irreducible representations and basis functions for Td and O.

g ∈ O(3) with det g = −1. Distinguishing these operations is useful when there is a single
preferred rotation axis18.

2.2.7 Tetrahedral vs. octahedral symmetry

In the case of the octahedral group, O, the inversion operation is not included in the last two
classes, and they are written as 6C2 and 6C4, respectively. The symmetry operations of O are
depicted in fig. 2.12. The groups O and Td are isomorphic. Both are enantiomorphic (i.e. chiral),
and completing either of them by adding in the inversion operator I results in the full cubic
group, Oh, which has 48 elements.

While the groups Td and O are isomorphic, the symmetry of their basis functions in general
differs. Consider, for example, the function ψ = xyz. It is easy to see from table 2.5 that every
element of Td leaves ψ invariant. Within O, however, the classes 6σd and 6S4 are replaced by
6C2 and 6C4 when the inversion operation is removed. Each element of these classes then
takes ψ to −ψ. Thus, within Td, the function ψ = xyz is indistinguishable from unity, and it
transforms according to the trivial A1 representation. Within O, however, ψ is distinguishable
from 1 because ψ reverses sign under the operation of all group elements in classes 6C2 and
6C4.

In O, the triplets of basis functions {x, y, z} and {yz, zx, xy} belong to different representations
(T1 and T2, respectively). In Td, however, they must belong to the same representation, since
one set of functions is obtained from the other by dividing into xyz: x = (xyz)/(yz), et. cyc. But
xyz transforms as the identity, so ‘polar’ and ‘axial’ vectors belong to the same representation
of Td.

18I am grateful to Filipp Rybakov for encouraging me to clarify my thinking regarding rotoreflections versus ro-
toinversions, and for correcting some errors in Tab. 2.5.
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Finally, let’s think about how O differs from Oh. Consider the function

ψ = xyz ·
{
x4 (y2 − z2) + y4 (z2 − x2) + z4 (x2 − y2)

}
. (2.24)

One can check that this function is left invariant by every element of O. It therefore transforms
according to the A1 representation of O. But it reverses sign under parity, so within the full
cubic group Oh, it transforms according to separate one-dimensional representation. Note that
ψ transforms according to the A2 representation of Td .

2.2.8 The 32 crystallographic point groups

Tab. 2.7 lists all possible point group symmetries for three-dimensional crystals. The largest
possible symmetry group within a given lattice system is the rightmost point group, corre-
sponding to the symmetry of the underlying Bravais lattice. The point groups may be classified
as being centrosymmetric (i.e. including the inversion operation I), non-centrosymmetric, or enan-
tiomorphic. A centrosymmetric crystal has an inversion center. Enantiomorphic structures are
non-centrosymmetric; they have only rotation axes and include no improper operations. They
are intrinsically chiral and not superposable on their mirror image. In addition, a point group
may be polar, meaning every symmetry operation leaves more than one point fixed (i.e. those
points along the high symmetry polar axis). Thus, a group with more than one axis of rotation
or with a mirror plane which does not contain the primary axis cannot be polar. A polar axis is
only possible in non-centrosymmetric structures. Ferroelectricity and piezoelectricity can only
occur in polar crystals.

LATTICE SYSTEM POINT GROUPS

cubic T Td Th O Oh

hexagonal C∗
6 C3h C6h D6 C∗

6v D3h D6h

trigonal C∗
3 S6 D3 C∗

3v D3d

tetragonal C∗
4 S4 C4h D4 C∗

4v D2d D4h

orthorhombic D2 C∗
2v D2h

monoclinic C∗
2 C∗

s C2h

triclinic C∗
1 Ci

Table 2.7: The 32 three-dimensional crystallographic point groups. Color scheme: centrosym-
metric, non-centrosymmetric, enantiomorphic (i.e. chiral). Polar point groups are marked with
an asterisk ∗.
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Figure 2.17: The 32 crystallographic point groups, their orders, and their subgroup structure.
If the subgroup is not invariant (normal), the line is heavy. Gray boxes indicate holohedral
groups, i.e. point groups of maximal symmetry within a given lattice system, corresponding to
the symmetry of the underlying Bravais lattice itself. (See Tab. 6.1.6 of Lax, or Tab. 5 of Koster
et al.)

2.2.9 Hermann-Mauguin (international) notation

The notation with which we have thus far identified point groups and their operations (Cnv , Td ,
σh , etc.) is named for the German mathematician A. M. Schoenflies (1853-1928). A more infor-
mative system, originally due to German crystallographer C. Hermann and subsequently im-
proved by the French minerologist C.-V. Mauguin, goes by the name Hermann-Mauguin (HM)
or international notation. Since most physics publications today use the international notation,
we pause to review it and to explain the method to its madness.

HM notation is defined for both point groups as well as their elements. For the individual
symmetry operations, the HM symbols are as follows:
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(i) n : rotation by 2π/n about a primary axis (Schoenflies Cn)

2 = C2 3 = C3 4 = C4 5 = C5 6 = C6 (2.25)

32 = C−1
3 43 = C−1

4 54 = C−1
5 65 = C−1

6

(ii) m : reflection in a plane (σ)

◦ mh : reflection in a plane perpendicular to the primary axis n̂ (σh)

◦ mv : reflection in a plane containing the primary axis (σv)

◦ md : reflection in a plane containing the primary axis and bisecting the angle between
two perpendicular 2-fold axes (σd)

(iii) n : rotoinversion ICn (note 1 is inversion, 2 = mh is horizontal reflection)

3 = S−1
6 4 = S−1

4 5 = S−1
10 6 = S−1

3 (2.26)

32 = S6 43 = S4 54 = S10 65 = S3

(iv) ñ : rotoreflection σ−1
h Cn = Sn

The number assignments associated with rotoinversion look strange at first. Pray tell, why do
we have 3 = S−1

6 but 4 = S−1
4 and 6 = S−1

3 ? Well, since you asked so nicely, I will explain, but it
will help if you consult Fig. 2.13. The issue here is that the Schoenflies groups Sn are generated
by the rotoreflection operation Sn ≡ σ−1

h Cn while the HM symbol n denotes rotoinversion ICn.
The relation between the two is as follows. Let C(α) denote counterclockwise rotation through
an angle α. Then S(α) = I C(α−π). In other words, Sn = I C−1

2 Cn. According to this definition,

S2 = I , S3 = I C−1
6 , S4 = I C−1

4 , S6 = I C−1
3 . (2.27)

Note that S5 = I C−3
5 , which produces a ten-fold pattern. In general, for n odd, Sn generates a

2n-fold pattern.

Now let’s talk about the HM symbols for the point groups themselves. The basic idea is to iden-
tify symmetry-inequivalent axes and reflection planes. For a single n-fold axis, the Schoenflies
group is Cn and the HM symbol is n. If we add a vertical mirror σv to Cn, forming Cnv , the HM

Z2 clones
{
E,C2

} {
E, I

} {
E, σh

}

Schoenflies C2 Ci Cs
HM 2 1 m

Table 2.8: Two element point group notation.



90 CHAPTER 2. CRYSTAL MATH

Schoenflies HM 2 3 4 5 6 G (HM) order

Cn n 2 3 4 5 6 n n

Sn (n odd) (2n) 6 10 (2n) 2n

Sn (n = 4k) n 4 n n

Sn (n = 4k + 2) (n/2) 1 3 n n

Cnv (n even) nmm 2mm 4mm 6mm n,mv 2n

Cnv (n odd) nm 3m 5m n,mv 2n

Cnh (n even) n
m

2
m

4
m

6
m

n,mh 2n

Cnh (n odd) (2n) 6 10 n,mh 2n

Dn (n even) n22 222 422 622 n, 2 2n

Dn (n odd) n2 32 52 n, 2 2n

Dnd (n even) (2n) 2m 42m 82m 12 2m n, 2, md 4n

Dnd (n odd) n 2
m

3 2
m

5 2
m

n, 2, md 4n

Dnh (n even) n
m

2
m

2
m

2
m

2
m

2
m

4
m

2
m

2
m

6
m

2
m

2
m

n, 2, mh 4n

Dnh (n odd) (2n)m2 6m2 10m2 n, 2, mh 4n

Table 2.9: Schoenflies and Hermann-Mauguin (international) notation for simple crystallo-
graphic point groups. The last columns list the generators G and the number of elements. Note

Sn = Cnh for n odd, and that (2n) 2m = (2n)m2.

Schoenflies T Th Td O Oh I Ih

HM 23 2
m
3 43m 432 4

m
3 2
m

532 2
m
3 5

generators 3, 2 3, 2, mh 3, 2, md 4, 3, 2 4, 3, 2, mh 5, 3, 2 5, 3, 2, mh

order 12 24 24 24 48 60 120

Table 2.10: Schoenflies and Hermann-Mauguin notation for multi-axis point groups. Indices
for generators refer to distinct (though not necessarily orthogonal) axes.
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symbol is nm if n is odd and nmm is n is even. The reason for the difference is that for n even,
the alternating vertical reflections break into two classes, whereas for n odd there is only one
class (check the character tables!). If we instead we had added a horizontal mirror σh to form
Cnh, the HM symbol would be n

m
. However, when n is odd, Cnh is generated by the single ro-

toinversion (2n), and the convention is to use that symbol rather than the equivalent n
m

because

the operation (2n) generates a pattern with more points than either n or mh (though combined
of course they generate the same group). For the dihedral groups Dn, the HM symbol is n22 if
n is even and n2 if n is odd, for reasons similar to those for Cnv . In general, for groups with a
single primary axis, HM symbols can have up to three positions, which are assigned as follows:

• The first position indicates the rotational symmetry n of the primary axis, or n if the
symmetry is rotoinversion. It can also be n

m
in the case of an n-fold axis plus a horizontal

reflection plane.

• The second position indicates symmetry of a secondary axis or plane, and can be 2, m, or
2
m

.

• The third position indicates symmetry of a tertiary axis or plane, and can be 2, m, or 2
m

.

Thus, the HM symbol for Dnd is n 2
m

if n is odd but is (2n)m if n is even, while the HM symbol
for Dnh is nm2 if n is odd and n

m
2
m

2
m

if n is even. Notation for two element point groups is given
in Tab. 2.8

Finally we come to the tetrahedral, octahedral, and icosahedral groups, all of which have more
than one high order (n > 2) axis. For the tetrahedral group T , the HM symbol is 23 because the
2-fold axes are oriented parallel to the axes of the cube containing the tetrahedron, as shown in
Figs. 2.9 and 2.12. The octahedral group O is written 432 in HM notation, because the fourfold
axes are parallel to the cube axes, there are secondary threefold axes along the cube diagonals,
and tertiary twofold axes running through the centers of the cube edges. The HM symbol for
the icosahedral group I is 532. There are primary fivefold axes, through the vertices, secondary
threefold axes through the face centers, and tertiary twofold axes through the edge centers
(once again, see Fig. 2.9). Now add an improper element: inversion or a mirror plane. For
the pyritohedral group Th, we start with T and then add mirror planes perpendicular to the
twofold axes, turning the threefold axes into inversion axes19. Consequently the HM symbol
is 2

m
3. For the achiral tetrahedral group Td, we add mirrors perpendicular to the diagonal

threefold axes, resulting in fourfold inversion axes and the symbol 43m. When it comes to the
cubic group O, we may add either a mirror or inversion. Since they are equivalent, consider
the mirror, which bisects the fourfold axes, turning the threefold axes into inversion axes, and
generating new mirrors perpendicular to the teriary twofold axes. The HM symbol is then
4
m
3 2
m

. Finally, adding a mirror to the icosahedron turns I into Ih, with HM symbol 5 3 2
m

.

19The seams of a volleyball have pyritohedral symmetry.
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No. HM short HM full Schoenflies No. HM short HM full Schoenflies

1 1 1 C1 17 3 3 C3i (S6)

2 1 1 Ci (S2) 18 32 32 D3

3 2 2 C2 19 3m 3m C3v

4 m m Cs (C1h) 20 3m 3 2
m

D3d

5 2/m 2
m

C2h 21 6 6 C6

6 222 222 D2 (V ) 22 6 6 C3h

7 mm2 mm2 C2v 23 6/m 6
m

C6h

8 mmm 2
m

2
m

2
m

D2h (Vh) 24 622 622 D6

9 4 4 C4 25 6mm 6mm C6v

10 4 4 S4 26 6m2 6m2 D3h

11 4/m 4
m

C4h 27 6/mmm 6
m

2
m

2
m

D6h

12 422 422 D4 28 23 23 T

13 4mm 4mm C4v 29 m3 2
m
3 Th

14 42m 42m D2d (Vd) 30 432 432 O

15 4/mmm 4
m

2
m

2
m

D4h 31 43m 43m Td

16 3 3 C3 32 m3m 4
m
3 2
m

Oh

Table 2.11: HM and Schoenflies notation for the 32 crystallographic point groups.

2.2.10 Double groups

The group operations act on electron wavefunctions, which are spinor functions of the spatial
coordinates r = (x, y, z):

~ψ(r) =

(
ψ↑(r)

ψ↓(r)

)
. (2.28)

Rotations by an angle θ about an axis n̂ are represented by the unitary operator U(θ; n̂) =
e−iθn̂·J/~ , where J = L+S is the sum of orbital (L) and intrinsic spin (S) angular momenta. For
crystallographic point groups, θ = 2π/n where n = 1, 2, 3, 4, or 6.

When spin is neglected, we have the point groups we have studied. With spin, we must deal

with the fact that SU(2) gives us a projective representation of SO(3). Recall that D̂(G) is a projec-
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Figure 2.18: Schematic diagram of (common axis) double group rotation generators. Based on
Fig. 1 of Koster et al. (1963). Note that C1 = E, i.e. a rotation by 2π.

tive representation of G if

D̂(g) D̂(h) = ω(g, h) D̂(gh) (2.29)

where associativity imposes the following condition on the cocycle ω(g, h):

ω(g, h)

ω(h, k)
=
ω(g, hk)

ω(gh, k)
. (2.30)

In our case, G = SO(3) and D̂
(
R(ξ, n̂)

)
= exp(−iξn̂ · Ĵ) where Ĵ = L̂ + Ŝ and S = 1

2
. For

example, any C2 operation has ξ = π, hence (C2)
2 = C1 = exp(−2πin̂ · Ŝ) = −1, which is to

say spinor inversion, i.e.

(
u
v

)
→ −

(
u
v

)
. For any point group P, the multiplication table for the

projective representation D̂(P) looks exactly like that for P, except some entries get multiplied by −1.
I.e. all the cocycles ω(g, h) are ±1. We can lift this projective representation to an enlarged point
group, called the double group, P′, by introducing a generator E, representing spinor inversion,

with E
2
= E. To each element g ∈ P, there corresponds a counterpart ḡ ≡ gE. Thus, N

P′ =
2N

P
. Note that E leaves r unchanged, and that the bar of g−1 is the inverse of ḡ. A schematic

illustration of proper rotations within a double group is shown in Fig. 2.18. Do not confuse the
barring operation in double groups with the HM symbol for rotoinversion!

Remarks about double group multiplication

Some noteworthy aspects regarding multiplication of double group elements:
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⋄ The element E is given by E = C1 = C(±2π). Note C(4π) = E.

⋄ For any group element g, whether barred or unbarred, gg−1 = E.

⋄ For the inversion operator I , I2 = Ī2 = E and IĪ = ĪI = E.

⋄ Any reflection σ obeys σ2 = E. This is because we can always write σ = IC2 where C2

is a twofold rotation about an axis normal to the reflection plane, whence σ2 = I2C2
2 =

C1 = E.

⋄ For n > 2, we define Cn ≡ R̂(2π/n) to be a counterclockwise rotation by 2π/n and C−1
n ≡

R̂(−2π/n) to be the inverse operation, i.e. clockwise rotation by 2π/n. Then C2
2 = C1 = E,

hence C−1
2 = C2. More fully, according to Fig. 2.18, we have

C2C
−1
3 = C6 C2C

−1
4 = C4 C2C

−1
6 = C3

C2C6 = C
−1

3 C2C4 = C
−1

4 C2C3 = C
−1

6

(2.31)

C2C
−1

3 = C6 C2C
−1

4 = C4 C2C
−1

6 = C3

C2C6 = C−1
3 C2C4 = C−1

4 C2C3 = C−1
6 ,

where all rotations are about the same axis.

⋄ To compute the product of σh with a rotation, recall the definition of the rotoreflection
operation Sn ≡ σ−1

h Cn = I C−1
2 Cn , which entails S−1

n = σh C
−1
n = I C2C

−1
n . One then has

σh Cn = Sn , σhC
−1

n = S
−1

n , σh Cn = Sn , σh C
−1
n = S−1

n . (2.32)

⋄ We may then apply σh to Eqns. 2.31 and 2.32 to obtain results such as

C2 S
−1
3 = S6 , C2 S6 = S−1

3 , σh Sn = Cn , σh S
−1
n = C

−1

n . (2.33)

⋄ What about σv ? If
{
σv , σv′ , σv′′

}
denote vertical reflection planes oriented at angles 0,

2π/3, and 4π/3, respectively, then we should have either C3 σv = σv′ or C3 σv = σv′ .
Which is it? If we apply C3 twice, for either initial case we obtain C2

3 σv = σv′′ . Applying
C3 yet again yields C3 σv′′ = σv . Thus we have

C3 σv = σv′ , C3 σv′ = σv′′ , C3 σv′′ = σv . (2.34)

Note then that σv′ σv = C3 and σv σv′ = C−1
3 , et. cyc.

To summarize, let C(α) denote counterclockwise rotation through an angle α, and let Cn =
C(αn) etc. with αn = 2π/n. Then

C(α) = C(α− 2π) , S(α) = I C(α− π) , S(α) = I C(α+ π) (2.35)

and
σ = I C(π) , σ = I C(−π) . (2.36)
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T ′
d E E 8C3 8C3

3C2

3C2

6σd
6σd

6S4 6S4

Γ1 (A1) 1 1 1 1 1 1 1 1

Γ2 (A2) 1 1 1 1 1 −1 −1 −1
Γ3 (E) 2 2 −1 −1 2 0 0 0

Γ4 (T1) 3 3 0 0 −1 −1 1 1

Γ5 (T2) 3 3 0 0 −1 1 −1 −1
Γ6 2 −2 1 −1 0 0

√
2 −

√
2

Γ7 2 −2 1 −1 0 0 −
√
2

√
2

Γ8 4 −4 −1 1 0 0 0 0

Table 2.12: Character table for the double group of Td.

Character tables for double groups

One might at first suspect that any conjugacy class C of the point group P spawns two classes
within the double group P′, i.e. C and C ≡ E C. This is always true provided the elements of
C don’t square to the identity. But for twofold axes C2 and reflections σ, a theorem due to
Opechowski (1940) guarantees:

• For proper twofold operations, C2 and C̄2 adjoin to the same class if either

– there exists a second twofold axis perpendicular to the initial axis, or

– there exists a reflection plane containing the initial axis.

• For improper twofold operations, σ and σ̄ adjoin to the same class if either

– there exists a second reflection plane perpendicular to the initial one, or

– there exists a twofold axis lying within the initial plane.

In these cases, the resulting total number of classes in P′ is less than twice that for P. As an

example, consider the tetrahedral group Td. There are three twofold axis: x̂, ŷ, and ẑ. All are
bilateral because a rotation by π about x̂ reverses the direction of both ŷ and ẑ, etc. Accordingly,

in the character table Tab. 2.12 for the double group of Td , the classes C2 and C̄2 are adjoined,

as are σd and σ̄d .

With the exception of those twofold operations satisfying the conditions in Opechowski’s the-
orem, the classes C and C are distinct in the double group. Any IRREP of P will be an IRREP

of P′ with χ(C) = χ(C). But since the number of elements is doubled in P′, there must be new
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IRREPs specific to the double group. For these additional IRREPs, one has χ(C) = −χ(C), hence
if C and C adjoin to C ∪ C by Opechowski, one must have χ(C ∪ C) = 0. Checking Tab. 2.12, we
see that in the extra IRREPs Γ6,7,8 , χ(C) = −χ(C) except in the case of the adjoined classes, for

which χ(C ∪ C) = 0.

We can understand that twofold rotations and reflections are special in this regard from the
result we obtained for SU(2) characters,

χ(j)(ξ) =
sin (j + 1

2
)ξ

sin 1
2
ξ

(2.37)

for rotation by an angle ξ about any axis. Thus χ(j)(α + 2π) = (−1)2jχ(j)(α). For j = 1
2

, or

indeed for any half odd integer j, we have χ(π) = χ(3π) = 0. Thus C2 and C2 have the same

character. A similar result holds for reflections, because σ = IC2 and σ = IC2. Therefore the
classes C2 and C2 are not distinguished by character, nor are σ and σ. This is true in any IRREP

in which χ(E) = −χ(E).

2.2.11 The three amigos : D4 , C4v , D2d

Let’s try to apply some of what we’ve just learned to the groups D4, C4v, and D2d . All these
eight-element groups are isomorphic to each other. The character table for all three is given in
Tab. 2.13. Although they are all isomorphic, they include different sets of symmetry operations,
and therefore they will have different basis representations.

Let’s now discuss all the classes of these three groups. Recall that

R(ξ, n̂)ab = nanb +
(
δab − nanb

)
cos ξ − ǫabc nc sin ξ . (2.38)

• C2 : This class is present in all three groups. It consists of a single element which is
rotation by π about the ẑ axis, and represented by the 3× 3 matrix

Rπ
z ≡ R(π, ẑ) =



−1 0 0
0 −1 0
0 0 1


 . (2.39)

• 2C4 : Present in D4 and C4v. Contains the elements

Rπ/2
z ≡ R(π

2
, ẑ) =



0 −1 0
1 0 0
0 0 1


 , R−π/2

z ≡ R(−π
2
, ẑ) =




0 1 0
−1 0 0
0 0 1


 . (2.40)

These elements are inverses of each other.
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D4 E 2C4 C2 2C ′
2 2C ′′

2

C4v E 2C4 C2 2σv 2σd

D2d E 2S4 C2 2C ′
2 2σd D4 basis C4v basis D2d basis

A1 1 1 1 1 1 x2 + y2 x2 + y2 or z x2 + y2

A2 1 1 1 −1 −1 Lz or z Lz Lz

B1 1 −1 1 1 −1 x2 − y2 x2 − y2 x2 − y2

B2 1 −1 1 −1 1 xy xy xy or z

E 2 0 −2 0 0
{
x , y

} {
x , y

} {
x , y

}

Table 2.13: Character table for the point groups D4, C4v, and D2d.

• 2S4 : Present only in D2d . These are rotoreflections, i.e. 2C4 followed by z → −z :

Sπ/2z ≡ S(π
2
, ẑ) =



0 −1 0
1 0 0
0 0 −1


 , S−π/2

z ≡ S(−π
2
, ẑ) =




0 1 0
−1 0 0
0 0 −1


 . (2.41)

These two are also inverses within O(3). In general we have S(α) = IC(α − π), in which

case S
π/2
z = IR

−π
z R

π/2
z and S

−π/2
z = IR

−π
z R

−π/2
z . Why do we distinguish Rπ

z and R−π
z when

they are represented by the same matrix? This will be important when we construct the
corresponding matrix representation for the double groups20.

• 2C ′
2 : Present in D4 and D2d , this class consists of twofold rotations about x̂ and ŷ:

Rπ
x ≡ R(π, x̂) =



1 0 0
0 −1 0
0 0 −1


 , Rπ

y ≡ R(π, ŷ) =



−1 0 0
0 1 0
0 0 −1


 . (2.42)

• 2σv : This occurs only in C4v and corresponds to reflections x→ −x and y → −y:

Σx ≡ IRπ
x =



−1 0 0
0 1 0
0 0 1


 , Σy ≡ IRπ

y =



1 0 0
0 −1 0
0 0 1


 . (2.43)

20See the explanation of Eqn. 2.32.
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• 2C ′′
2 : Occurring only in D4 , these operations are twofold rotations about the diagonal

axes y = x and y = −x:

Rπ
xy ≡ R

(
π, x̂+ŷ√

2

)
=



0 1 0
1 0 0
0 0 −1


 , Rπ

xy ≡ R
(
π, x̂−ŷ√

2

)
=




0 −1 0
−1 0 0
0 0 −1


 .

(2.44)

• 2σd : Occurring in C4v and D2d , this class of reflections is equivalent to IC ′′
2 , hence

Σxy ≡ IRπ
xy =




0 −1 0
−1 0 0
0 0 1


 , Σxy ≡ IRπ

xy =



0 1 0
1 0 0
0 0 1


 . (2.45)

I apologize for the loose notation where we are using the same symbols to refer to group ele-
ments as well as their 3 × 3 matrix representations. Notice that all the matrices representing
elements of C4v have a block-diagonal structure with an upper left 2 × 2 block and a lower
right 1 × 1 block, where the latter is always 1. This is because we never need to speak of the
z-direction when we talk about C4v as all its operations involve x and y alone.

Now let’s talk about the basis functions. The projectors onto the various representations are
given by

ΠΓ =
dΓ
NG

∑

g∈G
χΓ

∗

(g)D(g) , (2.46)

where NG = 8 for the three amigos. It should be clear how the basis functions in Tab. 2.13
are eigenfunctions of these projectors, but let’s note the following to obviate any confusion.
First of all, what do we mean by Lz as a basis function of the A2 IRREP in the case of C4v and
D2d? We mean the angular momentum operator, Lz = xpy − ypx. We know that Lα = εαβγr

βpγ

transforms as a vector under proper rotations, however it is known as an axial vector because it
transforms differently under improper rotations. That is, under the operation σh (which, nota
bene is present in none of our three groups), z is odd but Lz is even. Similarly, under either
of the σv operations, z is even but Lz is odd. For D4 , the basis function f(z) = z corresponds
to the A2 IRREP because it is even under E, 2C4, and C2 and odd under 2C ′

2 and 2C ′′
2 . But in

C4v, whose operations all leave z invariant, f(z) = z transforms as the A1 IRREP. And for D2d ,
where 2S4 and 2C ′

2 reverse z but 2σd does not, f(z) = z transforms as the B2 IRREP! Note that
other valid choices of basis functions are possible. For example, rather than the pair

{
x , y

}
, we

could have chosen
{
Lx , Ly

}
as basis functions for the E IRREP.

Double group matrices and projectors

Now let’s tackle the corresponding double groups. We will need the 2×2 matrices representing
the various point group operations. Recall for a rotation by ξ about n̂ ,

exp(−iξn̂ · σ/2) = cos(1
2
ξ)− i sin(1

2
ξ) n̂ · σ . (2.47)
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We’ll write the elements of D(1/2)(G) as U(g). We then have

U(Rπ
z ) =

(
−i 0
0 i

)
, U(Rπ/2

z ) =

(
e−iπ/4 0
0 eiπ/4

)
, U(R−π/2

z ) =

(
eiπ/4 0
0 e−iπ/4

)
. (2.48)

For the rotoreflections,

U(Sπ/2z ) =

(
eiπ/4 0
0 e−iπ/4

)
, U(Sπ/2z ) =

(
−e−iπ/4 0

0 −eiπ/4
)

. (2.49)

Note that U(S
±π/2
z ) = I U(R

−π
z )U(R

±π/2
z ), where R−π

z = −Rπ
z and that I acts as the identity

matrix on spinors. Note that U(S
π/2
z ) = U(R

−π/2
z ). Next, we need

U(Σx) = U(Rπ
x) =

(
0 −i
−i 0

)
, U(Σy) = U(Rπ

y ) =

(
0 −1
1 0

)
. (2.50)

Since the only difference between the twofold rotations and the corresponding reflections in
the planes perpendicular to their axes is the inversion I , their representations in D1/2(G) are
identical. The remaining matrices are

U(Σxy) = U(Rπ
xy) =

(
0 −eiπ/4

e−iπ/4 0

)
, U(Σxy) = U(Rπ

xy) =

(
0 e−iπ/4

−eiπ/4 0

)
. (2.51)

Note that their product is U(Σxy)U(Σxy) = U(Rπ
z ). Note also that det U(g) = 1 since each

U(g) ∈ SU(2).

Appealing to the character table in Tab. 2.14, we can now construct the double group projectors.
We write the projectors as

ΠΓ =
dΓ
NG

∑

g∈G
χΓ

∗

(g)D(g)⊗ U(g) . (2.52)

where G is any of D′
4 , C ′

4v , and D′
2d , and NG = 16, since each of the double groups of the three

amigos has 16 elements. For the IRREPs
{
Γ1, Γ2, Γ3, Γ4, Γ5}we may use the basis functions ψΓµ (r)

from the proper point groups. I.e. we can simply ignore all the U-matrices and pretend there is
no spin component. More correctly, we can consider the spin component of each basis function
to be a singlet,

∣∣ S
〉
=

1√
2

(∣∣ ↑
〉
⊗
∣∣ ↓
〉
−
∣∣ ↓
〉
⊗
∣∣ ↑
〉)

. (2.53)

One can check that U(g) | S 〉 = | S 〉 for all g, which follows from det U(g) = 1. For Γ6 and
Γ7 , though, the projectors annihilate any basis function of the form f(r) | S 〉. However, a basis
function of the form | ↑ 〉 or | ↓ 〉 (i.e. with no spatial dependence) does the trick. In spinor
notation, we have

2

16

[
χΓ6(E)U(E) + χΓ6(E)U(E)

](u
v

)
=

1

2

(
u
v

)

2

16

[
χΓ6(2C4) + χΓ6(2C4)E

][
U(Rπ/2

z ) + U(R−π/2
z )

](u
v

)
=

1

2

(
u
v

)
.

(2.54)
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D′
4 E E 2C4 2C4 C2 ∪ C2 2C ′

2 ∪ 2C
′
2 2C ′′

2 ∪ 2C
′′
2

C ′
4v E E 2C4 2C4 C2 ∪ C2 2σv ∪ 2σv 2σd ∪ 2σd

D′
2d E E 2S4 2S4 C2 ∪ C2 2C ′

2 ∪ 2C
′
2 2σd ∪ 2σd basis

Γ1 1 1 1 1 1 1 1 x2 + y2

Γ2 1 1 1 1 1 −1 −1 Lz

Γ3 1 1 −1 −1 1 1 −1 x2 − y2

Γ4 1 1 −1 −1 1 −1 1 xy

Γ5 2 2 0 0 −2 0 0
{
x , y

}
or
{
Lx , Ly

}

Γ6 2 −2
√
2 −

√
2 0 0 0

{
|↑ 〉 , |↓ 〉

}

Γ7 2 −2 -
√
2
√
2 0 0 0 Γ3 × Γ6 or Γ4 × Γ6

Table 2.14: Character table for the double groups of D4 , C4v , and D2d .

Thus,

(
u
v

)
is an eigenfunction of the projector ΠΓ6 . In order to keep this spinor from being

annihilated by ΠΓ7 , we need to multiply it by a scalar function ψ(r) which reverses the sign

from the characters of the classes 2C4 and 2C4. According to Tab. 2.13, the basis function from
either the B1 or the B2 IRREPs will work. This explains the basis functions in Tab. 2.1421. Other
valid choices of basis functions are of course possible.

Do we always need the double group?

Although electrons carry spin S = 1
2
, we usually don’t need to invoke the double group for-

malism if the spin-orbit coupling is sufficiently weak. That is, we may use L rather than J as

the generator of rotations, since
[
Ĥ, Lα

]
= 0. Each electronic energy level is of course doubly

degenerate due to the spin, which just ”comes along for the ride”. In the presence of signif-

icant spin-orbit coupling,
[
Ĥ, Lα

]
6= 0 but

[
Ĥ, Jα

]
= 0. Thus we must use the total angular

momentum J as the generator of rotations, which entails the double point group symmetries.

21The spin component of the basis functions for the Γ1 through Γ5 IRREPs should be considered to be the singlet
| S 〉.
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2.3 Space Groups

The full group of symmetry operations of an n-dimensional crystal is called its space group,
S. Any crystallographic space group is a subgroup of the Euclidean group: S ⊂ E(n). Space
groups are infinite discrete groups. Two-dimensional space groups are called wallpaper groups.
An accounting of the total number of lattices, point groups, and space groups for two and three
dimensional crystals is provided in Tab. 2.1.

2.3.1 Space group elements and their properties

Each element
{
g
∣∣ t
}
∈ S represents a compounded operation of rotation by a rotation g (either

proper or improper) and a translation t. When g = E, the space group operations are pure
translations, and are all of the form

{
E
∣∣R
}

, where R ∈ L is a vector in the underlying Bravais
lattice. As discussed in §2.1.7, the operations

{
g
∣∣ t
}

form a group, with

{
g
∣∣ t
}{

g′
∣∣ t′
}
=
{
gg′
∣∣ gt′ + t

}
{
g
∣∣ t
}−1

=
{
g−1

∣∣ − g−1
t
}

.
(2.55)

We see that the rotations g must themselves form a group, which is the point group P of the
crystal. Pure translations

{
E
∣∣R
}

by a direct lattice vector are part of the space group, and

indeed form a normal subgroup thereof:
{
g
∣∣ t
}−1{

E
∣∣R
}{

g
∣∣ t
}
=
{
E
∣∣ g−1R

}
. Thus, g−1R ∈

L for any g ∈ P, which means, as noted above in §2.1.7, that the point group P of any crystal is
a subgroup of the point group P

L
of its underlying Bravais lattice (i.e. the holohedry).

Fom Eqn. 2.55, we have the group conjugation property

{
h
∣∣ s
}−1{

g
∣∣ t
}{

h
∣∣ s
}
=
{
h−1gh

∣∣h−1gs− h−1
s + h−1

t
}
≡
{
g′
∣∣ t′
}

, (2.56)

for which the rotation is g′ = h−1gh and the translation is t′ = h−1gs−h−1s+h−1t. When h = E,
we have g′ = g and

t− t′ = (E − g) s . (2.57)

Suppose we further demand t′ = 0 , i.e. that the conjugated operation is equivalent to a pure
rotation, with no translation, about a different choice of origin. We see that this is possible if
we choose s such that t = (E − g) s.
Now it was noted in §2.2.1 that when the dimension n of space is odd, g ∈ O(n) always pre-
serves some axis, meaning it has an eigenvalue λ = 1. The other two eigenvalues may be
written as e±iα where α = 2π/n with n = 2, 3, 4, or 6. (The case n = 1 corresponds to the
identity E.) A mirror reflection, which is an improper operation, has an inversion axis corre-
sponding to an eigenvalue λ = −1, with all remaining eigenvalues λ = +1. Proper rotations
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Figure 2.19: Structure of hexagonal H2O ice, with red spheres showing location of oxygen
atoms. The space group is P63/mmc. The 63 symbol indicates a sixfold screw axis. The first
two m symbols indicate mirror planes perpendicular and parallel to the c-axis. The c symbol
indicates a glide plane where the translation is along the c-axis. (Image credit: Wikipedia).

therefore have an invariant axis, while mirror reflections have an invariant plane. Thus we can
write

proper rotation : r = | ê1 〉〈 ê1 |+ eiα | ê2 〉〈 ê2 |+ e−iα | ê3 〉〈 ê3 |
mirror reflection : m = −| ê1 〉〈 ê1 |+ | ê2 〉〈 ê2 |+ | ê3 〉〈 ê3 | .

(2.58)

We now see that if g = r is a proper rotation, t = (E − r) s cannot be solved for s if t has any
component along the invariant axis ê1. Similarly, if g = m is a mirror, t = (E − m) s cannot
be solved for s if t has any component in the invariant plane spanned by {ê2, ê3}. Space group
operations

{
r
∣∣ t
}

for which t is parallel to the invariant axis of r are called screws, while those
for which t is parallel to an invariant plane of m are called glides. As we shall see, the possible
values of t are strongly constrained in either case. Screws and glides may be considered intrinsic
translations because they cannot be removed simply by a new choice of origin.

Next we note that if
{
g
∣∣ t
}
∈ S, we can always choose the translation component t to either be

in the direct lattice or to lie within the first Wigner-Seitz (WS) cell22. If t ≡ τ /∈ T, then it must be

unique for a given g, because if both
{
g
∣∣ τ
}

and
{
g
∣∣ τ ′
}

are in S, then so is
{
g
∣∣ τ ′
}−1{

g
∣∣ τ
}
={

E
∣∣ g−1(τ−τ ′)

}
, which means that g−1(τ−τ ′) ∈ T and therefore τ−τ ′ ∈ T. Since by assumption

both τ and τ ′ lie within the first WS cell, we must have τ ′ = τ . Thus, all space group elements
are of the form

{
g
∣∣R + τg

}
, where τg may either be zero or a unique nonzero vector within

the first WS cell. Now the point group P is of finite order, so each element g ∈ P satisfies gn =
E where n is finite and taken to be the smallest positive integer which satisfies this relation.
Therefore {

g
∣∣ τg
}n

=
{
gn
∣∣ τg + gτg + . . .+ gn−1

τg

}
, (2.59)

22A translation t which is not a direct lattice vector can always be brought into the first WS cell by a direct lattice
translation.
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Nos. lattice P(Sch) P(HM) order S (sym) S (n-sym)

1 oblique C1 1 1 p1

2 oblique C2 2 2 p2

3 - 4 rectangular C1v m 2 pm pg

5 - 6 rectangular C2v 2mm 4 pmm pmg

7 centered
rectangular C1v m 2 cm

8 - 9 centered
rectangular C2v 2mm 2 cmm pgg

10 square C4 4 4 p4

11 - 12 square C4v 4mm 8 p4m p4g

13 hexagonal C3 3 3 p3

14 - 15 hexagonal C3v 3m 6 p3m1 , p31m

16 hexagonal C6 6 6 p6

17 hexagonal C6v 6mm 12 p6m

Table 2.15: The 17 wallpaper groups and their short notation.

and since gn = E, we must have that τg + gτg + . . . + gn−1τg = R is a direct lattice vector. Note
that for g = r we can have n = 2, 3, 4, or 6, while for g = m we necessarily have n = 2.

According to Eqn. 2.58, we have

E + g + g2 + . . .+ gn−1 = nP‖(g) , (2.60)

where P‖(r) ≡ | ê1 〉〈 ê1 | is the projector onto the invariant axis of r, and P‖(m) ≡ | ê2 〉〈 ê2 | +
| ê3 〉〈 ê3 | the projector onto the invariant plane of m. Thus we conclude nP‖(g) τg = R, which is
to say that the nonremovable part of the translation τg , i.e. its projection onto the rotation axis
or mirror plane, is equal to R/n . Note also that in d = 2, there is no preserved rotation axis,
since it would be orthogonal to the (x, y) plane. Therefore two dimensional point groups can
at most have glides and no screws.

We may now identify all possible screws with the symbols 21, 31, 41, 42, 61, 62, and 63, as well
as their enantiomorphous counterparts 32, 43, 64, and 65. The symbol nm indicates a rotation
by 2π/n followed by a translation by a fraction m/n of a unit cell along the screw axis. Glide
planes are denoted by the symbols a, b, c, n, and d, depending on the direction of the translation
component. Let the symmetry axes of the crystal be a, b, and c. Then
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(a) p1 (b) p2 (c) pm (d) pg

(e) pmm (f) pmg (g) cm (h) cmm

(i) pgg (j) p4 (k) p4m (l) p4g

(m) p3 (n) p3m1 (o) p31m (p) p6

(q) p6m

Figure 2.20: Unit cells for the 17 two-dimensional space groups (wallpaper groups). (Image
credit: Wikipedia.)
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◦ For a glides, τ = 1
2
a.

◦ For b glides, τ = 1
2
b.

◦ For c glides, τ = 1
2
c.

◦ For n glides, τ = 1
2
(a+ b), 1

2
(b+ c), 1

2
(a+ c), or 1

2
(a+ b + c).

◦ For d glides, τ = 1
4
(a+ b), 1

4
(b + c), 1

4
(a+ c), or 1

4
(a+ b+ c).

The d-glide is called the diamond glide and is present in the diamond lattice.

Be forewarned that it is possible for a symmorphic space group to include screw and glide op-
erations provided they are removable by choosing a different origin. Such nonsymmorphic op-
erations are called inessential. In other words, if S contains nonsymmorphic operations (screws
or glides), but there exists some ρ ≡

{
h
∣∣ s
}

such that all elements of ρ−1
Sρ are of the form{

g
∣∣R
}

, then S is symmorphic. A nonsymmorphic space group contains essential (i.e. unre-
movable) screws or glides23.

2.3.2 Factor groups

In the dim and distant past – specifically, in §1.3.1 – we discussed the concept of a factor group.
Recall that if H ⊂ G is a subgroup, there is a unique left coset decomposition of G as G =

⋃
i riH

where i ∈ {1, . . . , NG/NH}. If H ⊳ G is a normal subgroup, meaning gHg−1 ∈ H for all g ∈ G,
the cosets riH form a group under multiplication, called the factor group G/H .

Since the abelian group T of Bravais lattice translations is a normal subgroup of the space
group, we can decompose S as

S =
⋃

g

{
g
∣∣ τg
}
T = T +

{
g2
∣∣ τg2

}
T + . . .+

{
gN

P

∣∣ τg
N
P

}
T . (2.61)

This says that the space group S is generated by all Bravais lattice translations
{
E
∣∣R
}

and
all operations

{
g
∣∣ τg
}

. If, as in §2.3.5 below, we impose periodic boundary conditions, so
that space is compactified into a three-dimensional torus of N1 × N2 × N3 unit cells, then the
translation group T is of finite order |T| = N1N2N3 , and the order of the space group is |S| =
|P| · |T|.
The set of operations

{
g
∣∣ τg
}

is thus the factor group F ≡ S/T. While there exists a bijective

map
{
g
∣∣ τg
}
←→

{
g
∣∣ 0
}

between the factor group F and the point group P, multiplication

23As noted above, there are two nonsymmorphic space groups which contain neither screws nor glides, but for
which one can nevertheless not write S = P⋊ T.
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crystal system type symmorphic space groups

triclinic P P1 , P1

monoclinic P P2 , Pm , P2/m

A/C C2 , Cm , C2/m

orthorhombic P P222 , Pmm2 , Pmmm

A/C C222 , Cmm2 , Cmmm , Amm2

I I222 , Imm2 , Immm

F F222 , Fmm2 , Fmmm

tetragonal P P4 , P4 , P4/m , P422 , P4mm

P42m, P4m2 , P4/mmm

I I4 , I4 , I4/m , I422 , I4mm

I42m, I4m2 , I4/mmm

trigonal P P3 , P3 , P321 , P3m1 , P3m1

P312 , P31m, P31m

(rhombohedral) R R3 , R3 , R32 , R3m, R3m

hexagonal P P6 , P6 , P6/m , P622 , P6mm

P6m2 , P62m, P6/mmm

cubic P P23 , Pm3 , P432 , P43m, Pm3m

I I23 , Im3 , I432 , I43m, Im3m

F F23 , Fm3 , F432 , F43m, Fm3m

Table 2.16: The 73 symmorphic three-dimensional space groups and their short notation. Bra-
vais lattice types are primitive (P), base-centered (A/C), body-centered (I), and face-centered
(F). Space groups printed in red indicate cases where there are two inequivalent P-invariant
space lattice orientations.

within the factor group is always modulo T. Group multiplication of the factor group elements
results in a projective representation of the point group,

{
g
∣∣ τg
}{

h
∣∣ τh
}
=
{
E
∣∣Rg,h

}{
gh
∣∣ τgh

}
, (2.62)

and one can lift the projective representation of P to its central extension, which is to say S. Here

Rg,h = τg + gτh − τgh (2.63)

must be in the Bravais lattice. Note that the cocycles here are actually translation operators
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rather than actual phases. Below we shall see how by diagonalizing the translation part of the
space group, the cocycles become phases.

The case of diamond

Diamond is a rather typical nonsymmorphic space group. Recall the primitive direct lattice
vectors for the fcc Bravais lattice,

a1 =
1
2
a0 (0, 1, 1) , a2 =

1
2
a0 (1, 0, 1) , a3 =

1
2
a0 (1, 1, 0) , (2.64)

where a0 is the side length of the simple cubic lattice whose four element basis describes the
fcc structure. The space group of diamond is S = Fd3m, this the point group is m3m, which is
Oh. Thus there are 48 cosets in the factor group F, which is the order of Oh. These cosets break
up into two collections. One consists of operations of the form

{
h
∣∣ 0
}
T where h ∈ Td . The

other consists of operations of the form
{
I
∣∣ τ
}{

h
∣∣ 0
}
T where I is the inversion operator and

τ = 1
4
a1+

1
4
a2+

1
4
a3 =

1
4
a0 (1, 1, 1). The elements from the first collection thus constitute a group

in their own right, which is the zincblende space group S̃ = F43m. This is a normal subgroup

of S of index two, i.e. S/S̃ ∼= Z2. Explicitly, we then have S = S̃ ∪
{
I
∣∣ τ
}
S̃.

2.3.3 How to make a symmorphic space group

The simplest recipe:

(i) Start with a lattice system.

(ii) Choose a point group consistent with the lattice system.

(iii) Choose an allowed lattice type (i.e. centering).

(iv) Congratulations, you’ve just specified a symmorphic point group.

To see this method in practice, let’s try it out in two dimensions, where there 13 of the 17
space (wallpaper) groups are symmorphic. There are four crystal systems (oblique, rectangu-
lar, square, hexagonal), and the rectangular system can either have a primitive or a centered
unit cell. For oblique lattices the allowed point groups are C1 and C2, so two possibilities. For
rectangular lattices, the allowed point groups are C1v and C2v. There are two possible center-
ings, for a total of four possibilities. For square lattices, P can be either C4 or C4v – another
two. For hexagonal, either C3, C3v, C6, or C6v, so four total. We arrive at 12 so we are missing a
space group. The reason is there can be two inequivalent orientations of the space lattice which
the point group leaves invariant, thereby leading to another space group. This happens in the
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(a) Rocksalt, Fm3m (b) Wurzite, P63mc (c) Zincblende, F43m

Figure 2.21: Some common AB crystal structures and their space groups.

case of the hexagonal lattice with C3v (3m) point group symmetry. There are two space groups,
called p3m1 and p31m.

A table of the 17 wallpaper groups is provided in Tab. 2.15, and sketches of the unit cells of
each of them are depicted in Fig. 2.20. Study the nonsymmorphic cases pg, pmg, pgg, and p4g
to see if you can identify the glide mirrors. Note also how the naming convention works: the
leading p or c character stands for primitive or centered. Information about the point group is
contained in the space group label. Finally, the symbol g is used to indicate the presence of a
glide mirror.

The naming convention for three-dimensional space groups is somewhat more complex, but
the procedure is as described in the above recipe. There are seven distinct crystal systems,
and Bravais lattice types are either primitive (P), base-centered (A/C), body-centered (I), or
face-centered (F). Consider an fcc lattice with point group Oh (m3m in HM short notation).
The corresponding symmorphic space group is Fm3m, the full symbol for which is F 4

m
3 2
m

.
Proceeding in this way, accounting for all the crystal systems, their allowed point groups, and
possible centerings, one obtains 66 symmorphic space groups. As in the two-dimensional case,
when inequivalent orientations of the space lattice are both preserved by the point group, we
get an extra space group. Such cases are indicated in red in Tab. 2.16. For example, for the case
C2v = mm2, the A and C centering types lead to different space groups, Amm2 and Cmm2,
respectively. They are distinct space groups because in the latter case the centering is along a
twofold axis, while in the former it is not.

2.3.4 Nonsymmorphic space groups

Returning to our example space group F 4
m
3 2
m

, a check of the tables24 reveals that there are a
total of four space groups generated from the fcc lattice and point group Oh =

4
m
3 2
m

. The other

24See http://www.wikiwand.com/en/List_of_space_groups.

http://www.wikiwand.com/en/List_of_space_groups
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three are F 4
m
32
c
, F 41

d
3 2
m

, and F 41
d
32
c

; their short names are Fm3c, Fd3m, and Fd3c, respectively.
These three space groups are all nonsymmorphic and involve either screws (41), glides (c, d),
or both. The second of these three corresponds to carbon diamond. Schoenflies’ names for
the four point groups generated from fcc and Oh were O5

h, O6
h, O7

h, and O8
h, respectively, which

convey little information other than the order in which he derived them from the point group
Oh.25

Of the 230 three-dimensional space groups, 157 are nonsymmorphic and contain operations{
g
∣∣ τg
}

where τg /∈ T is not in the direct lattice, and no single change of origin can reduce all
the τg to zero or to a direct lattice vector.

Some of the nonsymmorphic space groups with screw axes have mirror images, and together
are known as enantiomorphic pairs. For example, space groups (P41 , P43) form such a pair, as
do (P41212 , P43212), (P3112 , P3212), (P6222 , P6422), etc.

2.3.5 Translations and their representations

The set of translations T is a subgroup of S, consisting of the elements
{
E
∣∣R
}

, where R =∑d
j=1mj aj is a sum over the primitive direct lattice vectors with integer coefficients. It is con-

venient to work with discrete groups of finite order, so to this end we invoke periodic boundary
conditions, which places our system on a d-dimensional torus extending for Nj unit cells in the

aj direction for each j ∈ {1, . . . , d}. This means that R is equivalent to R +
∑d

j=1 lj Lj with

Lj = Nj aj and each lj ∈ Z. Our Bravais lattice translation group T now has N =
∏d

j=1Nj

elements, which is the total number of unit cells in the real space torus.

Next we ask about irreducible representations of T. Since T is an abelian group, all its IRREPs
are one-dimensional. If ψ(r) is a basis function for a unitary one-dimensional IRREP of T, then

{
E
∣∣R
}
ψ(r) = ψ

({
E
∣∣R
}−1

r
)
= ψ(r − R) = e−iω(R) ψ(r) . (2.65)

In order that the group multiplication law be satisfied, we must have e−iω(R) e−iω(R
′) = e−iω(R+R′),

which tells us that ω(R) is linear in R, i.e.

ω(m1 a1 + . . .+md ad) = m1 ω(a1) + . . .+md ω(ad) (2.66)

to within an additive multiple of 2π. We may define ω(aj) ≡ θj , in which case the IRREP is
labeled by the set of angles θ. Furthermore, we must have ω(R) = ω(R+Lj) for all j ∈ {1, . . . , d},
which says that Nj θj is congruent to zero modulo 2π, i.e. θj = 2πlj/Nj , where lj ∈ {1, . . . , Nj}.
So the θj values are quantized and there are N =

∏
j Nj distinct values of the vector θ =

(θ1, . . . , θd).

25Schoenflies’ O1
h through O4

h correspond to primitive cubic lattices, and O9
h and O10

h to bcc lattices.
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system P(Sch) PHM N
P

nonsymmorphic space groups

triclinic C1 1 1 none

Ci 1 2 none

monoclinic C2 2 2 P21
Cs m 2 Pc , Cc

C2h 2/m 4 P21m, P2/c , P21/c , C2/c

orthorhombic D2 222 4 P2221 , P21212 , P212121 , C2221 , I212121
C2v mm2 4 Pmc21 , P cc2 , Pma2 , P ca21 , Pnc2 , Pmn21 , P ba2 ,

Pna21 , Pnn2

Cmc21 , Ccc2 , Abm2 , Ama2 , Aba2 , Fdd2 , Iba2 , Ima2

D2h mmm 8 Pnnn , Pccm , Pban , Pmma , Pnna , Pmna , Pcca , P bam ,

Pccm , Pbcm , Pnnm , Pmmn , Pbcn , P bca , Pnma

Cmcm , Cmca , Cccm , Cmma , Ccca , Fddd , Ibam , Ibcm , Imma

tetragonal C4 4 4 P41 , P42 , P43 , I41
S4 4 4 none

C4h 4/m 8 P42/m , P4/n , P42/n , I41/a

D4 422 8 P42121 , P4122 , P41212 , P4222 , P42212 , P4322 , P43212 , I4122

C4v 4mm 8 P4bm , P42cm , P42nm , P4cc , P4nc , P42mc , P42bc

I4cm , I41md , I42d

D2d 42m 8 P42c , P421m , P421c , P4c2 , P4c2 , P4n2 , I4c2 , I42d

D4h 4/mmm 16 P4/mcc , P4/nbm , P4/nnc , P4/mbm , P4/mnc , P4/nmm ,

P4/ncc , P42/mmc , P42/mcm , P42/nbc , P42/nnm , P42/mbc ,

P42/mnm , P42/nmc , P42/ncm

I4/mcm , I41/amd , I41/acd

trigonal C3 3 3 P31 , P32
S6 3 3 none

D3 32 6 P3112 , P3121 , P3212 , P3221

C3v 3m 6 P31c , P3c1 , R3c

D3d 3m 12 P31c , P3c1 , R3c

hexagonal C6 6 6 P61 , P62 , P63 , P64 , P65
C3h 6 6 none

C6h 6/m 12 P63/m

D6 622 12 P6122 , P6222 , P6322 , P6422 , P6522

C6v 6mm 12 P6cc , P63cm , P63mc

D3h 6m2 12 P6c2 , P62c

D6h 6/mmm 24 P6/mcc , P63/mcm , P63/mmc

cubic T 23 12 P213 , I213

Th m3 24 Pn3 , Pa3 , Fd3 , Ia3

O 432 24 P4132 , P4232 , P4332 , I4132 , F4132

Td 43m 24 P43n , F43c , I43d

Oh m3m 48 Pn3n , Pm3n , Pn3n , Fm3c , Fd3m, Fd3c , Ia3d

Table 2.17: The 157 nonsymmorphic three-dimensional space groups.
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Recall the definition of the reciprocal lattice vectors bj which satisfy ai · bj = 2π δij . Then if we

define the wavevector k ≡ ∑d
j=1 θj bj

/
2π , we then have ω(R) = k · R , and our basis functions

may be written as ψk(r) = u(r) eik·r where u(r−R) = u(r) for allR ∈ L is a periodic cell function.
Any cell function may be expanded as a discrete Fourier series, viz.

u(r) =
∑

K

CK e
iK·r , (2.67)

where K =
∑d

j=1 nj bj is a reciprocal lattice vector, which satisfies exp(iK · R) = 1 for all direct
lattice vectors R, and the {CK} are a set of coefficients. What we have just shown is known

as Bloch’s theorem, which says that the eigenfunctions of any Hamiltonian Ĥ which commutes
with all Bravais lattice translations may be written in the form ψk(r) = eik·r u(r), where u(r)
is a cell function and k lies within the first Brillouin zone of the reciprocal lattice. The reason
that k is confined to this region is that k → k + K amounts to a change of the cell function
u(r) → u(r) eiK·r. Note that quantization of θ entails quantization of k to one of N possible
values.

The character of the space group element
{
E
∣∣R
}

in the k IRREP is thus χ(k)(R) = e−ik·R, in
suitably abbreviated notation. The great orthogonality and completeness theorems then tell us

∑

R

ei(k−k
′)·R = N δk,k′ ,

∑

k

eik·(R−R′) = N δR,R′ . (2.68)

In the limit N →∞, these equations become

∑

R

ei(k−k
′)·R = Ω̂

∑

K

δ(k′ − k−K) , Ω

∫

Ω̂

ddk

(2π)d
eik·(R−R′) = δR,R′ . (2.69)

The first of these is the generalized Poisson summation formula from Eqn. 2.7. In the second,

the integral is over the first Brillouin zone, Ω̂. Recall vol(Ω) = Ω and vol(Ω̂) = Ω̂ = (2π)d/Ω.

2.3.6 Space group representations

We follow Lax §8.6 and §8.7. When solving for electronic or vibrational states of a crystal, the
first order of business is to classify eigenstates by wavevector, i.e. to diagonalize the operations{
E
∣∣R
}

in the space group S. For states of crystal momentum k, we have
{
E
∣∣R
}
| k, λ 〉 =

eik·R | k, λ 〉, where λ denotes other quantum numbers not related to crystal momentum.

Acting on Bloch states, a general space group operation has the following action:

{
g
∣∣ t
}

ψk(r)︷ ︸︸ ︷
eik·r u(r) = exp

[
ik ·
{
g
∣∣ t
}−1

r

]
u
({
g
∣∣ t
}−1

r
)

= eigkr u
(
g−1(r − t)

)
≡ eigk·r e−igk·t ũ(r) = ψ̃gk(r) ,

(2.70)
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where if u(r) =
∑

K CK e
iK·r is the original cell function, then

ũ(r) =
∑

K

Cg−1K e
−iK·t eiK·r ≡

∑

K

C̃K e
iK·r (2.71)

is a new cell function, i.e. it satisfies ũ(r + R) = ũ(r) for all direct lattice vectors R. Thus,

application of
{
g
∣∣ t
}
∈ S to a Bloch function ψk(r) generates a new Bloch function ψ̃gk(r) at

wavevector gk.26

Group and star of the wavevector k

If gk = k + K , then
{
g
∣∣ t
}

does not change the wavevector of the Bloch function. We define
the point group Pk of the wavevector k to be those point group operations g ∈ P which leave k
unchanged up to a reciprocal lattice vector27. The space group of the wavevector Sk is then
all
{
g
∣∣ t
}
∈ S for which g ∈ Pk. The star of the wavevector k is defined to be the set of points

including k and all its images gk , where g ∈ P \ Pk .28

Algebra and representation of the space group

Recall the results of Eqns. 2.62 and 2.63. From
{
g
∣∣ τg
}{

h
∣∣ τh
}
=
{
E
∣∣Rg,h

}{
gh
∣∣ τgh

}
=
{
gh
∣∣ τgh

}{
E
∣∣ (gh)−1

Rg,h

}
, (2.72)

we see that, acting on a Bloch state,
{
g
∣∣ τg
}{

h
∣∣ τh
}
ψk(r) = e−ighk·Rg,h

{
gh
∣∣ τgh

}
ψk(r) , (2.73)

and so if g and h are both elements of Pk , then
{
g
∣∣ τg
}{

h
∣∣ τh
}
= e−ik·Rg,h

{
gh
∣∣ τgh

}
(2.74)

when acting on Bloch states of crystal momentum k, where Rg,h = τg + gτh − τgh is a direct
lattice vector. The above equation establishes a projective representation for Sk. Alternatively,
one may define the operators

Λk(g) ≡
{
g
∣∣ τg
}
eik·τg =

{
g
∣∣R+ τg

}
eik·(R+τg) , (2.75)

which act on states of crystal momentum k , and which satisfy the projective algebra

Λk(g) Λk(h) = ωk(g, h) Λ(gh)

ωk(g, h) = eik·(τh−gτh) = eiKg·τh
(2.76)

because k · gτh = g−1k · τh ≡ (k−Kg) · τh , with Kg = k− g−1k = k− kg.

26The phase e−igk·t amounts to a gauge transformation.
27Pk is also known as the little group of k .
28We use the notation A \ B to denote set subtraction, with B ⊆ A. I.e. A \ B = A − B, which is to say the set of

elements in A that are not in B.
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Representations of symmorphic space groups

When S is symmorphic, τg = 0 for all g ∈ P, hence ωk(g, h) = 1 for all k. We don’t have to worry
about projective representations of the little groups, and therefore

DΓ ; S
k

({
g
∣∣ 0
})

= DΓ ;P
k(g)

χΓ ; S
k

({
g
∣∣ 0
})

= χΓ ;P
k(g) ,

(2.77)

i.e. we can use the ordinary point group representation matrices.

Representations of nonsymmorphic space groups

If k /∈ ∂Ω̂ lies in the interior of the Brillouin zone and not on its boundary, then both k and g−1k

lie inside Ω̂, which means kg = 0 and the cocycle is unity: ωk(g, h) = 1. Thus we have

DΓ ; S
k

({
g
∣∣ τg
})

= e−ik·τg DΓ ;P
k(g)

χΓ ; S
k

({
g
∣∣ τg
})

= e−ik·τg χΓ ;P
k(g) ,

(2.78)

where Γ can only be the trivial representation if k 6= 0. Again, we only need the ordinary point
group representation matrices.

If k ∈ ∂Ω̂, then Pk may be nontrivial. In this case there are two possibilities:

(i) If there is a one-dimensional IRREP of Sk, dk(g), with dk(g) dk(h) = ωk(g, h) dk(gh) , define

the ratio Λ̃k(g) ≡ Λk(g)/dk(g). The operators Λ̃k(g) then satisfy Λ̃k(g) Λ̃k(h) = Λ̃k(gh) , i.e.
the point group multiplication table. Thus,

DΓ ; S
k

({
g
∣∣ τg
})

= e−ik·τg dk(g)D
Γ ;P

k(g)

χΓ ; S
k

({
g
∣∣ τg
})

= e−ik·τg dk(g)χ
Γ ;P

k(g) .
(2.79)

and again we can use the ordinary point group representations.

(ii) If there is no one-dimensional IRREP of Sk, if one wishes to avoid needless work, one can
consult tables, e.g. in appendix F of Lax, or appendix C of Dresselhaus, Dresselhaus, and
Jorio.

2.4 Fourier Space Crystallography

Thus far our understanding of crystallography has been based on real space structures and
their transformation properties under point and space group operations. An equivalent ap-
proach, originally due to Bienenstock and Ewald (1962), and formalized and further developed
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by Mermin and collaborators in the 1990s, focuses on the Fourier modes ρ̂(K) of the density
ρ(r). This is known in the literature as Fourier space crystallography29. Writing ρ(r) as a Fourier
sum,

ρ(r) =
∑

K

ρ̂(K) eiK·r , (2.80)

where each K ∈ L̂. Since ρ(r) ∈ R is real, we have ρ̂(−K) = ρ̂∗(K) for all K ∈ L̂. The inverse of
the above relation is

ρ̂(K) =

∫
ddr ρ(r) e−iK·r . (2.81)

Note that if ρ′(r) = ρ(r + d) then ρ̂′(K) = ρ̂(K) eiχ(K) where χ(K) = K · d is a linear function on

L̂.

2.4.1 Space group symmetries

We now ask how the ρ̂(K) transform under space group operations of the crystal. The general
space group operation may be written as

{
g
∣∣R + τg

}
. We have already accounted for the

symmetries under Bravais lattice translations, which says that ρ(r) is given as the above Fourier
sum. So now restrict our attention to operations of the form

{
g
∣∣ τg
}

. If ρ(r) is invariant under
all space group operations, we must have

ρ(r) =
{
g
∣∣ τg
}
ρ(r) = ρ

({
g
∣∣ τg
}−1

r
)
= ρ
(
g−1(r − τg)

)
. (2.82)

Taking the Fourier transform, we have

ρ̂(K) =

∫
ddr ρ

(
g−1(r − τg)

)
e−iK·r = ρ̂(Kg) e−iK·τg , (2.83)

which is easily established by changing the integration variables30 from r to r′ = g−1(r − τg).
Note that g denotes both an abstract element of the point group P as well as its 3 × 3 matrix
representation, and that by Kg we treat K as a row vector and multiply by the matrix of g on
the right. We therefore have

ρ̂(Kg) = ρ̂(K) eiφg(K) , (2.84)

where φg(K) = K · τg acts linearly on L̂, with φg(0)
∼= 0 for all g ∈ P and φE(K) ∼= 0 for all

K ∈ L̂. Here the symbol ∼= denotes equality modulo 2π. We call φg(K) a phase function on the
reciprocal lattice.

We then have

ρ̂(Kgh) = ρ̂(Kg) eiφh(Kg) = ρ̂(K) eiφg(K) eiφh(Kg)

= ρ̂(K) eiφgh(K) ,
(2.85)

29Here we follow the pedagogical treatment in A. König and N. D. Mermin, Am. J. Phys. 68, 525 (2000), with some
minor notational differences.

30Since g ∈ O(n), we have that the Jacobian of the transformation is | det g| = 1.
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and therefore the group compatibility condition for the phase functions is

φgh(K) ∼= φh(Kg) + φg(K) , (2.86)

which is the same condition as that in eqn. 2.63.

Suppose ρ′(r) and ρ(r) differ by a translation. Then ρ̂′(K) = ρ̂(K) eiχ(K), hence

ρ̂′(Kg) = ρ̂′(K) eiφ
′
g(K) = ρ̂(K) eiχ(K) eiφ

′
g(K)

= ρ̂(Kg) eiχ(Kg) = ρ̂(K) eiφg(K) eiχ(Kg) ,
(2.87)

and therefore

φ′
g(K) ∼= φg(K)+

χ(Kg −K)︷ ︸︸ ︷
χ(Kg)− χ(K) . (2.88)

We say that the the above equation constitutes a gauge transformation and thus that the functions
φ′
g(K) and φg(K) are gauge equivalent. We then have the following:

⋄ A space group S is symmorphic iff there exists a gauge in which φg(K) ∼= 0 for all g ∈ P and all

K ∈ L̂.

2.4.2 Extinctions

In §2.1.5 we noted how in certain crystals, the amplitude of Bravais lattice Bragg peaks ob-
served in a diffraction experiment can be reduced or even extinguished due to the crystal struc-
ture. Bragg peak extinction is thus a physical manifestation of the crystallographic point group
symmetry, and as such must be encoded in the gauge-invariant content of the phase functions.
Suppose that Kg = K. Then

ρ̂(K) = ρ̂(Kg) = ρ̂(K) eiφg(K) , (2.89)

and thus if φg(K) 6∼= 0, we necessarily have ρ̂(K) = 0, i.e. the Bragg peak at K is extinguished.
Kg = gTK = K means that K lies within the invariant subspace of g (and that of gT = g−1 as
well, of course). Now the only nontrivial (g 6= E) point group operations (in three dimensions)
with invariant subspaces are (i) proper rotations r, and (ii) mirror reflections m. Every proper
rotation has an invariant axis, and every mirror reflection has an invariant plane. We now
consider the consequences of each for extinctions.

• Mirrors : If m is a mirror, then m2 = E. Consider a reciprocal lattice vector K = Km lying
in the invariant plane of m. Then

0 ∼= φE(K) ∼= φm2(K) ∼= φm(Km) + φm(K) ∼= 2φm(K) . (2.90)
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Thus, 2φm(K) ∼= 0 which means either φm(K) ∼= 0 or φm(K) ∼= π. Unless φm(K) = 0 for all
K = Km in the mirror plane, we say that m is a glide mirror. Let β1 and β2 be basis vectors

for the two-dimensional sublattice of L̂ in the invariant plane of m. Linearity of the phase
functions says

φm(n1 β1 + n2 β2) = n1 φm(β1) + n2 φm(β2) . (2.91)

Suppose now that φm(β1)
∼= φm(β2)

∼= 0. In this case, the mirror is ordinary and we
have not a glide, i.e. there are no extinctions due to m. Next suppose φm(β1)

∼= π and
φm(β2)

∼= 0. In this case, we have extinctions for all K = n1 β1 + n2 β2 with n1 odd, for all
n2. A corresponding result holds for the case φm(β1)

∼= 0 and φm(β2)
∼= π. Finally, suppose

φm(β1)
∼= φm(β2)

∼= π. Then K is extinguished whenever n1 + n2 is odd.

• Proper rotations : In this case, rn = E with n = 2, 3, 4, or 6. Suppose K = Kr lies along
the invariant axis of r. Then

0 ∼= φE(K) ∼= φrn(K) ∼= nφr(K) , (2.92)

which says φr(K) = 2πj/n. If φr(K) = 0 for all K = Kr, the rotation is ordinary. If
φr(K) 6∼= 0 for any K = Kr along the invariant axis, we say that r is a screw. Let β1 be the basis
vector for K points along the invariant axis. Then φr(β1)

∼= 2πj/n , with j ∈ {0, . . . , n−1}.
The case j = 0 corresponds to an ordinary rotation. For K = l β1, we have φr(K) ∼=
2πjl/n , and Bragg vectors with jl 6= 0 modulo n are extinguished.

• Special circumstances : Suppose an n-fold proper rotation r lies within the invariant plane
of a mirror m. Then rmr = m, i.e. mrm = r−1. This is the case, for example, for the groups
Cnv, Dnd, and Dnh. Let K = Kr = Km. Then

φm(K) = φrmr(K) ∼= φmr(Kr) + φr(K)
∼= φr(Krm) + φm(Kr) + φr(K) ∼= 2φr(K) + φm(K) .

(2.93)

We then have 2φr(K) ∼= 0, and so the screw symmetry is restricted to two possible cases:
either φr(K) ∼= 0 or φr(K) ∼= π. Such a screw requires n even and j = 1

2
n.

Suppose next that the n-fold rotation axis is perpendicular to a mirror plane, as in the
groups Cnh and Dnh. In this case mr = rm, and we have

φmr(K) = φr(Km) + φm(K)

φrm(K) = φm(Kr) + φr(K) .
(2.94)

There are two interesting possibilities. First, if K = Kr is along the invariant axis of r,
then Km = −K, and we have φr(K) ∼= φr(−K) ∼= −φr(K), hence 2φr(K) ∼= 0, which
entails the same restrictions as in the case where rmr = m analyzed above. Second, if
Km = K, then we obtain φm(Kr) = φm(K), which says that the diffraction pattern in the
invariant plane, including any extinctions, is symmetric under the r operation.
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2.4.3 Sticky bands

Consider now the Schrödinger equation Ĥψ = Eψ, where31

Ĥ = − ~2

2m
∇2 + V (r) , (2.95)

where V (r) is invariant under space group operations. Typically V (r) is purely due to (screened)
Coulomb interactions between a given electron and the combined electron-ion charge density
ρ(r), in which case

V (r) =

∫
ddr′ v(r − r′) ρ(r′) , (2.96)

where v(r) = v(r) is the screened potential at separation r. According to Bloch’s theorem,

eigenfunctions ψnk(r) of H are labeled by crystal momentum k ∈ Ω̂ as well as by a band index
n, and may be written as

ψnk(r) =
∑

K

Cnk(K) ei(K+k)·r = eik·runk(r) , (2.97)

where unk(r) = unk(r +R) is the cell function for band n, which is periodic in the direct lattice.
The Schrödinger equation for band n can then be written as

E Cnk(K) =
∑

K ′

〈K | Ĥ(k) |K ′ 〉︷ ︸︸ ︷[
~2(K + k)2

2m
δK,K ′ + V̂ (K −K ′)

]
Cnk(K

′) , (2.98)

where V̂ (K) = v̂(K) ρ̂(K), since the Fourier transform of a convolution is the product of the
Fourier transforms. Since v(r) is isotropic, we have v̂(q g) = v̂(q) for all q, and therefore

V̂ (Kg) = V̂ (K) eiφg(K). Let us define ω̂(q) ≡ ~2q2/2m, which is the isotropic free particle disper-
sion. Note that

ω̂(Kg + k) = ω̂
(
(K + k) g + (k − k g)

)
. (2.99)

We now (re-)introduce the notion of the little group of a wavevector:

DEFINITION : Given a wavevector k ∈ Ω̂, the set of all g ∈ P for which Kg ≡ k− kg is in L̂

is called the little group of k, and notated Pk.

Since kg must also lie within Ω̂, we have that Pk = {E} if k lies at a generic point in the interior
of the first Brillouin zone, i.e. not along an axis of rotational symmetry or along a mirror plane.
However, if k lies in an invariant (one-dimensional) subspace of a proper rotation r ∈ P or

31In this section, we will use hats to denote operators as well as Fourier transformed quantities, so keep on your
toes to recognize the meaning of the hat symbol in context.
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Figure 2.22: Stickiness of tight binding energy bands εn(q) in an hcp crystal. Left: First Brillouin
zone of the hexagonal Bravais lattice, with high symmetry points identified. Right: Tight bind-
ing energy levels for the hcp structure are shown in blue. Note the degeneracies at q = K, q = H,
and all along the A−H−L−A triangle on the top face and along the K−H edge. When an al-
ternating site energy on the two sublattices is present (dashed red curves), the screw symmetry
is broken, and the space group is reduced from P63/mmc to P6m2.

within an invariant (two-dimensional) subspace of a mirror m ∈ P, then Kr = kr − k and
Km = km− k vanish, respectively, and the operations r and/or m are thus included in Pk.

For wavevectors k ∈ ∂Ω̂ lying on the boundary of Ω̂, the little group Pk can contain other

elements. Consider for example the case of a square lattice, for which Ω̂ is itself a square, and
let k = 1

2
b1, which lies at the center of one of the edges. Let P = C4v , which is generated by

r (90◦ rotation) and σ (x-axis reflection). Then E and σ are in Pk because they leave k fixed

and hence Kg = 0, but so are r2 and σr2, which send k → −k, in which case Kg = b1 ∈ L̂. It
should be clear that Pk ⊂ P is a subgroup of the crystallographic point group, containing those
operations g ∈ P which leave k invariant or changed by a reciprocal lattice vector. Note that if
g, h ∈ Pk , then

Kgh = k − kgh = (k − kh) + (kh− kgh) = Kh +Kg h . (2.100)

For each element g of the little group Pk , define the unitary operator Û(g) such that

Û †(g)
∣∣K
〉
= eiφg(K)

∣∣Kg −Kg
〉

. (2.101)

We then have
〈
K
∣∣ Û(g) Ĥ(k) Û †(g)

∣∣K ′ 〉 =
〈
Kg −Kg

∣∣ Ĥ(k)
∣∣K ′g −Kg

〉
eiφg(K

′−K)

= ω̂
(
Kg −Kg +K

)
δK,K ′ + V̂ (K −K ′)

= ω̂
(
(K + k) g

)
δK,K ′ + V̂ (K −K ′) =

〈
K
∣∣ Ĥ(k)

∣∣K ′ 〉
(2.102)
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for all k, K, and K ′. This tells us that
[
Ĥ(k), Û(g)

]
= 0 for all k ∈ Ω̂ and g ∈ Pk . Next, we have

Û †(h) Û †(g)
∣∣K
〉
= eiφg(K) eiφh(Kg−Kg)

∣∣Kgh−Kg h−Kh
〉

Û †(gh)
∣∣K
〉
= eiφgh(K)

∣∣Kgh−Kgh
〉

.
(2.103)

Invoking Eqn. 2.100, we see that the ket vectors on the RHS of the above two equations are

identical. Appealing to the compatibility condition Eqn. 2.86, we conclude Û †(h) Û †(g) =

Û †(gh) e−iφh(Kg), i.e.
Û(g) Û(h) = Û(gh) eiφh(Kg) , (2.104)

which is to say a projective representation of the little group.

Suppose Ĥ(k) |uk〉 = E(k) |uk〉, where |uk〉 is a Bloch cell function, and where we have dropped

the band index n. Since
[
Ĥ(k), Û(g)

]
= 0, the state Û(g) |uk〉 is also an eigenstate of Ĥ(k) with

eigenvalue E(k). If |uk〉 is nondegenerate, then we must have Û(g) |uk〉 = λg(k) |uk〉 for all

g ∈ Pk. But then
[
Û(g), Û(h)

]
|uk〉 = 0, which means

eiφh(Kg) Û(gh) |uk〉 = eiφg(Kh) Û(hg) |uk〉 . (2.105)

Thus, if gh = hg, we must have either (i) φh(Kg) = φg(Kh) or else (ii) |uk〉 = 0, i.e. there is no
such nondegenerate eigenstate at wavevector k. Therefore,

⋆ If gh = hg and φh(Kg) 6= φg(Kh), all the eigenstates of Ĥ(k) appear in degenerate multiplets.

That is, two or more bands become ”stuck” together at these special k points. Note that the
sticking conditions cannot be satisfied in a symmorphic space group, because the phase func-
tions can all be set to zero by a choice of gauge (i.e. by a choice of origin for the point group
operations). Note also that under a gauge transformation, the change in φh(Kg)− φg(Kh) is

∆
(
φh(Kg)− φg(Kh)

)
= χ(Kg h−Kg)− χ(Kh g −Kh) = χ(k gh− k hg) , (2.106)

which vanishes when gh = hg.

Since φg(0) = 0 for all g, the sticking conditions require that either Kg or Kh be nonzero. This

is possible only when k ∈ ∂Ω̂ lies on the boundary of the first Brillouin zone, for otherwise
the vectors Kg and Kh are too short to be reciprocal lattice vectors32. Thus, in nonsymmorphic
crystals, band sticking occurs only along the boundary. Consider, for example, the case of di-
amond, with nonsymmorphic space group F 41

d
3 2
m

(Fd3m in the short notation). The diamond
structure consists of two interpenetrating fcc Bravais lattices, and exhibits a 41 screw axis and
a diamond (d) glide33. Let k = 1

2
K, where K is the shortest reciprocal lattice vector along the

screw axis. Then Kr = k−kr = 0 because k is along the invariant axis of the fourfold rotation r,

32My childhood dreams of becoming a reciprocal lattice vector were dashed for the same reason.
33Diamond has a diamond (d) glide. The d is for ”duh”.
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Figure 2.23: Two one-dimensional lattices: the ladder (top) and the trestle (bottom). The trestle
is nonsymmorphic when the two classes of diagonal links are equivalent, i.e. when t1 = t2 .

hence r is in the little group. Diamond is centrosymmetric, meaning that its point group con-
tains the inversion operator I , which commutes with all other point group elements. Clearly
KI = k − Ik = 2k = K, so I is in the little group as well. The sticking conditions then require
φr(K) 6= 0, which is the condition we found for r to be a screw in the first place. So we have
band sticking at k = 1

2
K. This is a special case of the following general rule: in nonsymmorphic

centrosymmetric crystals, there is band sticking at every k = 1
2
K where K is an extinguished

reciprocal lattice (Bragg) vector.

Band sticking can also occur along continuous lines along the zone boundary. This is possible
when the point group contains perpendicular mirrors, such as in the case D3h. Let k lie along
the line where the horizontal Brillouin zone surface intersects the vertical mirror plane. The
vertical component of k is thus 1

2
K, where K is the shortest vertical reciprocal lattice vector, but

otherwise k can lie anywhere along this line. Then Kmh
= K and Kmv

= 0, for all k along the

line, where mh,v are the horizontal and vertical mirror operations, respectively. The sticking
condition is φmv(K) 6= 0, which says that mv is a glide mirror and K is extinguished. Intro-
ducing a perturbation which breaks the nonsymmorphic symmetries unsticks the bands and
revives the extinguished Bragg vectors. An example is the hcp structure, shown in Fig. 2.22.

As an example, consider the two one-dimensional lattices in fig. 2.23. We shall call these the
ladder (top) and the trestle (bottom). Their respective tight binding Hamiltonians are given by

Ĥ ladder(k) = −
(
2t cos k t′

t′ 2t cos k

)
, Ĥ trestle(k) = −

(
2t cos k t1 + t2 e

−ik

t1 + t2 e
ik 2t cos k

)
.

(2.107)
The dispersions are

E ladder
± (k) = −2t cos k ± t′

Etrestle
± (k) = −2t cos k ±

∣∣t1 + t2e
−ik∣∣ .

(2.108)
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d Name Examples Space group S

2 Shastry–Sutherland SrCu2(BO3)2 p4g 2

3 hcp Be, Mg, Zn P63/mmc 2

3 Diamond C, Si Fd3̄m 2

3 Pyrochlore Dy2Ti2O7 (spin ice) Fd3̄m 2

3 – α-SiO2, GeO2 P3121 3

3 – CrSi2 P6222 3

3 – Pr2Si2O7,La2Si2O7 P41 4

3 Hex. perovskite CsCuCl3 P61 6

Figure 2.24: Examples of space groups and their nonsymmorphic ranks.

The gaps ∆(k) = E+(k) = E−(k) are given by

∆ladder(k) = 2t′

∆trestle(k) = 2
∣∣t1 + t2e

−ik∣∣ = 2
√
(t1 − t2)2 + 4t1t2 cos

2(1
2
k) .

(2.109)

Note that the ladder always has a direct gap, whereas the gap for the trestle vanishes at k = π
provided that t1 = t2 . This latter condition ensures that the trestle is nonsymmorphic, where
the nonsymmorphic space group element is reflection about the midline parallel to the two
legs, followed by a lattice translation of half a unit cell.

A more detailed result was derived by Michel and Zak34. In nonsymmorphic crystals, energy
bands stick together in groups of S, where S = 2, 3, 4, or 6 is the nonsymmorphic rank of the
space group. In such cases, groups of S bands are stuck at high symmetry points or along
high symmetry lines in the Brillouin zone, and one must fill an integer multiple of S bands of
spinless electrons in order to construct a band insulating state.

34L. Michel and J. Zak, Phys. Rev. B 59, 5998 (1999).
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Chapter 3

Deformations of Crystals

3.1 Elasticity

3.1.1 Stress and strain tensors

An elastic medium is described by a local deformation field u(r), corresponding to the elastic
displacement of the solid at r. The strain tensor is defined by the dimensionless expression

εij(r) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (3.1)

Note that ε = εT is a symmetric tensor by definition. Similarly, the stress tensor σij(r) is defined
by

dFi(r) = −σij(r)nj dΣ , (3.2)

where dF (r) is the differential force on a surface element dΣ whose normal is the vector n̂.
Angular momentum conservation requires that the stress tensor also be symmetric1. The stress
and strain tensors are related by the rank four elastic modulus tensor, viz.

σij(r) = Cijkl εkl(r) =
δf

δεij(r)
, (3.3)

where the second equality is a statement of thermal equilibrium akin to p = −∂F/∂V . Here,

f(r) = f0 +
1
2
Cijkl εij(r) εkl(r) +O(ε3) (3.4)

1Integrate the differential torque dN = r×dF over the entire body. Integrating by parts, one obtains a surface term
and a volume term. The volume torque density is −ǫijk σjk , which must vanish, thereby entailing the symmetry
σ = σT.

123
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is the local free energy density. Since ε is a dimensionless tensor, the elastic moduli have dimen-
sions of energy density, typically expressed in cgs units as dyn/cm2. For an isotropic material,
the only O(3) invariant terms in the free energy to order ε2 are proportional to either (Tr ε)2 or
to Tr(ε2). Thus,

f = f0 +
1
2
λ (Tr ε)2 + µ Tr (ε2) . (3.5)

The parameters λ and µ are called the Lamé coefficients2. For isotropic elastic materials, then,

σij =
∂f

∂εij
= λ Tr ε δij + 2µ εij . (3.6)

In the literature, one often meets up with the quantityK ≡ λ+ 2
3
µ , in which case the free energy

density becomes

f = f0 +
1
2
K (Tr ε)2 + µ Tr

(
ε− 1

3
Tr ε

)2
(3.7)

The reason is that the tensor ε̃ ≡ ε− 1
3
(Tr ε)·1 is traceless, and therefore the constant K tells us

about bulk deformations while µ tells us about shear deformations. One then requires K > 0 and
µ > 0 for thermodynamic stability. We then may write, for isotropic materials,

σ = K (Tr ε)·1+ 2µ ε̃

ε =
1

9K
(Tr σ)·1+

1

2µ
σ̃ ,

(3.8)

with σ̃ ≡ σ − 1
3
(Tr σ)·1 the traceless part of the stress tensor3.

If one solves for the homogeneous deformation4 of a rod of circular cross section, the only
nonzero element of the stress tensor is σzz = p , where p is the pressure on either of the circular
faces of the rod. One then finds that εxx = εyy =

(
1
9K
− 1

6µ

)
p and εzz =

(
1
9K

+ 1
3µ

)
p are the only

nonzero elements of the strain tensor. Thus,

Y ≡ σzz
εzz

=
9Kµ

3K + µ
, β ≡ −εxx

εzz
=

3K − 2µ

2(3K + µ)
. (3.9)

The quantity Y is called the Young’s modulus, and must be positive. The quantity β is the
Poisson ratio β and satisfies β ∈

[
− 1, 3

2

]
. A material like tungsten carbide has a very large

Young’s modulus of Y = 53.4 × 1011 dyn/cm2 at STP, which means that you have to pull like
hell in order to get it to stretch a little. Normally, when you stretch a material, it narrows in the
transverse directions, which corresponds to a positive Poisson ratio. Materials for which β < 0
are called auxetics. When stretched, an auxetic becomes thicker in the directions perpendicular
to the applied force. Examples include various porous foams and artificial macrostructures.

2If you were wondering why we’ve suddenly switched to roman indices Cijkl instead of Greek Cαβµν , it is to
obviate any confusion with the Lamé parameter µ.

3In d space dimensions, one has K = λ+ 2d−1µ and m̃ = m− d−1 Tr m is the traceless part of any matrix m.
4In a homogeneous deformation, the strain and stress tensors are constant throughout the body.
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(αβ) : (11) (22) (33) (23) (31) (12)

a : 1 2 3 4 5 6

Table 3.1: Abbreviation for symmetric compound indices (αβ).

3.1.2 Elasticity and symmetry

Since

Cijkl = Cjikl = Cijlk = Cklij , (3.10)

we may use the composite index notation in Tab. 3.1 to write the rank four tensor Cijkl ≡ Cab =
Cba as a symmetric 6×6 matrix, with 21 independent elements before accounting for symmetry
considerations. The linear stress-strain relation is then given by




σ1
σ2
σ3
σ4
σ5
σ6




=




C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66







ε1
ε2
ε3
2ε4
2ε5
2ε6




. (3.11)

Since the elastic tensor is rank four, it is symmetric under inversion.

And now, let the symmetry commence!

• For triclinic crystals with point group C1 or Ci , there are no symmetries to apply to Cab ,
hence there are 21 independent elastic moduli. However, one can always rotate axes,
and given the freedom to choose three Euler angles, this means we can always choose
axes in such a way that three of the 21 moduli vanish, leaving 18. Again, this requires a
nongeneric choice of axes.

• For monoclinic crystals, there is symmetry under z → −z, and as in the example of the
piezoelectric tensor dµνλ, we have that Cijkl vanishes if the index 3(z) appears an odd
number of times, which means, in composite index notation,

C14 = C15 = C24 = C25 = C34 = C35 = C46 = C56 = 0 , (3.12)

leaving 13 independent elastic moduli for point groups C2 , Cs , and C2h. The 6× 6 matrix
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Cab thus takes the form

CMONO

ab =




C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0
0 0 0 C45 C55 0
C16 C26 C36 0 0 C66




. (3.13)

• For orthorhombic crystals, x→ −x and y → −y are each symmetries. Adding z → −z in
the case of D2h doesn’t buy us any new restrictions since C is symmetric under inversion.
We then have Cab = 0 whenever a ∈ {1, 2, 3} and b ∈ {4, 5, 6}. The general form of Cab is
then

CORTHO

ab =




C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66




. (3.14)

• For the tetragonal system, we can rotate (x, y, z) to (−y, x, z). For the lower symmetry
point groups among this system, namely C4 , S4 , and C4h , the most general form is

CTET

ab [C4, S4, C4h] =




C11 C12 C13 0 0 C16

C12 C11 C13 0 0 −C16

C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
C16 −C16 0 0 0 C66




, (3.15)

which has seven independent moduli. For the higher symmetry tetragonal point groups
D4 , C4v , D2d , and D4h , we have C16 = 0 because of the twofold axes which send (x, y, z)
into (x,−y,−z) and (−x, y,−z), and there are only six independent moduli.

• For the trigonal point groups, our lives are again complicated by the C3 rotations. One
convenient way to deal with this is to define ξ ≡ x+ iy and ξ̄ ≡ x− iy , with

εξξ = ξi ξj εij = εxx − εyy + 2i εxy

εξξ̄ = ξi ξ̄j εij = εxx + εxy

εzξ = ξi εzi = εzx + i εzy

εzξ̄ = ξ̄i εzi = εzx − i εzy ,

(3.16)

where ξi = ∂iξ where x1 = x and x2 = y, and ξ̄i = ∂iξ̄. A C3 rotation then takes ξ → e2πi/3 ξ
and ξ̄ → e−2πi/3 ξ̄ . The only allowed elements of Cijkl are

Czzzz , Czzξξ̄ , Cξξξ̄ξ̄ , Cξξ̄ξξ̄ , Czξzξ̄ , Czξξξ , Czξ̄ξ̄ξ̄ , (3.17)
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and their corresponding elements obtained by permuting Cijkl = Cjikl = Cijlk = Cklij .
The first five of these are real, and the last two are complex conjugates: C

zξ̄ξ̄ξ̄
= C∗

zξξξ .

So there are seven independent elastic moduli for the point groups C3 and S6. Note the
general rule that we must have either no complex indices, one ξ and one ξ̄ index, two
each of ξ and ξ̄, three ξ, or three ξ̄. All other coefficients vanish by C3 symmetry. We may
now construct the elastic free energy density,

f = f0 +
1
2
Czzzz ε

2
zz + Cξξξ̄ξ̄ εξξ εξ̄ξ̄ + 2Cξξ̄ξξ̄ ε

2
ξξ̄ + 2Czzξξ̄ εzz εξξ̄

+ 4Czξzξ̄ εzξ εzξ̄ + 2Czξξξ εzξ εξξ + 2Czξ̄ξ̄ξ̄ εzξ̄ εξ̄ξ̄ .
(3.18)

Note the coefficient of four in front of the C
zξzξ̄

term, which arises from summing over the

eight equal contributions,

1
2

(
Czξzξ̄+Czξξ̄z+Cξzzξ̄+Cξzξ̄z+Czξ̄zξ+Czξ̄ξz+Cξ̄zzξ+Cξ̄zξz

)
εzξ εzξ̄ = 4Czξzξ̄ εzξ εzξ̄ . (3.19)

From the free energy, one can identify the coefficients of εa εb , where a and b are composite
indices, and thereby determine the general form for Cab , which is

CTRIG

ab [C3, S6] =




C11 C12 C13 C14 −C25 0
C12 C11 C13 −C14 C25 0
C13 C13 C33 0 0 0
C14 −C14 0 C44 0 C25

−C25 C25 0 0 C44 C14

0 0 0 C25 C14
1
2
(C11 − C12)




, (3.20)

Adding in reflections or twofold axes, as we have in the higher symmetry groups in this
system, i.e. D3 , C3v , and D3d allows for ξ ↔ ξ̄, in which case Czξξξ = C

zξ̄ξ̄ξ̄
, reducing the

number of independent moduli to six, with C25 = 0.

• For all seven hexagonal system point groups, we have Czξξξ = C
zξ̄ξ̄ξ̄

= 0, because C6

rotations take ξ to ξ eiπ/3, hence Czξξξ to −Czξξξ . C3h and D3h don’t contain this element,
but do contain the mirror reflection z → −z, hence in all cases the elastic tensor resembles
that for the trigonal case, but with C14 = C25 = 0. Hence there are five independent
moduli, with

CHEX

ab =




C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 1

2
(C11 − C12)




, (3.21)

• For the cubic system (five point groups), the only independent elements are Cxxxx , Cxxyy ,
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Cxyxy , and their symmetry-related counterparts such as Czzzz , Cyzyz , etc. Thus,

CCUB

ab =




C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44




, (3.22)

• For an isotropic material, C11 = C22+2C44. The Lamé parameters are λ = C12 and µ = C44.

3.2 Phonons in Crystals

Crystalline solids support propagating waves called phonons, which are quantized vibrations

of the lattice. Recall that the quantum mechanical Hamiltonian for a harmonic oscillator, Ĥ =
p2

2m
+ 1

2
mω2

0 q
2, may be written as Ĥ = ~ω0 (a

†a + 1
2
), where a and a† are ‘ladder operators’

satisfying commutation relations
[
a , a†

]
= 1.

3.2.1 One-dimensional chain

Consider the linear chain of masses and springs depicted in fig. 3.1. We assume that our system
consists of N mass points on a large ring of circumference L. In equilibrium, the masses are
spaced evenly by a distance b = L/N . That is, x0n = nb is the equilibrium position of particle n.
We define un = xn−x0n to be the difference between the position of mass n and The Hamiltonian
is then

Ĥ =
∑

n

[
p2n
2m

+ 1
2
κ (xn+1 − xn − a)2

]

=
∑

n

[
p2n
2m

+ 1
2
κ (un+1 − un)2

]
+ 1

2
Nκ(b − a)2 ,

(3.23)

where a is the unstretched length of each spring, m is the mass of each mass point, κ is the
force constant of each spring, and N is the total number of mass points. If b 6= a the springs
are under tension in equilibrium, but as we see this only leads to an additive constant in the
Hamiltonian, and hence does not enter the equations of motion.
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The classical equations of motion are

u̇n =
∂Ĥ

∂pn
=
pn
m

(3.24)

ṗn = − ∂Ĥ
∂un

= κ
(
un+1 + un−1 − 2un

)
. (3.25)

Taking the time derivative of the first equation and substituting into the second yields

ün =
κ

m

(
un+1 + un−1 − 2un

)
. (3.26)

We now write

un =
1√
N

∑

k

ũk e
ikna , (3.27)

where periodicity uN+n = un requires that the k values are quantized so that eikNa = 1, i.e.
k = 2πj/Na where j ∈ {0, 1, . . . , N−1}. The inverse of this discrete Fourier transform is

ũk =
1√
N

∑

n

un e
−ikna . (3.28)

Note that ũk is in general complex, but that ũ∗k = ũ−k. In terms of the ũk, the equations of motion
take the form

¨̃uk = −
2κ

m

(
1− cos(ka)

)
ũk ≡ −ω2

k ũk . (3.29)

Thus, each ũk is a normal mode, and the normal mode frequencies are

ωk = 2

√
κ

m

∣∣sin
(
1
2
ka
)∣∣ . (3.30)

The density of states for this band of phonon excitations is

g(ε) =

π/a∫

−π/a

dk

2π
δ(ε− ~ωk)

=
2

πa

(
J2 − ε2

)−1/2
Θ(ε) Θ(J − ε) ,

(3.31)

where J = 2~
√
κ/m is the phonon bandwidth. The step functions require 0 6 ε 6 J ; outside

this range there are no phonon energy levels and the density of states accordingly vanishes.

The entire theory can be quantized, taking
[
pn , un′

]
= −i~δnn′ . We then define

pn =
1√
N

∑

k

p̃k e
ikna , p̃k =

1√
N

∑

n

pn e
−ikna , (3.32)
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Figure 3.1: A linear chain of masses and springs. The black circles represent the equilibrium
positions of the masses. The displacement of mass n relative to its equilibrium value is un.

in which case
[
p̃k , ũk′

]
= −i~δkk′ . Note that ũ†k = ũ−k and p̃†k = p̃−k. We then define the ladder

operator

ak =

(
1

2m~ωk

)1/2
p̃k − i

(
mωk
2~

)1/2
ũk (3.33)

and its Hermitean conjugate a†k, in terms of which the Hamiltonian is

Ĥ =
∑

k

~ωk
(
a†kak +

1
2

)
, (3.34)

which is a sum over independent harmonic oscillator modes. Note that the sum over k is
restricted to an interval of width 2π, e.g. k ∈

[
− π

a
, π
a

]
, which is the first Brillouin zone for the

one-dimensional chain structure. The state at wavevector k + 2π
a

is identical to that at k, as we
see from eqn. 3.28.

3.2.2 General theory of lattice vibrations

Consider next the vibrations of a general crystalline lattice in d space dimensions with an r
component basis. We define R to be a Bravais lattice vector, i.e. a label for a unit cell, and ui(R)
to be the displacement of the ith basis ion in the R unit cell. The Hamiltonian is

H =
∑

R,i

p2i (R)

2mi

+
1

2

∑

R,R′

∑

i,j

∑

α,β

uαi (R) Φ
αβ
ij (R−R′) uβj (R

′) +O(u3) , (3.35)

where

Φαβij (R− R′) =
∂2U

∂uαi (R) ∂u
β
j (R

′)
. (3.36)

Remember that the indices i and j run over the set {1, . . . , r}, where r is the number of basis
vectors, while α and β are Cartesian vector indices taken from {1, 2, . . . , d}, where d is the
dimension of space.

In the case of molecules, the dynamical matrix is of rank dN . For a molecule with no point
group symmetries, this is the dimension of the eigenvalue problem to be solved. In crystals,
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by contrast, we may take advantage of translational invariance to reduce the dimension of the
eigenvalue problem to dr, i.e. to the number of degrees of freedom within a unit cell. This is so
even in the case of a triclinic system with no symmetries (i.e. point group C1). Each vibrational
state is labeled by a wavevector k, and at certain high symmetry points k in the Brillouin zone,
crystallographic point group symmetries may be used to group these dr states into multiplets
transforming according to point group IRREPs.

Upon Fourier transform,

uαi (R) =
1√
N

∑

k

ûαi (k) e
ik·R eik·δi

pαi (R) =
1√
N

∑

k

p̂αi (k) e
ik·R eik·δi ,

(3.37)

where the sum is over all k within the first Brillouin zone. The Fourier space dynamical matrix
is then

Φ̂αβij (k) =
∑

R

Φαβij (R) e
−ik·R e−ik·δi eik·δj . (3.38)

The Hamiltonian, to quadratic order, takes the form

H =
∑

k,i

p̂αi (k) p̂
α
i (−k)

2mi

+
1

2

∑

k

∑

i,j

∑

α,β

ûαi (−k) Φ̂αβij (k) ûβj (k) , (3.39)

Note that ûαi (−k) =
[
ûαi (k)

]∗
because the displacements uαi (R) are real; a corresponding relation

holds for the momenta. Note also the Poisson bracket relation in crystal momentum space
becomes

{
uαi (R) , p

β
j (R

′)
}

PB

= δRR′ δij δαβ ⇒
{
ûαi (k) , p̂

β
j (k

′)
}

PB

= δP

k+k′,0 δij δαβ , (3.40)

where δP

k+k′,0 =
∑

G δk+k′,G requires k + k′ = 0 modulo any reciprocal lattice vector. Note also
that

Φαβij (R) = Φβαji (−R) ⇒ Φ̂βαji (k) = Φ̂αβij (−k) =
[
Φ̂αβij (k)

]∗
. (3.41)

Thus, for each crystal momentum k, the dynamical matrix Φ̂βαji (k) is Hermitian, where we take
(iα) and (jβ) as composite indices. We now have the eigensystem

∑

β,j

Φ̂αβij (k) ê
β
jλ(k) = mi ω

2
λ(k) ê

α
iλ(k) (3.42)

where λ ∈ {1, . . . , rd} indexes the normal modes, and Siα,λ(k) ≡ êαiλ(k) ≡ m
−1/2
i Uiα,λ(k) di-

agonalizes the dynamical matrix, with Uiα,λ(k) unitary. We may now write the completeness
relation,

dr∑

λ=1

êα∗iλ (k) ê
β
jλ(k) =

1

mi

δij δαβ (3.43)
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Figure 3.2: Upper panel: phonon spectrum in fcc elemental rhodium (Rh) at T = 297K mea-
sured by high precision inelastic neutron scattering (INS) by A. Eichler et al., Phys. Rev. B 57,
324 (1998). Note the three acoustic branches and no optical branches, corresponding to d = 3
and r = 1. Lower panel: phonon spectrum in gallium arsenide (GaAs) at T = 12K, comparing
theoretical lattice-dynamical calculations with INS results of D. Strauch and B. Dorner, J. Phys.:
Condens. Matter 2, 1457 (1990). Note the three acoustic branches and three optical branches,
corresponding to d = 3 and r = 2. The Greek letters along the x-axis indicate points of high
symmetry in the Brillouin zone.

and the orthogonality relation,

r∑

i=1

d∑

α=1

mi ê
α∗
iλ (k) ê

α
iλ′(k) = δλλ′ , (3.44)

which are the completeness and orthogonality relations, respectively. Since êα∗iλ (−k) and êαiλ(k)
obey the same equation, we have that ωλ(−k) = ωλ(k). If the phonon eigenmode | k, λ 〉 is
nondegenerate, we may choose êαiλ(−k) = êα∗iλ (k). Else at best we can conclude êαiλ(−k) =
êα∗iλ′(k) e

iη where | k, λ′ 〉 is another state from the degenerate manifold of phonon states at this
wavevector, and eiη is a phase.
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Expressing ûαi (k) and p̂αi (k) in terms of the normal modes, we write

ûαi (k) =
dr∑

λ=1

êαiλ(k) q̂λ(k) , p̂αi (k) = mi

dr∑

λ=1

êα∗iλ (−k) π̂λ(k) (3.45)

where
{
q̂λ(k), π̂λ′(k)

}
PB

= δk+k′,0 δλλ′ . This entails

q̂λ(k) =

r∑

i=1

d∑

α=1

mi ê
α∗
iλ (k) û

α
i (k) , π̂λ(k) =

r∑

i=1

d∑

α=1

êαiλ(−k) p̂αi (k) . (3.46)

The phonon Hamiltonian now takes the diagonalized form

H =
∑

k

rd∑

λ=1

{
1
2
π̂λ(−k) π̂λ(k) + 1

2
ω2
λ(k) q̂λ(−k) q̂λ(k)

}
, (3.47)

with
{
q̂λ(k) , π̂λ′(k

′)
}

PB
= δλλ′ δ

P

k+k′,0 . To quantize, promote the Poisson brackets to commuta-

tors:
{
A , B}

PB
→ −i~−1

[
A , B

]
. Then define the ladder operators,

Aλ(k) =

(
ωλ(k)

2~

)1/2
q̂λ(k) + i

(
1

2~ωλ(k)

)1/2
π̂λ(k) , (3.48)

which satisfy
[
Aλ(k) , A

†
λ′(k

′)
]
= δP

kk′ δλλ′ . The quantum phonon Hamiltonian is then

Ĥ =
∑

k

rd∑

λ=1

~ωλ(k)
(
A†
λ(k)Aλ(k) +

1
2

)
. (3.49)

Of the dr phonon branches, d are acoustic, and behave as ωa(k) = c(k̂) k as k → 0, which
is the Γ point in the Brillouin zone. These gapless phonons are the Goldstone bosons of the
spontaneously broken translational symmetry which gave rise to the crystalline phase. To each
broken generator of translation, there corresponds a Goldstone mode. The remaining d(r − 1)
modes are called optical phonons. Whereas for acoustic modes, all the ions in a given unit cell
are moving in phase, for optical modes they are moving out of phase. Hence optical modes
are always finite frequency modes. Fig. 3.2 shows the phonon spectra in elemental rhodium
(space group Fm3m, point group Oh ) , and in gallium arsenide (space group F43m, point
group Td ) . Since Rh forms an fcc Bravais lattice, there are no optical phonon modes. GaAs
forms a zincblende structure, i.e. two interpenetrating fcc lattices, one for the gallium, the other
for the arsenic. Thus r = 2 and we expect three acoustic and three optical branches of phonons.

Nota bene : One may choose to define the Fourier transforms above taking the additional
phases for the basis elements to all be unity, viz.

uαi (R) =
1√
N

∑

k

ûαi (k) e
ik·R , pαi (R) =

1√
N

∑

k

p̂αi (k) e
ik·R , Φ̂αβij (k) =

∑

R

Φαβij (R) e
−ik·R .

(3.50)
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All the equations starting with Eqn. 3.39 remain the same. Setting the basis phases to unity
amounts to a choice of gauge. It is somewhat simpler in certain contexts, but it may obscure
essential space group symmetries. On the other hand, it should also be noted that the Fourier

transforms ûαi (k), p̂
α
i (k), and Φ̂αβij (k) are not periodic in the Brillouin zone, but instead satisfy

generalized periodic boundary conditions,

ûαi (K + k) = e−iK·δi ûαi (k)

p̂αi (K + k) = e−iK·δi p̂αi (k)

Φ̂αβij (K + k) = e−iK·(δi−δj) Φ̂αβij (k) ,

(3.51)

where K ∈ L̂ is any reciprocal lattice vector.

3.2.3 Translation and rotation invariance

The potential energy U
(
{uαi (R)}

)
must remain invariant under the operations

uαi (R)→ uαi (R) + dα

uαi (R)→ uαi (R) + ǫαµν (R
µ + δµi − δµj ) dν

(3.52)

for an infinitesimal vector d. The first equation represents a uniform translation of all lattice
sites by d. The second represents an infinitesimal rotation about the jth basis ion in the R = 0
unit cell. We are free to choose any j.

Writing U(u +∆u) = U(u), we must have that the linear terms in ∆u vanish, hence
∑

R,i

Φαβij (R) =
∑

i

Φ̂αβij (0) = 0

ǫαµν
∑

R,i

(Rµ + δµi − δµj )Φνβij (R) = i ǫαµν
∑

i

∂Φ̂νβij (k)

∂kµ

∣∣∣∣
k=0

= 0 .

(3.53)

Note that (α, β, j) are free indices in both equations. The first of these equations says that any
vector dβ is an eigenvector of the dynamical matrix at k = 0, with zero eigenvalue. Thus, at
k = 0, there is a three-dimensional space of zero energy modes. These are the Goldstone modes
associated with the three broken generators of translation in the crystal.

3.2.4 Phonons in an fcc lattice

When the crystal is a Bravais lattice, there are no basis indices, and the dynamical matrix be-
comes

Φ̂αβ(k) =
∑

R

′
(1− cos k · R) ∂2v(R)

∂Rα ∂Rβ
, (3.54)



3.2. PHONONS IN CRYSTALS 135

where v(r) is the inter-ionic potential, and the prime on the sum indicates that R = 0 is to be
excluded. For central potentials v(R) = v(R),

∂2v(R)

∂Rα ∂Rβ
=
(
δαβ − R̂α R̂β

) v′(R)
R

+ R̂α R̂β v′′(R) . (3.55)

For simplicity, we assume v(R) is negligible beyond the first neighbor. On the fcc lattice, there
are twelve first neighbors, lying at∆ = 1

2
a (±ŷ± ẑ), ∆ = 1

2
a (±x̂± ẑ), and ∆ = 1

2
a (±x̂± ŷ). Here

a is the side length of the underlying simple cubic lattice, so the fcc lattice constant is a/
√
2. We

define

A =

√
2

a
v′
(
a/
√
2
)

, B = v′′
(
a/
√
2
)

. (3.56)

Along (100), we have k = kx̂ and

Φ̂αβ(k) = 4 sin2(1
4
ka)



2A+ 2B 0 0

0 3A+B 0
0 0 3A+B


 , (3.57)

which is already diagonal. Thus, the eigenvectors lie along the cubic axes and

ω
L
= 2

√
2(A+B)

m

∣∣ sin(ka/4)
∣∣ , ω

T1
= ω

T2
= 2
√

3A+B
m

∣∣ sin(ka/4)
∣∣ . (3.58)

Along (111), we have k = 1√
3
k (x̂+ ŷ + ẑ). One finds

Φ̂αβ(k) = 4 sin2
(
ka/
√
12
)


4A+ 2B B − A B − A
B − A 4A+ 2B B − A
B − A B − A 4A+ 2B


 . (3.59)

ωL = 2
√

A+2B
m

∣∣ sin
(
ka/
√
12
)∣∣ , ωT1 = ωT2 = 2

√
5A+B
2m

∣∣ sin
(
ka/
√
12
)∣∣ . (3.60)

3.2.5 Phonons in the hcp structure

The HCP structure is represented as an underlying simple hexagonal lattice with a two-element
basis:

a1 = a x̂ , a2 =
1
2
a x̂+

√
3
2
a ŷ , a3 =

√
8
3
a ẑ . (3.61)

Bravais lattice sites are of the form R = la1+ma2+na3. The A sublattice occupies the sites {R },
while the B sublattice occupies the sites {R+ δ }, where

δ = 1
2
a x̂+ 1

2
√
3
a ŷ +

√
2
3
a ẑ . (3.62)

The nearest neighbor separation is |a1| = |a2| = |δ| = a. Note that R can be used to label the
unit cells, i.e. each unit cell is labeled by the coordinates of its constituent A sublattice site.
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Classical energy

The classical energy for the system is the potential energy of the fixed lattice, given by

U0

N
=
∑

R

[
v(R)

(
1− δR,0

)
+ v(R+ δ)

]
, (3.63)

where v(r) is the interatomic potential.

Dynamical matrix

When phonon fluctuations are included, the positions of the A and B sublattice sites are written

R −→ R+ uA(R)

R+ δ −→ R+ δ + uB(R) .
(3.64)

Then the potential energy is

U = U0 +
∑

R

(
uA(R) · FA(R) + uB(R) · FB(R)

)

+ 1
2

∑

R,R′

∑

j,j′

∑

α,α′

Φαα
′

jj′ (R− R′) uαj (R) u
α′

j′ (R
′) +O(u3) ,

(3.65)

where

Φαα
′

jj′ (R− R′) =
∂2U

∂uαj (R) ∂u
α′

j′ (R
′)
. (3.66)

Here {α, α′} are spatial indices (x, y, z), and {j, j′} are sublattice indices (A,B).

It is convenient to Fourier transform, with

uαA(R) =
1√
N

∑

k

ûαA(k) e
ik·R

uαB(R) =
1√
N

∑

k

ûαB(k) e
ik·(R+δ) ,

(3.67)

where N is the total number of unit cells. Then

U = U0 +
∑

k

∑

j

ûj(k) · F̂j(−k) + 1
2

∑

k

∑

j,j′

∑

α,α′

Φ̂αα
′

jj′ (k) û
α
j (k) û

α′

j′ (−k) +O(u3) , (3.68)

where the dynamical matrix is

Φ̂αα
′

jj′ (k) =



Φ̂αα

′

11 (k) Φ̂αα
′

12 (k)

Φ̂αα
′

21 (k) Φ̂αα
′

22 (k)


 . (3.69)
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Figure 3.3: Classical lattice energy for hcp 4He as a function of nearest neighbor separation a
for the Lennard-Jones potential (red) and the Aziz potential (blue).

where

Φ̂αβ11 (k) =
∑

R

′
(1− cos k · R) ∂2v(R)

∂Rα ∂Rβ
+
∑

R

∂α∂β v(R+ δ)

Φ̂αβ12 (k) = −
∑

R

eik·(R+δ) ∂
2v(R+ δ)

∂Rα ∂Rβ

(3.70)

Note that Φ̂αβ21 (k) =
[
Φ̂αβ12 (k)

]∗
. Note also that if v(R) = v(R) is a central potential, then

∂2v(R)

∂Rα ∂Rβ
=
(
δαβ − R̂αR̂β

) v′(R)
R

+ R̂αR̂β v′′(R) , (3.71)

where R̂α = Rα/|R|.

Lennard-Jones potential

The Lennard-Jones potential is given by

v(r) = 4ε0

[(
σ

r

)12
−
(
σ

r

)6]
(3.72)

where
ε0 = 10.22K , σ = 2.556 Å . (3.73)
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Figure 3.4: Phonon dispersions along high-symmetry directions in the Brillouin zone for hcp
4He at molar volume v0 = 12 cm3/mol, using the Lennard-Jones potential.

Aziz potential

The Aziz potential is given by

v(r) = ε0

{
Ae−αr/b −

[
C6

(
b

r

)6
+ C8

(
b

r

)8
+ C10

(
b

r

)10]
F (r)

}
, (3.74)

where

F (r) =

{
e−(

Db
r
−1)

2

if r 6 Db

1 if r > Db ,
(3.75)

with
ε = 10.8K , b = 2.9763 Å , A = 5.448504× 105 , α = 13.353384 (3.76)

and

C6 = 1.37732412 , C8 = 0.4253785 , C10 = 0.171800 , D = 1.231314 . (3.77)

The mass of the helium-4 atom is m = 6.65× 10−24 g.

3.2.6 Phonon density of states

For a crystalline lattice with an r-element basis, there are then d · r phonon modes for each
wavevector k lying in the first Brillouin zone. If we impose periodic boundary conditions, then
the k points within the first Brillouin zone are themselves quantized, as in the d = 1 case where
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we found k = 2πn/N . There are N distinct k points in the first Brillouin zone – one for every
direct lattice site. The total number of modes is than d · r · N , which is the total number of
translational degrees of freedom in our system: rN total atoms (N unit cells each with an r
atom basis) each free to vibrate in d dimensions. Of the d · r branches of phonon excitations,
d of them will be acoustic modes whose frequency vanishes as k → 0. The remaining d(r − 1)
branches are optical modes and oscillate at finite frequencies. Basically, in an acoustic mode, for
k close to the (Brillouin) zone center k = 0, all the atoms in each unit cell move together in the
same direction at any moment of time. In an optical mode, the different basis atoms move in
different directions.

There is no number conservation law for phonons – they may be freely created or destroyed in
anharmonic processes, where two photons with wavevectors k and q can combine into a single
phonon with wavevector k + q, and vice versa. Therefore the chemical potential for phonons is
µ = 0. We define the density of states gs(ω) for the sth phonon mode as

gs(ω) =
1

N

∑

k

δ
(
ω − ωs(k)

)
= Ω

∫

Ω̂

ddk

(2π)d
δ
(
ω − ωs(k)

)
, (3.78)

where N is the number of unit cells, Ω is the unit cell volume of the direct lattice, and the k
sum and integral are over the first Brillouin zone only. Note that ω here has dimensions of
frequency. The functions ga(ω) is normalized to unity:

∞∫

0

dω gs(ω) = 1 . (3.79)

The total phonon density of states per unit cell is given by5 g(ω) =
∑dr

s=1 gs(ω) .

The grand potential for the phonon gas is

Ω(T, V ) = −k
B
T ln

∏

k,s

∞∑

na(k)=0

e−β~ωs(k)
(
ns(k)+

1
2

)

= k
B
T
∑

k,s

ln

[
2 sinh

(
~ωs(k)

2k
B
T

)]
= Nk

B
T

∞∫

0

dω g(ω) ln

[
2 sinh

(
~ω

2k
B
T

)]
.

(3.80)

Note that V = NV0 since there are N unit cells, each of volume V0. The entropy is given by

S = −
(
∂Ω
∂T

)
V

and thus the heat capacity is

CV = −T ∂2Ω

∂T 2
= Nk

B

∞∫

0

dω g(ω)

(
~ω

2kBT

)2
csch2

(
~ω

2kBT

)
(3.81)

5Note the dimensions of g(ω) are (frequency)−1. By contrast, the dimensions of g(ε) are (energy)−1 · (volume)−1.
The difference lies in the a factor of V0 · ~, where V0 is the unit cell volume.
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Figure 3.5: Upper panel: phonon spectrum in elemental rhodium (Rh) at T = 297K measured
by high precision inelastic neutron scattering (INS) by A. Eichler et al., Phys. Rev. B 57, 324
(1998). Note the three acoustic branches and no optical branches, corresponding to d = 3 and
r = 1. Lower panel: phonon spectrum in gallium arsenide (GaAs) at T = 12K, comparing
theoretical lattice-dynamical calculations with INS results of D. Strauch and B. Dorner, J. Phys.:
Condens. Matter 2, 1457 (1990). Note the three acoustic branches and three optical branches,
corresponding to d = 3 and r = 2. The Greek letters along the x-axis indicate points of high
symmetry in the Brillouin zone.

Note that as T →∞we have csch
(

~ω
2kBT

)
→ 2kBT

~ω
, and therefore

lim
T→∞

CV (T ) = Nk
B

∞∫

0

dω g(ω) = rdNk
B
. (3.82)

This is the classical Dulong-Petit limit of 1
2
k

B
per quadratic degree of freedom; there are rN

atoms moving in d dimensions, hence d · rN positions and an equal number of momenta, re-
sulting in a high temperature limit of CV = rdNk

B
.
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3.2.7 Einstein and Debye models

HIstorically, two models of lattice vibrations have received wide attention. First is the so-
called Einstein model, in which there is no dispersion to the individual phonon modes. We
approximate ga(ω) ≈ δ(ω − ωa), in which case

CV (T ) = NkB

∑

s

(
~ωs
2kBT

)2
csch2

(
~ωs
2kBT

)
. (3.83)

At low temperatures, the contribution from each branch vanishes exponentially, because csch2
(

~ωs
2kBT

)
≃

4 e−~ωs/kBT → 0. Real solids don’t behave this way.

A more realistic model. due to Debye, accounts for the low-lying acoustic phonon branches.
Since the acoustic phonon dispersion vanishes linearly with |k| as k → 0, there is no tempera-
ture at which the acoustic phonons ‘freeze out’ exponentially, as in the case of Einstein phonons.
Indeed, the Einstein model is appropriate in describing the d (r−1) optical phonon branches,
though it fails miserably for the acoustic branches.

In the vicinity of the zone center k = 0 (also called Γ in crystallographic notation) the d acoustic
modes obey a linear dispersion, with ωs(k) = cs(k̂) k. This results in an acoustic phonon density
of states in d = 3 dimensions of

g̃(ω) =
V0 ω2

2π2

∑

s

∫
dk̂

4π

1

c3s(k)
Θ(ω

D
− ω)

=
3V0
2π2c̄3

ω2Θ(ωD − ω) ,
(3.84)

where c̄ is an average acoustic phonon velocity (i.e. speed of sound) defined by

3

c̄3
=
∑

s

∫
dk̂

4π

1

c3s(k)
(3.85)

and ωD is a cutoff known as the Debye frequency. The cutoff is necessary because the phonon
branch does not extend forever, but only to the boundaries of the Brillouin zone. Thus, ω

D

should roughly be equal to the energy of a zone boundary phonon. Alternatively, we can
define ωD by the normalization condition

∞∫

0

dω g̃(ω) = 3 =⇒ ω
D
= (6π2/V0)1/3 c̄ . (3.86)

This allows us to write g̃(ω) =
(
9ω2/ω3

D

)
Θ(ω

D
− ω).
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The specific heat due to the acoustic phonons is then

CV (T ) =
9NkB

ω3
D

ωD∫

0

dω ω2

(
~ω

2k
B
T

)2
csch2

(
~ω

2k
B
T

)

= 9NkB

(
2T

Θ
D

)3
φ
(
ΘD/2T

)
,

(3.87)

where Θ
D
= ~ω

D
/k

B
is the Debye temperature and

φ(x) =

x∫

0

dt t4 csch2t =





1
3
x3 x→ 0

π4

30
x→∞ .

(3.88)

Therefore,

CV (T ) =





12π4

5
NkB

(
T
ΘD

)3
T ≪ ΘD

3NkB T ≫ ΘD .

(3.89)

Thus, the heat capacity due to acoustic phonons obeys the Dulong-Petit rule in that CV (T →
∞) = 3NkB, corresponding to the three acoustic degrees of freedom per unit cell. The remain-
ing contribution of 3(r − 1)Nk

B
to the high temperature heat capacity comes from the optical

modes not considered in the Debye model. The low temperature T 3 behavior of the heat ca-
pacity of crystalline solids is a generic feature, and its detailed description is a triumph of the
Debye model.

3.2.8 Phenomenological theory of melting

Atomic fluctuations in a crystal

For the one-dimensional chain, eqn. 3.33 gives

ũk = i

(
~

2mωk

)1/2(
ak − a†−k

)
. (3.90)

Therefore the RMS fluctuations at each site are given by

〈u2n〉 =
1

N

∑

k

〈ũk ũ−k〉 =
1

N

∑

k

~

mωk

(
n(k) + 1

2

)
, (3.91)

where n(k, T ) =
[
exp(~ωk/kB

T )− 1
]−1

is the Bose occupancy function.
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Element Ag Al Au C Cd Cr Cu Fe Mn
Θ

D
(K) 227 433 162 2250 210 606 347 477 409

Tmelt (K) 962 660 1064 3500 321 1857 1083 1535 1245

Element Ni Pb Pt Si Sn Ta Ti W Zn
Θ

D
(K) 477 105 237 645 199 246 420 383 329

Tmelt (K) 1453 327 1772 1410 232 2996 1660 3410 420

Table 3.2: Debye temperatures (at T = 0) and melting points for some common elements
(carbon is assumed to be diamond and not graphite). (Source: the internet!)

Let us now generalize this expression to the case of a d-dimensional solid. The appropriate
expression for the RMS position fluctuations of the ith basis atom in each unit cell is

〈u2l (R)〉 =
1

N

∑

k

dr∑

s=1

~

Mls(k)ωs(k)

(
ns(k) +

1
2

)
. (3.92)

Here we sum over all wavevectors k in the first Brilliouin zone, and over all normal modes a.
There are dr normal modes per unit cell i.e. d branches of the phonon dispersion ωs(k). (For the
one-dimensional chain with d = 1 and r = 1 there was only one such branch to consider). Note
also the quantity Mis(k), which has units of mass and is defined in terms of the polarization
vectors eαls(k) as

1

Mls(k)
=

d∑

µ=1

∣∣eµls(k)
∣∣2 . (3.93)

The dimensions of the polarization vector are [mass]−1/2, since the generalized orthonormality
condition on the normal modes is

∑

l,µ

Ml e
µ
ls
∗
(k) eµls′(k) = δss′ , (3.94)

where Mi is the mass of the atom of species i within the unit cell (i ∈ {1, . . . , r}). For our
purposes we can replaceMis(k) by an appropriately averaged quantity which we callMi ; this
‘effective mass’ is then independent of the mode index a as well as the wavevector k. We may
then write

〈 u2l 〉 ≈
∞∫

0

dω g(ω)
~

Ml ω
·
{

1

e~ω/kBT − 1
+

1

2

}
, (3.95)

where we have dropped the site label R since translational invariance guarantees that the fluc-
tuations are the same from one unit cell to the next. Note that the fluctuations 〈 u2i 〉 can be
divided into a temperature-dependent part 〈 u2i 〉th and a temperature-independent quantum



144 CHAPTER 3. DEFORMATIONS OF CRYSTALS

contribution 〈 u2i 〉qu , where

〈 u2l 〉th =
~

Ml

∞∫

0

dω
g(ω)

ω
· 1

e~ω/kBT − 1

〈 u2l 〉qu =
~

2Ml

∞∫

0

dω
g(ω)

ω
.

(3.96)

Let’s evaluate these contributions within the Debye model, where we replace g(ω) by

ḡ(ω) =
d2 ωd−1

ωdD
Θ(ω

D
− ω) . (3.97)

We then find

〈 u2l 〉th =
d2~

Ml ωD

(
k

B
T

~ωD

)d−1

Fd(~ωD
/k

B
T )

〈 u2l 〉qu =
d2

d− 1
· ~

2Ml ωD

,

(3.98)

where

Fd(x) =

x∫

0

dy
yd−2

ey − 1
=





xd−2

d−2
x→ 0

ζ(d− 1) x→∞
. (3.99)

We can now extract from these expressions several important conclusions:

1) The T = 0 contribution to the the fluctuations, 〈u2l 〉qu, diverges in d = 1 dimensions.
Therefore there are no one-dimensional quantum solids.

2) The thermal contribution to the fluctuations, 〈u2l 〉th, diverges for any T > 0 whenever
d 6 2. This is because the integrand of Fd(x) goes as yd−3 as y → 0. Therefore, there are no
two-dimensional classical solids.

3) Both the above conclusions are valid in the thermodynamic limit. Finite size imposes
a cutoff on the frequency integrals, because there is a smallest wavevector kmin ∼ 2π/L,
where L is the (finite) linear dimension of the system. This leads to a low frequency cutoff
ωmin = 2πc̄/L, where c̄ is the appropriately averaged acoustic phonon velocity from eqn.
3.85, which mitigates any divergences.



3.2. PHONONS IN CRYSTALS 145

Lindemann melting criterion

An old phenomenological theory of melting due to Lindemann says that a crystalline solid
melts when the RMS fluctuations in the atomic positions exceeds a certain fraction η of the
lattice constant a. We therefore define the ratios

x2l,th ≡
〈 u2l 〉th
a2

= d2 ·
(

~2

Ml a2 kB

)
· T

d−1

Θd
D

· F (ΘD/T )

x2l,qu ≡
〈 u2l 〉qu
a2

=
d2

2(d− 1)
·
(

~2

Ml a2 kB

)
· 1

Θ
D

,

(3.100)

with xl =
√
x2l,th + x2l,qu =

√
〈 u2l 〉

/
a.

Let’s now work through an example of a three-dimensional solid. We’ll assume a single ele-
ment basis (r = 1). We have that

9~2/4k
B

1 amu Å
2 = 109K . (3.101)

According to table 3.2, the melting temperature always exceeds the Debye temperature, and
often by a great amount. We therefore assume T ≫ ΘD, which puts us in the small x limit of
Fd(x). We then find

x2qu =
Θ⋆

ΘD

, x2th =
Θ⋆

ΘD

· 4T
ΘD

, x =

√(
1 +

4T

ΘD

)
Θ⋆

ΘD

. (3.102)

where

Θ∗ =
109K

M [amu] ·
(
a[Å]

)2 . (3.103)

The total position fluctuation is of course the sum x2l = x2l,th + x2l,qu. Consider for example the

case of copper, with M = 56 amu and a = 2.87 Å. The Debye temperature is ΘD = 347K. From
this we find xqu = 0.026, which says that at T = 0 the RMS fluctuations of the atomic positions
are not quite three percent of the lattice spacing (i.e. the distance between neighboring copper
atoms). At room temperature, T = 293K, one finds xth = 0.048, which is about twice as
large as the quantum contribution. How big are the atomic position fluctuations at the melting
point? According to our table, Tmelt = 1083K for copper, and from our formulae we obtain
xmelt = 0.096. The Lindemann criterion says that solids melt when x(T ) ≈ 0.1.

We were very lucky to hit the magic number xmelt = 0.1 with copper. Let’s try another example.
Lead has M = 208 amu and a = 4.95 Å. The Debye temperature is Θ

D
= 105K (‘soft phonons’),

and the melting point is Tmelt = 327K. From these data we obtain x(T = 0) = 0.014, x(293K) =
0.050 and x(T = 327K) = 0.053. Same ballpark.
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We can turn the analysis around and predict a melting temperature based on the Lindemann
criterion x(Tmelt) = η, where η ≈ 0.1. We obtain

T
L
=

(
η2Θ

D

Θ⋆
− 1

)
· ΘD

4
. (3.104)

We call T
L

the Lindemann temperature. Most treatments of the Lindemann criterion ignore the
quantum correction, which gives the −1 contribution inside the above parentheses. But if we
are more careful and include it, we see that it may be possible to have TL < 0. This occurs for
any crystal where Θ

D
< Θ⋆/η2.

Consider for example the case of 4He, which at atmospheric pressure condenses into a liquid
at Tc = 4.2K and remains in the liquid state down to absolute zero. At p = 1 atm, it never
solidifies! Why? The number density of liquid 4He at p = 1 atm and T = 0K is 2.2× 1022 cm−3.
Let’s say the Helium atoms want to form a crystalline lattice. We don’t know a priori what
the lattice structure will be, so let’s for the sake of simplicity assume a simple cubic lattice.
From the number density we obtain a lattice spacing of a = 3.57 Å. OK now what do we
take for the Debye temperature? Theoretically this should depend on the microscopic force
constants which enter the small oscillations problem (i.e. the spring constants between pairs of
helium atoms in equilibrium). We’ll use the expression we derived for the Debye frequency,
ωD = (6π2/V0)1/3c̄, where V0 is the unit cell volume. We’ll take c̄ = 238m/s, which is the speed
of sound in liquid helium at T = 0. This gives Θ

D
= 19.8K. We find Θ⋆ = 2.13K, and if

we take η = 0.1 this gives Θ⋆/η2 = 213K, which significantly exceeds Θ
D

. Thus, the solid
should melt because the RMS fluctuations in the atomic positions at absolute zero are huge:
xqu = (Θ⋆/Θ

D
)1/2 = 0.33. By applying pressure, one can get 4He to crystallize above pc = 25 atm

(at absolute zero). Under pressure, the unit cell volume V0 decreases and the phonon velocity c̄
increases, so the Debye temperature itself increases.

It is important to recognize that the Lindemann criterion does not provide us with a theory of
melting per se. Rather it provides us with a heuristic which allows us to predict roughly when
a solid should melt.

3.2.9 Goldstone bosons

The vanishing of the acoustic phonon dispersion at k = 0 is a consequence of Goldstone’s theorem
which says that associated with every broken generator of a continuous symmetry there is an asso-
ciated bosonic gapless excitation (i.e. one whose frequency ω vanishes in the long wavelength
limit). In the case of phonons, the ‘broken generators’ are the symmetries under spatial transla-
tion in the x, y, and z directions. The crystal selects a particular location for its center-of-mass,
which breaks this symmetry. There are, accordingly, three gapless acoustic phonons.

Magnetic materials support another branch of elementary excitations known as spin waves, or
magnons. In isotropic magnets, there is a global symmetry associated with rotations in internal
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spin space, described by the group SU(2). If the system spontaneously magnetizes, meaning
there is long-ranged ferromagnetic order (↑↑↑ · · · ), or long-ranged antiferromagnetic order
(↑↓↑↓ · · · ), then global spin rotation symmetry is broken. Typically a particular direction is
chosen for the magnetic moment (or staggered moment, in the case of an antiferromagnet).
Symmetry under rotations about this axis is then preserved, but rotations which do not pre-
serve the selected axis are ‘broken’. In the most straightforward case, that of the antiferromag-
net, there are two such rotations for SU(2), and concomitantly two gapless magnon branches,
with linearly vanishing dispersions ωa(k). The situation is more subtle in the case of ferromag-
nets, because the total magnetization is conserved by the dynamics (unlike the total staggered
magnetization in the case of antiferromagnets). Another wrinkle arises if there are long-ranged
interactions present.

For our purposes, we can safely ignore the deep physical reasons underlying the gaplessness
of Goldstone bosons and simply posit a gapless dispersion relation of the form ω(k) = A |k|σ.
The density of states for this excitation branch is then

g(ω) = C ω
d
σ
−1

Θ(ωc − ω) , (3.105)

where C is a constant and ωc is the cutoff, which is the bandwidth for this excitation branch.6

Normalizing the density of states for this branch results in the identification ωc = (d/σC)σ/d.
The heat capacity is then found to be

CV = Nk
B
C

ωc∫

0

dω ω
d
σ
−1
(

~ω

kBT

)2
csch2

(
~ω

2kBT

)

=
d

σ
Nk

B

(
2T

Θ

)d/σ
φ
(
Θ/2T

)
,

(3.106)

where Θ = ~ωc/kB
and

φ(x) =

x∫

0

dt t
d
σ
+1

csch2t =





σ
d
xd/σ x→ 0

2−d/σ Γ
(
2 + d

σ

)
ζ
(
2 + d

σ

)
x→∞ ,

(3.107)

which is a generalization of our earlier results. Once again, we recover Dulong-Petit for k
B
T ≫

~ωc, with CV (T ≫ ~ωc/kB) = NkB.

In an isotropic ferromagnet, i.e.a ferromagnetic material where there is full SU(2) symmetry
in internal ‘spin’ space, the magnons have a k2 dispersion. Thus, a bulk three-dimensional
isotropic ferromagnet will exhibit a heat capacity due to spin waves which behaves as T 3/2 at
low temperatures. For sufficiently low temperatures this will overwhelm the phonon contri-
bution, which behaves as T 3.

6If ω(k) = Akσ , then C = 21−d π
− d

2 σ−1 A
− d

σ g
/
Γ(d/2) .
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3.2.10 Elasticity theory redux : Bravais lattices

In a Bravais lattice, we have Φ̂αβ(0) = 0 from translational invariance. The potential energy
may then be written in the form

U = U0 −
1

4

∑

R,R′

∑

α,β

[
uα(R)− uα(R′)

]
Φαβ(R− R′)

[
uβ(R)− uβ(R′)

]
. (3.108)

We now assume a very long wavelength disturbance, and write

uα(R)− uα(R′) = (Rµ − R′µ)
∂uα

∂xµ

∣∣∣∣
R

+ . . . . (3.109)

Thus,

U = U0 −
1

4

∑

R,R′

∑

α,β

∑

µ,ν

∂uα

∂xµ

∣∣∣∣
R

∂uβ

∂xν

∣∣∣∣
R

(Rµ −R′µ) (Rν − R′ν)Φαβ(R− R′) . (3.110)

We may symmetrize with respect to Cartesian indices7 to obtain the elastic tensor

Cαβµν ≡ −
1

8Ω

∑

R

(
RµRν Φαβ(R) +RµRβ Φαν(R) +RαRν Φµβ(R) + RαRβ Φµν(R)

)
. (3.111)

Note that

Cαβµν = Cβαµν = Cαβνµ = Cµναβ , (3.112)

where Ω is the Wigner-Seitz cell volume.

Elasticity in solids

Recall from §3.1.2 that we may regard the rank four tensor Cαβµν as a symmetric 6 × 6 matrix
Cab , where we replace (αβ) → a and (µν) → b according to the scheme from Tab. 3.1. In cubic
crystals, for example, we have

C11 = Cxxxx = Cyyyy = Czzzz

C12 = Cxxyy = Cxxzz = Cyyzz

C44 = Cxyxy = Cxzxz = Cyzyz .

(3.113)

Typical values of Cab in solids are on the order of gigapascals, i.e. 109 Pa:

7Symmetrization is valid because the antisymmetric combination
(
∂uα

∂xβ − ∂uβ

∂xα

)
corresponds to a rotation.
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element C11 C12 C44

4He 0.031 0.028 0.022

Cu 16 8 12

Al 108 62 28.3

Pb 48.8 41.4 14.8

C (diamond) 1040 170 550

Table 3.3: Elastic moduli for various solids (in GPa).

The bulk modulus of a solid is defined as B = V ∂2F/∂V 2. We consider a uniform dilation, which
is described by R→ (1 + ζ)R at each lattice site. Thus the displacement field is u(r) = ζr. This
leads to a volume change of δV = 3ζV , hence ζ = δV/3V . The strain tensor is εαβ = ζ δαβ, hence

δF =
(δV )2

18V

∑

α,β

Cααββ = 1
9

3∑

a,b=1

Cab . (3.114)

Thus, for cubic materials, B = 1
3
C11 +

2
3
C12 .

Elastic waves

The Lagrangian of an elastic medium is be written as

L =

∫
ddr L =

∫
ddr

{
1
2
ρ

(
∂uα

∂t

)2
− 1

2
Cαβµν

∂uα

∂xβ
∂uµ

∂xν

}
, (3.115)

where ρ is the overall mass density of the crystal, i.e. ρ = m/Ω. The Euler-Lagrange equations
of motion are then

0 =
∂

∂t

∂L
∂(∂tu

α)
+

∂

∂xβ
∂L

∂(∂βu
α)

= ρ
∂2uα

∂t2
− Cαβµν

∂2uν

∂xβ ∂xµ
.

(3.116)

The solutions are elastic waves, with u(x, t) = ê(k) ei(k·x−ωt) where

ρω2 eα(k) = Cαβµν k
β kµ eν(k) . (3.117)

Thus, the dispersion is ωa(k) = ca(k̂) k , where

det
[
ρ c2(k̂) δαν − Cαβµν k̂β k̂µ

]
= 0 (3.118)
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is the equation to be solved for the speeds of sound ca(k̂) in each elastic wave branch a.

For isotropic solids, C12 ≡ λ, C44 ≡ µ, and C11 = C12 + 2C14 = λ + 2µ, where λ and µ are the
Lamé coefficients. The free energy density is discussed in §3.1 and is given by

f = 1
2
λ (∂iui)

2 + 1
2
µ (∂iuj) (∂iuj) +

1
2
µ (∂iuj) (∂jui) , (3.119)

which results in the Euler-Lagrange equations of motion

ρ ü = (λ+ µ)∇(∇ · u) + µ∇2
u . (3.120)

Writing u(r, t) = u0 ê(k) e
i(k·r−ωt), where ê is a polarization unit vector, we obtain a longitudinal

mode when ê(k) · k̂ = 1 with ω
L
(k) = c

L
|k| and c

L
=
√

(λ+ 2µ)/ρ , and two transverse modes

when ê(k) · k̂ = 0 with ω
T
(k) = c

T
|k| and c

T
=
√
µ/ρ .

In cubic crystals, there are three independent elastic moduli, C11, C12, and C14 . We then have

ρ c2(k̂) ex =
[
C11 k̂

2
x + C44

(
k̂2y + k̂2z

)]
êx + (C12 + C44)

(
k̂x k̂y ê

y + k̂x k̂z ê
z
)

ρ c2(k̂) ey =
[
C11 k̂

2
y + C44

(
k̂2x + k̂2z

)]
êy + (C12 + C44)

(
k̂x k̂y ê

x + k̂y k̂z ê
z
)

ρ c2(k̂) ez =
[
C11 k̂

2
z + C44

(
k̂2x + k̂2y

)]
êz + (C12 + C44)

(
k̂x k̂z ê

x + k̂y k̂z ê
y
)

.

(3.121)

This still yields a cubic equation, but it can be simplified by looking along a high symmetry
direction in the Brillouin zone.

Along the (100) direction k = k x̂, we have

ê
L
= x̂ c

L
=
√
C11/ρ (3.122)

êT1 = ŷ cT1 =
√
C44/ρ (3.123)

êT2 = ẑ cT2 =
√
C44/ρ . (3.124)

Along the (110) direction, we have k = 1√
2
k
(
x̂+ ŷ). In this case

êL = 1√
2

(
x̂+ ŷ) cL =

√
(C11 + 2C12 + 4C44)/3ρ (3.125)

ê
T1

= 1√
2

(
x̂− ŷ) c

T1
=
√
(C11 − C12)/2ρ (3.126)

ê
T2

= ẑ c
T2

=
√
C44/ρ . (3.127)

Along the (111) direction, we have k = 1√
3
k
(
x̂+ ŷ + ẑ). In this case

ê
L
= 1√

3

(
x̂+ ŷ + ẑ) c

L
=
√
(C11 + C12 + 2C44)/2ρ (3.128)

êT1 =
1√
6

(
2x̂− ŷ − ẑ) cT1 =

√
(C11 − C12)/3ρ (3.129)

ê
T2

= 1√
2

(
ŷ − ẑ) c

T2
=
√
(C11 − C12)/3ρ . (3.130)
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3.2.11 Elasticity theory in cases with bases

The derivation of the elastic tensor Cαβµν is significantly complicated by the presence of a basis.
Sadly, translational invariance if of no direct avail because

U 6= U0 −
1

4

∑

R,R′

∑

α,β

∑

i,j

[
uαi (R)− uαi (R′)

]
Φαβij (R− R′)

[
uβj (R)− uβj (R′)

]
. (3.131)

The student should understand why the above relation is not an equality.

Rather than work with the energy, we will work with the eigenvalue equation 3.42,

Φ̂αβij (k) ê
β
jλ(k) = mi ω

2
λ(k) ê

α
iλ(k) ,

and expand in powers of k. Accordingly, we write

êαiλ(k) = dαi + kσfαiσ +
1
2
kσkτgβiστ +O(k3)

Φ̂αβij (k) = Φ̂αβij (0) + kµ
∂Φ̂αβij (k)

∂kµ

∣∣∣∣
0

+ 1
2
kµ kν

∂2Φ̂αβij (k)

∂kµ ∂kν

∣∣∣∣
0

+O(k3) .
(3.132)

We retain the basis index i on dαi even though it is independent of i because we will use it to make
clear certain necessary sums on the basis index within the Einstein convention. We then have

mi ω
2
{
dαi + kσfαiσ + . . .

}
= (3.133)

{
Φ̂αβij (0) + kµ

∂Φ̂αβij (k)

∂kµ

∣∣∣∣
0

+ 1
2
kµ kν

∂2Φ̂αβij (k)

∂kµ ∂kν

∣∣∣∣
0

+ . . .

}{
dβj + kτfβjτ + . . .

}
,

where there is no implied sum on i on the LHS. We now work order by order in k . To start,

note that ω2(k) = c2(k̂) k2 is already second order. On the RHS, we have Φ̂αβij (0) d
β
j = 0 to zeroth

order in k. At first order, we must have

Φ̂αβij (0) f
β
jσ +

∂Φ̂αβij (k)

∂kσ

∣∣∣∣
0

dβj = 0 , (3.134)

and defining the matrix inverse Υ̂ γαli (k) by the relation

Υ̂ γαli (k) Φ̂αβij (k) = δγβ δlj , (3.135)

we have

f γlσ = −Υ̂ γαli (0)
∂Φ̂αβij (k)

∂kσ

∣∣∣∣
0

dβj (3.136)

Finally, we obtain the eigenvalue equation for the elastic waves,

mi ω
2 dαi =

[
1

2

∂2Φ̂αβil (k)

∂kµ ∂kν

∣∣∣∣
0

− ∂Φ̂ασij (k)

∂kµ

∣∣∣∣
0

Υ̂ σγjm(0)
∂Φ̂γβml(k)

∂kν

∣∣∣∣
0

]
kµ kν dβl . (3.137)
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Remember that dαi is independent of the basis index i. We have dropped the mode index λ

here for notational convenience. Note that the quadratic coefficient gβiστ never entered our cal-
culation because it leads to an inhomogeneous term in the eigenvalue equation, and therefore
must be dropped. We do not report here the explicit form for the elastic tensor, which may be
derived from the above eigenvalue equation.

3.3 Neutron diffraction

3.3.1 Inelastic differential scattering cross-section

Elastic X-ray scattering yields a measure of the static structure factor of a crystal,

S(q) =
1

N

∑

R,R′

∑

i,j

eiq·(R
′+δj−R−δi) . (3.138)

The wavevector transfer is q = kf − ki. Now consider an inelastic process between states

|Ψi 〉 ≡
∣∣ ki , {nis(k)}

〉
→
∣∣ kf , {nfs (k)}

〉
≡ |Ψf 〉 . (3.139)

The initial and final energies are given by

Ei =
~2k2i

2mn

+
∑

k,s

~ωs(k)
(
nis(k) +

1
2

)

Ef =
~2k2i

2mn

+
∑

k,s

~ωs(k)
(
nfs (k) +

1
2

)
.

(3.140)

Energy conservation requires Ef = Ei, and we define the energy transfer to the lattice to be

~ω ≡ ~2

2mn

(
k
2
i − k2f

)
=
∑

k,s

~ωs(k)
(
nfs (k)− nis(k)

)
≡ Ef − Ei , (3.141)

where E =
∑

k,s ~ωs(k)
(
ns(k) +

1
2

)
is the energy of the lattice vibrations.

The scattering rate from |Ψi 〉 to |Ψf 〉 is given by Fermi’s Golden Rule, viz.

Γi→f =
2π

~

∣∣〈 f | V | i 〉
∣∣2 δ(Ef −Ei) , (3.142)

from which we derive the differential scattering cross section

∂2σ

∂Ω ∂ω
=

~

4πvi

∑

i,f

Pi Γi→f g(kf) , (3.143)
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where Pi is the Boltzmann weight for the lattice state | i 〉 = | {nis(k)} 〉, and where g(kf) is the
density of states,

g(kf) =

∫
d3k

(2π)3
δ

(
~
2k2

2mn

−
~2k2f

2mn

)
=
mnkf
2π2~2

. (3.144)

Thus,
∂2σ

∂Ω ∂ω
=

m2
n ki

4π2~3 kf

∑

i,f

Pi
∣∣〈 kf , f | V | ki, i 〉

∣∣2δ(Ef −Ei) . (3.145)

We may approximate the potential V (r) as

V (r) =
∑

R,l

2πal~
2

mn

δ
(
r − R− δl − ul(R)

)
, (3.146)

where al is the effective s-wave scattering length for ions of species l. The matrix element is
thus

〈 kf , f | V | ki, i 〉 =
〈
f
∣∣ ∑

R,l

2π~2al
mn

e−iq·(R+δl) e−iq·ul(R)
∣∣ i
〉

, (3.147)

which is an approximation of the more correct form

V (r) =
∑

R,l

vl
(
r −R− δl − ul(R)

)

〈 kf | V | ki 〉 =
∑

R,l

v̂(q) e−iq·(R+δl) e−iq·ul(R) .
(3.148)

We now have

∂2σ

∂Ω ∂ω
=

~kf
ki

∑

R,R′

∑

l,l′

al a
∗
l′ e

iq·(R′−R+δ
l′
−δl)

∑

i,f

Pi 〈 i | eiq·ul′(R
′) | f 〉 〈 f | e−iq·ul(R) | i 〉 δ(~ω+Ei−Ef) .

(3.149)
Writing

δ(~ω + Ei − Ef) =
∞∫

0

dt

2π~
eiωt ei(Ei−Ef )t/~ , (3.150)

we have,

∂2σ

∂Ω ∂ω
= N

kf
ki

∑

l,l′

al a
∗
l′ e

iq·(δ
l′
−δl)

∑

R

e−iq·R
∞∫

−∞

dt

2π
eiωt

〈
e−iq·ul(R,t) e+iq·ul′ (0,0)

〉
T

, (3.151)

where 〈O〉T =
∑

i Pi〈 i | O | i 〉 is the thermodynamic average. We define the dynamic structure
factor (dsf),

Sll′(q, ω) =

∞∫

−∞

dt

2π
eiωt

∑

R

e−iq·R
〈
e−iq·ul(R,t) e+iq·ul′ (0,0)

〉
T

. (3.152)
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3.3.2 Evaluation of Sll′(q, ω)

To evaluate the dsf, it is convenient to express the displacements ua(R, t) in terms of the ladder
operators, viz.

uαl (R, t) =
1√
N

∑

k,s

(
~

2ωs(k)

)1/2
eαls(k) e

ik·R
(
As(k) e

−iωs(k) t + A†
s(−k) e+iωs(k) t

)
. (3.153)

Thus,

iq · ul(R, t) =
∑

k,s

(
Xk,sAk,s −X∗

k,sA
†
k,s

)

iq · ul′(0, 0) =
∑

k,s

(
Yk,sAk,s − Y ∗

k,sA
†
k,s

)
,

(3.154)

where

Xk,s =
i√
N

(
~

2ωs(k)

)1/2
q · els(k) eik·R e−iωs(k) t

Yk,s =
i√
N

(
~

2ωs(k)

)1/2
q · el′s(k) .

(3.155)

Thus, we may write

〈
e−iq·ul(R,t) e+iq·ul′ (0,0)

〉
T
=
∏

k,s

〈
exp
(
X∗
k,sA

†
k,s −Xk,sAk,s

)
exp
(
Yk,sAk,s − Y ∗

k,sA
†
k,s

)〉
, (3.156)

where we have invoked the fact that
[
Ak,s, A

†
k′,s′

]
= δkk′ δss′ . To evaluate this expression, we

appeal to the Baker-Campbell-Hausdorff equality,

eA eB = eA+B e
1
2
[A,B] , (3.157)

valid when both A and B commute with their commutator [A,B]. We may then write, for each
(k, s) pair,

exp
(
X∗
k,sA

†
k,s −Xk,sAk,s

)
exp
(
Yk,sAk,s − Y ∗

k,sA
†
k,s

)
= (3.158)

exp
[
1
2

(
Xk,sY

∗
k,s −X∗

k,sYk,s
)]

exp
(
Zk,sAk,s − Z∗

k,sA
†
k,s

)
,

where Zk,s = Yk,s − Xk,s . Now consider a single harmonic oscillator with Hamiltonian H =

~ω (a†a + 1
2
) and define g(x, y) = 〈exa eya†〉T . Then from the cyclic property of the trace, we
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have8

g(x, y) ≡
〈
exa eya

†〉
T

= Z−1Tr
(
e−βHexa eya

†)

= Z−1 exy Tr
(
e−βHeya

†

exa
)

= Z−1 exy Tr
(
e−βHeβHexae−βHeya

†)

= Z−1 exy Tr
(
e−βHex exp(−β~ω) aeya

†)

= exy g
(
x exp(−β~ω), y

)

= exy ex exp(−β~ω) y g
(
x exp(−2β~ω), y

)

= exp

( ∞∑

n=0

xy e−nβ~ω
)
g(0, y)

= exp

(
xy

1− exp(−β~ω)

)
,

(3.159)

since g(0, y) = 〈eya†〉T = 1 . We therefore find

〈
exp
(
Zk,sAk,s − Z∗

k,sA
†
k,s

)〉
= exp

(
1
2
Z∗
k,sZk,s

) 〈
eZk,sAk,s e−Z

∗
k,s
A†
k,s
〉

= exp
(
−
(
nk,s +

1
2

)
Z∗
k,sZk,s

)
,

(3.160)

where

nk,s =
1

eβ~ωs(k) − 1
(3.161)

is the Bose function. Finally, we have

〈
e−iq·ul(R,t) e+iq·ul′ (0,0)

〉
T
= exp

{
−
∑

k,s

(
|Xk,s|2 + |Yk,s|2

)(
ns(k) +

1
2

)}
(3.162)

× exp

{∑

k,s

[
Xk,sY

∗
k,s

(
ns(k) + 1

)
+X∗

k,sYk,s ns(k)
]}

.

3.3.3 Dynamic structure factor for Bravais lattices

For the case of Bravais lattices, we have r = 1 and

S(q, ω) = e−2W (q)

∞∫

−∞

dt

2π

∑

R

e−iq·R eiωt eΓ (q,R,t) , (3.163)

8See N. D. Mermin, J. Math. Phys. 7, 1038 (1966).
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where

W (q) = 1
2
Ω

∫

Ω̂

ddk

(2π)d

d∑

s=1

~ω−1
s (k)

∣∣q · es(k)
∣∣2 ctnh

(
~ωs(k)

2k
B
T

)
(3.164)

and

Γ (q,R, t) = 1
2
Ω

∫

Ω̂

ddk

(2π)d

d∑

s=1

~

ωs(k)

∣∣q · es(k)
∣∣2
{
(
ns(k) + 1

)
eik·Re−iωs(k) t + ns(k) e

−ik·R eiωs(k) t

}
.

(3.165)

Expanding eΓ = 1 + Γ + 1
2
Γ 2 + . . . in a power series, we have

S(q, ω) = e−2W (q)

{ zero phonons︷ ︸︸ ︷
Ω̂ δ(ω)

∑

G

δ(q − G) +1
2

∫

Ω̂

ddk

(2π)d

d∑

s=1

~

ωs(k)

∣∣q · es(k)
∣∣2 × (3.166)

[ single phonon absorption︷ ︸︸ ︷
ns(k) δ

(
ω + ωs(k)

)∑

G

δ(q + k −G) +
single phonon emission︷ ︸︸ ︷(

ns(k) + 1
)
δ
(
ω − ωs(k)

)∑

G

δ(q − k− G)
]
+ . . .

}
.

Here we have labeled the terms corresponding to zero phonon processes, in which the entire
lattice recoils elastically, and single phonon absorption and emission processes. The ellipses
contain terms corresponding to multiphonon processes. The fact that processes in which a
phonon is created (emitted) are proportional to ns(k)+1 , while processes in which a phonon is
destroyed (absorbed) are proportional to ns(k) is a consequence of detailed balance. Satisfying
the Dirac delta functions for the single phonon processes, we may write

S(q, ω) = e−2W (q)

{ zero phonons︷ ︸︸ ︷
Ω̂ δ(ω)

∑

G

δ(q −G) +
d∑

s=1

~

2ωs(q)

∣∣q · es(q)
∣∣2
[ single phonon absorption︷ ︸︸ ︷
ns(q) δ

(
ω + ωs(q)

)

+

single phonon emission︷ ︸︸ ︷(
ns(q) + 1

)
δ
(
ω − ωs(k)

) ]
+ . . .

}
.

(3.167)

3.3.4 Debye-Waller Factor

The term e−2W (q) is called the Debye-Waller factor. Note that

2W (q) =
〈(
q · u(R)

)2〉
T
= Ω

∫

Ω̂

ddk

(2π)d

d∑

s=1

~

ωs(k)

∣∣q · es(k)
∣∣2 ctnh

(
~ωs(k)

2k
B
T

)
. (3.168)
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We may approximate the angular integral

∫
dk̂

4π

∣∣q · es(k)
∣∣2 ≈ 1

3
q
2
∣∣q̂ · es(k)

∣∣2 = q2

3M
, (3.169)

where M is the ionic mass. We then obtain

2W (q) ≈ q2

3M

∞∫

0

dω g(ω)
~

2ω
ctnh

(
~ω

2kBT

)
, (3.170)

where g(ω) is the total phonon density of states. Within the Debye model in d = 3 dimensions,

gDebye(ω) =
9ω2

ω2
D

Θ(ωD − ω) , (3.171)

For kBT ≪ ~ωD, we find

2W (q) =
3~q2

4MωD

{
1 +

2π2

3

(
kBT

~ωD

)2
+ . . .

}
, (3.172)

while for kBT ≫ ~ωD we obtain

2W (q) =
3~q2

MωD

· kB
T

~ωD

. (3.173)

We see that W (q) increases linearly with T , and that as T → 0 it approaches a constant, given
by WT=0(q) = 3~q2/8MωD . The q-dependence has the effect of reducing the intensity of large
|q| processes relative to small |q| processes. One noteworthy feature is that finite temperature
fluctuations do not smooth out the Bragg peaks in

∑
G δ(q−G). Rather, the Bragg peaks at each

reciprocal lattice vector G are simply reduced in intensity by the Debye-Waller factor e−2W (G) .
Note that W (q) does not vanish at T = 0, due to quantum fluctuations of the ionic positions. In
a one-dimensional lattice, these fluctuations are strong enough to melt the lattice and destroy
long-ranged positional order.

3.3.5 The Mössbauer effect

Suppose a stationary ion (or atom) of mass M radiates and decays from an excited state with
energy E = E1 to its ground state at E = E0. A photon of energy ε = hν and momentum p =
hν/c is emitted in the process. This results in a recoil of the ion with energy R = (hν/c)2/2m.
Thus, energy conservation requires

E1 = E0 + hν +R ⇒ hν = ∆E − (hν)2

2Mc2
≃ ∆E − (∆E)2

2Mc2
, (3.174)
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where ∆E = E1−E0 , assuming Mc2 ≫ ∆E . In 57Fe, for example, we have ∆E = 14.4 keV and
Mc2 = 53.3GeV, and the recoil energy is R ≈ 1.96meV. If the photon is reabsorbed by another
57Fe nucleus in its ground state, then the energy change is

∆E ′ = ∆E − (hν)2

2Mc2
≃ ∆E − (∆E)2

Mc2
, (3.175)

and we have ∆E −∆E ′ = 2R = 3.91meV. This is small, but still much greater than the natural
linewidth of the transition, which is Γ = 4.6 × 10−9 eV. So the resonant absorption should
never happen. Except that it is indeed observed, as first shown by Mössbauer in 1958 in an
experiment for which he won the Nobel Prize in Physics in 19619. The reason is that in a crystal
there are zero phonon processes in which the entire lattice recoils, hence R = (hν)2/2NMc2,
where N is the number of unit cells of the crystal, which is thermodynamically large, i.e. R = 0
for all intents and purposes. In addition, by using a moving source, the Doppler shift may be
used to probe the structure of the absorption line. The Doppler shifted frequency is

ω′ =
ω − v · k√
1− v2

c2

= ω − v · k +O(v2/c2) . (3.176)

If we take v ‖ k then we have δω = vk and ~ δω = (v/c) · ~ck ≈ (v/c)∆E . Setting ~ δω = Γ , we
obtain v = 0.01 cm/s – a very small velocity compared with c indeed! Since the Debye-Waller
factor involves the ratio ~q2/2MωD = (hν)2/2Mc2~ωD, where the Debye energy ~ωD is on the
order of millivolts, only low energy atomic γ-transitions yield observable Mössbauer effects.

9Mössbauer used a 191Os source and a 191Ir absorber.



Chapter 4

Electronic Band Structure of Crystals

4.1 Energy Bands in Solids

4.1.1 Bloch’s theorem

The Hamiltonian for an electron in a crystal is

H = − ~
2

2m
∇

2 + V (r) , (4.1)

where V (r) = V (r + R) for all R ∈ L, where L is the direct Bravais lattice underlying the
crystal structure. The potential V (r) describes the crystalline potential due to the ions, plus
the average (Hartree) potential of the other electrons. The lattice translation operator is t(R) =
exp(iR·p/~) = exp(R ·∇). Acting on any function of r, we have

t(R) f(r) = f(r + R) . (4.2)

Note that lattice translations are unitary, i.e. t†(R) = t−1(R) = t(−R), and they satisfy the
composition rule t(R1) t(R2) = t(R1 + R2). Since

[
t(R), H

]
= 0 for all Bravais lattice vectors R,

the Hamiltonian H and all lattice translations t(R) may be simultaneously diagonalized. Let
ψ(r) be such a common eigenfunction. Since t(R) is unitary, its eigenvalue must be a phase
exp(iθR), and as a consequence of the composition rule, we must have θR1+R2

= θR1
+ θR2

. This
requires that θR be linear in each of the components of R, i.e. θR = k · R, where k is called the

wavevector. Since exp(iG · R) = 1 for any G ∈ L̂, i.e. for any reciprocal lattice vector (RLV) G in

the reciprocal lattice L̂, the wavevector is only defined modulo G, which means that k may be
restricted to the first Brillouin zone of the reciprocal lattice. The quantity ~k is called the crystal
momentum. Unlike ordinary momentum p, crystal momentum is only conserved modulo ~G.

The energy E will in general depend on k, but there may be several distinct energy eigenstates
with the same value of k. We label these different energy states by a discrete index n, called the

159
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band index. Thus, eigenstates of H are labeled by the pair (n, k), with

H ψnk(r) = En(k)ψnk(r) , t(R)ψnk(r) = eik·R ψnk(r) , (4.3)

This is the content of Bloch’s theorem. Note that the cell function unk(r) ≡ ψnk(r) e
−ik·r is periodic

in the direct lattice, with unk(r + R) = unk(r). Thus, each Bloch function ψnk(r) may be written
as the product of a plane wave and a cell function, viz.

ψnk(r) ≡ 〈 r |nk 〉 = eik·r unk(r) . (4.4)

We may always choose the Bloch functions to be periodic in the reciprocal lattice, i.e. ψn,k+G(r) =

ψk(r). This choice entails the condition un,k+G(r) = unk(r) e
−iG·r. However, there is no guar-

antee that ψnk(r) is continuous as a function of k ∈ Td. As an example, consider the one-
dimensional Bloch function ψnk(x) = L−1/2 ei(Gn+k)x, where n labels the reciprocal lattice vector
Gn = 2πn/a. If ψnk(x) is taken to be continuous as a function of k, then clearly ψn,k+Gm(x) =

ψn,k(x) e
iGmx = ψn+m,k(x) 6= ψnk(x).

The Bloch states, being eigenstates of a Hermitian operator, satisfy the conditions of complete-
ness, ∑

n,k

|nk 〉〈nk | = 1 , (4.5)

and orthonormality,

〈nk |n′
k
′ 〉 = δnn′ δkk′ . (4.6)

Here we have assumed quantization of k in a large box of dimensionsL1×L2×L3. Each allowed

wavevector then takes the form k =
(2πn1

L1
,
2πn2

L2
,
2πn3

L3

)
, where n1,2,3 ∈ Z. In the thermodynamic

limit, where L1,2,3 →∞, we have

∑

k

−→ Nv0

∫
ddk

(2π)d
, (4.7)

where d is the dimension of space (d = 3 unless otherwise noted), v0 is the unit cell volume in
real space, i.e. the volume of the Wigner-Seitz (WS) cell1, and N = L1 · · ·Ld/v0 is the number of
unit cells in the system, and is assumed to be thermodynamically large. Thus, we have from
Eqn. 4.5,

δ(r − r′) = Nv0
∑

n

∫
ddk

(2π)d
ψnk(r)ψ

∗
nk(r

′) . (4.8)

One can see how the above equation is true in the simple case where unk(r) = 1 and ψnk(r) =
V −1/2 eik·r, with V = Nv0.

1Elsewhere in these notes we denote the WS cell volume by Ω and the Brillouin zone volume by Ω̂.
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4.1.2 Schrödinger equation

The potential V (r) has a discrete Fourier representation as

V (r) =
∑

G

VG e
iG·r , (4.9)

where the sum is over all reciprocal lattice vectors G ∈ L̂. Since V (r) is a real function, we must
have V−G = V ∗

G. Any Bloch function ψk(r) may also be written as a Fourier sum, viz.

ψk(r) =
∑

G

CG(k) e
i(G+k)·r . (4.10)

If we choose the Bloch functions to be periodic in the reciprocal lattice, then CG(k) = C(G+ k)

is a function of G + k. Here, we have suppressed the band index n, and the wavevector k ∈ Ω̂
must lie within the first Brillouin zone. The Schrödinger equation Hψk(r) = E(k)ψk(r) then
takes the form

~2(G+ k)2

2m
CG(k) +

∑

G′

VG−G′ CG′(k) = E(k)CG(k) . (4.11)

Note that we have one such equation for each wavevector k ∈ Ω̂. This equation can be written
in matrix form, as ∑

G′

HGG′(k)CG′(k) = E(k)CG(k) , (4.12)

where, for each k, HGG′(k) is an infinite rank matrix,

HGG′(k) =
~2(G+ k)2

2m
δGG′ + VG−G′ , (4.13)

whose rows and columns are indexed by reciprocal lattice vectors G and G′, respectively. The
solutions, for any fixed value of k, are then labeled by a band index n, hence

ψnk(r) =

cell function unk(r)︷ ︸︸ ︷(
∑

G

C
(n)
G (k) eiG·r

)
eik·r . (4.14)

Note how the cell function unk(r) is explicitly periodic under direct lattice translations r →
r + R. Note also that unk(r) is an eigenfunction of the unitarily transformed Hamiltonian

H(k) ≡ e−ik·rH eik·r =
(p+ ~k)2

2m
+ V (r)

H(k) unk(r) = En(k) unk(r) .

(4.15)



162 CHAPTER 4. ELECTRONIC BAND STRUCTURE OF CRYSTALS

4.1.3 V = 0 : empty lattice

Consider the case of d = 1 with V = 0, i.e. an empty lattice. We can read off the eigenvalues
of HGG′ from Eqn. 4.13: Enk = ~2(G + k)2/2m, where the band index n identifies the reciprocal

lattice vector G = 2πn/a, where a is the lattice spacing2. The first Brillouin zone Ω̂ is the region
k ∈

[
− π

a
, π
a

]
. Fig. 4.1 shows how the usual ballistic dispersion E(q) = ~2q2/2m is “folded” into

the first Brillouin zone by translating sections by integer multiples of the primary reciprocal
lattice vector b ≡ 2π/a.

4.1.4 Perturbation theory

Let’s consider the case where the potential V (r) is weak. This is known as the nearly free electron
(NFE) model. The matrix form of the Hamiltonian HGG′(k) is given by

HGG′(k) =




~2(G1+k)
2

2m
+ V0 VG1−G2

VG1−G3
· · ·

V ∗
G1−G2

~2(G2+k)
2

2m
+ V0 VG2−G3

· · ·

V ∗
G1−G3

V ∗
G2−G3

~2(G3+k)
2

2m
+ V0 · · ·

...
...

...
. . .




. (4.16)

Suppose we perturb in the off-diagonal elements, going to second order in VG−G′ . We then
obtain

EG(k) = E0
G(k) + V0 +

∑

G′(6=G)

∣∣VG−G′

∣∣2

E0
G(k)−E0

G′(k)
+O(V 3) , (4.17)

where the unperturbed eigenvalues are E0
G(k) = ~

2(G+k)2/2m. Note that the term withG′ = G

is excluded from the sum. Here and henceforth, we shall set V0 ≡ 0. The denominator in the
above sum can vanish if aG′ can be found such thatE0

G(k) = E0
G′(k). In this case, the calculation

fails, and we must use degenerate perturbation theory.

2Since the lattice is empty, we can use any value for a we please. The eigenspectrum will be identical, although
the labeling of the eigenstates will depend on a since this defines the size of the Brillouin zone.
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Figure 4.1: Band structure for an empty one-dimensional lattice, showing how the quadratic
dispersion is “folded” from the extended zone picture into the first Brillouin zone.

Zone center (Γ), G = 0

Let’s first look in the vicinity of the zone center, labeled Γ, i.e. k ≈ 0. For the band associated
with G = 0, we have

E0(k) =
~2k2

2m
− 2m

~2

∑

G(6=0)

|VG|2
G2 + 2G · k +O(V 3)

=
~2k2

2m
− 2m

~2

∑

G(6=0)

|VG|2
|G|2

{
1− 2G · k

|G|2 +
4(G · k)2
|G|4 + . . .

}
+O(V 3) .

(4.18)

Since V−G = V ∗
G, the second term inside the curly bracket vanishes upon summation, so we

have
E0(k) = ∆ + 1

2
~
2(m∗)−1

µν k
µ kν + . . . , (4.19)

where

∆ = −2m
~2

∑

G(6=0)

|VG|2
|G|2

(m∗)−1
µν =

1

m
δµν −

(
4
√
m

~2

)2 ∑

G(6=0)

|VG|2
|G|6 GµGν + . . . .

(4.20)

Here ∆ is the band offset relative to the unperturbed case, and (m∗)−1
µν are the components of the

inverse effective mass tensor. Note that the dispersion in general is no longer isotropic. Rather,
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the effective mass tensor m∗
µν transforms according to a tensor representation of the crystallo-

graphic point group. For three-dimensional systems with cubic symmetry, m∗ is a multiple of
the identity, for the same reason that the inertia tensor of a cube is I = 1

6
Ma2 diag(1, 1, 1). But for

a crystal with a tetragonal symmetry, in which one of the cubic axes is shortened or lengthened,
the effective mass tensor along principal axes takes the general form m∗ = diag(mx, mx, mz),
with mx 6= mz in general.

Zone center (Γ) , G = ±b1,2,3

Consider the cubic lattice with primitive direct lattice vectors aj = a êj and primitive reciprocal
lattice vectors bj =

2π
a
êj . For k = 0, the six bands corresponding to G = ±bj with j ∈ {1, 2, 3}

are degenerate, with E0
G = 2π2~2/ma2. Focusing only on these rows and columns, we obtain a

6× 6 effective Hamiltonian,

H6×6 =




~2

2m
(b1 + k)2 V2b1 Vb1−b2 Vb1+b2 Vb1−b3 Vb1+b3
V ∗
2b1

~2

2m
(b1 − k)2 V ∗

b1+b2
V ∗
b1−b2 V ∗

b1+b3
V ∗
b1−b3

V ∗
b1−b2 Vb1+b2

~2

2m
(b2 + k)2 V2b2 Vb2−b3 Vb2+b3

V ∗
b1+b2

Vb1−b2 V ∗
2b2

~2

2m
(b2 − k)2 V ∗

b2+b3
V ∗
b2−b3

V ∗
b1−b3 Vb1+b3 V ∗

b2−b3 Vb2+b3
~2

2m
(b3 + k)2 V2b3

V ∗
b1+b3

Vb1−b3 V ∗
b2+b3

Vb2−b3 V ∗
2b3

~2

2m
(b3 − k)2




.

(4.21)
To simplify matters, suppose that the only significant Fourier components VG are those with
G = ±2bj . In this case, the above 6× 6 matrix becomes block diagonal, i.e. a direct sum of 2× 2
blocks, each of which resembles

H2×2(Γ) =

(
~2

2m
(bj + k)2 V2bj
V ∗
2bj

~2

2m
(bj − k)2

)
. (4.22)

Diagonalizing, we obtain

Ej,±(k) =
~2b2j

2m
+

~2k2

2m
±
√(

~2

m
bj · k

)2
+ |V2bj |

2 . (4.23)

Assuming cubic symmetry with Vb1 = Vb2 = Vb3 = V , we obtain six bands,

Ej,±(k) =
2π2~2

ma2
+

~2k2

2m
±
√(

2π~2

ma
kj

)2

+ |V |2 . (4.24)

The band gap at k = 0 is then 2 |V |.
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Zone edge (X), G = 0

Consider now the case k = 1
2
b + q with |qa| ≪ 1, and the band G = 0. This state is nearly

degenerate with one in the band with G = −b. Isolating these contributions to HGG′ , we obtain
the 2× 2 matrix

H2×2(X) =

(
~2

2m

(
1
2
b+ q

)2
V−b

Vb
~2

2m

(
− 1

2
b+ q

)2

)
, (4.25)

with dispersion

E±(k) =
~2b2

8m
+

~2q2

2m
±
√(

~2

2m
b · q

)2
+ |Vb|2 . (4.26)

The band gap is again 2 |Vb|.

4.1.5 Solvable model : one-dimensional Dirac comb

Consider the one-dimensional periodic potential,

V (x) = −W0

∞∑

n=−∞
δ(x− na) (4.27)

with W0 > 0. Define W0 ≡ ~2/2mσ, where σ is the scattering length. The Hamiltonian is then

H = − ~2

2m

∂2

∂x2
− ~2

2mσ

∑

n

δ(x− na) . (4.28)

The eigenstates ofH must satisfy Bloch’s theorem: ψnk(x+a) = eika ψnk(x). Thus, we may write

x ∈ [−a , 0] : ψnk(x) = Aeiqx +B e−iqx

x ∈ [0 , +a] : ψnk(x) = eika ψnk(x− a)
= Aei(k−q)a eiqx +B ei(k+q)a e−iqx .

(4.29)

Continuity at x = 0 requires ψnk(0
−) = ψnk(0

+), or

A+B = Aei(k−q)a +B ei(k+q)a . (4.30)

A second equation follows from integrating the Schrödinger equation from x = 0− to x = 0+:

0+∫

0−

dx H ψnk(x) =

0+∫

0−

dx

{
− ~2

2m

d2ψnk
dx2

− ~2

2mσ
ψnk(x) δ(x)

}

=
~2

2m

[
ψ′
nk(0

−)− ψ′
nk(0

+)
]
− ~2

2mσ
ψnk(0) .

(4.31)



166 CHAPTER 4. ELECTRONIC BAND STRUCTURE OF CRYSTALS

Figure 4.2: Left: Plots of the RHS of Eqns. 4.35 (black and red) and 4.36 (blue and orange) for
the Dirac comb potential with scattering length σ = 0.1 a. Allowed solutions (black and blue
portions) must satisfy RHS ∈ [−1, 1]. Right: Corresponding energy band structure.

Since Hψnk(x) = En(k)ψnk(x), the LHS of the above equation is infinitesimal. Thus,

ψ′
nk(0

−)− ψ′
nk(0

+) =
1

σ
ψnk(0) , (4.32)

or

A−B −Aei(k−q)a +Bei(k+q)a =
A +B

iqσ
. (4.33)

The two independent equations we have derived can be combined in the form

(
ei(k−q)a − 1 ei(k+q)a − 1

ei(k−q)a − 1− i
qσ

1− ei(k+q)a − i
qσ

)(
A
B

)
= 0 . (4.34)

In order that the solution be nontrivial, we set the determinant to zero, which yields the condi-
tion

cos(ka) = cos(qa)− a

2σ
· sin(qa)

qa
. (4.35)
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Figure 4.3: Left: The zincblende structure consists of two interpenetrating fcc lattices. Right:
First Brillouin zone for the fcc lattice, with high symmetry points identified. From Wikipedia.

This is to be regarded as an equation for q(k), parameterized by the dimensionless quantity
σ/a. The energy eigenvalue is En(k) = ~

2q2/2m. If we set q ≡ iQ, the above equation becomes

cos(ka) = cosh(Qa)− a

2σ
· sinh(Qa)

Qa
. (4.36)

Here we solve for Q(k), and the energy eigenvalue is En(k) = −~2Q2/2m. In each case, there is
a discrete infinity of solutions indexed by the band index n. Results for the case σ = 0.1 a are
shown in Fig. 4.2. In the limit σ → 0, the solutions to Eqn. 4.35 are q = k + 2πn

a
, and we recover

the free electron bands in the reduced zone scheme. When σ = 0, the only solution to Eqn. 4.36
is Q = 0 for the case k = 0.

As q →∞, the second term on the RHS of Eqn. 4.35 becomes small, and the solution for the nth

band (n ∈ Z+) tends to q = k + 2πn/a. The band gaps at k = 0 and k = π become smaller and
smaller with increasing band index. Clearly Eqn. 4.36 has no solutions for sufficiently large
Q, since the RHS increases exponentially. Note that there is one band in the right panel of Fig.
4.2 with negative energy. This is because we have taken the potential V (x) to be attractive.
Recall that the potential V (x) = −W0 δ(x) has a single bound state ψ0(x) = 1

2
√
σ
e−|x|/2σ, again

with σ ≡ ~2/2mW0. For the Dirac comb, the bound states in different unit cells overlap, which
leads to dispersion. If W0 < 0, the potential is purely repulsive, and all energy eigenvalues are
positive. (There is no solution to Eqn. 4.36 when σ < 0.)

4.1.6 Diamond lattice bands

In dimensions d > 1, the essential physics is similar to what was discussed in the case of the
NFE model, but the labeling of the bands and the wavevectors is more complicated than in the
d = 1 case. Consider the zincblende structure depicted in the left panel of Fig. 4.3. Zincblende



168 CHAPTER 4. ELECTRONIC BAND STRUCTURE OF CRYSTALS

Figure 4.4: Left: Empty lattice s-orbital bands for the diamond structure. Right: Electronic
band structure of Si based on local (dashed) and nonlocal (solid) pseudopotential calculations.
The shaded region contains no electronic eigenstates, and reflects a (indirect) band gap. From
ch. 2 of P. Yu and M. Cardona, Fundamentals of Semiconductors (Springer, 1996).

consists of two interpenetrating face centered cubic lattices (labeled A and B in the figure), and
is commonly found in nature (e.g., in GaAs, InP, ZnTe, ZnS, HgTe, CdTe, etc.). Diamond is a
homonuclear form of zincblende in which the ions on the two fcc sublattices are identical; the
most familiar examples are C (carbon diamond) and Si. For both zincblende and diamond, the
underlying Bravais lattice is fcc; the first Brillouin zone of the fcc lattice is depicted in the right
panel of Fig. 4.3.

The left panel of Fig. 4.4 depicts the empty lattice (free electron) energy bands for the diamond
structure along linear segments LΓ and ΓX (see Fig. 4.3 for the letter labels of high symmetry
points). Energy levels at high symmetry points are labeled by reciprocal lattice vectors (square
brackets) in the extended zone scheme, all in units of 2π/a, where a is the size of the unit cube in
Fig. 4.3. The other labels denote group representations under which the electronic eigenstates
transform. In the extended zone scheme, the dispersion is E(k) = ~2k2/2m, so all the branches
of the dispersion in the reduced zone scheme correspond to displacements of sections of this
paraboloid by RLVs.

The right panel of Fig. 4.4 depicts the energy bands of crystalline silicon (Si), which has the di-
amond lattice structure. Notice how the lowest L-point energy levels are no longer degenerate.
A gap has opened, as we saw in our analysis of the NFE model. Indeed, between E = 0 and
E = 1.12 eV, there are no electronic energy eigenstates. This is the ‘band gap’ of silicon. Note
that the 1.12 eV gap is indirect – it is between states at the Γ and X points. If the minimum en-
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material gap (eV) type material gap type material gap type

C 5.47 indirect Si 1.14 indirect h-BN 5.96 direct

Ge 0.67 indirect Sn <∼ 0.08 indirect AlN 6.28 direct

GaN 3.44 direct InN 0.7 direct ZnO 3.37 direct

GaAs 1.43 direct InP 1.35 direct ZnSe 2.7 direct

GaP 2.26 indirect InAs 0.36 direct ZnS 3.54 direct

GaSb 0.726 direct InSb 0.17 direct ZnTe 2.25 direct

CdS 2.42 direct CdTe 1.49 direct Cu2S 1.2 indirect

Table 4.1: Common semiconductors and their band gaps. From Wikipedia.

ergy gap occurs between levels at the same wavevector, the gap is said to be direct. In intrinsic
semiconductors and insulators, transport measurements typically can provide information on
indirect gaps. Optical measurements, however, reveal direct gaps. The reason is that the speed
of light is very large, and momentum conservation requires optical transitions to be essentially
vertical in (k, E) space.

4.2 Metals and Insulators

4.2.1 Density of states

In addition to energy eigenstates being labeled by band index ν and (crystal) wavevector k,
they are also labeled by spin polarization σ = ±1 relative to some fixed axis in internal space
(typically ẑ)3. The component of the spin angular momentum along ẑ is then Sz = 1

2
~σ =

±1
2
~. Typically, Eν(k, σ) is independent of the spin polarization σ, but there are many examples

where this is not the case4.

The density of states (DOS) per unit energy per unit volume, g(ε), is given by

g(ε) =
1

V

∑

ν,k,σ

′
δ
(
ε− Eν(k, σ)

) V→∞
=

∑

ν

∑

σ

∫

Ω̂

ddk

(2π)d
δ
(
ε−Eν(k, σ)

)
. (4.37)

Here we assume box quantization with k =
(

2πj1
L1

, . . . ,
2πjd
Ld

)
, where j1 etc. are all integers. The

volume associated with each point in k space is then ∆V = (2π/L1) · · · (2π/Ld) = (2π)d/V ,

3Here we denote the band index as ν, to obviate confusion with the occupancy n below.
4If there is an external magnetic field H , for example, the energy levels will be spin polarization dependent.
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which establishes the above equality in the thermodynamic limit. We can also restrict our
attention to a particular band ν and spin polarization σ, and define

gνσ(ε) =

∫

Ω̂

ddk

(2π)d
δ
(
ε− Eν(k, σ)

)
. (4.38)

Finally, we may multiply by the real space unit cell volume v0 to obtain g(ε) ≡ v0 g(ε), which
has dimensions of inverse energy, and gives the number of levels per unit energy per unit cell.

Examples

Consider the case of a one-dimensional band with dispersion E(k) = −2t cos(ka). The density
of states per unit cell is

g(ε) = a

π
a∫

−π
a

dk

2π
δ(ε+ 2t cos ka) =

1

π

(
B2 − ε2

)−1/2
Θ(B2 − ε2) , (4.39)

whereB = 2t is half the bandwidth. I.e. the allowed energies are ε ∈ [−B,+B]. Note the square
root singularity in gd=1(ε) at the band edges.

Now let’s jump to d space dimensions, and the dispersion E(k) = −2t∑d
i=1 cos(kia). The DOS

per unit cell is then

gd(ε) =

π∫

−π

dθ1
2π
· · ·

π∫

−π

dθd
2π

δ
(
ε+ 2t cos θ1 + · · ·+ 2t cos θd

)
=

1

π

∞∫

0

du cos(εu)
[
J0(2tu)

]d
, (4.40)

where each θj = kja , and we have invoked an integral representation of the Dirac δ-function.
Here J0(x) is the ordinary Bessel function of the first kind. Since

∫∞
−∞ dε cos(εu) = 2π δ(u), it is

easy to see that
∫∞
−∞ dε g(ε) = 1, i.e. that the DOS is correctly normalized. For d = 2, the integral

may be performed to yield

g2(ε) =
2

π2B
K
(√

1− (ε/B)2
)
Θ(B2 − ε2) , (4.41)

where

K(k) =

π/2∫

0

dθ√
1− k2 sin2θ

(4.42)

is the complete elliptic integral of the first kind5, andB = 4t is the half bandwidth. The function
g2(ε) has a logarithmic singularity at the band center ε = 0, called a van Hove singularity.

5There is an unfortunate notational variation in some sources, which write K(m) in place of K(k), where m = k2.
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Figure 4.5: Upper left: Two-dimensional dispersion E(kx, ky) along high symmetry lines in
the 2D square lattice first Brillouin zone. Lower left: Corresponding density of states g2(ε).
Upper right: Three-dimensional dispersion E(kx, ky, kz) along high symmetry lines in the 2D
cubic lattice first Brillouin zone. Lower right: Corresponding density of states g3(ε). Shaded
regions show occupied states for a lattice of s-orbitals with one electron per site. Figures from
http://lampx.tugraz.at/∼hadley/ss1/bands/tbtable/tbtable.html .

The results for d = 2 and d = 3 are plotted in Fig. 4.5. The logarithmic van Hove singularity
at ε = 0 is apparent in g2(ε). The function g3(ε) has van Hove singularities at ε = ±1

3
B,

where the derivative g′3(ε) is discontinuous. In the limit d → ∞, we can use the fact that
J0(x) = 1− 1

4
x2 + . . . to extract

gd≫1(ε) =

√
d

πB2
e−dε

2/B2

= (4πdt2)−1/2 exp
(
− ε2/4dt2

)
. (4.43)

We recognize this result as the Central Limit Theorem in action. With E(k) = −2t∑d
i=1 cos θi

and θi uniformly distributed along [−π, π], the standard deviation σ is given by

σ2 = (2t)2 × d× 〈cos2θ〉 = 2dt2 , (4.44)

exactly as in Eqn. 4.43
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Figure 4.6: Three one-dimensional band structures. Valence bands are shown in dark blue,
and conduction bands in dark red. Left: Non-overlapping bands with forbidden region E ∈
[−0.4, 0.4]. Center: At each point there is a direct gap, but the indirect gap is negative and there
is no forbidden region. Right: Linear crossing leading to cusp-like band touching. In all cases,
when εF = −1 (dashed magenta line), the Fermi energy cuts through the bottom band and the
system is a metal. When εF = 0 (dashed green line), the system at the left is an insulator, with
g(εF) = 0. The system in the middle is a metal, with g(εF) > 0 The system on the right also
has a finite density of states at εF, but in two space dimensions such a diabolical point in the
dispersion, where ε(k) = ±~v

F
|k| results in a continuously vanishing density of states g(E) as

E → εF = 0. Such a system is called a semimetal.

Band edge behavior

In the vicinity of a quadratic band minimum, along principal axes of the effective mass tensor,
we have

E(k) = ∆ +

d∑

i=1

~2k2i
2m∗

i

, (4.45)

and the density of states is

g(ε) = v0

∫
dk1
2π
· · ·
∫
dkd
2π

δ

(
ε−∆−

∑

i

~2k2i
2m∗

i

)

=
v0
2
·
√
2m∗

1

h
· · ·
√

2m∗
d

h
Ωd (ε−∆)

d
2
−1 ,

(4.46)



4.2. METALS AND INSULATORS 173

where Ωd = 2πd/2
/
Γ(d/2) is the area of the unit sphere in d space dimensions. Consistent with

Fig. 4.5, gd=2(ε) tends to a constant at the band edges, and then discontinuously drops to zero
as one exits the band. In d = 3, gd=3(ε) vanishes as (ε−∆)1/2 at a band edge.

4.2.2 Fermi statistics

If we assume the electrons are noninteracting6, the energy of the state for which the occupancy
of state |νkσ〉 is nνkσ is

E
[
{nνkσ}

]
=
∑

ν

∑

σ

∑

k

′
Eν(k, σ)nνkσ . (4.47)

The Pauli exclusion principle tells us that a given electronic energy level can accommodate
at zero or one fermion, which means each nνkσ is either 0 or 1. At zero temperature, the N
electron ground state is obtained by filling up all the energy levels starting from the bottom
of the spectrum, with one electron per level, until the lowest N such levels have been filled.
In Eν(k, σ) is independent of σ, then there will be a twofold Kramers degeneracy whenever N is
odd, as the last level filled can either have σ = +1 or σ = −17.

At finite temperature T > 0, the thermodynamic average of nνkσ is given, within the grand
canonical ensemble, by

〈
nνkσ

〉
=

1

exp
(
Eν(k,σ)−µ

kBT

)
+ 1
≡ f

(
Eν(k, σ)− µ

)
, (4.48)

where f(x) is the Fermi function,

f(x) =
1

ex/kBT + 1
. (4.49)

The total electron number density is then

n(T, µ) =
N

V
=

∞∫

−∞

dε g(ε) f(ε− µ) =
∑

ν

∑

σ

∫
ddk

(2π)d
1

exp
(
Eν(k,σ)−µ

kBT

)
+ 1

. (4.50)

This is a Gibbs-Duhem relation, involving the three intensive quantities (n, T, µ). In principle
it can be inverted to yield the chemical potential µ(n, T ) as a function of number density and
temperature. When T = 0, we write µ(n, T = 0) ≡ ε

F
, which is the Fermi energy. Since the Fermi

function becomes f(x) = Θ(−x) at zero temperature, we have

n(ε
F
) =

ε
F∫

−∞

dε g(ε) . (4.51)

6Other, that is, than the mean “Hartree” contribution to the potential V (r).
7There can be additional degeneracies. For example, in d = 1 if, suppressing the band index, E(k) = E(−k), then
each level with k 6= 0 and k 6= π/a is fourfold degenerate: (k ↑ , k ↓ , −k ↑ , −k ↑).
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Figure 4.7: The Fermi distribution, f(x) =
[
exp(x/kBT ) + 1

]−1
. Here we have set kB = 1 and

taken µ = 2, with T = 1
20

(blue), T = 3
4

(green), and T = 2 (red). In the T → 0 limit, f(x)
approaches a step function Θ(−x).

This is to be inverted to obtain µ(n, T = 0) = ε
F
(n).

4.2.3 Metals and insulators at T = 0

At T = 0, the ground state is formed by filling up each single particle state |nkσ 〉 until the
source of electrons (i.e. the atoms) is exhausted. Suppose there are Ne electrons in total. If there
is a finite gap ∆ between the N th

e and (Ne +1)th energy states, the material is an insulator. If the
gap is zero, the material is a metal or possibly a semimetal. For a metal, g(ε

F
) > 0, whereas for a

semimetal, g(ε
F
) = 0 but g(ε) ∼ |ε− ε

F
|α as ε→ ε

F
, where α > 0.

Under periodic boundary conditions, there are N quantized wavevectors k in each Brillouin
zone, where N is the number of unit cells in the crystal. Since, for a given band index n and
wavevector k we can accommodate a maximum of two electrons, one with spin ↑ and the
second with spin ↓, each band can accommodate a total of 2N electrons. Thus, if the number
of electrons per cell Ne/N is not a precise multiple of two, then necessarily at least one of the
bands will be partially filled, which means the material is a metal. Typically we only speak
of valence and conduction electrons, since the core bands are all fully occupied and the high

energy bands are all completely empty. Then we can define the electron filling factor ν = Ñe/N ,

where Ñe is the total number of valence plus conduction electrons. As we have just noted, if
ν 6= 2k for some k ∈ Z, the material is a metal.

Is the converse also the case, i.e. if ν = 2k is the material always an insulator? It ain’t neces-
sarily so! As the middle panel of Fig. 4.6 shows, it is at least in principle possible to have an
arrangement of several partially filled bands such that the total number of electrons per site is
an even integer. This is certainly a nongeneric state of affairs, but it is not completely ruled out.
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4.3 Tight Binding Model

4.3.1 Bands from atomic orbitals

A crystal is a regular assembly of atoms, which are bound in the crystalline state due to
the physics of electrostatics and quantum mechanics. Consider for the sake of simplicity a
homonuclear Bravais lattice, i.e. a crystalline lattice in which there is the same type of atom at
every lattice site, and in which all lattice sites are equivalent under translation. As the lattice
constant a tends to infinity, the electronic energy spectrum of the crystal is the same as that of
each atom, with an extensive degeneracy of N , the number of unit cells in the lattice. For finite
a, the atomic orbitals on different lattice sites will overlap. Initially we will assume a Bravais
lattice, but further below we shall generalize this to include the possibility of a basis.

Let |nR ) denote an atomic orbital at Bravais lattice site R, where n ∈ {1s, 2s, 2p, . . .}. The
atomic wavefunctions8,

ϕnR(r) = ( r |nR ) = ϕn(r − R) , (4.52)

Atomic orbitals on the same site form an orthonormal basis: (nR |n′R ) = δnn′ . However,
orbitals on different lattice sites are not orthogonal, and satisfy

(nR |n′
R

′ ) =

∫
ddr ϕ∗

n(r − R)ϕn′(r − R′) ≡ Snn′(R− R′) , (4.53)

where Snn′(R−R′) is the overlap matrix. Note that Snn′(0) = δnn′ . If we expand the wavefunction
|ψ 〉 =∑n,RCnR |nR ) in atomic orbitals, the Schrödinger equation takes the form

∑

n′,R′

{ H
nn′

(R−R′)
︷ ︸︸ ︷
(nR |H |n′

R
′ ) −E

S
nn′

(R−R′)
︷ ︸︸ ︷
(nR |n′

R
′ )
}
Cn′R′ = 0 , (4.54)

where

Hnn′(R−R′) = (nR |H |n′
R

′ )

=

∫
ddr ϕ∗

n(r − R)
{
− ~2

2m
∇2 + V (r)

}
ϕn′(r −R′) ,

(4.55)

where V (r) =
∑

R v(r −R) is the lattice potential. Note that

Hnn′(R) = 1
2

(
Eat
n + Eat

n′

)
Snn′(R) + 1

2

∫
ddr ϕ∗

n(r − R)
{
v(r) + v(r − R)

}
ϕn′(r)

+
∑

R′

( 6=0,R)

∫
ddr ϕ∗

n(r − R) v(r −R′)ϕn′(r) .
(4.56)

8In our notation, | r ) = | r 〉, so ( r | r′ ) = δ(r − r′).
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Figure 4.8: Left: Atomic energy levels. Right: Dispersion of crystalline energy bands as a
function of interatomic separation.

We can simplify Eqn. 4.54 a bit by utilizing the translational invariance of the Hamiltonian and
overlap matrices. We write CnR = Cn(k) exp(ik · R) , as well as

Ŝnn′(k) =
∑

R

e−ik·R Snn′(R) , Ĥnn′(k) =
∑

R

e−ik·RHnn′(R) . (4.57)

The Schrödinger equation then separates for each k value, viz.

∑

n′

{
Ĥnn′(k)− E(k) Ŝnn′(k)

}
Cn′(k) . (4.58)

Note that

Ĥ∗
n′n(k) =

∑

R

eik·RH∗
n′n(R) =

∑

R

eik·RHnn′(−R) = Ĥnn′(k) , (4.59)

hence for each k, the matrices Ĥnn′(k) and Ŝnn′(k) are Hermitian.

Suppose we ignore the overlap between different bands. We can then suppress the band index,
and write9

S(R) =

∫
ddr ϕ∗(r − R)ϕ(r)

H(R) = Eat S(R) +
∑

R′ 6=0

∫
ddr ϕ∗(r − R) v(r − R′)ϕ(r) ;

(4.60)

9The student should derive the formulae in Eqn. 4.60. In so doing, is it necessary to presume that the atomic
wavefunctions are each of a definite parity?
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Note that S(0) = 1. The tight binding dispersion is then

E(k) =
Ĥ(k)

Ŝ(k)
= Eat −

∑
R t(R) e

−ik·R
∑

R S(R) e
−ik·R , (4.61)

where

t(R) = EatS(R)−H(R) = −
∫
ddr ϕ∗(r −R)

{
∑

R′ 6=0

v(r −R′)

}
ϕ(r) . (4.62)

Let’s examine this result for a d-dimensional cubic lattice. To simplify matters, we assume that
t(R) and S(R) are negligible beyond the nearest neighbor separation |R| = a. Then

E(k) = Eat −
t(0) + 2 t(a)

∑d
j=1 cos(kja)

1 + 2S(a)
∑d

j=1 cos(kja)

≈ Eat − t(0)− 2
[
t(a)− t(0)S(a)

] d∑

j=1

cos(kja) + . . . ,

(4.63)

where we expand in the small quantity S(a).

Remarks

Eqn. 4.58 says that the eigenspectrum of the crystalline Hamiltonian at each crystal momentum

k is obtained by simultaneously diagonalizing the matrices Ĥ(k) and Ŝ(k). The simultaneous
diagonalization of two real symmetric matrices is familiar from the classical mechanics of cou-
pled oscillations. The procedure for complex Hermitian matrices follows along the same lines:

(i) To simultaneously diagonalize Ĥnn′(k) and Ŝnn′(k), we begin by finding a unitary matrix
Una(k) such that ∑

n,n′

U †
an(k) Ŝnn′(k)Un′a′(k) = sa(k) δaa′ . (4.64)

The eigenvalues sa(k) are all real and are presumed to be positive10.

(ii) Next construct the Hermitian matrix

L̂bb′(k) =
∑

n,n′

s
−1/2
b (k)U †

bn(k) Ĥnn′(k)Un′b′(k) s
−1/2
b′ (k) . (4.65)

10In fact there are many zero eigenvalues, as we shall discuss below. Still this won’t prove fatal to our development
so long as we operate in some truncated Hilbert space.
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This may be diagonalized by a unitary matrix Vab(k), viz.

∑

b,b′

V †
ab(k) L̂bb′(k) Va′b′(k) = Ea(k) δaa′ . (4.66)

The eigenvalues are then the set {Ea(k)}.

(iii) Define the matrix

Λnb(k) =
∑

a

Una(k) s
−1/2
a (k) Vab(k) s

1/2
b (k) , (4.67)

or, in abbreviated notation, Λ = Us−1/2 V s1/2, suppressing the k label and defining the
square matrix s = diag(s1, s2, . . .}. Note that Λ† = s1/2 V †s−1/2 U † but Λ−1 = s−1/2 V †s1/2 U †

and thus Λ† 6= Λ−1. Nevertheless, Λ simultaneously diagonalizes Ĥ and Ŝ :

Λ†
an(k) Ŝnn′(k) Λn′a′(k) = sa(k) δaa′

Λ†
an(k) Ĥnn′(k) Λn′a′(k) = ha(k) δaa′ ,

(4.68)

where ha(k) = sa(k)Ea(k).

Thus, the band energies are then given by

Ea(k) =
ha(k)

sa(k)
. (4.69)

This all seems straightforward enough. However, implicit in this procedure is the assump-
tion that the overlap matrix is nonsingular, which is clearly wrong! We know that the atomic
eigenstates at any single lattice site must form a complete set, therefore we must be able to write

ϕn(r − R) =
∑

n′

Ann′(R)ϕn′(r) . (4.70)

Therefore the set |nR ) is massively degenerate. Fortunately, this problem is not nearly so
severe as it might first appear. Recall that the atomic eigenstates consist of bound states of
negative energy, and scattering states of positive energy. If we restrict our attention to a finite
set of atomic bound states, the overlap matrix remains nonsingular.

4.3.2 Wannier functions

Suppose a very nice person gives us a complete set of Bloch functions ψnk(r). We can then form
the linear combinations

Wn(r −R) ≡
1√
N

∑

k

eiχn(k) e−ik·R ψnk(r) =
1√
N

∑

k

eiχn(k) eik·(r−R) unk(r) , (4.71)
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were N is the number of unit cells and χn(k) is a smooth function of the wavevector k which
satisfies χn(k + G) = χn(k). The k sum is over all wavevectors lying within the first Brillouin
zone. Writing Wn(r) = 〈 r |nR 〉, we have

|nR 〉 = 1√
N

∑

k

eiχn(k) e−ik·R |nk 〉 , (4.72)

and the overlap matrix is

〈nR |n′
R

′ 〉 =
∫
ddr W ∗

n(r −R)Wn′(r −R′) = δnn′ δRR′ . (4.73)

The functions Wn(r − R) are called Wannier functions. They are linear combinations of Bloch
states within a single energy band which are localized about a single Bravais lattice site or unit

cell. Since the Wannier states are normalized, we have
∫
ddr

∣∣Wn(r − R)
∣∣2 = 1, which means,

if the falloff is the same in all symmetry-related directions of the crystal, that the envelope of
Wn(r − R) must decay faster than |r − R|−d/2 in d dimensions. For core ionic orbitals such as
the 1s states, the atomic wavefunctions themselves are good approximations to Wannier states.
Note that our freedom to choose the phase functions χn(k) results in many different possible
definitions of the Wannier states. One desideratum we may choose to impose is to constrain
the phase functions so as to minimize the expectation of (r − R)2 in each band.

Closed form expressions for Wannier functions are hard to come by, but we can obtain results
for the case where the cell functions are constant, i.e. unk(r) = (Nv0)

−1/d. Consider the cubic
lattice case in d = 3 dimensions, where v0 = a3. We then have

W (r − R) = v
1/2
0

∫

Ω̂

d3k

(2π)3
eik·(r−R)

=



√
a

2π

π/a∫

−π/a

dkx e
ikx(x−X)






√
a

2π

π/a∫

−π/a

dky e
iky(y−Y )






√
a

2π

π/a∫

−π/a

dkz e
ikz(z−Z)




=

[√
a sin

[
π
a
(x−X)

]

π(x−X)

][√
a sin

[
π
a
(y − Y )

]

π(y − Y )

][√
a sin

[
π
a
(z − Z)

]

π(z − Z)

]
,

(4.74)

which falls off as |∆x∆y∆z|−1 along a general direction in space11.

The Wannier states are not eigenstates of the crystal Hamiltonian. Indeed, we have

〈nR |H |n′
R

′ 〉 = 1

N

∑

k,k′

e−iχn(k) eiχn′ (k
′) eik·R e−ik

′·R′〈nk |H |n′
k
′ 〉

= δnn′ v0

∫
ddk

(2π)d
eik·(R−R′)En(k) ,

(4.75)

11Note that W (x, 0, 0) falls off only as 1/|x|. Still, due to the more rapid decay along a general real space direction,
W (r) is square integrable.
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which is diagonal in the band indices, but not in the unit cell labels.

4.3.3 Tight binding redux

Suppose we have an orthonormal set of orbitals | aR 〉, where a labels the orbital and R denotes
a Bravais lattice site. The label a may refer to different orbitals associated with the atom at
R, or it may label orbitals on other atoms in the unit cell defined by R. We presume that
a ∈ {1, . . . , Norb} with Norb finite12. The most general tight binding Hamiltonian we can write
is

H =
∑

R,R′

∑

a,a′

Haa′(R−R′) | aR 〉〈 a′R′ | , (4.76)

where Haa′(R − R′) = H∗
a′a(R

′ − R) = 〈 aR |H | a′R′ 〉 is the Hamiltonian matrix, whose rows
and columns are indexed by a composite index combining both the unit cell label R and the
orbital label a. When R = R′ and a = a′, the term Haa(0) = εa is the energy of a single electron
in an isolated a orbital. For all other cases, Haa′(R−R′) = −taa′(R−R′) is the hopping integral
between the a orbital in unit cell R and the a′ orbital in unit cell R′. Let’s write an eigenstate
|ψ 〉 as

|ψ 〉 =
∑

R

∑

a

ψaR | aR 〉 . (4.77)

Applying the Hamiltonian to |ψ 〉, we obtain the coupled equations

∑

R,R′

∑

a,a′

Haa′(R−R′)ψa′R′ | aR 〉 = E
∑

R

∑

a

ψaR | aR 〉 . (4.78)

Since the | aR 〉 basis is complete, we must have that the coefficients of | aR 〉 on each side agree.
Therefore, ∑

R′

∑

a′

Haa′(R− R′)ψa′R′ = E ψaR . (4.79)

We now use Bloch’s theorem, which says that each eigenstate may be labeled by a wavevector
k, with ψaR = 1√

N
ua(k) e

ik·R. The N−1/2 prefactor is a normalization term. Multiplying each

side by by e−ik·R, we have

∑

a′

(∑

R′

Haa′(R−R′) e−ik·(R−R′)

)
ua′(k

′) = E(k) ua(k) , (4.80)

which may be written as ∑

a′

Ĥaa′(k) ua′(k) = E(k) ua(k) , (4.81)

12If our unit cell contained one s-orbital for each of the r basis sites, then Norb = r. But we may have multiple
orbitals for each atom/ion within the unit cell.
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where
Ĥaa′(k) =

∑

R

Haa′(R) e
−ik·R . (4.82)

Thus, for each crystal wavevector k, the uak are the eigenfunctions of the Norb×Norb Hermitian

matrix Ĥaa′(k). The energy eigenvalues at wavevector k are given by spec
{
Ĥ(k)

}
, i.e. by the

set of eigenvalues of the matrix Ĥ(k). There are Norb such solutions (some of which may be
degenerate), which we distinguish with a band index n, and we denote una(k) and En(k) as the
corresponding eigenvectors and eigenvalues. We sometimes will use the definition t̂aa′(k) ≡
−Ĥaa′(k) for the matrix of hopping integrals.

4.3.4 Interlude on Fourier transforms

It is convenient to use second quantized notation and write the Hamiltonian as

H =
∑

R,R′

∑

a,a′

Haa′(R−R′) c†
aR
ca′R′ , (4.83)

where c†aR creates an electron in orbital a at unit cell R. The second quantized fermion creation
and annihilation operators satisfy the anticommutation relations

{
caR , c

†
a′R′

}
= δRR′ δaa′ . (4.84)

To quantize the wavevectors, we place our system on a d-dimensional torus with Nj unit cells
along principal Bravais lattice vector aj for all j ∈ {1, . . . , d}. The total number of unit cells is
then N = N1N2 · · ·Nd. Consider now the Fourier transforms,

caR =
1√
N

∑

k

cak e
ik·R , c†aR =

1√
N

∑

k

c†ak e
−ik·R . (4.85)

and their inverses

cak =
1√
N

∑

R

caR e
−ik·R , c†ak =

1√
N

∑

R

c†aR e
ik·R . (4.86)

One then has
{
cak , ca′k′

}
= δaa′ δkk′ , which says that the Fourier space operators satisfy the

same anticommutation relations as in real space, i.e. the individual k modes are orthonormal.
This is equivalent to the result 〈 ak | a′k′ 〉 = δaa′ δkk′ , where | ak 〉 = N−1/2

∑
R | aR 〉 e−ik·R. The

Hamiltonian may now be expressed as

H =
∑

k

∑

a,a′

Ĥaa′(k) c
†
ak ca′k , (4.87)

where Ĥaa′(k) was defined in Eqn. 4.82 above.



182 CHAPTER 4. ELECTRONIC BAND STRUCTURE OF CRYSTALS

You must, at the very deepest level of your soul, internalize Eqn. 4.85. Equivalently, using bra
and ket vectors,

〈
aR
∣∣ = 1√

N

∑

k

〈
ak
∣∣ eik·R ,

∣∣ aR
〉
=

1√
N

∑

k

∣∣ ak
〉
e−ik·R . (4.88)

and 〈
ak
∣∣ = 1√

N

∑

R

〈
aR
∣∣ e−ik·R ,

∣∣ ak
〉
=

1√
N

∑

R

∣∣ aR
〉
eik·R . (4.89)

To establish the inverse relations, we evaluate

∣∣ aR
〉
=

1√
N

∑

k

∣∣ ak
〉
e−ik·R

=
1√
N

∑

k

(
1√
N

∑

R′

∣∣ aR′ 〉 eik·R′

)
e−ik·R

=
∑

R′

(
1

N

∑

k

e−ik·(R−R′)

) ∣∣ aR′ 〉 .

(4.90)

Similarly, we find

| ak 〉 =
∑

k′

(
1

N

∑

R

ei(k−k
′)·R
)
| ak′ 〉 . (4.91)

In order for the inverse relations to be true, then, the quantities in round brackets in the previ-
ous two equations must satisfy

1

N

∑

k

e−ik·(R−R′) = δRR′ ,
1

N

∑

R

ei(k−k
′)·R = δkk′ . (4.92)

Let’s see how this works in the d = 1 case. Let the lattice constant be a and place our system
on a ring of N sites (i.e. a one-dimensional torus). The k values are then quantized according to
kj = 2πj/a, where j ∈ {0, . . . , N − 1}. The first equation in Eqn. 4.92 is then

1

N

N−1∑

j=0

e−2πij(n−n′)/N = δnn′ , (4.93)

where we have replaced R by na and R′ by n′a, with n, n′ ∈ {1, . . . , N}. Clearly the above
equality holds true when n = n′. For n 6= n′, let z = e−2πi(n−n′)/N . The sum is 1+z+ . . .+zN−1 =
(1− zN )/(1− z). But zN = 1 and z 6= 1, so the identity is again verified.

If we do not restrict n and n′ to be among {1, . . . , N} and instead let their values range freely
over the integers, then the formula is still correct, provided we write the RHS as δn,n′ modN .
Similarly, we must understand δRR′ in Eqn. 4.92 to be unity whenever R′ = R+ l1N1 a1 + . . .+
ldNd ad , where each lj ∈ Z, and zero otherwise. Similarly, δkk′ is unity whenever k′ = k + G,

where G ∈ L̂ is any reciprocal lattice vector, and zero otherwise.
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4.3.5 Examples of tight binding dispersions

One-dimensional lattice

Consider the case of a one-dimensional lattice. The lattice sites lie at positions Xn = na for
n ∈ Z. The hopping matrix elements are t(j) = t δj,1 + t δj,−1, where j is the separation between

sites in units of the lattice constant a. Then t̂(k) = 2t cos(ka) and the dispersion is E(k) =
−2t cos(ka). Equivalently, and quite explicitly,

H = −t
∑

n

(
|n+ 1 〉〈n |+ |n 〉〈n+ 1 |

)
= − t

N

∑

k

∑

k′

∑

n

e−ik
′(n+1)a eikna | k 〉〈 k′ |+H.c.

= −t
∑

k

∑

k′

(
1

N

∑

n

ei(k−k
′)na

)
e−ik

′a | k 〉〈 k′ |+H.c. = −2t
∑

k

cos(ka) | k 〉〈 k | ,

(4.94)

since the term in round brackets is δkk′ , as per Eqn. 4.92.

s-orbitals on cubic lattices

On a Bravais lattice with one species of orbital, there is only one band. Consider the case of s
orbitals on a d-dimensional cubic lattice. The hopping matrix elements are

t(R) = t

d∑

j=1

(
δR,aj + δR,−aj

)
, (4.95)

where aj = a êj is the jth elementary direct lattice vector. Taking the discrete Fourier transform
(DFT) as specified in Eqn. 4.82,

t̂(k) = 2t
d∑

j=1

cos(kja) . (4.96)

The dispersion is then E(k) = −t̂(k). The model exhibits a particle-hole symmetry,

c̃k ≡ c†k+Q , (4.97)

where Q = π
a

(
ê1 + . . .+ êd

)
. Note t̂(k + Q) = −t̂(k).

s-orbitals on the triangular lattice

The triangular lattice is depicted as the lattice of black dots in the left panel of Fig. 4.9. The
elementary direct lattice vectors are

a1 = a
(
1
2
ê1 −

√
3
2
ê2

)
, a2 = a

(
1
2
ê1 +

√
3
2
ê2

)
, (4.98)
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Figure 4.9: Left: The honeycomb lattice is a triangular lattice (black sites) with a two element
basis (add white sites). a1,2 are elementary direct lattice vectors. Right: First Brillouin zone for
the triangular lattice. b1,2 are elementary reciprocal lattice vectors. Points of high symmetry Γ,
K, K′, M, M′, and M′′ are shown.

and the elementary reciprocal lattice vectors are

b1 =
4π√
3 a

(√
3
2
ê1 − 1

2
ê2

)
, b2 =

4π√
3 a

(√
3
2
ê1 +

1
2
ê2

)
. (4.99)

Note that ai · bj = 2π δij . The hopping matrix elements are

t(R) = t δR,a1 + t δR,−a1 + t δR,a2 + t δR,−a2 + t δR,a3 + t δR,−a3 , (4.100)

where a3 ≡ a1 + a2. Thus,

t̂(k) = 2t cos(k · a1) + 2t cos(k · a2) + 2t cos(k · a3)
= 2t cos(θ1) + 2t cos(θ2) + 2t cos(θ1 + θ2) .

(4.101)

Here we have written

k =
θ1
2π

b1 +
θ2
2π

b2 +
θ3
2π

b3 , (4.102)

and therefore for a general R = l1 a1 + l2 a2 + l3 a3 , we have

k · (l1a1 + l2a2 + l3a3) = l1θ1 + l2θ2 + l3θ3 . (4.103)

Again there is only one band, because the triangular lattice is a Bravais lattice. The dispersion
relation is E(k) = −t̂(k). Unlike the case of the d-dimensional cubic lattice, the triangular lattice
energy band does not exhibit particle-hole symmetry. The extrema are at Emin = E(Γ) = −6t,
and Emax = E(K) = +3t, where Γ = 0 is the zone center and K = 1

3
(b1 + b2) is the zone corner,

corresponding to θ1 = θ2 =
2π
3

.
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Figure 4.10: Energy bands and density of states for nearest neighbor s-orbital tight binding
model on triangular (left) and honeycomb (right) lattices.

Graphene: π-orbitals on the honeycomb lattice

Graphene is a two-dimensional form of carbon arrayed in a honeycomb lattice. The electronic
structure of carbon is 1s2 2s2 2p2. The 1s electrons are tightly bound and have small overlaps
from site to site, hence little dispersion. The 2s and 2px,y orbitals engage in sp2 hybridization.
For each carbon atom, three electrons in each atom’s sp2 orbitals are distributed along bonds
connecting to its neighbors13. Thus each bond gets two electrons (of opposite spin), one from
each of its carbon atoms. This is what chemists call a σ-bond. The remaining pz orbital (the
π orbital, to our chemist friends) is then free to hop from site to site. For our purposes it is
equivalent to an s-orbital, so long as we don’t ask about its properties under reflection in the
x-y plane. The underlying Bravais lattice is triangular, with a two element basis (labelled A
and B in Fig. 4.9). According to the left panel of Fig. 4.9, the A sublattice site in unit cell R is
connected to the B sublattice sites in unit cells R, R+ a1, and R− a2. Thus, the hopping matrix
element between the A sublattice sites in unit sell 0 and the B sublattice site in unit cell R is
given by

t
AB
(R) = t δR,0 + t δR,a1 + t δR,−a2 , (4.104)

13In diamond, the carbon atoms are fourfold coordinated, and th orbitals are sp3 hybridized.
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and therefore t̂
AB
(k) = t

(
1 + e−iθ1 + eiθ2

)
. We also have t̂

BA
(k) = t̂∗

AB
(k) and t̂

AA
(k) = t̂

BB
(k) = 0.

Thus, the Hamiltonian matrix is

H(k) = −
(

0 t̂
AB
(k)

t̂∗
AB
(k) 0

)
= −t

(
0 1 + e−iθ1 + eiθ2

1 + eiθ1 + e−iθ2 0

)
, (4.105)

and the energy eigenvalues are

E±(k) = ±
∣∣t̂AB(k)

∣∣ = ±t
√

3 + 2 cos θ1 + 2 cos θ2 + 2 cos(θ1 + θ2) . (4.106)

These bands are depicted in the right panels of Fig. 4.10. Note the band touching at K (and
K′), which are known as Dirac points. In the vicinity of either Dirac point, writing k = K + q

or k = K ′ + q, one has E±(k) = ±~v
F
|q|, where v

F
=

√
3
2
ta/~ is the Fermi velocity. At the

electroneutrality point (i.e. one π electron per site), the Fermi levels lies precisely at ε
F
= 0. The

density of states vanishes continuously as one approaches either Dirac point14.

p-orbitals on the cubic lattice

Finally, consider the case where each site hosts a trio (px , py , pz) of p-orbitals. Let the separa-
tion between two sites be R. Then the 3 × 3 hopping matrix between these sites depends on
two tensors, δµν and R̂µR̂ν . When η̂ lies along one of the principal cubic axes, the situation is as
depicted in Fig. 4.11. The hopping matrix is

tµν(R) = tw(R) δµν −
(
tw(R) + ts(R)

)
R̂µ R̂ν , (4.107)

where the weak and strong hoppings tw,s are depicted in Fig. 4.11. We can now write

txx(R) = −ts
(
δR,a1 + δR,−a1

)
+ tw

(
δR,a2 + δR,−a2 + δR,a3 + δR,−a3

)
, (4.108)

and therefore

t̂µν(k) = 2



−tscos θ1 + tw(cos θ2 + cos θ3) 0 0

0 −tscos θ2 + tw(cos θ1 + cos θ3) 0
0 0 −tscos θ3 + tw(cos θ1 + cos θ2)




(4.109)
which is diagonal. The three p-band dispersions are given by the diagonal entries.

4.3.6 Bloch’s theorem, again

In Eqn. 4.76,

H =
∑

R,R′

∑

a,a′

Haa′(R−R′) | aR 〉〈 a′R′ | ,

14I.e., the DOS in either the K or K′ valley.
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Figure 4.11: Matrix elements for neighboring tight binding orbitals of p symmetry.

R andR′ labeled Bravais lattice sites, while a and a′ labeled orbitals. We stress that these orbitals
don’t necessarily have to be located on the same ion. We should think of R and R′ labeling unit
cells, each of which is indeed associated with a Bravais lattice site. For example, in the case of
graphene, | aR 〉 represents an orbital on the a sublattice in unit cell R. The eigenvalue equation
may be written

Ĥaa′(k) una′(k) = En(k) una(k) , (4.110)

where n is the band index. The function una(k) is the internal wavefunction within a given cell,
and corresponds to the cell function unk(r) in the continuum, with a ↔ (r − R) labeling a
position within each unit cell. The full Bloch state may then be written

|ψnk 〉 = | k 〉 ⊗ | unk 〉 , (4.111)

so that

ψnk(R, a) =
(
〈R | ⊗ 〈 a |

)(
| k 〉 ⊗ | unk 〉

)

= 〈R | k 〉 〈 a | unk 〉 =
1√
N
eik·R una(k) .

(4.112)

Here we have chosen a normalization
∑

a

∣∣una(k)
∣∣2 = 1 within each unit cell, which entails the

overall normalization
∑

R,a

∣∣ψnk(R, a)
∣∣2 = 1.

4.3.7 Go flux yourself : how to add magnetic fields

To simplify matters, we consider only s-orbitals on two-dimensional lattices. The general tight-
binding Hamiltonian is written

H = −
∑

r<r′

(
trr′ c

†
r cr′ + t∗rr′ c

†
r′ cr

)
, (4.113)
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where the notation r < r′ means that each pair (r, r′) summed only once. We may write trr′ =
t∗r′r = |trr′ | exp(iArr′), where Arr′ is a gauge field living on the links of the lattice. Let p denote
a plaquette on the lattice. Then the dimensionless flux φp (in units of ~c/e) through plaquette p
is

φp =
∑

〈rr′〉∈∂p
Arr′ , (4.114)

where the sum is taken in a counterclockwise fashion along the links on the boundary of p. The
tight-binding Hamiltonian exhibits a gauge invariance under the combined operations

cr → eiαr cr
Arr′ → Arr′ + αr − αr′ .

(4.115)

Consider now the case of the square lattice. It is clear that any configuration of the Arr′ which
is periodic in the structural unit cell, i.e. under translations by elementary direct lattice vectors,
must correspond to φp = 0 for every plaquette p15. This is because the phase Arr′ is associated
with the directed link from r to r′, and parallel links on opposite sides of the elementary square
plaquette will yield equal and opposite values of Arr′ because they are traversed in opposite
directions. In order to describe nonzero flux per plaquette, the configuration of the lattice gauge field
Arr′ must break lattice translational symmetry16. Consider the case where φ = π in each plaquette.
A configuration for the gauge field Arr′ yielding this flux distribution is shown in the left panel
of Fig. 4.12. All links have Arr′ = 0, hence trr′ = t exp(iArr′) = t, except for the links depicted
with slashes, for which Arr′ = π and trr′ = −t. The magnetic unit cell is now a 2 × 1 block
consisting of one cell from each sublattice (blue and red). We call this a magnetic unit cell
to distinguish it from the structural unit cell of the underlying square lattice. The structural
Bravais lattice is square, with elementary direct lattice vectors are a1 = ax̂ and a2 = aŷ. But
the magnetic Bravais lattice is rectangular, with elementary RLVs a1 = 2ax̂ and a2 = aŷ. From
Bloch’s theorem, the phase of the wavefunction varies by exp(ik · a1) ≡ exp(iθ1) across the unit
cell in the x-direction, and by exp(ik · a2) ≡ exp(iθ2) in the y-direction. The Hamiltonian is

Ĥ(θ) = −t
(

2 cos θ2 1 + eiθ1

1 + e−iθ1 −2 cos θ2

)
(4.116)

The energy eigenvalues are E±(θ) = ±2t
√

cos2(1
2
θ1) + cos2θ2 . The band gap collapses at two

points: (θ1, θ2) = (π,±1
2
π). Writing (θ1, θ2) = (π + δ1 , ±1

2
π + δ2), we find

E±(θ) = ±2t
√

sin2(1
2
δ1) + sin2δ2 = ±2ta

√
q21 + q22 +O(|q|3) , (4.117)

15More precisely, if Arr′ is periodic in the structural unit cell, then each structural unit cell is congruent to a zero
flux state. However, it may be that a structural cell is comprised of more than one elementary plaquette, as is
the case with the triangular lattice (each structural cell consists of two triangles), or that there are closed loops
which don’t correspond to a structural unit cell due to further neighbor hoppings. In such cases, there may be
closed loops on the lattice whose flux is not congruent to zero. See §4.3.7 for some examples.

16By ”nonzero” flux, we mean φmod 2π 6= 0.



4.3. TIGHT BINDING MODEL 189

Figure 4.12: Gauges for the square lattice Hofstadter model. Left: φ = π case. trr′ = t on all
links except those with slashes, where trr′ = −t. Right: φ = 2

3
π. Each arrow corresponds to a

factor of exp(2πi/3).

which is a Dirac cone! Thus, the dispersion for the square lattice π flux model has two Dirac
points. Here, q = k − kD is the wavevector measured from either Dirac point17.

The π flux state is time-reversal symmetric, since under time reversal we have exp(iArr′) →
exp(−iArr′), hence φp → −φp . But flux is only defined modulo 2π, hence π → −π ∼= π yields
the same flux configuration.

A more interesting state of affairs pertains for the case φ = 2
3
π, for which a valid gauge config-

uration Arr′ is shown in the right panel of Fig. 4.12. Now there are three sites per unit cell: A
(blue), B (red), and C (green). The Bloch phase accrued across the magnetic unit cell in the ±x̂
direction is e±iθ1 , and in the ±ŷ direction is e±iθ2 . Thus

Ĥ(θ) = −t



2 cos θ2 1 eiθ1

1 2 cos(θ2 +
2π
3
) 1

e−iθ1 1 2 cos(θ2 +
4π
3
)


 . (4.118)

The general case where the flux per structural unit cell is φ = 2πp/q is known as the Hofstadter
model18. In this case, the magnetic unit cell is a q× 1 block, and the resulting q× q Hamiltonian
is given by

Hjj′(θ) = −2t cos
(
θ2 +

2π(j−1)p
q

)
δjj′ − t δj′,j+1

(
1− δj,q

)
− t e−iθ1 δj,q δj′,1

− t δj′,j−1

(
1− δj,1

)
− t eiθ1 δj,1 δj′,q .

(4.119)

17Note θ1 = 2kxa = π + 2qxa and θ2 = kya = 1
2π + qya, hence δ1 = 2qxa and δ2 = qya.

18See D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).
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In other words,

Ĥ(θ) = −t




2 cos θ2 1 0 · · · 0 eiθ1

1 2 cos
(
θ2 +

2πp
q

)
1 0

0 1 2 cos
(
θ2 +

4πp
q

)
1

...
... 0 1

. . .
...

0 1

e−iθ1 0 · · · 1 2 cos
(
θ2 +

2π(q−1)p
q

)




.

(4.120)
There are thus q magnetic subbands. Note that

H(θ1, θ2 +
2πp
q
) = XUH(θ1, θ2)U

†X† , (4.121)

where Xij = δi,j+1mod q and U = diag(1, e−iθ1, · · · , e−iθ1). Thus,

specH(θ1, θ2 +
2πp
q
) = specH(θ1, θ2) , (4.122)

as we saw explicitly in the q = 2 case above. A plot of the magnetic subbands in (E, φ) space,
known as Hofstadter’s butterfly, is shown in Fig. 4.13.

In the limit where the denominator q of the flux φ = 2πp/q is large (for fixed p), the flux per cell
is very small. We then expect to recover the continuum Landau level spectrum En = (n+ 1

2
)~ωc .

To express this in terms of the flux φ, note that the B = 0 dispersion is

E(k) = −2t cos(kxa)− 2t cos(kya) = −4t + tk2a2 + . . . , (4.123)

which allows us to identify the effective mass m from the coefficient of the k2 term, with the
result m = ~

2/2ta2. The magnetic field is the flux per unit area, hence B = φ~c/ea2. Thus,

~ωc =
~eB

mc
=

~e

c
× φ ~c

ea2
× 2ta2

~2
= 2φ t . (4.124)

This describes the corners of the Hofstadter butterfly in Fig. 4.13, where continuum Landau
levels radiate outward from the energies ±4t according to

En(φ) = ±
(
4t− (2n+ 1)φ t

)
and En(φ) = ±

(
4t− (2n+ 1) (2π − φ) t

)
, (4.125)

for φ≪ 1.

Unit cells with zero net flux

As mentioned in a footnote above, it is not quite true that a lattice gauge field Arr′ which is
periodic in the underlying Bravais lattice unit cell leads to zero net flux in every plaquette or
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Figure 4.13: Magnetic subbands for the square lattice Hofstadter model for flux per plaquette
φ ∈ [0, 2π]. Blue bands at φ = 0 and φ = 2π have the full bandwidth W = 8t. At φ = π
(purple), there are two subbands with E− ∈ [−2

√
2t, 0] and E+ ∈ [0, 2

√
2t] which touch at

E = 0. Similarly, at φ = ±1
2
π (green), there are four subbands, with the central two bands

touching at E = 0. At φ = ±2
3
π (red), there are three subbands. Continuum Landau levels are

shown radiating from the lower left corner.

closed loop of links on the lattice. Two counterexamples are shown in Fig. 4.14. The first
example is that of the triangular lattice, where each structural unit cell is a rhombus consisting
of two elementary triangular plaquettes. Consider now the situation where each horizontal link
carries a U(1) phase α, i.e. Arr′ = t eiα, while the remaining links all have Arr′ = 0 . Computing
the U(1) flux by taking the directed sum counterclockwise over each triangle, we see that all
the up triangles carry flux φ△ = α, while all the down triangles carry flux φ▽ = −α ∼= 2π − α.

If, as before, we take the elementary direct lattice vectors to be a1,2 = a
(
1
2
x̂ ±

√
3
2
ŷ
)

and write

k =
∑2

j=1 θj bj/2π , with ai · bj = 2π δij , then the tight binding Hamiltonian for this triangular

lattice model is given by H =
∑

k Ek a
†
k ak , where

Ek = −2t cos(k · a1 + k · a2 + α)− 2t cos(k · a1)− 2t cos(k · a2)

= −2t cos(θ1 + θ2 + α)− 2t cos θ1 − 2t cos θ2 .

(4.126)
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Figure 4.14: Two models with zero net flux per unit cell which still break time reversal sym-
metry. Left: The unit cell of the triangular lattice consists of two triangles.

A more interesting state of affairs is depicted in the right panel of Fig. 4.14, which is graphene
augmented by nearest neighbor same-sublattice hopping terms, which is the celebrated Hal-
dane honeycomb lattice model19. Inscribed in each hexagonal cell are one up-triangle of A sites,
depicted by blue dots in the figure, and one down-triangle of B sites, depicted as pink dots in

the figure. Again we take a1,2 = a
(
1
2
x̂±

√
3
2
ŷ
)

for the underlying A Bravais lattice, with the basis
vectors 0 and δ1 = aŷ . The nearest neighbor hoppings between A and B sites all are taken to
have (real) amplitude t1, while the inscribed A and B same-sublattice hoppings are taken to be
t2 e

iφ and t2 e
iψ, respectively, and taken in the counterclockwise direction around the inscribed

△ and▽ paths. An on-site energy term ±m , called the Semenoff mass, is added to the hopping
terms. Taking the product of the real t1 amplitudes around any hexagonal unit cell along the
thick black lines, we see that the flux per unit cell is congruent to zero. However, within each
unit cell there is nonzero flux, distributed nonuniformly such that the total flux is zero. The
corresponding tight binding Hamiltonian is given by

H = m
∑

i

(
a†i ai − b†i bi

)
− t1

∑

〈ij〉

(
a†i bj + b†j ai

)

− t2
∑

△

(
eiφ a†i aj + e−iφ a†j ai

)
− t2

∑

▽

(
eiψ b†i bj + e−iψ b†j bi

)
,

(4.127)

where the same-sublattice hopping along the triangles△ and▽ inscribed within each hexagon

19F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).



4.3. TIGHT BINDING MODEL 193

are to be traversed in a counterclockwise direction. Fourier transforming to k-space, one has

H =
∑

k

{
− t1

(
1 + eik·a1 + e−ik·a2

)
a†k bk − t1

(
1 + e−ik·a1 + eik·a2

)
b†k ak

+
[
m− 2t2 Re

(
eiφ eik·(a1+a2) + eiφ e−ik·a1 + eiφ e−ik·a2

)]
a†k ak (4.128)

+
[
−m− 2t2 Re

(
eiψ e−ik·(a1+a2) + eiψ eik·a1 + eiψ eik·a2

)]
b†k bk

}
,

and thus we may write

H =
∑

k

(
a†k b†k

)(HAA(k) HAB(k)
HBA(k) HBB(k)

)(
ak
bk

)
, (4.129)

where

HAA(k) = m− 2t2
[
cos θ1 + cos θ2 + cos(θ1 + θ2)

]
cos φ− 2t2

[
sin θ1 + sin θ2 − sin(θ1 + θ2)

]
sinφ

HBB(k) = −m− 2t2
[
cos θ1 + cos θ2 + cos(θ1 + θ2)

]
cosψ + 2t2

[
sin θ1 + sin θ2 − sin(θ1 + θ2)

]
sinψ

HAB(k) = H∗
BA(k) = −t1

(
1 + eiθ1 + e−iθ2

)
. (4.130)

In the Haldane model one has ψ = φ , in which case we may write H(k) in terms of Pauli
matrices, as

H(k) = −2t2
[
cos θ1 + cos θ2 + cos(θ1 + θ2)

]
cosφ− t1

(
1 + cos θ1 + cos θ2

)
σx (4.131)

+ t1
(
sin θ1 − sin θ2

)
σy +

(
m− 2t2

[
sin θ1 + sin θ2 − sin(θ1 + θ2)

]
sinφ

)
σz .

What makes the Haldane model so interesting is that its band structure is topological over a
range of the dimensionless parameters m/t2 and φ.20 More on this below!

4.3.8 General flux configuration on the square lattice

More generally, consider a magnetic unit cell formed by an M × N block of structural unit
cells, as depicted in Fig. 4.15. Each structural cell p is labeled by the indices (m,n), where the
Bravais lattice site its lower left corner is max̂ + naŷ . To assign the lattice gauge fields, do the
following. For r = max̂ + naŷ and r′ = max̂ + (n + 1)aŷ with n < N , let Arr′ =

∑m−1
i=1 φi,n .

For the n = N , we include the Bloch phase θ2, so that Arr′ = θ2 +
∑m−1

i=1 φi,n , also noting that
(m,N+1) ∼= (m, 1). This setsArr′ for all vertical (y-directed) links. The only horizontal links for
whichArr′ are nonzero are those with r =Max̂+naŷ and r′ = ax̂+naŷ ; note (M+1, n) ∼= (1, n).
Then Arr′ = θ1 −

∑M
i=1

∑n
j=1 φi,j . One can check that this prescription yields the desired flux

configuration, as well as the two Bloch phases.

20Without loss of generality, we may set t1 ≡ 1 .
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Figure 4.15: Lattice gauge field configuration for a general M ×N rectangular lattice with flux
φm,n in unit cell (m,n) and Bloch phases (θ1, θ2).

4.4 Topological Band Structures

4.4.1 SSH model

Consider the long chain polymer polyacetylene, with chemical formula (CH)x, where x can be
fairly large (x ∼ 104 for example). In the trans form of (CH)x , each C atom has two C neighbors
and one H neighbor (see Fig. 4.16). The electronic structure of the carbon atom is 1s2 2s2 2p2.
The two 1s electrons are tightly bound and are out of the picture. Three of the remaining n = 2
electrons form sp2 planar hybrid bonding orbitals. This leaves one electron per carbon, which
is denoted by π and has the symmetry of pz, where backbone of the molecule is taken to lie in
the (x, y) plane. If we were to model (CH)x by a one-dimensional tight binding model for these
π-electrons, we’d write

H = −t
N∑

n=1

∑

σ=±

(
c†n,σ cn+1,σ + c†n+1,σ cn,σ

)
= −2t

∑

k,σ

cos(ka) c†k,σ ck,σ , (4.132)

where σ is the spin polarization and where ck,σ = N−1/2
∑

n e
−ikna cn,σ . We assume periodic

boundary conditions cn+N,σ = cn,σ , which entails the mode quantization k = 2πj/Na with
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Figure 4.16: trans-polyacetylene, CHx, consists of a backbone of C atoms with alternating single
and double bonds.

j ∈ {1, . . . , N}. In the thermodynamic limit N → ∞ we may restrict |k| 6 π
a

to the first
Brillouin zone.

The ground state is obtained by filling each of the 1
2
N lowest energy states εk = −2t cos(ka)

with a pair of ↑ and ↓ states, thus accounting for the N π-electrons present. Thus, with θ ≡ ka,
we have

E0 = −4Nt
π/2∫

−π/2

dθ

2π
cos θ = −4Nt

π
. (4.133)

But there is a way for the system to lower its energy through spontaneous dimerization. Let’s see
how this works. We allow the nuclear centers of the carbon atoms to move a bit, and we write

H = −t
N∑

n=1

(
1−α(un+1−un)

)(
c†n,σ cn+1,σ+c

†
n+1,σ cn,σ

)
+

N∑

n=1

(
p2n
2M

+ 1
2
K(un+1−un)2

)
, (4.134)

where un is the displacement of the nth carbon atom and pn is its momentum in the direction
along the (CH)x backbone, and M is the atomic mass of carbon. The parameter α accounts
for the exponential falloff of the π-electron wavefunctions from each nuclear center. We expect
then that the hopping integral between atoms n and n+1 will be given by tn,n+1 = t e−α(un+1−un),
so tn,n+1 increases if the distance xn+1 − xn = a + un+1 − un decreases, i.e. if un+1 − un < 0, and
decreases if un+1−un > 0 . The parameter α has dimensions of inverse length, and we presume
that the lattice distortions are all weak, which licenses us to expand the exponential and write
tn,n+1 ≈ t

(
1− α(un+1 − un)

)
. This is known as the Su-Schrieffer-Heeger (SSH) model21.

For spontaneous dimerization, which breaks the lattice translation symmetry from ZN to ZN/2 ,
we write

un = (−1)n ζ + δun . (4.135)

21W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42, 1698 (1979).
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The phonon part of the Hamiltonian now becomes

Hph =

H0
ph︷ ︸︸ ︷

N∑

n=1

(
p2n
2M

+ 1
2
K (δun+1 − δun)2

)
+2NKζ2 + 4Kζ

∑

n

(−1)n δun . (4.136)

We assume N to be even. We take as a trial state for the phonons the ground state ofH0
ph, which

is a product of harmonic oscillator states for each of the phonon modes with

H0
ph =

∑

k

~ωk
(
A†
k Ak +

1
2

)
, (4.137)

where ωk = 2(K/M)1/2 | sin(1
2
ka)| is the phonon dispersion and

Ak =

(
1

2~Mωk

)1/2
p̂k +

(
Mωk
2~

)1/2
δûk (4.138)

is the (first quantized) phonon annihilation operator, with
(
p̂k
δûk

)
= N−1/2

∑
n e

−ikna
(
pn
δun

)
. At

T = 0, we have Eph
0 = 1

2

∑
k ~ωk = 4N~

√
K/M . Note also that in the phonon ground state

|Ψph
0 〉 we have 〈Ψph

0 | δun |Ψph
0 〉 = 0 for all n. If we take the expectation value of H from Eqn.

4.134 in the state |Ψph
0 〉, we obtain the effective electronic Hamiltonian

Heff = Eph
0 + 2NKζ2 −

Nc∑

n=1

∑

σ

(
t1 a

†
n,σ bn,σ + t2 b

†
n,σ an+1,σ +H.c.

)

= 4N~

√
K

M
+ 2NKζ2 −

∑

k,σ

(
a†k,σ b†k,σ

)( 0 t1 + t2 e
−ikb

t1 + t2 e
ikb 0

)(
ak,σ
bk,σ

)

= 4N~

√
K

M
+ 2NKζ2 +

∑

k,σ

∣∣t1 + t2 e
ikb
∣∣ (γ†+,k,σ γ+,k,σ − γ†−,k,σ γ−,k,σ

)
,

(4.139)

where Nc =
1
2
N , b = 2a is the unit cell size, an,σ ≡ c2n−1,σ , bn,σ ≡ c2n,σ , and

t1,2 =
(
1∓ 2αζ

)
t . (4.140)

We see that there are two states for each wavevector k and spin polarization σ, labeled by
indices ±, with energies ε±,k,σ = ±

∣∣t1 + t2 e
ikb
∣∣ . At T = 0, we fill the bottom (−) band with

electrons of both spin polarizations, and the total energy is then (substituting θ ≡ kb ∈ [−π, π] )

Etot
0 = 4N~

√
K

M
+ 2NKζ2 − N

2π

π∫

−π

dθ
√
t21 + t22 + 2t1t2 cos θ

= 4N~

√
K

M
+ 2NKζ2 − 4Nt

π
E(κ) ,

(4.141)
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where

κ =
2
√
t1t2

|t1 + t2|
=
√

1− 4α2ζ2 . (4.142)

and where E(κ) is the complete elliptic integral of the second kind,

E(κ) =

π/2∫

0

dϑ
√

1− κ2 sin2ϑ . (4.143)

We are interested in the case where α|ζ | ≪ 1, i.e. small dimerization amplitude. Thus κ ≈ 1,
and in this limit we have22

E(κ) = 1 + 1
2
κ′

2
(
ln(4/κ′)− 1

2

)
+ . . . , (4.144)

where κ′ =
√
1− κ2 = 2αζ . We now have that the energy per site is given by

Etot
0

N
(ζ) = 4~

√
K

M
+ 2Kζ2 − 4t

π
− 8t

π
α2ζ2 ln

(
2√
e α ζ

)
+ . . . . (4.145)

Differentiating with respect to the dimerization parameter ζ , we obtain a minimum at

ζ∗ =
2√
eα

exp

(
− πK

4α2t

)
, (4.146)

in the limit where α2t ≪ K. Thus, the system prefers to break the discrete translational sym-
metry of the one-dimensional lattice and to be spontaneously dimerized. The tendency for
one-dimensional electronic systems coupled to phonons to spontaneously dimerize is known
as the Peierls instability.

Topological aspects of the SSH model

We now suppress spin and investigate the following Hamiltonian,

H0 = −
Nc∑

n=1

(
t1 a

†
n bn + t2 b

†
n an+1 +H.c.

)

= −
∑

k

(
a†k b†k

)( 0 t1 + t2 e
−ikb

t1 + t2 e
ikb 0

)(
ak
bk

)
,

(4.147)

where the second and third lines are written in terms of second-quantized fermionic creation
(a†, b†) and annihilation (a, b) operators. This corresponds to a model with Nc unit cells where

22See Gradshteyn and Ryzhik, formula 8.114.3.
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there are alternating strong (t1) and weak (t2) bonds, with periodic boundary conditions. The
number of sites is N = 2Nc . An arbitrary single particle eigenstate may be written

|ψ 〉 =
Nc∑

n=1

(
An a

†
n +Bn b

†
n

)
| 0 〉 . (4.148)

In terms of the c-number coefficients {An, Bn}, the Schödinger equation may be written as the
system

EAn = −t2Bn−1 − t1Bn

EBn = −t1An − t2An+1 ,
(4.149)

with periodic boundary conditions An+Nc
= An and Bn+Nc

= Bn . We can write this system in
matrix form as
(
0 t1
t2 E

)(
An+1

Bn

)
= −

(
E t2
t1 0

)(
An
Bn−1

)
⇒

(
An+1

Bn

)
=

1

t1t2

(
E2 − t21 E t2
−E t2 −t22

)(
An
Bn−1

)
.

(4.150)
With translational invariance, we can demand

(
An+1

Bn

)
= z

(
An
Bn−1

)
, (4.151)

where z = exp(ikb). With this substitution in the above equation, we obtain the system
(
E2 − t21 − z t1 t2 E t2

−E t2 −t22 − z t1 t2

)(
An
Bn−1

)
= 0 , (4.152)

and setting the determinant to zero recovers the dispersion E = ±|t1 + z t2|.
Now suppose we remove the link between the b orbital in unit cell n = Nc and the a orbital in
unit cell n = 1. We now have

(
A2

B1

)
=

1

t1t2

(
E2 − t21 0
−E t2 0

)(
A1

BNc

)
,

(
ANc

BNc−1

)
=

1

t1t2

(
0 −E t2
0 E2 − t21

)(
A1

BNc

)
, (4.153)

as well as Eqn. 4.150 for n ∈ {2, . . . , Nc − 1}. We now show that there exist two eigenstates
in the thermodynamic limit which are degenerate with E = 0 and which are exponentially
localized in the vicinity of one of the ends of the chain provided |r| < 1, where r = t1/t2 . With
E = 0 we have from the first of the above equations that A2 = −rA1 and B1 = 0. Iterating
Eqn. 4.150, we then find An = (−r)n−1A1 and Bn = 0. In the limit Nc → ∞, so long as |r| < 1,
we obtain a normalized wavefunction with A1 =

√
1− r2 eiα, where α is an arbitrary phase. A

second zero mode is elicited by starting with the second of the above equations, which yields
BNc−n = (−r)nBNc

and ANc−n = 0, which is normalized by setting BNc
=
√
1− r2 eiβ . For Nc

finite, these modes will mix and undergo level repulsion, resulting in two levels of opposite
energy exponentially close to E = 0. Thus, for |r| < 1 there are two E = 0 edge states. For
|r| > 1, there are no normalizable mid-gap (i.e. E = 0) modes. Of course, the midgap states will
appear for |r| > 1 if we instead cut the bond between the a and b orbitals within the n = 1 cell.
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Figure 4.17: Spectrum of the SSH Hamiltonian on a finite chain with Nc → ∞ with t1 = t sin δ
and t2 = t cos δ. The two E = 0 edge states exist provided |t1| < |t2|, i.e. |δ| < π

4
.

4.4.2 Polarization and geometric phase

The individual cell functions for the Bloch states of the SSH model are given by the spinors

~u±(k) =

(
uA±(k)
uB±(k)

)
, (4.154)

which are eigenstates of the Hamiltonian H(k), viz.

H(k)︷ ︸︸ ︷
−
(

0 t(k)
t∗(k) 0

)
~u±(k)︷ ︸︸ ︷(
uA±(k)
uB±(k)

)
= E±(k)

~u±(k)︷ ︸︸ ︷(
uA±(k)
uB±(k)

)
, (4.155)

where t(k) ≡ t1 + t2 e
−ikb and E±(k) = ±|t(k)|. We define the polarization P± of each band as

P± = i

π/b∫

−π/b

dk

2π
〈 ~u±(k) | ∂k | ~u±(k) 〉 =

π/b∫

−π/b

dk

2π
A±(k) , (4.156)

where

A±(k) =
〈
~u±(k)

∣∣∣ i ∂
∂k

∣∣∣ ~u±(k)
〉

(4.157)

is the Berry connection, which plays a role similar to an electromagnetic vector potential. How-
ever, the polarization is defined only up to an integer multiple, because if we make an allowed
gauge transformation | ~u±(k) 〉 → e−iϕ(k) | ~u±(k) 〉, where e−iϕ(k) is single-valued on the Brillouin
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Figure 4.18: Winding of t(k) = t1 + t2 e
−ikb in the SSH model. Left: |t1| > |t2|, W = 0. Right:

|t1| < |t2|, W = −1.

zone, then P± → P± +
[
ϕ(π/b) − ϕ(−π/b)

]
/2π = P± + n where n ∈ Z. Thus, it is the phase

exp(2πiP±) which is well-defined and gauge-invariant. We now compute this phase and show
that it characterizes the two sectors |r| > 1 and |r| < 1, where r ≡ t1/t2 .

Solving the Schrödinger equation for the cell functions, we obtain the solutions

uA±(k) =
1√
2

, uB±(k) = ∓
1√
2

t∗(k)

|t(k)| = ∓
1√
2
e−iΘ(k) , (4.158)

where Θ(k) ≡ arg t(k). Thus, A±(k) =
1
2
∂Θ
∂k

and

2πP± =
1

2

∮
dΘ = πW , (4.159)

where W is the integer winding number of the angle Θ(k) around the Brillouin zone kb ∈ [−π, π].
Examining the function t(k) = t1 + t2 e

−ikb, we see that Θ(k) has winding W = 0 if |t1| > |t2|
and W = −1 if |t1| < |t2|. Thus, exp(2πiP±) = +1 for both ± bands in the nontopological
sector where |t1| > |t2|, and exp(2πiP±) = −1 for both ± bands in the topological sector where
|t1| < |t2|. Thus, the polarization phase neatly distinguishes the two sectors, which, as we saw
in the previous section, also differ in their eigenspectra on open chains, where the topological
sector exhibits two E = 0 edge states which are not present in the nontopological sector. The
different winding sectors are depicted in Fig. 4.18.

Explicit breaking of translational symmetry

Suppose the A and B site ions are not both carbon, but are chemically different species. Then
there will in general be a difference in the on-site energies for the individual π orbitals, and we
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should write

H(k) = −
(

m t(k)
t∗(k) −m

)
= −Ek

(
cos θk sin θk e

iφk

sin θk e
−iφk − cos θk

)
(4.160)

where Ek =
√
|t(k)|2 +m2 and

cos θk =
m

Ek
, sin θk e

iφk =
t(k)

Ek
. (4.161)

The eigenvectors of H(k) are

| ~u−(k) 〉 =
(

cos 1
2
θk

sin 1
2
θk e

iφk

)
, | ~u−(k) 〉 =

(
sin 1

2
θk e

iφk

− cos 1
2
θk

)
, (4.162)

with corresponding eigenvalues ∓Ek. We then have

A±(k) =
〈
~u±(k)

∣∣∣ i ∂
∂k

∣∣∣ ~u±(k)
〉
= ± 1

2
(1− cos θk)

∂φk
∂k

=
1

2

(
1− m

Ek

)
∂ arg tk
∂k

(4.163)

Adopting again the definition Θ(k) = φk = arg t(k), note the following limits:

A±(k ; m = 0) =
1

2

∂Θ

∂k
, A±(k ; m = −∞) =

∂Θ

∂k
, A±(k ; m =∞) = 0 . (4.164)

For generalm, we have that exp(2πiP±) are no longer quantized at±1 and can take any value on
the unit circle. The reason is that the Hamiltonian H(k) in Eqn. 4.160 is intrinsically complex,
which is a consequence of the breaking of inversion symmetry I. You might think that the
m = 0 case also breaks I as it is also complex, but in that case H(k) = −Re t(k)X + Im t(k) Y is
unitarily equivalent to a real Hamiltonian by rotating by 1

2
π about the x̂ axis in internal space,

i.e. by writingH ′(k) = U †H(k)U with U = 2−1/2(1+iX), whenceH ′(k) = −Re t(k)X+Im t(k)Z.
When m → ±∞, we obtain a trivial topology, because exp(2πiP±) = +1 in both limits23. Note
also that for m = 0 the center of each link is a valid center of inversion symmetry, which is not
the case when m 6= 0.

What happens to the edge states? Clearly they must split in energy because the sites on either
end are members of different sublattices. Since the edge states we obtained previously live
entirely on the A and B sublattices, respectively, their energies when m 6= 0 are, simply, Eedge =

±m. The bulk dispersion takes the form Ebulk = ±Ek = ±
√
|t(k)|2 +m2. The edge states once

again join the bulk spectrum when |t1| = |t2|, where Ek=π/b = ±m.

23When m = −∞ and A±(k) = ∂Θ/∂k, we have P± = W rather than P± = 1
2W as in the m = 0 case we studied

previously, hence exp(2πiP±) = +1.
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4.4.3 Domain wall states in the Dirac equation

Dirac Hamiltonians and Clifford algebras

A famous exchange (though perhaps somewhat apocryphal)24:

Bohr to Dirac (∼1928): ”What are you working on, Mr. Dirac?”

Dirac to Bohr: ”I am trying to take the square root of something.”

What was Dirac trying to take the square root of? The Klein-Gordon equation, apparently:

(
1

c2
∂2

∂t2
−∇2 +

m2c2

~2

)
ψ = 0 . (4.165)

Dirac didn’t like the fact that the KG equation is second order in space and time. The famous
Dirac Hamiltonian is given by

H = cα · p+ βmc2 , (4.166)

where
{
α1, α2, α3, β} are mutually anticommuting Hermitian matrices that are elements of a

Clifford algebra, which is an associative algebra consisting of the identity (1) and d elements Γµ

with µ ∈ {1, . . . , d}, each with TrΓµ = 0, and satisfying the relations

{
Γµ,Γν

}
= 2δµν , (4.167)

where {•, •} is the anticommutator25. Note that (Γµ)2 = 1 for each element of the algebra. This
can be accomplished with matrices of rank 2[d/2], where [d/2] is the greatest integer less than or
equal to 1

2
d, in the following manner. Starting with d = 2, we may take Γ1 = X and Γ2 = Y ,

where X and Y are the Pauli matrices σx and σy. For d = 3, we add Γ3 = −iΓ1Γ2 = Z. For
d = 4, take

Γ1 = X ⊗ I =




0 0 +1 0
0 0 0 +1
+1 0 0 0
0 +1 0 0


 , Γ2 = Y ⊗ I =




0 0 −i 0
0 0 0 −i
+i 0 0 0
0 +i 0 0




Γ3 = Z ⊗X =




0 +1 0 0
+1 0 0 0
0 0 0 −1
0 0 −1 0


 , Γ4 = Z ⊗ Y =




0 −i 0 0
+i 0 0 0
0 0 0 +i
0 0 −i 0


 ,

(4.168)

24See P. A. M. Dirac and the Discovery of Quantum Mechanics by Kurt Gottfried (2010).
25More generally, we can take d = t+s and {Γµ,Γν} = 2ηµν , where ηµν = 0 if µ 6= ν, ηµν = +1 if µ = ν ∈ {1, . . . , t},

and ηµν = −1 if µ = ν ∈ {t + 1, . . . , d}, which define the Clifford algebra Ct,s. We restrict our attention to the
Clifford algebras Cd,0.

https://arxiv.org/pdf/1006.4610.pdf
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where I is the 2× 2 unit matrix. For d = 5, we add

Γ5 = −Γ1Γ2Γ3Γ4 = Z ⊗ Z =




+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 +1


 . (4.169)

In general, for d = 2k or d = 2k + 1, we may write

Γ1 =

k terms︷ ︸︸ ︷
X ⊗ I⊗ · · · ⊗ I⊗ I Γ2k−1 = Z ⊗ Z ⊗ · · · ⊗ Z ⊗X

Γ2 = Y ⊗ I⊗ · · · ⊗ I⊗ I Γ2k = Z ⊗ Z ⊗ · · · ⊗ Z ⊗ Y (4.170)

Γ3 = Z ⊗X ⊗ · · · ⊗ I⊗ I Γ2k+1 = Z ⊗ Z ⊗ · · · ⊗ Z ⊗ Z .

The last of these pertains when d = 2k + 1 and is equivalent to

Γ2k+1 = (−i)k Γ1 Γ2 · · ·Γ2k . (4.171)

Now you know something about Clifford algebras!

A very nice thing about Clifford algebras is that if we write

H = a · Γ = aµ Γ
µ , (4.172)

then
H2 = aµ aν Γ

µ Γν = 1
2
aµ aν

{
Γµ,Γν

}
= a

2 . (4.173)

Since both H and H2 are of rank 2k, where d = 2k or d = 2k+1, we have that the spectrum ofH
must consist of a 2k−1-fold degenerate set of eigenvalues E− = −|a|, and a 2k−1-fold degenerate
set of eigenvalues E+ = +|a|.
Note that the dimension of the space of rank-n Hermitian matrices is n2 (n independent real
elements along the diagonal and 1

2
n(n−1) independent complex elements above the diagonal).

Thus for n = 2k we require 22k parameters to describe the most general Hamiltonian, whereas
H = a · Γ is specified only 2k or 2k+ 1 parameters (or 2k + 2 if we include real multiples of the
identity). You may have noticed that the matrix Z ⊗ I⊗ · · · ⊗ I, for example, is missing among
the list Eqn. 4.170 for all k > 1. We can use the matrices in the Clifford algebra to build a full
set of 22k independent Hermitian matrices, which will no longer be mutually anticommuting,
by taking various products of matrices in the Clifford algebra. For example, with k = 2 and
d = 2k+1 = 5 we have only five matrices in the CA but 15 independent traceless 4×4 Hermitian
matrices in all. The missing 10 matrices are given by Γµν = −iΓµΓν for µ < ν.

But we digress! Let us get back to the Dirac equation! For the Dirac Hamiltonian H = a(p) · Γ
with a(p) = (px, py, pz, m, 0), we have two massive Dirac cones with

E±(p) = ±
√
c2p2 +m2c4 . (4.174)

Each energy level is doubly degenerate, corresponding to two electron spin polarizations. The
gamma matrices are taken from the k = 2 Clifford algebra and are of rank four. In one space
dimension, H(p) = cpX +mc2Z where X and Z are Pauli matrices (i.e. k = 1 Clifford algebra).
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Domain wall bound states in d = 1

The bulk dispersion and ground state energy of the massive Dirac Hamiltonian are even func-
tions of m. What happens if we continuously interpolate between negative and positive values
of m? Consider the d = 1 Hamiltonian

H = −i~cX ∂

∂x
+m(x) c2 Z =

(
m(x) c2 −i~c ∂x
−i~c ∂x −m(x) c2

)
. (4.175)

We have in mind a m(x) smoothly interpolating between m(−∞) = −m and m(+∞) = +m,
but we can easily generalize to the case where m(−∞) = m1 and m(+∞) = m2 . Over most
of x ∈ R, the mass m(x) is roughly constant with either m(x) = m1 or m(x) = m2. In these

regions, the bulk dispersion E±,k = ±
√

(~ck)2 +m2
1,2 c

4 holds. We now show that when the

product m1m2 < 0 that there is a precise zero energy eigenstate localized along the interface

between the two regions26. Setting E = 0, the Schrödinger equation H~ψ(x) = E~ψ(x) can be
written as

∂ ~ψ(x)

∂x
= − c

~
m(x) Y ~ψ(x) . (4.176)

This requires that the spinor component of ~ψ(x) must be an eigenstate of Y , so we write

~ψ(x) =
1√
2

(
1
iη

)
f(x) , (4.177)

where η = ±1, hence Y ~ψ(x) = η ~ψ(x). Thus,

∂ ln f(x)

∂x
= −η c

~
m(x) ⇒ f(x) = A exp

{
− η c

~

x∫

0

dx′ m(x′)

}
, (4.178)

where A is a normalization constant. In order to have a normalizable solution, though, we
must have that m(−∞)m(+∞) < 0, in which case we choose

η = sgn
[
m(+∞)−m(−∞)

]
. (4.179)

Helical edge states in d = 2

Let’s now proceed to d = 2 and write

H = −i~cΓ1 ∂

∂x
− i~cΓ2 ∂

∂y
+m(x) c2 Γ4 . (4.180)

26Two efficiently brief and readable texts on the general subject of topological bands in condensed matter, see
S.-Q. Shen, Topological Insulators (Springer, 2012) or J. K. Asbóth, L. Oroszlány, and A. Pályi, A Short Course on
Topological Insulators (Springer, 2016). More extensive treatments may be found in the now standard texts by
Bernevig and Hughes (Princeton, 2013) and by Vanderbilt (Cambridge, 2018).
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The mass m(x) is presumed to be dependent only on the x coordinate, again interpolating

between positive and negative values at x = ±∞. The wavefunction ~ψ(x, y) is now a four

component spinor. We assume that ~ψ(x, y) corresponds to a plane wave in the y-direction, i.e.
parallel to the domain wall. Note that Γ2 = Y ⊗ I has the following normalized eigenvectors:

~ξ1 =
1√
2




1
0
i
0


 , ~ξ2 =

1√
2




0
1
0
i


 , ~ξ3 =

1√
2




1
0
−i
0


 , ~ξ4 =

1√
2




0
1
0
−i


 , (4.181)

where Γ2 ~ξ1,2 = +~ξ1,2 and Γ2 ~ξ3,4 = −~ξ3,4. We will also need the following, which you can easily
check with Γ1 = X ⊗ I and Γ4 = Z ⊗ Y :

Γ1 ~ξ1 = +i ~ξ3 , Γ1 ~ξ2 = +i ~ξ4 , Γ1 ~ξ3 = −i ~ξ1 , Γ1 ~ξ4 = −i ~ξ2
Γ4 ~ξ1 = +i ~ξ4 , Γ4 ~ξ2 = −i ~ξ3 , Γ4 ~ξ3 = +i ~ξ2 , Γ4 ~ξ4 = −i ~ξ1 .

(4.182)

The domain wall bound states are of two types, which we call I and II:

~ψI(x, y) = Af(x) eikyy
(
α ~ξ1 + β ~ξ2

)

~ψII(x, y) = B g(x) eikyy
(
γ ~ξ3 + δ ~ξ4

)
.

(4.183)

For type I solutions, we write E = ~cky , in which case insertion into the Schrödinger equation

H ~ψ = E~ψ yields the equation

~c
(
α ~ξ3 + β ~ξ4

)
∂xf +m(x) c2

(
−iβ ~ξ3 + iα ~ξ4

)
f = 0 . (4.184)

The solvability condition here requires that the ratios of the ~ξ4 and ~ξ3 coefficients inside each of
the round brackets must be the same, i.e. β/α = (−iα)/(iβ) = −α/β. Thus β2 = −α2 and we
may take

(α, β) = (1,+i) : ∂x ln f = − c
~
m(x)

(α, β) = (1,−i) : ∂x ln f = +
c

~
m(x) .

(4.185)

For type II solutions, we write E = −~cky , whence

− ~c
(
γ ~ξ1 + δ ~ξ2

)
∂xg +m(x) c2

(
−iδ ~ξ1 + iγ ~ξ2

)
g = 0 , (4.186)

and we have the following possibilities:

(γ, δ) = (1,+i) : ∂x ln g = +
c

~
m(x)

(γ, δ) = (1,−i) : ∂x ln g = −
c

~
m(x) .

(4.187)

We therefore have the following solutions:
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• Type I : E = +~cky , Γ2 ~ψ = +~ψ :

~ψIa(x, y) = Aeikyy exp

{
− c
~

x∫

0

dx′m(x′)

}
(
~ξ1 + i~ξ2)

~ψIb(x, y) = Aeikyy exp

{
+
c

~

x∫

0

dx′m(x′)

}
(
~ξ1 − i~ξ2)

(4.188)

and

• Type II: E = −~cky , Γ2 ~ψ = −~ψ :

~ψIIa(x, y) = B eikyy exp

{
+
c

~

x∫

0

dx′m(x′)

}
(
~ξ3 + i~ξ4)

~ψIIb(x, y) = B eikyy exp

{
− c
~

x∫

0

dx′m(x′)

}
(
~ξ3 − i~ξ4) .

(4.189)

Thus, if m(−∞) < 0 < m(+∞), the normalizable solutions are ~ψIa and ~ψIIb, while for the

case m(−∞) > 0 > m(+∞), the normalizable solutions are ~ψIb and ~ψIIa. Note that the time-
dependences are as follows:

type I : ~ψI(x, y) ∝ f(x) eiky(y−ct) ⇒ up-mover, vy = +c

type II : ~ψII(x, y) ∝ g(x) eiky(y+ct) ⇒ down-mover, vy = −c .
(4.190)

Note that the product of sgn(vy) and the eigenvalue η of Γ2 is χ = η sgn(vy) = +1 in both cases.
We call χ the chirality.

It should now come as no surprise that for the d = 3 Dirac Hamiltonian

H = −i~cΓ1 ∂

∂x
− i~cΓ2 ∂

∂y
− i~cΓ3 ∂

∂z
+m(x) c2 Γ4 (4.191)

that we obtain two chiral domain-wall surface states with E = ±~c√k2y + k2z .

4.4.4 The adiabatic theorem and Berry’s phase

Consider a Hamiltonian H(λ) dependent on a set of parameters λ = {λ1, . . . , λK}, and let
|ϕn(λ) 〉 satisfy the time-independent Schrödinger equation,

H(λ) |ϕn(λ) 〉 = En(λ) |ϕn(λ) 〉 . (4.192)
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Now let λ(t) be continuously time-dependent, and consider the time-dependent Schrödinger
equation

i~
d

dt
|Ψ(t) 〉 = H

(
λ(t)

)
|Ψ(t) 〉 . (4.193)

The adiabatic theorem states that if λ(t) evolves extremely slowly, then each solution |Ψn(t) 〉 is
proportional to |ϕn

(
λ(t)

)
〉, with

∣∣Ψn

(
λ(t)

) 〉
= exp

(
iγn(t)

)
exp

(
− i

~

t∫
dt′ En

(
λ(t′)

)) ∣∣ϕn
(
λ(t)

) 〉
, (4.194)

with corrections which vanish in the limit |λ̇|/|λ| → 0 . Taking the time derivative and then the
overlap with the bra vector 〈ϕn

(
λ(t)

)
|, one obtains the result

dγn(t)

dt
= i
〈
ϕn
(
λ(t)

) ∣∣ d
dt

∣∣ϕn
(
λ(t)

) 〉
= An(λ) ·

dλ

dt
≡ An(t) , (4.195)

where

Aµn(λ) = i
〈
ϕn(λ)

∣∣ ∂

∂λµ

∣∣ϕn(λ)
〉

(4.196)

is the Berry connection. We have already met with such a quantity in Eqn. 4.157 above. Note
that Aµn(λ) is real. In particular, if λ(t) traverses a closed loop C with infinitesimal speed, then
the wavefunction |Ψn(t) 〉 will accrue a geometric phase γn(C), given by

γn(C) =
∮

C

dλ ·An(λ) , (4.197)

also called Berry’s phase27.

In the adiabatic limit, the dynamical phase ~−1
t∫
dt′ En

(
λ(t′)

)
becomes very large whenever

〈En〉 6= 0, because the path λ(t) is traversed very slowly. We may remove this dynamical phase
by defining the Hamiltonian

H̃n(λ) ≡ H(λ)−En(λ) . (4.198)

We define | Ψ̃n(t) 〉 as the solution to the Schrödinger equation

i~
d

dt
| Ψ̃n(t) 〉 = H̃n

(
λ(t)

)
| Ψ̃n(t) 〉 (4.199)

in the adiabatic limit. The adiabatic wavefunctions |ϕn(λ) 〉 are the same as before, but now sat-

isfy the zero energy condition H̃n(λ) |ϕn(λ) 〉 = 0 . Clearly | Ψ̃n

(
λ(t)

)
〉 = exp

(
iγn(t)

)
|ϕn
(
λ(t)

)
〉

27See M. V. Berry, Proc. Roy. Soc. A 392, 45 (1984).
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and the dynamical phase has been removed. However, note that the geometrical phase γn does
not depend on the elapsed time, but only on the path traversed, viz.

γn = γn(λ) =

λ∫

λ0

dλ′ ·An(λ
′) , (4.200)

where λ0 = λ(0), and where the integral is taken along the path in traversed by λ.

4.4.5 Connection, curvature, and Chern numbers

The mathematical structure underlying this discussion is that of the Hermitian line bundle, the
ingredients of which are (i) a base spaceMwhich is a topological manifold; this is the parameter
space for λ, and (ii) to each point λ ∈M is associated a fiber which is the adiabatic wavefunction
|ϕn(λ) 〉 ∈ H, which is a complex one-dimensional subspace of some Hilbert space H. As λ
moves around the base spaceM, the fiber twists around. The adiabatic theorem furnishes us

with a way of defining parallel transport of | Ψ̃n(λ) 〉 along the curve C28. The object An(λ) is the
connection and the geometric phase γ(C) is the holonomy of the connection29. As a holonomy,
γ(C) depends only on the curve C and not on where along the curve one starts.

The curvature tensor for the bundle is given by

Ωµν
n (λ) =

∂Aνn
∂λµ

− ∂Aµn
∂λν

= i
〈 ∂ϕn
∂λµ

∣∣∣ ∂ϕn
∂λν

〉
− i
〈 ∂ϕn
∂λν

∣∣∣ ∂ϕn
∂λµ

〉
.

(4.201)

Using completeness of the |ϕn 〉 basis, we may write the curvature tensor as

Ωµν
n (λ) = i

∑

l

′
〈
ϕn
∣∣ ∂H
∂λµ

∣∣ϕl
〉〈
ϕl
∣∣ ∂H
∂λν

∣∣ϕn
〉
− (µ↔ ν)

(En −El)2
, (4.202)

where the prime on the sum indicates that the term l = n is to be excluded. We see that in
this formulation the curvature tensor is actually independent of any phase convention for the
adiabatic wavefunctions |ϕn(λ) 〉. So long as the adiabatic eigenstate |ϕn(λ) 〉 remains nonde-
generate, the denominator in Eqn. 4.202 remains nonzero, hence the curvature tensor Ω(λ)
is nonsingular. The same cannot be said about the connection A(λ), however, because it is

28Note that |Ψn(t) 〉, which depends explicitly on elapsed time and not solely on the position λ along its trajectory,
can not be said to be parallel transported along any curve.

29See B. Simon, Phys. Rev. Lett. 51, 2167 (1983).
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Figure 4.19: A Hermitian line bundle consists of a base space M and a fiber |ϕ(λ) 〉 which
twists as the point λ moves around the base space.

gauge-covariant. This means that if we multiply the adiabatic wavefunctions by phases, with
|ϕn(λ) 〉 → exp(ifn(λ)) |ϕn(λ) 〉, the connection changes accordingly, with

An(λ)→ An(λ)−
∂fn(λ)

∂λ
. (4.203)

How can we fix a gauge in order to give unambiguous meaning to An(λ)? One way might
be to demand that the adiabatic wavefunction amplitude be real and positive at some partic-
ular point in space r0 , i.e. 〈 r0 |ϕn(λ) 〉 ∈ R+ for all λ ∈ M. For lattice-based models, where
the adiabatic wavefunction is a vector of amplitudes for each orbital and each site within the
appropriate unit cell, we could similarly demand that one of these amplitudes be real and pos-
itive. This prescription fails if there exists a value of λ for which this wavefunction amplitude vanishes.

As we are about to discover, the integral of the curvature over a two-dimensional base space is
a topological invariant, meaning that it remains fixed (and indeed quantized) under continuous
deformations of the Hamiltonian H(λ). Using Stokes’ theorem, we can turn an area integral of
the curvature into line integrals of the connection. However, having chosen a particular gauge
for the adiabatic wavefunctions, it may be that the connection is singular at certain points.
Therefore the line integrals cannot be completely collapsed, and we obtain the result

∫

M

d2λ Ω12
n (λ) = −

∑

i

∮

Ci

dλ ·An(λ) , (4.204)

where the loop Ci encloses the ith singularity λi of the connection in a counterclockwise man-
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ner30. This is the generalization to Hermitian line bundles of the index formula in Eqn. 4.299
for the Gauss-Bonnet theorem. Quantization follows by writing |ϕn(λ) 〉 = eiqiζ(λ−λi) | ϕ̃n(λ) 〉 in
the vicinity of λ = λi , where qi is an integer and

ζ(λ− λi) = tan−1

(
λ2 − λi,2
λ1 − λi,1

)
. (4.205)

The integers qi are chosen to ’unwind’ the singularity at each λi , so as to make the gauge

transformed connection Ã
µ

n(λ) ≡ i 〈 ϕ̃n(λ) |∇λ | ϕ̃n(λ) 〉 nonsingular31. We then obtain

Cn ≡
1

2π

∫

M

d2λ Ω12
n (λ) =

∑

i

qi . (4.206)

Thus Cn ∈ Z is the Chern number of the Hermitian line bundle corresponding to the adiabatic
wavefunction |ϕn 〉 .
The simplest nontrivial example is that of a spin-1

2
object in a magnetic field B(t), with

H(t) = gµBB · σ = gµBB

(
cos θ sin θ exp(−iφ)

sin θ exp(iφ) cos θ

)
, (4.207)

where B = B n̂ is the adiabatic parameter which varies extremely slowly in time. The adiabatic
wavefunctions are

|ϕ+(θ, φ) 〉 =
(
u
v

)
, |ϕ−(θ, φ) 〉 =

(
−v̄
ū

)
, (4.208)

where n̂ = (sin θ cosφ , sin θ sinφ , cos θ) , u = cos(1
2
θ) , and v = sin(1

2
θ) exp(iφ) . The energy

eigenvalues are E± = ±gµ
B
B. We now compute the connections,

A+ = i 〈ϕ+ |
d

dt
|ϕ+ 〉 = i

(
ūu̇+ v̄v̇

)
= −1

2
(1− cos θ) φ̇ = −1

2
ω̇

A− = i 〈ϕ− |
d

dt
|ϕ− 〉 = i

(
u ˙̄u+ v ˙̄v

)
= +1

2
(1− cos θ) φ̇ = +1

2
ω̇ ,

(4.209)

where dω = ω̇ dt is the differential solid angle subtended by the path n̂(t). Thus, γ±(C) = ∓1
2
ωC

is ∓ half the solid angle subtended by the path n̂C(t) on the Bloch sphere. We may now read

off the components Aθ± = 0 and Aφ± = ∓1
2
(1 − cos θ) and invoke Eqn. 4.201 to compute the

curvature,
Ωθφ

± (θ, φ) = ∓1
2
sin θ . (4.210)

30We must assume that the base spaceM is orientable.
31Note that we have employed a singular gauge transformation, which is necessary to do the desired unwinding.

Also note that the integers qi should also carry a band index n, which we have suppressed here for notational
simplicity.
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Note then that the integral of the curvature over the entire sphere is given by

2π∫

0

dφ

π∫

0

dθ Ωθφ
± (θ, φ) = 2π C± , (4.211)

where C± = ∓1 is the Chern number. Equivalently, note that both connections are singular
at θ = π, where the azimuthal angle is ill-defined. This singularity can be gentled through an
appropriate singular gauge transformation |ϕ± 〉 = e±iφ | ϕ̃± 〉 = e∓iζ | ϕ̃± 〉 , where ζ is defined
to be the angle which increases as one winds counterclockwise around the south pole, hence
ζ = −φ . This corresponds to q± = ∓1 in our earlier notation, hence again C± = ∓1.

As we saw above, this is a general result: when the base space M is two dimensional: the
integral of the curvature overM is 2π times an integer. This result calls to memory the famous
Gauss-Bonnet theorem (see §4.7 below for more), which says that the integral of the Gaussian
curvature K over a two-dimensional manifoldM is∫

M

dS K = 4π(1− g) , (4.212)

where g is the genus (number of holes) in the manifold M. In the Gauss-Bonnet case, the
bundle construction is known as the tangent bundle of M, and the corresponding connection
is determined by the Riemannian metric one places onM. However, independent of the metric,
the integral of K is determined solely by the global topology ofM, i.e. by its genus. Thus, in
three-dimensional space, a sphere inherits a metric from its embedding in R3. If you distort
the sphere by denting it, locally its curvature K will change, being the product of the principal
radii of curvature at any given point. But the integral of K over the surface will remain fixed
at 4π. Just as the genus g of a Riemann surface is unaffected by simple deformations but can
change if one does violence to it, such as puncturing and resewing it32, so is the Chern number
invariant under deformations of the underlying Hamiltonian, provided one does not induce
a level crossing of the adiabatic eigenstate |ϕn 〉 with a neighboring one. Also, note that if the
connection An(λ) can be defined globally onM, i.e. with no singularities, then Cn = 0.

4.4.6 Two-band models

For the two band (S = 1
2
) system with Hamiltonian H = gµBB n̂(λ) · σ, one can verify that we

may also write the Chern numbers as33

C± = ± 1

4π

∫

M

d2λ n̂ · ∂n̂
∂λ1
× ∂n̂

∂λ2
. (4.213)

32M. Gilbert’s two commandments of topology: (I) Thou shalt not cut. (II) Thou shalt not glue.
33The dependence of the magnitude B = |B| on λ is irrelevant to the calculation of the Chern numbers. The

equivalence n̂ = z†σz for z =

(
u
v

)
is known as the first Hopf map from CP1 to S2.
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In this formulation, the Chern number has the interpretation of a Pontrjagin number, which is
a topological index classifying real vector bundles (more in §4.7.2 below). Thus, for a tight
binding model on a bipartite lattice, the most general Hamiltonian may be written

H(k) = d0(k) + d(k) · σ , (4.214)

where k is the wavevector and where each dµ(k) is periodic under translations of k by any
reciprocal lattice vector G. In this case λ1,2 = kx,y are the components of k, and M = T

2 is
the Brillouin zone torus. Note that the sum of the Chern numbers for each of the + and −
bands is zero. As we shall see below with the TKNN problem, for a larger spin generalization,
i.e. when the magnetic unit cell contains more than two basis elements, the sum

∑
a Ca of the

Chern numbers over all bands also vanishes. Consider the two band model with

H(θ) =

(
m− 2t cos θ1 − 2t cos θ2 ∆(sin θ1 − i sin θ2)

∆ (sin θ1 + i sin θ2) −m+ 2t cos θ1 + 2t cos θ2

)
. (4.215)

As before, θµ = k · aµ. Note H(θ) = d(θ) · σ with

d(θ) =
(
∆sin θ1 , ∆sin θ2 , m− 2t cos θ1 − 2t cos θ2

)

≡ |d|
(
sinϑ cosχ , sinϑ sinχ , cosϑ

)
.

(4.216)

Note the adiabatic parameters here are θ1 and θ2 , upon which ϑ and χ are parametrically de-
pendent. Does d(θ) wind around the Brillouin zone torus, yielding a nonzero Chern number?

First, you might be wondering, where does this model come from? Actually, it is the Hamil-
tonian for a px + ipy superconductor, but we can back out of H(θ) a square lattice insulator
model involving two orbitals a and b which live on top of each other at each site, and are not
spatially separated34. The parameter m reflects the difference in the local energies of the two
orbitals. The nearest neighbor hopping integrals between like orbitals are taa = t and tbb = −t ,
but tab(±a1) = ± i

2
∆ and tab(±a2) = ±1

2
∆ , with tba(−a1,2) = t∗ab(+a1,2) due to hermiticity.

The energy eigenvalues are

E±(θ) = ±
√

∆2 sin2θ1 +∆2 sin2θ2 + (m− 2t cos θ1 − 2t cos θ2)
2 . (4.217)

The Wigner-von Neumann theorem says that degeneracy for complex Hamiltonians like ours
has codimension three, meaning one must fine tune three parameters in order to get a degen-
eracy. The reason is that for H = d ·σ describing two nearby levels, the gap is 2|d|, thus in order
for the gap to vanish we must require three conditions: dx = dy = dz = 0. For the real case
where dy = 0 is fixed, we only require two conditions, i.e. dx = dz = 0 . For our model, the gap
collapse requires

∆ sin θ1 = 0

∆ sin θ2 = 0

m− 2t cos θ1 − 2t cos θ2 = 0 .

(4.218)

34In this model they are both s-orbitals, which is unphysical.
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Thus, degeneracies occur at (θ1, θ2) = (0, 0) when m = 4t, at (π, π) when m = −4t, and at (0, π)
and (π, 0) when m = 0. It is clear that for |m| > 4t both Chern numbers must be zero. This is
because for m > 4t we have dz(θ1, θ2) > 0 for all values of the Bloch phases, while for m < −4t
we have dz(θ1, θ2) < 0. Thus in neither case can the d vector wind around the Bloch sphere, and
the Pontrjagin/Chern indices accordingly vanish for both bands.

Now consider the case m ∈ [0, 4t] . Recall that the eigenfunctions are given by

|ϕ+ 〉 =
(

cos(1
2
ϑ)

sin(1
2
ϑ) eiχ

)
, |ϕ− 〉 =

(
− sin(1

2
ϑ) e−iχ

cos(1
2
ϑ)

)
, (4.219)

with eigenvalues ±|d| . The singularity in both |ϕ±(θ1, θ2) 〉 occurs at ϑ = π . Recall that d ≡
|d|
(
sin ϑ cosχ , sinϑ sinχ , cosϑ

)
, which entails d = (0 , 0 , −|d|), i.e. dx = dy = 0 and dz < 0.

This only occurs for (θ1, θ2) = (0, 0). All we need to do to compute the Chern numbers is
to identify the singularity in ζ(θ1, θ2) about this point, i.e. does ζ = −χ wind clockwise or
counterclockwise, in which case C+ = −1 or C+ = +1, respectively. Treating θ1,2 as very small,
one easily obtains ζ = − tan−1(θ2/θ1), which is to say clockwise winding, hence C± = ∓1.
Exercise : Find C± for m ∈ [−4t, 0] .

Haldane honeycomb model

In §4.3.7, we met Haldane’s famous honeycomb lattice model, H(θ) = d0(θ) + d(θ) · σ, with

d0(θ) = −2t2
[
cos θ1 + cos θ2 + cos(θ1 + θ2)

]
cos φ

dx(θ) = −t1
(
1 + cos θ1 + cos θ2

)

dy(θ) = t1
(
sin θ1 − sin θ2

)

dz(θ) = m− 2t2
[
sin θ1 + sin θ2 − sin(θ1 + θ2)

]
sin φ .

(4.220)

The energy eigenvalues are E±(θ) = d0(θ) ± |d(θ)| . Now is quite easy to demonstrate that∣∣ sin θ1+sin θ2−sin(θ1+θ2)
∣∣ 6 3

2

√
3 , and therefore that the d(θ) cannot wind if |m| > 3

√
3 t2 |sinφ|

and C± = 0. As above, we set d ≡ |d|
(
sin ϑ cosχ , sinϑ sinχ , cosϑ

)
, and the singularity in both

wavefunctions occurs at ϑ = π, which requires dx(θ) = dy(θ) = 0 and dz(θ) < 0 . This in turn
requires θ1 = θ2 =

2
3
πs where s = sgn(sinφ) . We now write θj =

2
3
πs+ δj and find

tanχ =
dy(θ)

dx(θ)
=

(
δ2 − δ1
δ1 + δ2

)
sgn(sin φ) = s tan(α− π

4
) , (4.221)

where δ ≡ |δ| (cosα, sinα) . Thus, ζ = −χ winds in the same sense as α if s < 0 and in the
opposite sense if s > 0. Thus we conclude C± = ∓sgn(sinφ) . The topological phase diagram
for the Haldane honeycomb lattice model is shown in Fig. 4.20. The phase space is a cylinder
in the dimensionless parameters φ ∈ [−π, π] and m/t2 ∈ R . Regions are labeled by the Chern
numbers C± of the two energy bands.
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Figure 4.20: Topological phase diagram for the Haldane honeycomb lattice model, in which
regions in the (sinφ,m/t2) cylinder are labeled by the Chern numbers C± of the energy bands.

Note on broken symmetries

We saw above how the band structure of spinless π-orbitals on graphene results in two Dirac
points at wavevectors K and K ′ = −K. If we adopt a pseudospin convention for the valleys,
with Pauli matrices τ , and where τ z = ±1 corresponds to the ±K valley, it turns out that we
may in one stroke write the long wavelength graphene Hamiltonian as

H0 =
√
3
2
ta
(
qx σ

x τ z + qy σ
y
)

, (4.222)

where σy again operates in the A/B sublattice space. This Hamiltonian is symmetric under the
operations of parity (P) and time-reversal (T ). Under P , we switch valleys, switch sublattices,
and send qx → −qx . Under T , we switch valleys and send q → −q . It is also important to
remember that T is antiunitary, and includes the complex conjugation operator Ǩ . The matrix
parts of these operators, i.e. other than their actions on the components of q, are given by

P = σy τ z , T = iτ yǨ . (4.223)

Note that T 2 = −1 and T −1 = −T = Ǩτ y (−i) . Of course P2 = 1 and thus P−1 = P . One can
now check explicitly that PH0P−1 = T H0T −1 = H0 .

There are three ways to introduce a gap into the model, i.e. to gap out the dispersion at the K
and K ′ points at the two inequivalent Brillouin zone corners:

1. The first way is by introducing a Semenoff mass term, which is of the form VS = ∆S σ
z .

This turns graphene into boron nitride (BN), distinguishing the local π-orbital energies
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on the B and N sites. One can check that

P σz P−1 = −σz , T σz T −1 = +σz , (4.224)

and therefore the Semenoff mass breaks parity and preserves time-reversal.

2. The second way comes from the Haldane honeycomb lattice model at m = 0, where
VH = ∆H σ

zτ z .

P σzτ z P−1 = +σzτ z , T σzτ z T −1 = −σzτ z . (4.225)

This term, the Haldane mass, preserves parity but breaks time-reversal. It leads to a
topological band structure in which the bands are classified by nonzero Chern numbers.

3. The third way involves introducing the physical electron spin, and arises from spin-orbit
effects. It essentially is described by two copies of the Haldane model, in which the up
and down spin electrons couple oppositely to magnetic flux. This was first discussed by
Kane and Mele35, and is described by the perturbation VKM = ∆KM σ

zτ zsz . where s is the
electron spin operator . The Kane-Mele mass term preserves P and T symmetries:

P σzτ zsz P−1 = +σzτ zsz , T σzτ zsz T −1 = +σzτ zsz . (4.226)

Therefore, following the tried and true rule in physics that ”everything which is not for-
bidden is compulsory”, there must be a KM mass term in real graphene. The catch is that
it is extremely small because graphene is a low-Z atom, and first principles calculations36

conclude that the spin-orbit gap is on the order of 10mK – too small to be observed due to
finite temperature and disorder effects. However, there are many materials (Bi bilayers,
HgTe/CdTe heterostructures, various three-dimensional materials such as α-Sn, BixSb1−x
and others) where the effect is predicted to be sizable and where it is indeed observed.
This is the essence of topological insulator behavior.

4.4.7 The TKNN formula

Recall the Hamiltonian of Eqn. 4.120 for the isotropic square lattice Hofstadter model with flux
φ = 2πp/q per unit cell. A more general version, incorporating anisotropy which breaks 90◦

35C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
36See Y. Yao et al., Phys. Rev. B 75, 041401(R) (2007).
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rotational symmetry, is given by37

H(θ1, θ2) = −




2t2 cos θ2 t1 0 · · · 0 t1 e
−iθ1

t1 2t2 cos
(
θ2 +

2πp
q

)
t1 0

0 t1 2t2 cos
(
θ2 +

4πp
q

)
t1

...
... 0 t1

. . .
...

0 t1
t1 e

iθ1 0 · · · t1 2t2 cos
(
θ2 +

2π(q−1)p
q

)




.

(4.227)
This is a q× q matrix, and the q eigenvectors |ϕn(θ) 〉 are labeled by a band index n ∈ {1, . . . , q},
with component amplitudes ϕa,n(θ) satisfying

Haa′(θ)ϕa′,n(θ) = En(θ)ϕa,n(θ) . (4.228)

From Wigner-von Neumann, we expect generically that neighboring bands will not cross as
a function of the two parameters (θ1, θ2), because degeneracy has codimension three. Thus,
associated with each band n is a Chern numberCn. By color coding each spectral gap according
to the Chern number of all bands below it, J. Avron produced a beautiful and illustrative image
of Hofstadter’s butterfly, shown in Fig. 4.21 for the isotropic square lattice and in Fig. 4.22 for
the isotropic honeycomb lattice.

It turns out that the Chern number is not just an abstract topological index. It is in fact the
dimensionless Hall conductivity σxy itself, provided the Fermi level lies in a gap between mag-
netic subbands. This was first discovered by Thouless, Kohmoto, Nightingale, and den Nijs,
in a seminal paper known by its authors’ initials, TKNN38. In fact, we’ve developed the the-
ory here in reverse chronological order. First came TKNN, who found that the contribution

σ
(n)
xy to the total Hall conductivity from a band lying entirely below the Fermi level is given by

σ
(n)
xy = e2

h
Cn , where

Cn =
i

2π

2π∫

0

dθ1

2π∫

0

dθ2

(〈 ∂ϕn
∂θ1

∣∣∣ ∂ϕn
∂θ2

〉
−
〈 ∂ϕn
∂θ2

∣∣∣ ∂ϕn
∂θ1

〉)
(4.229)

is an integral over the Brillouin zone. They proved that this expression is an integer, because
invoking Stokes’ theorem,

Cn =
i

2π

2π∫

0

dθ2

〈
ϕn

∣∣∣ ∂ϕn
∂θ2

〉∣∣∣∣
θ1=2π

θ1=0

− i

2π

2π∫

0

dθ1

〈
ϕn

∣∣∣ ∂ϕn
∂θ1

〉∣∣∣∣
θ2=2π

θ2=0

. (4.230)

37We drop the hat on Ĥ(θ) but fondly recall that Ĥaa′(θ) is the lattice Fourier transform of Haa′(R −R′).
38D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).
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Figure 4.21: Avron’s depiction of the Hofstadter butterfly for the isotropic square lattice sys-
tem. The band gap regions are color coded by Chern number, C, which is the sum of the Chern
numbers of all bands below a given gap. White regions correspond to C = 0. See J. E. Avron,
Colored Hofstadter butterflies, in Multiscale Methods in Quantum Mechanics, P. Blanchard
and G. Dell’Antonio, eds. (Birkhäuser, 2004).

But since H(θ1, θ2) is doubly periodic with period 2π in each of its arguments, we must have

|ϕn(θ1, 2π) 〉 = eifn(θ1) |ϕn(θ1, 0) 〉
|ϕn(2π, θ2) 〉 = eign(θ2) |ϕn(0, θ2) 〉 .

(4.231)

Thus, one finds

Cn =
1

2π

(
fn(2π)− fn(0) + gn(0)− gn(2π)

)
. (4.232)

But we also have

|ϕn(0, 0) 〉 = e−ifn(0) |ϕn(0, 2π) 〉 = e−ifn(0) e−ign(2π) |ϕn(2π, 2π) 〉 (4.233)

= e−ifn(0) e−ign(2π) eifn(2π) |ϕn(2π, 0) 〉 = e−ifn(0) e−ign(2π) eifn(2π) eign(0) |ϕn(0, 0) 〉 ,

and therefore exp(2πiCn) = 1 and Cn ∈ Z . But just as Berry didn’t know he had found a
holonomy, TKNN didn’t know they had found a Chern number. That mathematical feature
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Figure 4.22: Colored Hofstadter butterfly for the honeycomb lattice system, from A. Agazzi,
J.-P. Eckman, and G. M. Graf, J. Stat. Phys. 156, 417 (2014).

was first elucidated by Avron, Seiler, and Simon39, in a paper which is widely appreciated but
which, understandably, is not known by its authors’ initials.

To see why Hall conductivity is related to Berry curvature, consider an electric field E = Ey ŷ,

and the single electron Hamiltonian H(Ey) = H(0) − eEyy, where H(0) = π2

2m
+ V (r) has

eigenstates |α 〉 and eigenvalues εα. First order perturbation theory in the electric field term
says

|α′ 〉 = |α 〉 − eEy
∑

β

′ | β 〉〈 β | y |α 〉
εα − εβ

, (4.234)

where the prime on the sum means the term with β = α is excluded. Let’s now compute the
expectation of the velocity operator vx in the perturbed state |α′ 〉. We have, to lowest order,

〈α′ | vx |α′ 〉 = −eEy
∑

β

′ 〈α | vx | β 〉〈 β | y |α 〉+ 〈α | y | β 〉〈 β | vx |α 〉
εα − εβ

(4.235)

39J. E. Avron, R. Seiler, and B. Simon, Phys. Rev. Lett. 51, 51 (1983).
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We now invoke the Feynman-Hellman theorem, which says

〈α | y | β 〉 = ~

i

〈α | vy | β 〉
εα − εβ

, (4.236)

multiply by the electron charge−e, divide by the area of the system Ω, and sum using the Fermi
distribution over the levels |α 〉, to obtain the current density jx :

jx = Ey ·
e2

h
· 2πi~

2

Ω

∑

α

∑

β

fα (1− fβ) ǫij
〈α | vi | β 〉〈 β | vj |α 〉

(εα − εβ)2
, (4.237)

where fα is the Fermi function at temperature T , chemical potential µ, and energy εα . The
above expression for σxy = jx/Ey is known as the Kubo formula for the Hall conductivity. At
T = 0, the Fermi distribution becomes the step function fα = Θ(EF − Eα).
Suppose our system lies on a torus defined by the spatial periods L1 and L2. Define the gauge
transformed Hamiltonian

H̃(θ) ≡ e−iq·rH e+iq·r , (4.238)

where

q = θ2
ẑ × L1

Ω
− θ1

ẑ × L2

Ω
, (4.239)

with Ω = ẑ · L1 × L2 = 2πℓ2p with p ∈ Z , i.e. the total magnetic flux through the system is an
integer multiple of the Dirac quantum. Then

∂H̃

∂θi
=
∂q

∂θi
· e−iq·r ~v eiq·r ≡ ∂q

∂θi
· ~ṽ , (4.240)

because [H, r] = (~/i) v . Thus, defining | α̃ 〉 ≡ exp(−iq · r) |α 〉, and recalling the definition of
the wavevector q = ǫab θa Lb × ẑ/Ω , we find

∂H̃

∂θa
= ~ ǫab ǫij

ṽi L
j
b

Ω
. (4.241)

We then find

σxy =
jx
Ey

=
∑

α occ

σ(α)
xy , (4.242)

where the sum is over occupied states below the Fermi level, and where

σ(α)
xy =

e2

h
· 2πi

∑

β

′
ǫij

〈
α̃
∣∣ ∂H̃
∂θi

∣∣ β̃
〉〈
β̃
∣∣ ∂H̃
∂θj

∣∣ α̃
〉

(εα − εβ)2
, (4.243)
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which is precisely of the form of Eqn. 4.202. Thus, if we now uniformly average over the boundary
phases θ1 and θ2 , we obtain

〈
σ(α)
xy

〉
=
e2

h
· i
2π

2π∫

0

dθ1

2π∫

0

dθ2
∑

β

′
ǫij

〈
α̃
∣∣ ∂H̃
∂θi

∣∣ β̃
〉〈
β̃
∣∣ ∂H̃
∂θj

∣∣ α̃
〉

(εα − εβ)2
=
e2

h
Cα , (4.244)

i.e. each filled band α contributes e2

h
Cα to the total Hall conductivity whenever the Fermi level

at T = 0 lies in a gap between energy bands. For a crystalline (periodic) system, averaging over
θ1,2 is tantamount to integrating over the Brillouin zone.

4.5 Semiclassical Dynamics of Bloch Electrons

Consider a time-evolving quantum mechanical state |ψ(t)〉. The time dependence of the expec-
tation value O(t) = 〈ψ(t)|O|ψ(t)〉 satisfies

dO
dt

=
i

~
〈ψ(t) | [H,O] |ψ(t) 〉 . (4.245)

Thus forH = p2

2m
+V (r)we have d

dt
〈r〉 = 〈 p

m
〉 and d

dt
〈p〉 = −〈∇V 〉 , a result known as Ehrenfest’s

theorem. There are a couple of problems in applying this to electrons in crystals, though. One
is that the momentum p in a Bloch state is defined only modulo ~G, where G is any reciprocal
lattice vector. Another is that the potential ∆V (r) = eE · r breaks the lattice periodicity present
in the crystal.

4.5.1 Adiabatic evolution

Here we assume d = 3 dimensions. Recall E = −∇φ− c−1∂tA , so rather that taking A = 0 and
φ = −E · r in the case of a uniform electric field, we can instead take A(t) = −cEt and φ = 0
and write

H(t) =

(
p+ e

c
A(t)

)2

2m
+ V (r) , (4.246)

with ∂tA = −cE, and ∇×A = B if there is a magnetic field as well. We assume that the electric
field is very weak, which means that we can treat the time dependent Hamiltonian H(t) in the
adiabatic limit40.

We begin by reiterating some key results from §4.4.4. Consider a setting in which a Hamiltonian
H(λ) depends on a set of parameters λ = {λ1, . . . , λK}. The adiabatic eigenstates of H(λ) are
denoted as |n(λ)〉, where H(λ) |n(λ)〉 = En(λ) |n(λ)〉 . Now suppose that λ(t) varies with time.

40Technically, we should require there be a finite energy gap in order to justify adiabatic evolution.
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Since the set
{
|n(λ)〉

}
is complete, we may expand the wavefunction |ψ(t)〉 in the adiabatic

basis, viz.
|ψ(t) 〉 =

∑

n

an(t) |n
(
λ(t)

)
〉 . (4.247)

Now we impose the condition i~ ∂t |ψ(t)〉 = H
(
λ(t)

)
|ψ(t)〉 . We first define the phases φn(t) and

γn(t), where

φn(t) = −
1

~

t∫
dt′ En

(
λ(t′)

)
(4.248)

and where γn(t) satisfies
dγn
dt

= i 〈n
(
λ(t)

)
| d
dt
|n
(
λ(t)

)
〉 . (4.249)

Then, writing an(t) ≡ eiφn(t) eiγn(t) αn(t), we find

dαn
dt

= −
∑

l

′
ei(γl−γn) ei(φl−φn) αl , (4.250)

where the prime on the sum indicates that the term l = n is to be excluded. Now consider
initial conditions where al(0) = δln. Since the evolution is adiabatic, the phases φl(t) are the
fastest evolving quantities, with ∂t φl = −El/~ = O(1), as opposed to γl and αl, which vary
on the slow time scale associated with the evolution of λ(t). This allows us to approximately
integrate the above equations to obtain

αn(t) ≈ αn(0) = 1 , αl(t) ≈ −i~
〈 l | ∂t |n 〉
El − En

. (4.251)

Thus,

|ψ(t) 〉 ≈ eiφn(t) eiγn(t)

{
|n(t) 〉 − i~

∑

l

′ | l(t) 〉〈 l(t) | dt |n(t) 〉
El(t)− En(t)

}
, (4.252)

where each | l(t) 〉 = | l
(
λ(t)

)
〉 , and where dt = d/dt is the total time derivative. Note that we

can write
d |n〉
dt

=
∂ |n〉
∂λµ

· dλµ
dt

, (4.253)

with an implied sum on µ, and with i 〈n| dt |n〉 = Aµn λ̇µ , where

Aµn(λ) ≡ i
〈
n(λ)

∣∣ ∂

∂λµ

∣∣n(λ)
〉

(4.254)

is the geometric connection (or Berry connection) for the state |n(λ) 〉. Note that the Berry connec-
tion is gauge-dependent, in that redefining | ñ(λ) 〉 ≡ eifn(λ) |n(λ) 〉 results in

Ãµn(λ) = i
〈
ñ(λ)

∣∣ ∂

∂λµ

∣∣ ñ(λ)
〉
= Aµn(λ)−

∂fn
∂λµ

. (4.255)
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If we require that the adiabatic wavefunctions be single-valued as a function of λ, then the
integral of the Berry connection around a closed path is a gauge-invariant quantity,

γn(C) ≡
∮

C

dλµ Aµn(λ) , (4.256)

since fn(λ) can wind only by 2πk, with k ∈ Z, around a closed loop C in parameter space. If C
is contractable to a point, then k = 0.

Now consider the cell function |unk〉 as a function of the Bloch wavevector k for each band
index n. The velocity operator is v(k) = ~

−1 ∂H(k)/∂k, where H(k) = e−ik·rHeik·r. We then
have41

dr

dt
= 〈ψ(t) | v(k) |ψ(t) 〉 = 1

~

∂En(k)

∂k
− dk

dt
× Ωn(k) (4.257)

where

Aµn(k) = i
〈
unk

∣∣ ∂

∂kµ
∣∣ unk

〉
, Ωµ

n(k) = ǫµνλ
∂Aλn(k)
∂kν

. (4.258)

In vector notation, An(k) = i 〈 unk |∇k | unk 〉 and Ωn(k) = ∇k×An(k) , where ∇k = ∂
∂k

. Eqn.
4.257 is the first of our semiclassical equations of motion for an electron wavepacket in a crystal.
The quantityΩn(k), which has dimensions of area, is called the Berry curvature of the band |unk〉 .
The second term in Eqn. 4.257 is incorrectly omitted in many standard solid state physics texts!
When the orbital moment of the Bloch electrons is included, we must substitute42

En(k)→ En(k)−Mn(k) · B(r, t) , (4.259)

where

Mµ
n (k) = e ǫµνλ Im

〈
∂unk
∂kν

∣∣∣∣
(
En(k)−H(k)

) ∣∣∣∣
∂unk
∂kλ

〉
, (4.260)

and H(k) = (p+~k)2

2m
+ V (r) as before.

The second equation of semiclassical motion is for dk/dt. This is the familiar equation derived
from Newton’s second law43,

dk

dt
= − e

~
E − e

~c

dr

dt
× B − e

2~mc
∇(σ · B) , (4.261)

where we include the contribution from the Zeeman Hamiltonian HZ = (e~/2mc) σ · B. If we
choose ẑ as the spin quantization axis, so HZ = (e~/2mc) σBz, then we can combine the spin
orbit force with that of the electric field and write

dk

dt
= − e

~
Eσ −

e

~c

dr

dt
× B , (4.262)

where
Eσ = E +

σ

2mc
∇Bz . (4.263)

41See §4.8.
42See G. Sundaram and Q. Niu, Phys. Rev. B 59, 14915 (1999); also D. Xiao, M. Chang, and Q. Niu, Rev. Mod.

Phys. 82, 1959 (2010).
43Some subtleties in the derivation are discussed in A. Manohar, Phys. Rev. B 34, 1287 (1986).
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4.5.2 Violation of Liouville’s theorem and its resolution

Our equations of motion for a wavepacket are thus

ẋα + ǫαβγ k̇
β Ωγ

n = vαn

k̇α +
e

~c
ǫαβγ ẋ

βBγ = − e
~
Eα ,

(4.264)

where vn(k) = ∇k En(k)/~ . These equations may be recast as
(

δαβ ǫαβγ Ω
γ
n

e
~c
ǫαβγ B

γ δαβ

)(
ẋα

k̇α

)
=

(
vαn
− e

~
Eα

)
. (4.265)

Inverting, we find

ẋα =
(
1 + e

~c
B · Ωn

)−1
{
vαn + e

~c
(vn · Ωn)Bα + e

~
ǫαβγ E

β Ωγ
n

}

k̇α = − e
~

(
1 + e

~c
B · Ωn

)−1
{
Eα + e

~c
(E · B)Ωα

n + 1
c
ǫαβγ v

β
n B

γ
}

.
(4.266)

It is straightforward to derive the result

∂ẋα

∂xα
+
∂k̇α

∂kα
= −∂ lnDn

∂xα
dxα

dt
− ∂ lnDn

∂kα
dkα

dt
− ∂ lnDn

∂t
= −d lnDn

dt
, (4.267)

where
Dn(r, k, t) = 1 +

e

~c
B(r, t) ·Ωn(k) (4.268)

is dimensionless. As discussed by Xiao, Shi, and Niu44, this implies a violation of Liouville’s
theorem, as phase space volumes will then expand according to

d ln∆V

dt
= ∇r · ṙ +∇k · k̇ = −d lnDn(r, k, t)/dt , (4.269)

where ∆V = ∆r∆k is a phase space volume element. Thus, ∆V (t) = ∆V (0)/Dn(r, k, t) , and
this inconvenience can be eliminated by redefining the phase space metric as

dµ =
d3r d3k

(2π)3
−→ dµ̃ ≡ Dn(r, k, t)

d3r d3k

(2π)3
. (4.270)

This means that the expectation of any local observable O is given by

〈O〉(r′, t) =
∑

n

∫

Ω̂

dµ̃ fn(r, k, t) 〈 unk | O | unk 〉 δ(r − r′)

=
∑

n

∫

Ω̂

d3k

(2π)3
Dn(r,

′
k, t) fn(r

′, k, t) 〈 unk | O | unk 〉 ,

(4.271)

44See D. Xiao, J. Shi, and Q. Niu, Phys. Rev. Lett.. 95, 137204 (2005).
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where fn(r, k, t) is the mean occupation number of the state |nk 〉 in the region spatially centered
at r, and where we have absorbed the spin polarization label σ into the band label n.45 In
equilibrium, fn(k) is the Fermi function f

(
En(k)− µ

)
. The electrical current density carried by

a given band n is then

jαn (r, t) =

∫

Ω̂

ddk

(2π)d
Dn(r, k, t) fn(k) (−eẋ)

= −e
∫

Ω̂

d3k

(2π)3

{
vαn +

e

~c
(vn ·Ωn)Bα +

e

~
ǫαβγ E

β Ωγ
n

}
fn(k) .

(4.272)

Note the cancellation of the Dn(k) factors in dµ and ẋ. Consider the case of a filled band, with
B = 0. The total current density is then

jn = −e
2

~
E ×

∫

Ω̂

d3k

(2π)3
Ωn(k) . (4.273)

Thus, when the geometric curvature Ωn(k) is nonzero, a filled band may carry current.

4.5.3 Bloch oscillations

Let’s consider the simplest context for our semiclassical equations of motion: d = 1 dimension,
which means B = 0. We’ll take a nearest neighbor s orbital hopping Hamiltonian, whose sole
tight binding band has the dispersion46 E(k) = −2β cos(ka). The semiclassical equations of
motion are

ẋ =
1

~

∂E

∂k
=

2βa

~
sin(ka) , k̇ = − e

~
E . (4.274)

The second of these equations is easily integrated for constant E:

k(t) = k(0)− e

~
Et , (4.275)

in which case

ẋ =
2βa

~
sin
(
k(0) a− eaEt

~

)
⇒ x(t) = x(0)+

2β

eE

[
cos
(
k(0) a− eaEt

~

)
−cos

(
k(0) a

)]
.

(4.276)
Note that x(t) oscillates in time! This is quite unlike the free electron case, where we have
mẍ = −eE, yielding ballistic motion x(t) = x(0) + ẋ(0) t − eE

2m
t2, i.e. uniform acceleration

(−eE/m) . This remarkable behavior is called a Bloch oscillation.

45This allows for intrinsic spin structure in the cell wavefunctions, which is the case when spin-orbit terms are
present.

46We write the hopping integral as β so as to avoid any confusion with the time variable, t.
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The period of the Bloch oscillations is τ
B
= ~/eaE . Let’s estimate τ

B
, takingE = 1V/cm and a =

3 Å. We find τ
B
= 1.4×10−7 s, which is much larger than typical scattering times due to phonons

or lattice impurities. For example, the thermal de Broglie lifetime is ~/k
B
T = 2.5 × 10−14 s at

T = 300K. Thus, the wavepacket never makes it across the Brillouin zone - not even close. In
the next chapter, we will see how to model charge transport in metals.

4.6 Ab initio Calculations of Electronic Structure

4.6.1 Orthogonalized plane waves

The plane wave expansion of Bloch states in Eqn. 4.10,

ψnk(r) =
∑

G

C
(n)
G (k) ei(G+k)·r (4.277)

is formally correct, but in practice difficult to implement. The main reason is that one must

keep a large number of coefficients C
(n)
G (k) in order to get satisfactory results, because the inter-

esting valence or conduction band Bloch functions must be orthogonal to the core Bloch states
derived from the atomic 1s, 2s, etc. levels. If the core electrons are localized within a volume
vc, Heisenberg tells us that the spread in wavevector needed to describe such states is given by
∆kx∆ky∆kz >∼ v−1

c . In d = 3, the number of plane waves we need to describe a Bloch state of
crystal momentum ~k is then

Npw ≈
∆kx∆ky∆kz

v̂0
=

1

8π3
· v0
vc

, (4.278)

where v̂0 = vol(Ω̂) is the volume of the first Brillouin zone (with dimensions [v̂0] = L−d). If
the core volume vc is much smaller than the Wigner-Seitz cell volume v0, this means we must
retain a large number of coefficients in the expansion of Eqn. 4.277.

Suppose, however, an eccentric theorist gives you a good approximation to these core Bloch

states. Indeed, according to Eqn. 4.58, if we define Cn(k) ≡ S
1/2
nn′ (k)Dn′(k), then the coefficients

Dn(k) satisfy the eigenvalue equation

S−1/2(k)H(k)S−1/2(k)Dn(k) = En(k)Dn(k) , (4.279)

Thus, for each k the eigenvectors
{
Da(k)

}
of the Hermitian matrix H̃(k) ≡ S−1/2(k)H(k)S−1/2(k)

yield, upon multiplication by S1/2(k), the coefficients Cn(k). Here we imagine that the indices
n and n′ are restricted to the core levels alone. This obviates the subtle problem of overcom-
pleteness of the atomic levels arising from the existence of scattering states. Furthermore, we
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may write

Snn′(k) = δnn′ +Σnn′(k)

Σnn′(k) =
∑

R 6=0

Snn′(R) e−ik·R , (4.280)

Now since we are talking about core levels, the contribution Σnn′(k), which involves overlaps
on different sites, is very small. This means the inverse square root, S−1/2 ≈ 1 − 1

2
Σ + O(Σ2),

can be well-approximated by the first two terms in the expansion in powers of Σ.

We will write | ak 〉 for a core Bloch state in band a, and | aR 〉 for the corresponding core Wannier
state47. Now define the projector,

Π =
∑

a,k

| ak 〉〈 ak | =
∑

a,R

| aR 〉〈 aR | . (4.281)

Note that Π2 = Π, which is a property of projection operators. We now define

| φG+k 〉 ≡
(
1− Π

)
|G+ k 〉 , (4.282)

where |G+ k 〉 is the plane wave, for which 〈 r |G+ k 〉 = V −1/2 ei(G+k)·r. It is important to note

that we continue to restrict k ∈ L̂ to the first Brillouin zone. Note that Π |φG+k〉 = 0, i.e. the state
|φG+k〉 has been orthogonalized to all the core orbitals. Accordingly, we call

φG+k(r) =
ei(G+k)·r
√
V

{
1−

∑

a

uak(r) e
−iG·r

∫
ddr′ u∗ak(r

′) eiG·r′
}

(4.283)

an orthogonalized plane wave (OPW).

As an example, consider the case of only a single core 1s orbital, whose atomic wavefunction

is given by the hydrogenic form ϕ(r) = α3/2
√
π
e−αr. The core cell function is then approximately

uk(r) ≈
1√
N

∑

R

ϕ(r −R) e−ik·(r−R) . (4.284)

We then have ∫
d3r′ u∗k(r

′) eiG·r′ ≈
√
N
[
ϕ̂(G+ k)

]∗
=

8π1/2α5/2N1/2

[
α2 + (G+ k)2

]2 (4.285)

and then

φG+k(r) =
ei(G+k)·r
√
V

{
1− 8α4

[
α2 + (G+ k)2

]2
∑

R

e−α|r−R| e−i(G+k)·(r−R)

}
. (4.286)

47Recall that the Wannier states in a given band are somewhat arbitrary as they depend on a choice of phase.
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For G+ k = 0, we have, in the R = 0 cell,

φ0(r) ≈
1√
V

(
1− 8 e−αr

)
. (4.287)

Note that the OPW states are not normalized. Indeed, we have48

〈 φG+k | φG+k 〉 =
∫
ddr

∣∣φG+k(r)
∣∣2 = 1− 1

V

∑

a

∣∣∣∣
∫
ddr uak(r) e

−iG·r′
∣∣∣∣
2

. (4.288)

The energy eigenvalues are then obtained by solving the equation detMGG′(k, E) = 0 for En(k),
where

MGG′(k, E) = 〈 φG+k |H | φG′+k 〉 (4.289)

=

[
~2(G+ k)2

2m
− E

]
δGG′ + VG−G′ +

∑

a

[
E − Ea(k)

]
〈G+ k | ak 〉 〈 ak |G′ + k 〉 .

The overlap of the plane wave state |G+ k 〉 and the core Bloch state | ak 〉 is given by

〈G+ k | ak 〉 = N1/2 v
−1/2
0

∫

Ω

ddr uak(r) e
−iG·r . (4.290)

4.6.2 The pseudopotential

Equivalently, we may use the | φG+k 〉 in linear combinations to build our Bloch states, viz.

|ψnk 〉 =
∑

G

C
(n)
G (k) | φG+k 〉 ≡ (1− Π) | ψ̃nk 〉 , (4.291)

where | ψ̃nk 〉 =
∑

G C
(n)
G (k) |G+ k 〉. Note that the pseudo-wavefunction ψ̃nk(r) is a sum over

plane waves. What equation does it satisfy? From H|ψnk 〉 = E |ψnk 〉, we derive

H| ψ̃nk 〉+
VR︷ ︸︸ ︷

(E −H) Π | ψ̃nk 〉 = E | ψ̃nk 〉 . (4.292)

Note that
VR = (E −H) Π =

∑

a

[
E − Ea(k)

]
| ak 〉〈 ak | (4.293)

48Note that 0 6 〈φk |φk 〉 6 1.
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Figure 4.23: Left: Blue curves sketch the potential V in the vicinity of a nucleus, and corre-
sponding valence or conduction band wavefunction ψnk. Note that ψnk wiggles significantly in
the vicinity of the nucleus because it must be orthogonal to the core atomic orbitals. Red curves

sketch the pseudopotential VP and corresponding pseudo-wavefunction ψ̃nk. Right: pseudopo-
tential calculation for the band structure of Si.

and

〈 r | VR | ψ̃ 〉 =
∫
ddr′ VR(r, r

′) ψ̃(r′) , (4.294)

where

VR(r, r
′) =

∑

a,k

[
E −Ea(k)

]
ψak(r)ψ

∗
ak(r

′)

≈
∑

a,R

(E − Ea) ϕa(r −R)ϕ∗
a(r

′ −R) ,

(4.295)

where ϕa(r) is the ath atomic core wavefunction. The approximation in the second line above
is valid in the limit where the core energy bands are dispersionless, and Ea(k) is replaced by
the k-independent atomic eigenvalue Ea. We then use

∑
k | ak 〉〈 ak | =

∑
R | aR 〉〈 aR |, with

〈 r | aR 〉 ≈ ϕa(r − R). Because the atomic levels are highly localized, this means VR(r, r
′) is

very small unless both r and r′ lie within the same core region. Thus, VR(r, r
′) is “almost

diagonal” in r and r′. Since the energies of interest satisfy E > Ea, the term VR tends to add
to what is a negative (attractive) potential V , and the combination VP = V + VR, known as the
pseudopotential, is in general weaker the original potential. As depicted in the left panel of Fig.
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4.23, whereas the actual valence or conduction band Bloch states ψc/v,k(r) must wiggle rapidly
in the vicinity of each nucleus, in order to be orthogonal to the atomic core states and thereby
necessitating the contribution of a large number of high wavevector plane wave components,

each pseudo-wavefunction ψ̃nk(r) is unremarkable in the core region, and can be described
using far less information.

In fact, there is a great arbitrariness in defining the operator VR. Suppose we take ṼR = ΠW ,
where W is any operator. Note that

ṼR(r, r
′) = 〈 r |ΠW | r′ 〉 =

∑

a,k

ψak(r) 〈 ak |W | r′ 〉 ≡
∑

a,k

ψak(r)W
∗
ak(r

′) . (4.296)

This needn’t even be Hermitian! The point is that H = T + V and H̃ = T + V + ṼR have the
same eigenvalues so long as they are acting outside the space of core wavefunctions. To see
this, let us suppose

H |ψ 〉 = E |ψ 〉 , H̃ | ξ 〉 = Ẽ | ξ 〉 . (4.297)

Then

Ẽ 〈ψ | ξ 〉 = 〈ψ | H̃ | ξ 〉 = 〈ψ | (H +ΠW ) | ξ 〉
= E 〈ψ | ξ 〉+ 〈ψ |ΠW | ξ 〉 .

(4.298)

Now if |ψ 〉 lies in the complement of that part of the Hilbert space spanned by the core states,

then Π |ψ 〉 = 0, and it follows that (E−Ẽ) 〈ψ | ξ 〉 = 0, henceE = Ẽ, so long as 〈ψ | ξ 〉 6= 0. If we

want VP to be Hermitian, a natural choice might be ṼR = −ΠV Π, which gives VP = V −ΠV Π.
This effectively removes from the potential V any component which can be constructed from
core states alone.

4.7 Appendix I : Gauss-Bonnet and Pontrjagin

4.7.1 Gauss-Bonnet theorem

There is a deep result in mathematics, the Gauss-Bonnet theorem, which connects the local
geometry of a two-dimensional manifold to its global topology. The content of the theorem is as
follows: ∫

M

dS K = 2π χ(M) = 2π
∑

i

ind
xi

(V ) , (4.299)

where M is a 2-manifold (a topological space locally homeomorphic to R2), K is the local

Gaussian curvature ofM, given byK = (R1R2)
−1, whereR1,2 are the principal radii of curvature

at a given point, and dS is the differential area element. Here V (x) is a vector field onM, and



230 CHAPTER 4. ELECTRONIC BAND STRUCTURE OF CRYSTALS

Figure 4.24: Two smooth vector fields on the sphere S2, which has genus g = 0. Left panel: two
index +1 singularities. Right panel: one index +2 singularity.

indxi(V ) refers to the index of V at its ith singularity xi. The index is in general defined relative

to any closed curve inM, and is given by the winding number of V (x) around the curve, viz.

ind
C
(V ) =

∮

C

dx ·∇ tan−1

(
V2(x)

V1(x)

)
. (4.300)

If C encloses no singularities, then the index necessarily vanishes, but if C encloses one or more
singularities, the index is an integer, given by the winding number of V around the curve C.

The quantity χ(M) is called the Euler characteristic ofM and is given by χ(M) = 2− 2g, where
g is the genus ofM, which is the number of holes (or handles) ofM. Furthermore, V (x) can be

any smooth vector field onM, with xi the singularity points of that vector field49.

To apprehend the content of the Gauss-Bonnet theorem, it is helpful to consider an example.
LetM = S2 be the unit 2-sphere, as depicted in fig. 4.24. At any point on the unit 2-sphere,
the radii of curvature are degenerate and both equal to R = 1, hence K = 1. If we integrate the
Gaussian curvature over the sphere, we thus get 4π = 2π χ

(
S2
)
, which says χ(S2) = 2− 2g = 2,

which agrees with g = 0 for the sphere. Furthermore, the Gauss-Bonnet theorem says that any
smooth vector field on S2 must have a singularity or singularities, with the total index summed
over the singularities equal to +2. The vector field sketched in the left panel of fig. 4.24 has
two index +1 singularities, which could be taken at the north and south poles, but which could
be anywhere. Another possibility, depicted in the right panel of fig. 4.24, is that there is a one
singularity with index +2.

In fig. 4.25 we show examples of manifolds with genii g = 1 and g = 2. The case g = 1 is the

49The singularities xi are fixed points of the dynamical system ẋ = V (x).
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Figure 4.25: Smooth vector fields on the torus T2, and on a 2-manifoldM of genus g = 2

familiar 2-torus, which is topologically equivalent to a product of circles: T2 ∼= S1 × S1, and is

thus coordinatized by two angles θ1 and θ2. A smooth vector field pointing in the direction of

increasing θ1 never vanishes, and thus has no singularities, consistent with g = 1 and χ
(
T2
)
= 0.

Topologically, one can define a torus as the quotient space R2/Z2, or as a square with opposite
sides identified. This is what mathematicians call a ‘flat torus’ – one with curvature K =
0 everywhere. Of course, such a torus cannot be embedded in three-dimensional Euclidean
space; a two-dimensional figure embedded in a three-dimensional Euclidean space inherits a
metric due to the embedding, and for a physical torus, like the surface of a bagel, the Gaussian
curvature is only zero on average.

The g = 2 surfaceM shown in the right panel of fig. 4.25 has Euler characteristic χ(M) = −2,
which means that any smooth vector field onMmust have singularities with indices totalling
−2. One possibility, depicted in the figure, is to have two saddle points with index −1; one of
these singularities is shown in the figure (the other would be on the opposite side).

4.7.2 The Pontrjagin index

Consider an N-dimensional vector field ẋ = V (x), and let n̂(x) be the unit vector field defined
by n̂(x) = V (x)

/
|V (x)| . Consider now a unit sphere in n̂ space, which is of dimension (N − 1).

If we integrate over this surface, we obtain

ΩN =

∮
dσa n

a =
2π(N−1)/2

Γ
(
N−1
2

) , (4.301)

which is the surface area of the unit sphere SN−1. Thus, Ω2 = 2π, Ω3 = 4π, Ω4 = 2π2, etc.
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Figure 4.26: Composition of two circles. The same general construction applies to the merging
of n-spheres Sn, called the wedge sum.

Now consider a change of variables to those over the surface of the sphere, (ξ1, . . . , ξN−1). We
then have

ΩN =

∮

SN−1

dσa n
a =

∮
dN−1ξ ǫa1···aN n

a1
∂na2

∂ξ1
· · · ∂n

aN

∂ξN−1

(4.302)

The topological charge is then

Q =
1

ΩN

∮
dN−1ξ ǫa1···aN n

a1
∂na2

∂ξ1
· · · ∂n

aN

∂ξN−1

(4.303)

The quantity Q is an integer topological invariant which characterizes the map from the surface
(ξ1, . . . , ξN−1) to the unit sphere |n̂| = 1. In mathematical parlance, Q is known as the Pontrjagin
index of this map.

This analytical development recapitulates some basic topology. LetM be a topological space
and consider a map from the circle S1 toM. We can compose two such maps by merging the
two circles, as shown in fig. 4.26. Two maps are said to be homotopic if they can be smoothly
deformed into each other. Any two homotopic maps are said to belong to the same equivalence
class or homotopy class. For general M, the homotopy classes may be multiplied using the
composition law, resulting in a group structure. The group is called the fundamental group of
the manifold M, and is abbreviated π1(M). IfM = S2, then any such map can be smoothly
contracted to a point on the 2-sphere, which is to say a trivial map. We then have π1(M) =
0. If M = S1, the maps can wind nontrivially, and the homotopy classes are labeled by a
single integer winding number: π1(S

1) = Z. The winding number of the composition of two
such maps is the sum of their individual winding numbers. If M = T2, the maps can wind
nontrivially around either of the two cycles of the 2-torus. We then have π1(T

2) = Z2, and in
general π1(T

n) = Zn. This makes good sense, since an n-torus is topologically equivalent to
a product of n circles. In some cases, π1(M) can be nonabelian, as is the case whenM is the
genus g = 2 structure shown in the right hand panel of fig. 4.25.
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In general we define the nth homotopy group πn(M) as the group under composition of maps
from Sn to M. For n > 2, πn(M) is abelian. If dim(M) < n, then πn(M) = 0. In general,
πn(S

n) = Z. These nth homotopy classes of the n-sphere are labeled by their associated Pontrja-
gin index Q.

4.8 Appendix II : Derivation of Eqn. 4.257

Consider the Hamiltonian H(k) = e−ik·rHeik·r, for which H(k) |unk〉 = En(k) |unk〉, where
unk(r) = 〈 r | unk 〉 = e−ik·r ψnk(r) are the cell functions. We consider the wavevector k = k(t) to
be an adiabatic parameter which is slowly varying with time. In this setting, the time-dependent
solutions to the Schrödinger equation,

i~
∂

∂t
| ũnk(t) 〉 = H(k) | ũnk(t) 〉 , (4.304)

are, per Eqn. 4.251, given by

| ũnk(t) 〉 = eiφnk(t) eiγnk

{
| unk 〉 − i~

∑

ℓ

′ | uℓk 〉 〈 uℓk | dt | unk 〉
Eℓ(k)− En(k)

}
+ . . . , (4.305)

where the prime on the sum indicates that the state |unk〉 is excluded. Higher order terms are
negligible in the adiabatic limit. Here

φnk(t) = −
1

~

t∫
dt′ En

(
k(t′)

)
, (4.306)

wherek = k(t), and

dγnk
dt

= i 〈 unk |
d

dt
| unk 〉 = i 〈 unk |

∂

∂kα
| unk 〉

dkα

dt
. (4.307)

We now compute the expectation of the velocity operator, vα = ~−1 ∂αH(k), where we abbrevi-
ate ∂α ≡ ∂/∂kα :
〈
ũnk(t)

∣∣ vα
∣∣ ũnk(t)

〉
= 〈 unk | ~−1 ∂αH(k) | unk 〉 (4.308)

− i
∑

ℓ

′ 〈 unk | ∂αH(k) | uℓk 〉 〈 uℓk | dt | unk 〉 − 〈 unk | dt | uℓk 〉 〈 uℓk | ∂αH(k) | unk 〉
Eℓ(k)−En(k)

.

Now

∂

∂kα
〈 unk |H(k) | uℓk 〉 =

∂En(k)

∂kα
δnℓ (4.309)

= Eℓ(k)
〈 ∂unk
∂kα

∣∣∣ uℓk
〉
+
〈
unk

∣∣∣ ∂H(k)

∂kα

∣∣∣ uℓk
〉
+ En(k)

〈
unk

∣∣∣ ∂uℓk
∂kα

〉
,
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which says

〈 unk | ∂αH(k) | uℓk 〉 = ∂αEn(k) δnℓ +
(
En(k)−Eℓ(k)

)
〈 unk | ∂α | uℓk 〉 . (4.310)

Thus, we have

〈 ũnk(t) | vα | ũnk(t) 〉 = ~
−1 ∂αEn(k) + i

∑

ℓ

′(
〈 unk | ∂α | uℓk 〉 〈 uℓk | dt | unk 〉 − c.c.

)
(4.311)

= ~
−1 ∂αEn(k)− i

(
〈 ∂αunk | dtunk 〉 − 〈 ∂αunk | unk 〉 〈 unk | dtunk 〉 − c.c.

)

= ~
−1 ∂αEn(k)− i

(
〈 ∂αn | ∂βn 〉 k̇β − 〈 ∂αn |n 〉 〈n | ∂βn 〉 k̇β − c.c.

)

= ~
−1 ∂αEn(k)− i

(
∂α 〈n | ∂βn 〉 − ∂β

〈
n
∣∣ ∂αn

〉)
k̇β ,

where | ∂αunk 〉 ≡ | ∂αn 〉, where we ultimately suppress the wavevector label k for notational
convenience. Recall now the definitions in Eqn. 4.258,

Aαn(k) = i
〈
unk

∣∣ ∂

∂kα

∣∣ unk
〉

, Ωα
n (k) = ǫαβγ

∂Aγn(k)
∂kβ

. (4.312)

In our abbreviated notation, Aαn = i 〈n | ∂α n 〉, and we obtain

dxα

dt
= 〈ψnk(t) | vα |ψnk(t) 〉 = ~

−1 ∂αEn(k)− ǫαβγ k̇β Ωγ
n(k) , (4.313)

since

ǫαβγ k̇
β Ωγ

n = ǫαβγ k̇
β ǫγαβ ∂αAβn = ǫαβγ ǫαββ k̇

β ∂αAβn =
(
δαα δββ − δαβ δβα

)
k̇β ∂αAβn

=
(
∂αAβn − ∂βAαn

)
k̇β = i

(
∂α 〈n | ∂β n 〉 − ∂β

〈
n
∣∣ ∂α n

〉)
k̇β .

(4.314)



Chapter 5

Metals

5.1 Introduction

Metals are characterized by a finite electronic density of states f(ε
F
) at the Fermi level at zero

temperature. This entails a number of salient features, such as thermodynamic, electrody-
namic, and transport properties.

5.2 T = 0 and the Fermi Surface

5.2.1 Definition of the Fermi surface

The Pauli principle says that each fermionic energy state can accommodate either zero or one
electrons1. At zero temperature, the ground state of a noninteracting Fermi gas is obtained
by filling up all the distinct eigenstates in order of energy, starting from the bottom of the
spectrum, until all the fermions are used up. The energy of the last level to be filled is called the
Fermi energy, and is written ε

F
. The energy distribution function at T = 0 is thus n(ε) = Θ(ε

F
−ε),

which says that all single particle energy states up to ε = µ are filled, and all energy states above
ε = µ are empty. As we shall see in the next section, the Fermi energy is the zero temperature
value of the chemical potential: ε

F
= µ(T = 0). If the single particle dispersion ε(k) depends

only on the wavevector k, then the locus of points in k-space for which ε(k) = ε
F

is called the
Fermi surface. For isotropic systems, ε(k) = ε(k) is a function only of the magnitude k = |k|, and
the Fermi surface is a sphere in d = 3 or a circle in d = 2. The radius of this circle is the Fermi
wavevector, k

F
. When there is internal (e.g. spin) degree of freedom, there is a Fermi surface and

Fermi wavevector (for isotropic systems) for each polarization state of the internal degree of

1We consider two degenerate energy states with different spin polarizations ↑ and ↓ to be distinct quantum states.
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freedom.

Let’s compute the Fermi wavevector k
F

and Fermi energy ε
F

for the IFG with a ballistic disper-
sion ε(k) = ~2k2/2m. We allow for a common degeneracy g for each of the k states, e.g., due to
spin, for which g = 2S + 1, with S = 1

2
for electrons. The number density is

n = g

∫
ddk Θ(k

F
− k) = gΩd

(2π)d
· k

d
F

d
=





g k
F
/π (d = 1)

g k2F/4π (d = 2)

g k3F/6π
2 (d = 3) ,

(5.1)

where Ωd = 2πd/2/Γ(d/2) is the area of the unit sphere in d space dimensions (Ω1 = 2, Ω2 = 2π,
Ω3 = 4π, etc.). Note that the form of n(k

F
) is independent of the dispersion relation, so long as

it remains isotropic. Inverting the above expressions, we obtain k
F
(n):

k
F
= 2π

(
d n

gΩd

)1/d
=





πn/g (d = 1)

(4πn/g)1/2 (d = 2)

(6π2n/g)1/3 (d = 3) .

(5.2)

The Fermi energy in each case, for ballistic dispersion, is therefore

ε
F
=

~2k2F
2m

=
2π2~2

m

(
d n

gΩd

)2/d
=





π2~2n2

2g2m
(d = 1)

2π~2 n
gm

(d = 2)

~2

2m

(
6π2n
g

)2/3
(d = 3) .

(5.3)

Another useful result for the ballistic dispersion, which follows from the above, is that the
density of states at the Fermi level is given by

g(ε
F
) =

gΩd

(2π)d
· mk

d−2
F

~2
=
d

2
· n
ε
F

. (5.4)

For the electron gas, we have g = 2. In a metal, one typically has k
F
∼ 0.5 Å

−1
to 2 Å

−1
, and

ε
F
∼ 1 eV − 10 eV. Due to the effects of the crystalline lattice, electrons in a solid behave as if

they had an effective mass m∗ which is typically on the order of the electron mass but very often
about an order of magnitude smaller, particularly in semiconductors.
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Figure 5.1: Fermi surfaces for two and three-dimensional structures. Upper left: free par-
ticles in two dimensions. Upper right: ‘tight binding’ electrons on a square lattice. Lower
left: Fermi surface for cesium, which is predominantly composed of electrons in the 6s or-
bital shell. Lower right: the Fermi surface of yttrium has two parts. One part (yellow) is
predominantly due to 5s electrons, while the other (pink) is due to 4d electrons. (Source:
www.phys.ufl.edu/fermisurface/)

In solids, the dispersions ε(k) are in general anisotropic, and give rise to non-spherical Fermi
surfaces. The simplest example is that of a two-dimensional tight-binding model of electrons
hopping on a square lattice, as may be appropriate in certain layered materials. The dispersion
relation is then

ε(kx, ky) = −2t cos(kxa)− 2t cos(kya) , (5.5)

where kx and ky are confined to the interval
[
− π

a
, π
a

]
. The quantity t has dimensions of en-

ergy and is known as the hopping integral. The Fermi surface is the set of points (kx, ky) which
satisfies ε(kx, ky) = ε

F
. When ε

F
achieves its minimum value of εmin

F = −4t, the Fermi surface
collapses to a point at (kx, ky) = (0, 0). For energies just above this minimum value, we can
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expand the dispersion in a power series, writing

ε(kx, ky) = −4t + ta2
(
k2x + k2y

)
− 1

12
ta4
(
k4x + k4y

)
+ . . . . (5.6)

If we only work to quadratic order in kx and ky, the dispersion is isotropic, and the Fermi
surface is a circle, with k2F = (ε

F
+ 4t)/ta2. As the energy increases further, the continuous

O(2) rotational invariance is broken down to the discrete group of rotations of the square, C4v.
The Fermi surfaces distort and eventually, at ε

F
= 0, the Fermi surface is itself a square. As

ε
F

increases further, the square turns back into a circle, but centered about the point
(
π
a
, π
a

)
.

Note that everything is periodic in kx and ky modulo 2π
a

. The Fermi surfaces for this model are
depicted in the upper right panel of Fig. 5.1.

Fermi surfaces in three dimensions can be very interesting indeed, and of great importance
in understanding the electronic properties of solids. Two examples are shown in the bottom
panels of Fig. 5.1. The electronic configuration of cesium (Cs) is [Xe] 6s1. The 6s electrons
‘hop’ from site to site on a body centered cubic (BCC) lattice, a generalization of the simple
two-dimensional square lattice hopping model discussed above. The elementary unit cell in
k space, known as the first Brillouin zone, turns out to be a dodecahedron. In yttrium, the
electronic structure is [Kr] 5s2 4d1, and there are two electronic energy bands at the Fermi level,
meaning two Fermi surfaces. Yttrium forms a hexagonal close packed (HCP) crystal structure,
and its first Brillouin zone is shaped like a hexagonal pillbox.

5.2.2 Fermi surface vs. Brillouin zone

The construction of the first Brillouin zone proceeds as follows. Draw the bisecting planes

(d = 3) or lines (d = 2) for each of the reciprocal lattice vectors G =
∑d

µ=1 nµ bµ. The region
bounded by these bisectors which contains the origin is the first Brillouin zone. The regions for
which a minimum of one bisector is crossed in order to get to the first zone defines the second
zone. Points for which a minimum of (j−1) bisectors must be crossed to arrive in the first zone
comprise the jth zone. For the square lattice, this scheme is depicted in Fig. 5.2. By shifting all
the various fragments of the jth zone by reciprocal lattice vectors, one can completely cover the
first zone, with no overlapping areas. Thus, the volume of each of the zones is always v̂0.

Suppose there are Z electrons per unit cell. The Fermi wavevector k
F

is determined by k
F
=

(2πn)1/2 with na2 = Z. The side length of the Brillouin zone is b = 2π/a. Thus, the ratio of the
diameter of the free electron Fermi circle to the elementary RLV is

r ≡ 2k
F

b
=

√
2Z

π
. (5.7)

If r < 1, the Fermi circle lies entirely within the first Brillouin zone Ω̂. This is the case for Z = 1,
when r = 0.798, but for Z = 2 the area of the Fermi circle is precisely the Brillouin zone area,
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Figure 5.2: Extended zones and their folding for the square lattice. Reciprocal lattice points are
shown as yellow dots. The central square, defined by the thick black line, is the first Brillouin
zone. The colored lines denote bisectors of reciprocal lattice vectors G = n1b1 + n2b2 and are
labeled by n1 and n2. In general, a minimum of j − 1 such bisectors must be crossed in going
from the jth Brillouin zone to the first Brillouin zone., with j labeled in black. (Not all of the
fourth zone is labeled.)

and r = (4/π)1/2 = 1.128, so the Fermi circle spills over into the second zone. The situation
is depicted in the left panel of Fig. 5.3. Since r <

√
2, it does not cross any of the red lines

in the left panel, i.e. the Fermi circle is confined to the first and second zones. The effect of
a weak crystalline potential, as we have seen, is to introduce energy gaps along the Brillouin
zone boundaries. If the crystalline potential is strong enough, it can pull all of the states from
the second zone into the first zone, completely filling it , thereby resulting in a band insulator.

When Z = 3, find r = 1.382 <
√
2, so again the Fermi surface lies only within the first and

second zones. For Z = 4, r = 1.596 >
√
2, and as we see in the right panel of the figure, the

Fermi sea completely encloses the first zone, and spills over into zones two, three, and four.

What happens in d = 3 dimensions? Fig. 5.4 shows some examples. Sodium (Na) is mono-
valent, and the volume of its free electron Fermi sphere is half that of the Brillouin zone and

fits entirely within Ω̂. The crystal structure is bcc and the first Brillouin zone has the shape
of a rhombic dodecahedron. Copper (Cu) is also monovalent, but the crystalline potential is
stronger and leads to the eight Fermi surface ‘necks’ shown in the figure. The crystal structure
is fcc, and the Brillouin zone has the shape of a truncated octahedron. The necks straddle the
eight hexagonal faces of the first zone. Calcium (Ca) is divalent, hence the free electron Fermi
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Figure 5.3: Brillouin zones and free electron Fermi seas (in blue) for the square lattice. Left:
Z = 2 electrons per cell. The Fermi surface has area v̂0, and the free electron Fermi sea extends
into the second zone. Right: Z = 4 electrons per cell. The Fermi surface has area 2v̂0. and
the free electron Fermi sea completely covers the first zone, and extends into portions of the
second, third, and fourth zones.

sphere has exactly the same volume as that of the first Brillouin zone. Thus, this sphere must
cut across the Brillouin zone boundaries, resulting in two bands, the Fermi surface in the first
of which is depicted in the figure. The lattice potential pulls most but not all of the states in the
second zone into the first zone.

5.2.3 Spin-split Fermi surfaces

Consider an electron gas in an external magnetic field H . The single particle Hamiltonian is
then

Ĥ =
p2

2m
+ µ

B
Hσ , (5.8)

where µB is the Bohr magneton,

µ
B
=

e~

2mc
= 5.788× 10−9 eV/G

µ
B
/k

B
= 6.717× 10−5K/G ,

(5.9)

where m is the electron mass. What happens at T = 0 to a noninteracting electron gas in a
magnetic field?
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Figure 5.4: Top: First Brillouin zones for bcc (left) and fcc (right) lattice solids. Bottom: Fermi
surfaces for Na (left), Ca (center), and Cu (right). (Source: www.phys.ufl.edu/fermisurface/)

Electrons of each spin polarization form their own Fermi surfaces. That is, there is an up
spin Fermi surface, with Fermi wavevector kF↑, and a down spin Fermi surface, with Fermi
wavevector kF↓. The individual Fermi energies, on the other hand, must be equal, hence

~2k2F↑
2m

+ µBH =
~2k2F↓
2m

− µBH , (5.10)

which says

k2F↓ − k2F↑ =
2eH

~c
. (5.11)

The total density is

n =
k3F↑
6π2

+
k3F↓
6π2

=⇒ k3F↑ + k3F↓ = 6π2n . (5.12)

Clearly the down spin Fermi surface grows and the up spin Fermi surface shrinks with increas-
ing H . Eventually, the minority spin Fermi surface vanishes altogether. This happens for the
up spins when kF↑ = 0. Solving for the critical field, we obtain

Hc =
~c

2e
·
(
6π2n

)1/3
. (5.13)
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In real magnetic solids, like cobalt and nickel, the spin-split Fermi surfaces are not spheres, just
like the case of the (spin degenerate) Fermi surfaces for Cs and Y shown in Fig. 5.1.

5.3 Quantum Thermodynamics of the Electron Gas

Electrons are fermions, and from this flows some universal features of their thermodynamic
properties. We shall assume for the moment that the electrons are noninteracting, or that their
mutual interactions can be treated within a “mean field” scheme. In this case, the grand poten-
tial of the electron gas is given by

Ω(T, V, µ) = −V kBT
∑

α

ln
(
1 + eµ/kBT e−εα/kBT

)

= −V k
B
T

∞∫

−∞

dε g(ε) ln
(
1 + e(µ−ε)/kBT

)
.

(5.14)

The average number of particles in a state with energy ε is

n(ε) =
1

e(ε−µ)/kBT + 1
, (5.15)

hence the total number of particles is

N = V

∞∫

−∞

dε g(ε)
1

e(ε−µ)/kBT + 1
. (5.16)

5.3.1 Fermi distribution

We define the function f(x) = 1/(eβx + 1), known as the Fermi distribution. In the T →∞ limit,
f(ǫ)→ 1

2
for all finite values of ε. As T → 0, f(ǫ) approaches a step function Θ(−ǫ). The average

number of particles in a state of energy ε in a system at temperature T and chemical potential
µ is n(ε) = f(ε− µ). In Fig. 5.5 we plot f(ε− µ) versus ε for three representative temperatures.

5.3.2 Sommerfeld expansion

In dealing with the ideal Fermi gas, we will repeatedly encounter integrals of the form

I(T, µ) ≡
∞∫

−∞

dε f(ε− µ)φ(ε) . (5.17)
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Figure 5.5: The Fermi distribution, f(ε − µ) =
[
exp

(
(ε − µ)/kBT

)
+ 1
]−1

. Here we have set
kB = 1 and taken µ = 2, with T = 1

20
(blue), T = 3

4
(green), and T = 2 (red). In the T → 0 limit,

f(ε− µ) approaches a step function Θ(µ− ε).

The Sommerfeld expansion provides a systematic way of expanding these expressions in pow-
ers of T and is an important analytical tool in analyzing the low temperature properties of the
ideal Fermi gas (IFG). We start by defining

Φ(ε) ≡
ε∫

−∞

dε′ φ(ε′) (5.18)

so that φ(ε) = Φ′(ε). We then have

I =

∞∫

−∞

dε f(ε− µ) dΦ
dε

= −
∞∫

−∞

dε f ′(ε) Φ(µ+ ε) , (5.19)

where we assume Φ(−∞) = 0. Next, we invoke Taylor’s theorem, to write

Φ(µ+ ε) =

∞∑

n=0

εn

n !

dnΦ

dµn
= exp

(
ε
d

dµ

)
Φ(µ) . (5.20)

This last expression involving the exponential of a differential operator may appear overly
formal but it proves extremely useful. Since

f ′(ε) = − 1

k
B
T

eε/kBT
(
eε/kBT + 1

)2 , (5.21)

we can write

I =

∞∫

−∞

dv
evD

(ev + 1)(e−v + 1)
Φ(µ) , (5.22)
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Figure 5.6: Deformation of the complex integration contour in Eqn. 5.23.

with v = ε/k
B
T , where D = k

B
T d

dµ
is a dimensionless differential operator. The integral can

now be done using the methods of complex integration:2

∞∫

−∞

dv
evD

(ev + 1)(e−v + 1)
= 2πi

∞∑

n=1

Res

[
evD

(ev + 1)(e−v + 1)

]

v=(2n+1)iπ

= −2πi
∞∑

n=0

D e(2n+1)iπD = −2πiD eiπD

1− e2πiD = πD csc πD .

(5.23)

Thus,
I(T, µ) = πD csc(πD)Φ(µ) , (5.24)

which is to be understood as the differential operator πD csc(πD) = πD/ sin(πD) acting on the
function Φ(µ). Appealing once more to Taylor’s theorem, we have

πD csc(πD) = 1 +
π2

6
(k

B
T )2

d2

dµ2
+

7π4

360
(k

B
T )4

d4

dµ4
+ . . . . (5.25)

Thus,

I(T, µ) =
∞∫

−∞

dε f(ε− µ)φ(ε) =
µ∫

−∞

dε φ(ε) +
π2

6
(kBT )

2 φ′(µ) +
7π4

360
(kBT )

4 φ′′′(µ) + . . . . (5.26)

If φ(ε) is a polynomial function of its argument, then each derivative effectively reduces the
order of the polynomial by one degree, and the dimensionless parameter of the expansion is
(T/µ)2. This procedure is known as the Sommerfeld expansion.

2Note that writing v = (2n+ 1) iπ+ ǫ we have e±v = −1∓ ǫ− 1
2ǫ

2 + . . . , so (ev + 1)(e−v + 1) = −ǫ2 + . . . We then

expand evD = e(2n+1)iπD
(
1 + ǫD + . . .) to find the residue: Res = −D e(2n+1)iπD.
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5.3.3 Chemical potential shift

As our first application of the Sommerfeld expansion formalism, let us compute µ(n, T ) for the
ideal Fermi gas. The number density n(T, µ) is

n =

∞∫

−∞

dε g(ε) f(ε− µ) =
µ∫

−∞

dε g(ε) +
π2

6
(k

B
T )2 g′(µ) + . . . . (5.27)

Let us write µ = ε
F
+ δµ, where ε

F
= µ(T = 0, n) is the Fermi energy, which is the chemical

potential at T = 0. We then have

n =

ε
F
+δµ∫

−∞

dε g(ε) +
π2

6
(k

B
T )2 g′(ε

F
+ δµ) + . . .

=

ε
F∫

−∞

dε g(ε) + g(ε
F
) δµ+

π2

6
(k

B
T )2 g′(ε

F
) + . . . ,

(5.28)

from which we derive

δµ = −π
2

6
(k

B
T )2

g′(ε
F
)

g(ε
F
)
+O(T 4) . (5.29)

Note that g′/g = (ln g)′. For a ballistic dispersion, assuming g = 2,

g(ε) = 2

∫
d3k

(2π)3
δ

(
ε− ~2k2

2m

)
=
mk(ε)

π2~2

∣∣∣∣
k(ε)= 1

~

√
2mε

(5.30)

Thus, g(ε) ∝ ε1/2 and (ln g)′ = 1
2
ε−1, so

µ(n, T ) = ε
F
− π2

12

(k
B
T )2

ε
F

+ . . . , (5.31)

where ε
F
(n) = ~2

2m
(3π2n)2/3.
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5.3.4 Specific heat

The energy of the electron gas is

E

V
=

∞∫

−∞

dε g(ε) ε f(ε− µ) =
µ∫

−∞

dε g(ε) ε+
π2

6
(kBT )

2 d

dµ

(
µ g(µ)

)
+ . . .

=

ε
F∫

−∞

dε g(ε) ε+ g(ε
F
) ε

F
δµ+

π2

6
(kBT )

2 ε
F
g′(ε

F
) +

π2

6
(kBT )

2 g(ε
F
) + . . .

= e0 +
π2

6
(kBT )

2 g(ε
F
) + . . . ,

(5.32)

where e0 =
ε
F∫

−∞
dε g(ε) ε is the ground state energy density (i.e. ground state energy per unit

volume). Thus,

CV,N =

(
∂E

∂T

)

V,N

=
π2

3
V k2

B
T g(ε

F
) ≡ V γ T , (5.33)

where

γ =
π2

3
k2B g(εF) . (5.34)

Note that the molar heat capacity is

cV =
NA

N
· CV =

π2

3
R · kB

T g(ε
F
)

n
=
π2

2

(
k

B
T

ε
F

)
R , (5.35)

where in the last expression on the RHS we have assumed a ballistic dispersion, for which

g(ε
F
)

n
=

gmk
F

2π2~2
· 6π

2

g k3F
=

3

2 ε
F

. (5.36)

The molar heat capacity in Eqn. 5.35 is to be compared with the classical ideal gas value of 3
2
R.

Relative to the classical ideal gas, the IFG value is reduced by a fraction of (π2/3) × (kBT/εF),
which in most metals is very small and even at room temperature is only on the order of 10−2.
Most of the heat capacity of metals at room temperature is due to the energy stored in lattice
vibrations.

5.4 Effects of External Magnetic Fields

5.4.1 Magnetic susceptibility and Pauli paramagnetism

Magnetism has two origins: (i) orbital currents of charged particles, and (ii) intrinsic magnetic
moment. The intrinsic magnetic moment m of a particle is related to its quantum mechanical
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spin via

m = gµ0S/~ , µ0 =
q~

2mc
= magneton , (5.37)

where g is the particle’s g-factor3, µ0 its magnetic moment, and S is the vector of quantum
mechanical spin operators satisfying

[
Sα , Sβ

]
= i~ǫαβγ S

γ , i.e. SU(2) commutation relations.
The Hamiltonian for a single particle is then

Ĥ =
1

2m∗

(
p− q

c
A

)2
−H ·m =

1

2m∗

(
p+

e

c
A

)2
+ 1

2
g µ

B
H σ , (5.38)

where in the last line we’ve restricted our attention to the electron, for which q = −e. The
g-factor for an electron is g = 2 at tree level, and when radiative corrections are accounted for
using quantum electrodynamics (QED) one finds g = 2.0023193043617(15). For our purposes
we can take g = 2, although we can always absorb the small difference into the definition of
µ

B
, writing µ

B
→ µ̃

B
= ge~/4mc. We’ve chosen the ẑ-axis in spin space to point in the direction

of the magnetic field, and we wrote the eigenvalues of Sz as 1
2
~σ, where σ = ±1. The quantity

m∗ is the effective mass of the electron, here assumed to be isotropic in the vicinity of a band
edge. An important distinction is that it is m∗ which enters into the kinetic energy term p2/2m∗,
but it is the electron mass m itself (m = 511 keV) which enters into the definition of the Bohr
magneton. We shall discuss the consequences of this further below.

In a crystalline semiconductor, the spin-orbit interaction,

V
SO

=
~

4m2c2
p · σ ×∇V , (5.39)

leads to an effective g which is often very far from the free electron value. For cubic systems
with a direct band gap, the g-factor in band n is given by4

g

2
= 1 +

2

m
Im
∑

n′

′ 〈nΓ | px |n′ Γ 〉〈n′ Γ | py |nΓ 〉
En(Γ)−En′(Γ)

+ . . . , (5.40)

where the wavefunctions and the energies are all taken at the zone center Γ. InSb, for example,
has g ≃ −44, while in GaAs g ≃ 0.4.

In the absence of orbital magnetic coupling, the single particle dispersion is

εσ(k) =
~2k2

2m∗ + µ̃
B
H σ . (5.41)

At T = 0, we have the results of §5.2.3. At finite T , we once again use the Sommerfeld expan-

3We denote the g-factor by g in order to obviate confusion with the density of states function g(ε).
4See, e.g., ch. 14 of C. Kittel, Quantum Theory of Solids.
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Figure 5.7: Fermi distributions in the presence of an external Zeeman-coupled magnetic field.

sion. We then have

n =

∞∫

−∞

dε g↑(ε) f(ε− µ) +

∞∫

−∞

dε g↓(ε) f(ε− µ)

= 1
2

∞∫

−∞

dε
{
g(ε− µ̃

B
H) + g(ε+ µ̃

B
H)
}
f(ε− µ)

=

∞∫

−∞

dε
{
g(ε) + (µ̃BH)2 g′′(ε) + . . .

}
f(ε− µ) .

(5.42)

We now invoke the Sommerfeld expension to find the temperature dependence:

n =

µ∫

−∞

dε g(ε) +
π2

6
(k

B
T )2 g′(µ) + (µ̃

B
H)2 g′(µ) + . . .

=

ε
F∫

−∞

dε g(ε) + g(ε
F
) δµ+

π2

6
(kBT )

2 g′(ε
F
) + (µ̃BH)2 g′(ε

F
) + . . . .

(5.43)

Note that the density of states for spin species σ is

gσ(ε) =
1
2
g(ε− µ̃

B
Hσ) , (5.44)

where g(ε) is the total density of states per unit volume, for both spin species, in the absence of
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a magnetic field. We conclude that the chemical potential shift in an external field is

δµ(T, n,H) = −
{
π2

6
(k

B
T )2 + (µ̃

B
H)2

}
g′(ε

F
)

g(ε
F
)
+ . . . . (5.45)

We next compute the difference n↑ − n↓ in the densities of up and down spin electrons:

n↑ − n↓ =

∞∫

−∞

dε
{
g↑(ε)− g↓(ε)

}
f(ε− µ)

= 1
2

∞∫

−∞

dε
{
g(ε− µ̃

B
H)− g(ε+ µ̃

B
H)
}
f(ε− µ)

= −µ̃BH · πD csc(πD) g(µ) +O(H3) .

(5.46)

We needn’t go beyond the trivial lowest order term in the Sommerfeld expansion, because H
is already assumed to be small. Thus, the magnetization density is

M = −µ̃
B
(n↑ − n↓) = µ̃2

B
g(ε

F
)H . (5.47)

in which the magnetic susceptibility is

χ =

(
∂M

∂H

)

T,N

= µ̃2
B
g(ε

F
) . (5.48)

This is called the Pauli paramagnetic susceptibility.

5.4.2 Landau diamagnetism

When orbital effects are included, the single particle energy levels are given by

ε(n, kz, σ) = (n+ 1
2
)~ωc +

~2k2z
2m∗ + µ̃

B
H σ . (5.49)

Here n is a Landau level index, and ωc = eH/m∗c is the cyclotron frequency. Note that

µ̃BH

~ωc

=
ge~H

4mc
· m

∗c

~eH
=
g

4
· m

∗

m
. (5.50)

Accordingly, we define the ratio r ≡ (g/2)× (m∗/m). We can then write

ε(n, kz, σ) =
(
n+ 1

2
+ 1

2
rσ
)
~ωc +

~2k2z
2m∗ . (5.51)



250 CHAPTER 5. METALS

Figure 5.8: Density of states for a three-dimensional free electron gas with g = 0 in the presence
of an external magnetic field (blue), compared with B = 0 result (dark red).

The density of states per unit volume is then

g(ε) =
1

2πℓ2

∑

n,σ

∞∫

−∞

dkz
2π

δ
(
ε− ε(n, kz, σ)

)
, (5.52)

where ℓ = (~c/eH)1/2 is the magnetic length. The significance of ℓ is that the area per Dirac
fluxoid φ0 = hc/e is 2πℓ2.

The grand potential is then given by

Ω = −HA
φ0

· Lz · kBT

∞∫

−∞

dkz
2π

∞∑

n=0

∑

σ=±1

ln
[
1 + eµ/kBT e−(n+ 1

2
+ 1

2
rσ) ~ωc/kBT e−~2k2z/2m

∗kBT
]

. (5.53)

A few words are in order here regarding the prefactor. In the presence of a uniform magnetic
field, the energy levels of a two-dimensional ballistic charged particle collapse into Landau
levels. The number of states per Landau level scales with the area of the system, and is equal
to the number of flux quanta through the system: Nφ = HA/φ0, where φ0 = hc/e is the Dirac
flux quantum. Note that

HA

φ0

· Lz · kBT = ~ωc ·
V

λ3T
, (5.54)

hence we can write

Ω(T, V, µ,H) = ~ωc

∞∑

n=0

∑

σ=±1

Q
(
(n+ 1

2
+ 1

2
rσ) ~ωc − µ

)
, (5.55)



5.4. EFFECTS OF EXTERNAL MAGNETIC FIELDS 251

where we have defined the dimensionless function

Q(ε) = − V
λ2T

∞∫

−∞

dkz
2π

ln
[
1 + e−ε/kBT e−~2k2z/2m

∗kBT
]

. (5.56)

We now invoke the Euler-MacLaurin formula,

∞∑

n=0

F (n) =

∞∫

0

dx F (x) + 1
2
F (0)− 1

12
F ′(0) + . . . , (5.57)

resulting in

Ω(T, V, µ,H) =
∑

σ=±1





∞∫

1
2
(1+rσ)~ωc

dε Q(ε− µ) + 1
2
~ωcQ

(
1
2
(1 + rσ) ~ωc − µ

)

− 1
12
(~ωc)

2Q′(1
2
(1 + rσ) ~ωc − µ

)
+ . . .



 .

(5.58)

We next expand in powers of the magnetic field H to obtain

Ω(T, V, µ,H) = 2

∞∫

0

dε Q(ε− µ) + 1
4

(
r2 − 1

3

)
(~ωc)

2Q′(−µ) + . . . . (5.59)

Thus, the magnetic susceptibility is

χ = − 1

V

∂2Ω

∂H2
=
(
r2 − 1

3

)
· µ̃2

B ·
(
m/m∗)2 ·

(
− 2

V
Q′(−µ)

)

=

(
g2

4
− m2

3m∗2

)
· µ̃2

B
· n2κT ,

(5.60)

where κT is the isothermal compressibility5, which at T = 0 is related to the density of states by
κT (T = 0, n) = n−2g(ε

F
). In most metals we have m∗ ≈ m and the term in brackets is positive

(recall g ≈ 2). In semiconductors, however, we can have m∗ ≪ m; for example in GaAs we
have m∗ = 0.067m and g = 0.4. Thus, semiconductors can have a diamagnetic response. If we
take g = 2 and m∗ = m, we see that the orbital currents give rise to a diamagnetic contribution
to the magnetic susceptibility which is exactly −1

3
times as large as the contribution arising

from Zeeman coupling. The net result is then paramagnetic (χ > 0) and 2
3

as large as the Pauli
susceptibility. The orbital currents can be understood within the context of Lenz’s law.

5We’ve used − 2
V Q′(µ) = − 1

V
∂2Ω
∂µ2 = n2κT .
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5.4.3 de Haas-van Alphen oscillations

The Landau level structure in the density of states (see Fig. 5.8) is responsible for striking
behavior in metals when subjected to an external magnetic field. For weak fields, the magneti-
zation density is m = χH , but at stronger fields we have

m(T,H, µ) = − 1

V

∂Ω

∂H
=

(
e2

4π2~

)(
2µ

m∗

)1/2

H ·
{
(
r2 − 1

3

)
+

+

(
2πk

B
T

~ωc

)(
2µ

~ωc

)1/2 ∞∑

l=1

(−1)l√
l

sin
(
2πlµ
~ωc
− π

4

)
cos
(
lπr)

sinh
(
2π2lkBT/~ωc

)
}

.

(5.61)

The electron number density is given by

n(T,H, µ) = − 1

V

∂Ω

∂µ
=

1

3π2

(
2m∗µ

~2

)1/2
·
{
1 +

3

32

(
~ωc

µ

)(
r2 − 1

3

)
+

+

(
3πk

B
T

~ωc

)(
~ωc

2µ

)3/2 ∞∑

l=1

(−1)l√
l

sin
(
2πlµ
~ωc
− π

4

)
cos
(
lπr
)

sinh
(
2π2lk

B
T/~ωc

)
}

.

(5.62)

These expressions are valid in the limit µ≫ ~ωc and µ≫ kBT . Under experimental conditions,
it is the electron number density n which is held constant, and not the chemical potential µ.
Thus, one must invert to obtain µ(n, T,H) and substitute this in the expression for m(T,H, µ)
to obtain m(n, T,H).

To derive the above results, we integrate Eqn. 5.14 twice by parts to obtain

Ω = −V
∞∫

−∞

dεR(ε)

(
− ∂f

∂ε

)
, (5.63)

where R(ε) is given by

R(ε) =

ε∫

−∞

dε′
ε′∫

−∞

dε′′ g(ε′′) , (5.64)

i.e. g(ε) = R′′(ε). In the presence of a uniform magnetic field, the density of states for a ballistic
particle with dispersion ε(k) = ~2k2/2m∗ is

g(ε) =
1

2πℓ2

√
m∗

√
2 π~

∞∑

n=0

∑

σ=±1

[
ε−

(
n+ 1

2
+ 1

2
σr
)
~ωc

]−1/2

+
, (5.65)
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where r = g m∗/2m as before, and [x]+ ≡ xΘ(x). Thus,

R(ε) =

√
2

3π2

(
m∗

~2

)3/2 ∞∑

n=0

∑

σ=±1

[
ε−

(
n + 1

2
+ 1

2
σr
)
~ωc

]3/2
+

, (5.66)

We now invoke the result

∞∑

n=0

φ(n+ 1
2
) =

∞∫

0

du φ(u) + 1
24
φ′(0)−

∞∑

n=1

(−1)l
2π2l2

∞∫

0

du φ′′(u) cos(2πlu) , (5.67)

which is valid provided φ(∞) = φ′(∞) = 0. This follows from applying the Poisson summation
formula6,

∞∑

n=−∞
δ(x− n) =

∞∑

l=−∞
e2πilx , (5.68)

integrating by parts twice, and using
∑∞

l=1(−1)l+1/ l2 = π2

12
.

R(ε) =
2
√
2

15π2

(
m∗

~2

)3/2 [ ε− 1
2
r~ωc

]5/2
+

~ωc

−
√
2

48π2

(
m∗

~2

)3/2
~ωc

[
ε− 1

2
r~ωc

]3/2
+

+

− 1

8π4

(
m∗

~2

)3/2
(~ωc)

3/2
∞∑

l=1

(−1)l
l5/2

cos

(
2πlε

~ωc

− πlrσ − π

4

)
.

(5.69)

We next integrate over ε, using the Sommerfeld expansion and the result

∞∫

−∞

dε eisε
(
− ∂f

∂ε

)
=

πs k
B
T

sinh(πs k
B
T )

. (5.70)

The final result for Ω(T, V, µ,H), valid for ~ωc ≪ µ and kBT ≪ µ, is

Ω(T, V, µ,H) = −V ·
√
2

π

(
m∗

~2

)3/2{
4
15

〈
ε5/2
〉
+ 1

8
(~ωc)

2
(
r2 − 1

3

) 〈
ε1/2
〉
+

+ 1
2
√
2
(~ωc)

3/2k
B
T

∞∑

l=1

(−1)l
l3/2

cos
(
2πlµ
~ωc
− π

4

)
cos
(
lπr
)

sinh
(
2π2lkBT/~ωc

)
}

.

(5.71)

Here, we have used the notation

〈
ψ(ε)

〉
≡

∞∫

−∞

dε ψ(ε)

(
− ∂f

∂ε

)
. (5.72)

6One first extends the function φ(u) to the entire real line, symmetrically, so φ(−u) = φ(u).
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Figure 5.9: Left: de Haas-van Alphen oscillations in the underdoped high temperature su-
perconductor YBa2Cu3O6.5, measured by C. Jaudet et al in Phys. Rev. Lett. 100, 187005
(2008). Right: Schubnikov-de Haas oscillations and their temperature dependence in the three-
dimensional topological insulator Bi2Se3, indicating the presence of metallic surface states. A
smooth polynomial background has been subtracted. Measurements by M. Petrushevsky et al.
in Phys. Rev. B 86, 045131 (2013).

For homogeneous functions,

〈
εp
〉
= µp + π2

6
p(p− 1) (kBT )

2 µp−2 +O(T 4) . (5.73)

Differentiation of Ω(T, V,H) with respect to H and µ yields7, respectively, the results in Eqns.
5.61 and 5.62. From Eqn. 5.71, we see that the oscillating factors are periodic in 1/H with peri-
ods ∆(1/H) = ~e/2πlµm∗c. In experiments, the magnetization M is typically measured with a
torque-magnetometer. The oscillatory nature of M(H) is called the de Haas-van Alphen effect.
A related periodicity occurs in the magnetoresistance R(H), where it is called the Schubnikov-
de Haas effect. Experimental data for both effects is shown in Fig. 5.9.

Oscillations at T = 0 : spinless fermions in d = 2 dimensions

Apparently the oscillations do not vanish, even at T = 0. The prefactor of T which multiplies
the oscillating sum in Eqn. 5.61 cancels with the sinh(2π2lk

B
T/~ωc) denominator in the T → 0

limit. Consider the simple case of ballistic spinless electrons in d = 2 dimensions. We know

7The cyclotron energy ~ωc = ~eH/m∗c is linear in the magnetic field H . For µ ≫ ~ωc ≫ k
B
T , the dominant

contribution to the magnetization comes from differentiating the cosine factor.
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Figure 5.10: Two dimensional oscillations in the energy per unit area e = E/A for a spinless
electron gas in a uniform magnetic field H = H ẑ.

that each Landau level can accommodate NL = HA/φ0 electrons, where φ0 = hc/e is the Dirac
flux quantum. It is convenient to define the filling fraction ν, as

ν =
N

NL

= 2πℓ2n =
2π~c

eH
n , (5.74)

where ℓ =
√

~c/eH is the magnetic length. The cyclotron energy is

~ωc =
~eH

m∗c
=

2π~2

m∗
n

ν
. (5.75)

We now evaluate the energy per unit area, e = E/A, as a function of n and ν. With the electron
number density n fixed, the magnetization per unit area is given by

m =
∂e

∂H
=

∂ν

∂H

∂e

∂ν
= − ν

H

∂e

∂ν
. (5.76)

Now if ν ∈ [j, j + 1], the total energy is

E = NL · 12~ωc ·
(
1 + 3 + 5 + . . .+ (2j − 1)

)
+ (N − jNL) · (j + 1

2
) ~ωc

= NL · 12~ωc ·
(
j2 + (ν − j)(2j + 1)

)
.

(5.77)

Thus,

e(n, ν) =
E

A
=
π~2n2

m∗ ·
{
(2j + 1) ν − j(j + 1)

ν2

}
. (5.78)
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Defining, e0(n) = π~2n2/m∗, we have that e(n, j) = e(n, j + 1) = e0(n). Furthermore, since

∂e

∂ν

∣∣∣∣
ν=j

=
e0(n)

j2
> 0 and

∂e

∂ν

∣∣∣∣
ν=j+1

= −e0(n)
j2

> 0 , (5.79)

we see that e(n, ν) has a cusp at every integer value of ν. This behavior is depicted in Fig.
5.10. The magnetization density m(n, ν) therefore discontinuously changes sign (from negative
to positive) across all integer values of the filling fraction!8 Note also that the periodicity is
∆ν = 1, hence

∆
( 1

H

)
=

e

hcn
=

1

2πnφ0

. (5.80)

5.4.4 de Haas-von Alphen effect for anisotropic Fermi surfaces

We consider a nontopological band structure, for which the semiclassical equations of motion
in the presence of a uniform magnetic field are

dr

dt
= vn(k) ,

dk

dt
= − e

~c
vn(k)× B . (5.81)

These equations entail the conservation of the band energy En(k):

dEn(k)

dt
=
∂En(k)

∂k
· dk
dt

= ~vn(k) ·
(
− e

~c
vn(k)× B

)
= 0 . (5.82)

Define k⊥ = k − B̂(B̂ · k), the component of k along the direction B̂. We then have k̇⊥ =
− e

~c
vn(k) × B and d

dt
(k · B̂) = 0 . Thus, the orbits k(t) lie in planes perpendicular to B̂ (see the

sketch in Fig. 5.11).

Consider now the differential k-space area element d2k⊥ between transverse (to B̂) slices of
isoenergy surfaces at energies ε and ε+ dε. Clearly

d2k⊥ =
dε dℓ(ε)∣∣∂ε/∂k⊥

∣∣ (5.83)

where dℓ(ε) is the differential path length in the transverse plane along the surface of energy ε.
Note that ∣∣∣∣

∂ε

∂k⊥

∣∣∣∣ =
∣∣~v⊥

∣∣ = ~
∣∣v⊥ × B̂

∣∣ = ~2c

eB

∣∣k̇⊥
∣∣ . (5.84)

8In the three-dimensional case, m oscillates but usually does not change sign.
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Figure 5.11: Left: Orbit of k(t) in the plane perpendicular to the field B. Right: Geometry of
Fermi surface orbits in the calculation of the de Haas-van Alphen effect.

Thus, the area enclosed by an orbit of energy ε and parallel wavevector component k‖ = k · B̂
is

A(ε, k‖) =

∫
d2k⊥ Θ

(
ε− ε(k⊥, k‖)

)
=

∞∫

−∞

dε′ Θ(ε− ε′)
∮

dℓ(ε′)∣∣∂ε′/∂k⊥
∣∣

=
eB

~2c

∞∫

−∞

dε′ Θ(ε− ε′)
∮
dℓ(ε′)∣∣k̇⊥

∣∣ =
eB

~2c

ε∫

−∞

dε′ T (ε′, k‖) ,

(5.85)

where T (ε, k‖) is the period of the orbit. Note that we have assumed that the surface Sε is
closed, i.e. that there are no “open orbits” which run periodically across the Brillouin zone. We
now have the result

∂A(ε, k‖)

∂ε
=
eB

~2c
T (ε, k‖) . (5.86)

For a free electron in a magnetic field, the orbital period is 2π/ωc. We accordingly define the
cyclotron mass by the relation

T (ε, k‖) =
~2c

eB

∂A(ε, k‖)

∂ε
≡ 2πmcycc

eB
=⇒ mcyc =

~2

2π

∂A(ε, k‖)

∂ε
. (5.87)

Semiclassical quantization then yields the following relation for the energy level spacing:

εn+1(k‖)− εn(k‖) =
2π~

T
(
εn(k‖), k‖

) =
2πeB

~c

/
∂A(ε, k‖)

∂ε

∣∣∣∣
ε=εn(k‖)

. (5.88)

Note that for free electrons,

A(ε, k‖) = π
(
k
2 − k2‖

)
=

2πmε

~2
− πk2‖ , (5.89)
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and so
∂A(ε, k‖)

∂ε
=

2πm

~2
=⇒ εn+1(k‖)− εn(k‖) =

~eB

mc
= ~ωc . (5.90)

If the semiclassical orbit index n is large, we may approximate ∂A/∂ε by a ratio of differences,
viz.

∂A(ε, k‖)

∂ε

∣∣∣∣∣
ε=εn(k‖)

≃
A
(
εn+1(k‖), k‖

)
−A

(
εn(k‖), k‖

)

εn+1(k‖)− εn(k‖)
, (5.91)

and invoking Eqn. 5.88 then gives

A
(
εn+1(k‖), k‖

)
− A

(
εn(k‖), k‖

)
=

2πeB

~c
. (5.92)

We then conclude that the areas of the orbits in the plane transverse to B̂ are quantized accord-
ing to

A
(
εn(k‖), k‖

)
= (n+ α)

2πeB

~c
, (5.93)

where α is a constant, a result first derived by Lars Onsager in 1952.

In the free particle model, the each dH-vA oscillation is associated with a Fermi level crossing
by one of the Landau levels. Neglecting Zeeman splitting, the semiclassical density of states
per unit volume is

g(ε) =
1

2πℓ2

∑

n

∞∫

−∞

dk‖
2π

δ
(
ε− εn(k‖)

)

=
1

2πℓ2

∑

n

∞∫

−∞

dk‖
2π

δ
(
k‖ − ε−1

n (ε)
)

∣∣∂εn/∂k‖
∣∣ ,

(5.94)

where ε−1
n (ε) = k‖ when εn(k‖) = ε, i.e. it is the inverse function. The DOS is peaked when the

denominator vanishes, i.e. when ∂εn/∂k‖ = 0. This entails that the cross sectional Fermi surface
area is at a maximum:

∂

∂k‖
A
(
εn(k‖), k‖

)
=

= 0︷ ︸︸ ︷
∂εn(k‖)

∂k‖
·
∂A(ε, k‖)

∂ε

∣∣∣∣
ε=εn(k‖)

+
∂A(ε, k‖)

∂k‖

∣∣∣∣
ε=εn(k‖)

. (5.95)

Thus, the DOS peaks when the Fermi energy lies on an extremal orbit, i.e. one which extremizes
the cross-sectional Fermi surface area:

(n+ α)
2πeB

~c
= S∗(ε

F
) =⇒ ∆

(
1

B

)
=

2πe

~c

1

S∗(ε
F
)

, (5.96)
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where S∗(ε) is a (possibly multi-valued) function giving the area(s) of the extremal orbits. Since

~ωc

k
B
T

= 1.34× 10−4 · B[T]

T [K]
, (5.97)

(assuming m = me), one needs high fields or low temperatures in order that the oscillations not
be washed out by thermal fluctuations.

5.5 Simple Theory of Electron Transport in Metals

5.5.1 Drude model

Consider a particle of mass m∗ and charge (−e) moving in the presence of an electric field E

and magnetic field B. Newton’s second law says that

dp

dt
= −eE − e

m∗c
p× B − p

τ
, (5.98)

where the last term on the RHS is a phenomenological dissipative (i.e. frictional) force. The
constant τ , which has dimensions of time, is interpreted as the momentum relaxation time due to
scattering off impurities, lattice excitations (i.e. phonons), or sample boundaries. Clearly when
E = B = 0 we have p(t) = p(0) exp(−t/τ), which says that p relaxes on a time scale τ .

When E 6= 0 but B = 0, we have ṗ = −eE − τ−1p, and for time-independent E the steady state
solution, valid at long times, is p = −eτE. is then

j = −nev = −ne p

m∗ =
ne2τ

m∗ E . (5.99)

Thus there is a linear relationship between the current density j and the applied field E. One
writes j = σE, where σ is the electrical conductivity. The above theory says that σ = ne2τ/m∗,
where n is the particle density.

We can extend our analysis to include time-dependent fields of the formE(t) = Re
[
Ê(ω) e−iωt

]
.

In steady state, p oscillates with the same frequency, and writing p(t) = Re
[
p̂(ω) e−iωt

]
, we

obtain the relation (τ−1 − iω) p̂(ω) = −eÊ(ω), and thus j(t) = Re
[
σ(ω) Ê(ω) e−iωt

]
, with

σ(ω) =
ne2τ

m∗ ·
1

1− iωτ . (5.100)

The power density j(t) · E(t) then has terms which are constant, as well as terms oscillating
with frequency 2ω. The average power dissipated is obtained by integrating over a period
∆t = 2π/ω, which eliminates the e±2iωt terms, resulting in

j(t) · E(t) = Re σ(ω)
∣∣Ê(ω)

∣∣2 , (5.101)
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Figure 5.12: Scattering of an electron by impurities in the presence of a uniform electric field E
is an example of a biased random walk.

where the bar denotes time averaging over the period ∆t = π/ω. So it is the real part of the
conductivity which is responsible for power dissipation.

Another way to see it: write ̂(ω) = σ(ω) Ê(ω), which is a complex vector quantity. If we sep-
arate the frequency-dependent conductivity σ(ω) = σ′(ω) + iσ′′(ω) into its real and imaginary
parts, we see that the σ′(ω) term leads to a current component which is in phase with the drive
E(t), while the σ′′(ω) term leads to a current component which is 90◦ out of phase with the
drive E(t). The latter current leads to periodic fluctuations in the local energy density, but no
net dissipation. The real and imaginary parts of σ(ω) are given by

σ′(ω) =
ne2τ

m∗ ·
1

1 + ω2τ 2
, σ′′(ω) =

ne2τ

m∗ ·
ωτ

1 + ω2τ 2
. (5.102)

When we try to apply the above physics to electrons in solids, we are confronted with several
issues. One obvious question is: what do we mean by n? Filled bands carry no current, because
the current density of the nth filled band (accounting for spin),

jn = −2e
∫

Ω̂

d3k

(2π)3

vn(k)︷ ︸︸ ︷
1

~

∂En(k)

∂kα
= 0 , (5.103)

vanishes because En(k) is periodic in the Brillouin zone, and the integral of the derivative of a
periodic function over its period is zero. So the density n must only include contributions from
partially filled bands. In fact, the situation is even more complicated because the scattering
time can vary from band to band, may be energy-dependent, and there can even be interband
scattering of electrons. Another question is how we account for scattering within the semiclassi-
cal model. We can’t just add a term −p/τ to the right hand side of the equation for ~k̇, because
p = ~k is not well-defined in a crystal. A more rigorous approach to transport is based on the
Boltzmann equation, which describes how the distribution f(r, k, t) of electron wave packets
evolves and takes a steady state form.
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The DC conductivity σ = ne2τ/m∗ is proportional to the number of carriers n. Another figure
of merit is the mobility µ = eτ/m∗, which is independent of n. Note that the mobility is the ratio
of the speed of the electron to the magnitude of the applied field: µ = v/E. The conventional
units of mobility are [µ] = cm2/V ·s. Mobility tells us mostly about the scattering time τ . For
highly disordered systems, the scattering time τ is short and consequently µ is small. The
electrons then move slowly as they execute a biased random walk scattering off impurities
in the presence of an electric field (see Fig. 5.12. However, even low mobility systems may
have high conductivity, owing to a large density n of conduction electrons. The highest purity
semiconductors have mobilities on the order of 107 cm2/V·s.

5.5.2 Magnetoresistance and magnetoconductance

Now let’s introduce a uniform magnetic field B. In component notation, Newton’s second law
gives (

1

τ
δαβ +

e

m∗c
εαβγ B

γ

)
pβ = −eEα . (5.104)

The current density is j = −nev = −nep/m∗, hence p = −m∗j/ne, and we thus have

Eα =

ραβ︷ ︸︸ ︷
1

ne2

(
m∗

τ
δαβ +

e

c
εαβγ B

γ

)
jβ . (5.105)

The resistivity matrix ραβ(B) defines the linear relationship between the electric field E and the
current density j. At finite frequency, it is easy to see that τ−1 must be replaced by τ−1 − iω,
hence, taking B = Bẑ, the T = 0 resistivity tensor is

ραβ(ω,B) =
m∗

ne2τ



1− iωτ ωcτ 0
−ωcτ 1− iωτ 0
0 0 1− iωτ


 , (5.106)

with ωc = eB/m∗c the cyclotron frequency, as before. Note that the diagonal elements are
independent of B, which says that the magnetoresistance

∆ρxx(B) = ρxx(B)− ρxx(0) (5.107)

vanishes: ∆ρxx(B) = 0.

The magnetoconductance, however, does not vanish! Recall that

(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
, (5.108)
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from which we have

σαβ =



σxx σxy 0
σyx σyy 0
0 0 σzz


 , (5.109)

with

σxx(ω,B) = σyy(ω,B) =
ne2τ

m∗ ·
1− iωτ

(1− iωτ)2 + (ωcτ)
2

σyx(ω,B) = −σxy(ω,B) =
ne2τ

m∗ ·
ωcτ

(1− iωτ)2 + (ωcτ)
2

σzz(ω,B) =
ne2τ

m∗ ·
1

1− iωτ .

(5.110)

Note that σxx is field-dependent, unlike ρxx.

Thus far we have assumed that the effective mass tensor m∗
αβ is isotropic. In the general

anisotropic case, m∗
αβ , which is a symmetric matrix, will have three orthogonal principal axes,

which we denote as x̂, ŷ, and ẑ. In this case, the resistivity tensor assumes the more general
form

ραβ(ω,B) =
1

ne2



(τ−1 − iω)m∗

x ±eBz/c ∓eBy/c
∓eBz/c (τ−1 − iω)m∗

y ±eBx/c

±eBy/c ∓eBx/c (τ−1 − iω)m∗
z


 , (5.111)

where (m∗
x, m

∗
y, m

∗
z) are the three eigenvalues of m∗

αβ. The ± sign in the off-diagonal term dis-
tinguishes the case where the Fermi level is just above a quadratic minimum (+ sign), versus
where it is just below quadratic maximum (− sign). The latter case is described in terms of holes
in a filled band, as opposed to electrons in an empty band. The effective mass tensors are then
defined as

(
m∗)−1

αβ
= ± 1

~2

∂2En(k)

∂kα ∂kβ
, (5.112)

where the top sign corresponds to electrons and the bottom sign to holes.

Note that the diagonal elements in Eqn. 5.111 are still independent of B and there is no mag-
netoresistance. Taking B along ẑ, the corresponding elements of σαβ are

σxx(ω,B) =
ne2τ

m∗
x

· 1− iωτ
(1− iωτ)2 + (ωcτ)

2

σyy(ω,B) =
ne2τ

m∗
y

· 1− iωτ
(1− iωτ)2 + (ωcτ)

2

σyx(ω,B) =± ne2τ

m∗
⊥
· ωcτ

(1− iωτ)2 + (ωcτ)
2

σzz(ω,B) =
ne2τ

m∗
z

· 1

1− iωτ ,

(5.113)

where ωc = eB/m∗
⊥c and m∗

⊥ =
√
m∗
xm

∗
y .
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5.5.3 Hall effect in high fields

In the high field limit, we have that the resistivity and conductivity tensors are purely off-
diagonal, with

ρxy(B) = ± B

nec
, σxy(B) = ∓nec

B
(5.114)

where the upper sign is again for conduction electrons, and the bottom sign for valence holes.
Thus, the high field Hall effect may be used to determine the carrier concentration:

n = ± lim
B→∞

B

ecρxy(B)
. (5.115)

5.5.4 Cyclotron resonance in semiconductors

A typical value for the effective mass in semiconductors is m∗ ∼ 0.1me. From

e

me c
= 1.75× 107Hz/G , (5.116)

we find that eB/m∗c = 1.75× 1011 Hz in a field of B = 1 kG. In metals, the disorder is such that
even at low temperatures ωcτ typically is small. In semiconductors, however, the smallness of
m∗ and the relatively high purity (sometimes spectacularly so) mean that ωcτ can get as large
as 103 at modest fields. This allows for a measurement of the effective mass tensor using the
technique of cyclotron resonance.

The absorption of electromagnetic radiation is proportional to the dissipative (i.e. real) part of

the diagonal elements of σαβ(ω,B), which, again taking B along ẑ, is given by

σ′
xx(ω,B) =

ne2τ

m∗
x

1 + (λ2 + 1)s2

1 + 2(λ2 + 1)s2 + (λ2 − 1)2s4
, (5.117)

where λ = B/Bω, with Bω = m∗
⊥c ω/e, and s = ωτ . For fixed ω, the conductivity σ′

xx(B) is
then peaked at B = B∗. When ωτ ≫ 1 and ωcτ ≫ 1, B∗ approaches Bω, where σ′

xx(ω,Bω) =
ne2τ/2m∗

x. By measuring Bω one can extract the quantity m∗
⊥ = eBω/ωc. Varying the direction

of the magnetic field, the entire effective mass tensor may be determined.

For finite ωτ , we can differentiate the above expression to obtain the location of the cyclotron
resonance peak. One finds B = (1 + α)1/2Bω , with

α =
−(2s2 + 1) +

√
(2s2 + 1)2 − 1

s2

= − 1

4s4
+

1

8s6
+O(s−8) .

As depicted in Fig. 5.13, the resonance peak shifts to the left of Bω for finite values of ωτ . The
peak collapses to B = 0 when ωτ 6 1/

√
3 = 0.577.



264 CHAPTER 5. METALS

Figure 5.13: Theoretical cyclotron resonance peaks as a function of B/Bω for different values
of ωτ .

5.5.5 Magnetoresistance in a two band model

For a semiconductor with both electrons and holes present – a situation not uncommon to
metals either (e.g. Aluminum) – each band contributes to the conductivity. The individual band
conductivities are additive because the electron and hole conduction processes occur in parallel,
i.e.

σαβ(ω) =
∑

n

σ
(n)
αβ (ω) , (5.118)

where σ(n)
αβ is the conductivity tensor for band n, which may be computed in either the electron

or hole picture (whichever is more convenient). We assume here that the two bands c and v
may be treated independently, i.e. there is no interband scattering to account for.

The resistivity tensor of each band, ρ
(n)
αβ exhibits no magnetoresistance, as we have found. How-

ever, if two bands are present, the total resistivity tensor ρ is obtained from ρ−1 = ρ−1
c + ρ−1

v ,
and

ρ =
(
ρ−1
c + ρ−1

v

)−1
(5.119)

will in general exhibit the phenomenon of magnetoresistance.

Explicitly, then, let us consider a model with isotropic and nondegenerate conduction band
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minimum and valence band maximum. Taking B = Bẑ, we have

ρc =
(1− iωτc)mc

nce2τc
I+

B

ncec




0 1 0
−1 0 0
0 0 0


 =



αc βc 0
−βc αc 0
0 0 αc




ρv =
(1− iωτv)mv

nve2τv
I− B

nvec




0 1 0
−1 0 0
0 0 0


 =



αv −βv 0
βv αv 0
0 0 αv


 ,

(5.120)

where

αc =
(1− iωτc)mc

nce2τc
βc =

B

ncec

αv =
(1− iωτv)mv

nve2τv
βv =

B

nvec
,

(5.121)

we obtain for the upper left 2× 2 block of ρ:

ρ⊥ =

[(
αv

α2
v + β2

v

+
αc

α2
c + β2

c

)2
+

(
βv

α2
v + β2

v

+
βc

α2
c + β2

c

)2 ]−1

×




αv

α2
v+β

2
v
+ αc

α2
c+β

2
c

βv
α2
v+β

2
v
+ βc

α2
c+β

2
c

− βv
α2
v+β

2
v
− βc

α2
c+β

2
c

αv

α2
v+β

2
v
+ αc

α2
c+β

2
c


 ,

(5.122)

from which we compute the magnetoresistance,

ρxx(B)− ρxx(0)
ρxx(0)

=
γc γv

(
γc
ncec
− γv

nvec

)2
B2

(γc + γv)2 + (γc γv)2
(

1
ncec

+ 1
nvec

)2
B2

, (5.123)

where

γc ≡ α−1
c =

nce
2τc

mc
· 1

1− iωτc

γv ≡ α−1
v =

nve
2τv

mv

· 1

1− iωτv
.

Note that the magnetoresistance is positive within the two band model, and that it saturates in
the high field limit:

ρxx(B →∞)− ρxx(0)
ρxx(0)

=
γc γv

(
γc
ncec
− γv

nvec

)2

(γc γv)2
(

1
ncec

+ 1
nvec

)2 . (5.124)
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The longitudinal resistivity is found to be

ρzz = (γc + γv)
−1 , (5.125)

and is independent of B.

In an intrinsic semiconductor, nc = nv ∝ exp(−Eg/2kB
T ), and ∆ρxx(B)/ρxx(0) is finite even

as T → 0. In the extrinsic (i.e. doped) case, one of the densities (say, nc in a p-type material)
vanishes much more rapidly than the other, and the magnetoresistance vanishes with the ratio
nc/nv.

5.5.6 Optical reflectivity of metals and semiconductors

What happens when an electromagnetic wave is incident on a metal? Inside the metal we have
Maxwell’s equations:

∇×H =
4π

c
j +

1

c

∂D

∂t
=⇒ ik × B =

(
4πσ

c
− iω

c

)
E (5.126)

and

∇× E = −1
c

∂B

∂t
=⇒ ik × E =

iω

c
B (5.127)

and
∇ · E = ∇ · B = 0 =⇒ ik · E = ik ·B = 0 , (5.128)

where we’ve assumed µ = ǫ = 1 inside the metal, ignoring polarization due to virtual interband
transitions (i.e. from core electrons). Hence,

k
2 =

ω2

c2
+

4πiω

c2
σ(ω)

=
ω2

c2
+
ω2
p

c2
iωτ

1− iωτ ≡ ǫ(ω)
ω2

c2
,

(5.129)

where ωp =
√
4πne2/m∗ is the plasma frequency for the conduction band. The dielectric function,

ǫ(ω) = 1 +
4πiσ(ω)

ω
= 1 +

ω2
p

ω2

iωτ

1− iωτ (5.130)

determines the complex refractive index, N(ω) =
√
ǫ(ω), leading to the electromagnetic dis-

persion relation k = N(ω)ω/c.

Consider a wave normally incident upon a metallic surface normal to ẑ. In the vacuum (z < 0),
we write

E(r, t) = E1 x̂ e
iωz/ce−iωt + E2 x̂ e

−iωz/ce−iωt

B(r, t) =
c

iω
∇× E = E1 ŷ e

iωz/ce−iωt − E2 ŷ e
−iωz/ce−iωt

(5.131)
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while in the metal (z > 0),

E(r, t) = E3 x̂ e
iNωz/ce−iωt

B(r, t) =
c

iω
∇× E = NE3 ŷ e

iNωz/ce−iωt .
(5.132)

Continuity of E × n̂ gives E1 + E2 = E3. Continuity of H × n̂ gives E1 − E2 = NE3. Thus,

E2

E1

=
1−N
1 +N

,
E3

E1

=
2

1 +N
(5.133)

and the reflection and transmission coefficients are

R(ω) =

∣∣∣∣
E2

E1

∣∣∣∣
2

=

∣∣∣∣
1−N(ω)

1 +N(ω)

∣∣∣∣
2

T (ω) =

∣∣∣∣
E3

E1

∣∣∣∣
2

=
4∣∣1 +N(ω)

∣∣2 .

(5.134)

We’ve now solved the electromagnetic boundary value problem.

Typical values – For a metal with n = 1022 cm3 and m∗ = me, the plasma frequency is ωp =
5.7 × 1015 s−1. The scattering time varies considerably as a function of temperature. In high
purity copper at T = 4K, τ ≈ 2 × 10−9 s and ωpτ ≈ 107. At T = 300K, τ ≈ 2 × 10−14 s and
ωpτ ≈ 100. In either case, ωpτ ≫ 1. There are then three regimes to consider:

Low frequencies : ωτ ≪ 1≪ ωpτ

We may approximate 1− iωτ ≈ 1, hence

N2(ω) = 1 +
i ω2

pτ

ω(1− iωτ) ≈
i ω2

pτ

ω

N(ω) ≈ 1 + i√
2

(
ω2
pτ

ω

)1/2

=⇒ R ≈ 1− 2
√
2ωτ

ωpτ
.

(5.135)

Hence R ≈ 1 and the metal reflects.

Intermediate frequencies : 1≪ ωτ ≪ ωpτ

In this regime,

N2(ω) ≈ 1− ω2
p

ω2
+
i ω2

p

ω3τ
(5.136)

which is almost purely real and negative. Hence N is almost purely imaginary and R ≈ 1. (To
lowest nontrivial order, R = 1− 2/ωpτ .) Still high reflectivity.
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High frequencies : 1≪ ωpτ ≪ ωτ

Here we have

N2(ω) ≈ 1− ω2
p

ω2
=⇒ R =

ωp

2ω
(5.137)

and R≪ 1 – the metal is transparent at frequencies large compared to ωp.

Optical reflectivity of semiconductors

In our analysis of the electrodynamics of metals, we assumed that the dielectric constant due
to all the filled bands was simply ǫ = 1. This is not quite right. We should instead have written

k
2 = ǫ∞

ω2

c2
+

4πiωσ(ω)

c2

ǫ(ω) = ǫ∞

{
1 +

ω2
p

ω2

iωτ

1− iωτ

}
,

(5.138)

where ǫ∞ is the dielectric constant due to virtual transitions to fully occupied (i.e. core) and
fully unoccupied bands, at a frequency small compared to the interband frequency. The plasma
frequency is now defined as

ωp =

(
4πne2

m∗ ǫ∞

)1/2

(5.139)

where n is the conduction electron density. Note that ǫ(ω → ∞) = ǫ∞, although again this is
only true for ω smaller than the gap to neighboring bands. It turns out that for insulators one
can write

ǫ∞ ≃ 1 +
ω2
pv

ω2
g

(5.140)

where ωpv =
√

4πnve2/me, with nv the number density of valence electrons, and ωg is the energy
gap between valence and conduction bands. In semiconductors such as Si and Ge, ωg ∼ 4 eV,
while ωpv ∼ 16 eV, hence ǫ∞ ∼ 17, which is in rough agreement with the experimental values
of ∼ 12 for Si and ∼ 16 for Ge. In metals, the band gaps generally are considerably larger.

There are some important differences to consider in comparing semiconductors and metals:

• The carrier density n typically is much smaller in semiconductors than in metals, ranging
from n ∼ 1016 cm−3 in intrinsic (i.e. undoped, thermally excited at room temperature)
materials to n ∼ 1019 cm−3 in doped materials.

• ǫ∞ ≈ 10 − 20 and m∗/me ≈ 0.1. The product ǫ∞m
∗ thus differs only slightly from its free

electron value.
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Since nsemi
<∼ 10−4 nmetal, one has

ωsemi
p ≈ 10−2 ωmetal

p ≈ 10−14 s . (5.141)

In high purity semiconductors the mobility µ = eτ/m∗>∼ 105 cm2/vs the low temperature scat-
tering time is typically τ ≈ 10−11 s. Thus, for ω>∼ 3 × 1015 s−1 in the optical range, we have
ωτ ≫ ωpτ ≫ 1, in which case N(ω) ≈ √ǫ∞ and the reflectivity is

R =

∣∣∣∣
1−√ǫ∞
1 +
√
ǫ∞

∣∣∣∣
2

. (5.142)

Taking ǫ∞ = 10, one obtains R = 0.27, which is high enough so that polished Si wafers appear
shiny.

5.5.7 Theory for Bloch wavepackets

But then how do we implement the semiclassical equations of motion for Bloch wavepackets,

dr

dt
= vn(k)−

dk

dt
× Ωn(k)

~
dk

dt
= −eE(r, t)− e

c

dr

dt
× B(r, t) ?

(5.143)

In particular, how do we account for scattering within the semiclassical model? In what fol-
lows, we shall assume that the topological density Ωn(k) = 0.

A more rigorous approach to this issue is based on the Boltzmann equation, which describes
how the distribution f(r, k, t) of electron wave packets evolves and takes a steady state form.
Here we will opt for a more callow treatment which yields equivalent results. The most naı̈ve
generalization of the semiclassical equations would involve adding the ‘scattering’ term −p/τ
to the right hand side of the equation for ṗ = ~k̇, i.e.

M(k)
dv(k)

dt
= −eE(r, t)− e

c

dr

dt
× B(r, t)− 1

τ
M(k) v(k) , (5.144)

where

Mαβ(k) = ~
∂kα

∂vβ
⇐⇒ M−1

αβ (k) =
1

~2

∂2E(k)

∂kα ∂kβ
. (5.145)

However, while k̇ is well-defined, k itself, and hence p = ~k, is not, because it is defined only
modulo a reciprocal lattice vector.
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5.6 Boltzmann Equation in Solids

5.6.1 Semiclassical dynamics and distribution functions

The semiclassical dynamics of a wavepacket in a solid are described by the equations9

dr

dt
=

1

~

∂εn(k)

∂k
− dk

dt
× Ωn(k) (5.146)

dk

dt
= − e

~
E(r, t)− e

~c

dr

dt
× B(r, t)− e

2~mc
∇(σ · B) . . (5.147)

Here n is the band index and εn(k) is the dispersion relation for band n. The Zeeman contri-
bution to the Hamiltonian is HZ = (e~/2mc)σ · B, and we will typically choose the internal ẑ
axis as the spin quantization axis, in which case HZ = (e~/2mc)σBz. The wavevector is k (~k
is the ‘crystal momentum’), and εn(k) is periodic under k → k + G, where G is any reciprocal
lattice vector. The second term on the RHS of Eqn. 5.146 is the so-called Karplus-Luttinger
term, defined by

Aµn(k) = i
〈
un(k)

∣∣ ∂

∂kµ
∣∣un(k)

〉
(5.148)

Ωµ
n(k) = ǫµνλ

∂Aλn(k)
∂kν

, (5.149)

arising from the Berry phases generated by the one-particle Bloch cell functions |un(k)〉. These
formulae are valid only at sufficiently weak fields. They neglect, for example, Zener tunneling
processes in which an electron may change its band index as it traverses the Brillouin zone.
We assume Ωn(k) = 0 in our discussion, i.e. we assume the Bloch bands are non topological.
Finally, we neglect the orbital magnetization of the Bloch wavepacket and contributions from
the spin-orbit interaction. When the orbital moment of the Bloch electrons is included, we must
substitute

εn(k)→ εn(k)−Mn(k) · B(r, t) (5.150)

where

Mµ
n (k) = e ǫµνλ Im

〈
∂un
∂kν

∣∣∣∣ εn(k)−H0(k)

∣∣∣∣
∂un
∂kλ

〉
, (5.151)

where Ĥ0(k) = eik·r Ĥ0 e
−ik·r and Ĥ0 = p2

2m
+ V (r) is the one-electron Hamiltonian in the crys-

talline potential V (r) = V (r + R), where R is any direct lattice vector. Note Ĥ0(k) |un(k)〉 =
εn(k) |un(k)〉 and that un(k, r + R) = un(k, r) is periodic in the direct lattice.

9See G. Sundaram and Q. Niu, Phys. Rev. B 59, 14915 (1999).
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We are of course interested in more than just a single electron, hence to that end let us consider
the distribution function fn(r, k, t), defined such that10

fnσ(r, k, t)
d3r d3k

(2π)3
≡ # of electrons of spin σ in band n with positions within

d3r of r and wavevectors within d3k of k at time t.
(5.152)

Note that the distribution function is dimensionless. By performing integrals over the distri-
bution function, we can obtain various physical quantities. For example, the current density at
r is given by

j(r, t) = −e
∑

n,σ

∫

Ω̂

d3k

(2π)3
fnσ(r, k, t) vn(k) . (5.153)

The symbol Ω̂ in the above formula is to remind us that the wavevector integral is performed
only over the first Brillouin zone.

We now ask how the distribution functions fnσ(r, k, t) evolve in time. To simplify matters, we
will consider a single band and drop the indices n and σ. It is clear that in the absence of
collisions, the distribution function must satisfy the continuity equation,

∂f

∂t
+∇ · (uf) = 0 . (5.154)

This is just the condition of number conservation for electrons. Take care to note that ∇ and u

are six-dimensional phase space vectors:

u = ( ẋ , ẏ , ż , k̇x , k̇y , k̇z )

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z
,
∂

∂kx
,
∂

∂ky
,
∂

∂kz

)
.

(5.155)

Now note that as a consequence of the dynamics (5.146,5.147) that, provided Ωn(k) = 0, we
have ∇ ·u = 0, i.e. phase space flow is incompressible, provided that ε(k) is a function of k alone,
and not of r. Thus, in the absence of collisions, we have

∂f

∂t
+ u ·∇f = 0 . (5.156)

The differential operator Dt ≡ ∂t + u ·∇ is sometimes called the ‘convective derivative’.

When Ωn(k) 6= 0, we found in §4.5.2 that ∇ · u = −d lnDn/dt, with

Dn(r, k, t) = 1 +
e

~c
B(r, t) · Ω(k) . (5.157)

10We will assume three space dimensions. The discussion may be generalized to quasi-two dimensional and
quasi-one dimensional systems as well.
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In this case, we must redefine the phase space measure as

dµ =
d3r d3k

(2π)3
−→ dµ̃ ≡ Dn(r, k, t)

d3r d3k

(2π)3
. (5.158)

This means that the expectation of any local observable O is given by

〈O〉(r′, t) =
∑

n

∫

Ω̂

dµ̃ fn(r, k, t) 〈 unk | O | unk 〉 δ(r − r′)

=
∑

n

∫

Ω̂

d3k

(2π)3
Dn(r,

′
k, t) fn(r

′, k, t) 〈 unk | O | unk 〉 ,

(5.159)

Thus, for example

j(r, t) =
∑

n

∫

Ω̂

d3k

(2π)3
Dn(r, k, t) fn(r, k, t) (−eṙ)

= −e
∫

Ω̂

d3k

(2π)3

{
vn +

e

~c
(vn · Ωn)B +

e

~
E ×Ωn

}
fn(r, k, t) .

(5.160)

Throughout the rest of this chapter, we will assume Ωn(k) = 0. Here we have absorbed the spin
polarization index σ into the band index, so there are twice as many n values as before. This
notation is more appropriate when spin-orbit interaction terms are present, which can lead to
cell functions |unk〉which have internal spin space structure.

Next we must consider the effect of collisions, which are not accounted for by the semiclassical
dynamics. In a collision process, an electron with wavevector k and one with wavevector k′

can instantaneously convert into a pair with wavevectors k+ q and k′ − q (modulo a reciprocal
lattice vectorG), where q is the wavevector transfer. Note that the total wavevector is preserved
(mod G). This means that Dtf 6= 0. Rather, we should write

∂f

∂t
+ ṙ · ∂f

∂r
+ k̇ · ∂f

∂k
=

(
∂f

∂t

)

coll

≡ Ik[f ] (5.161)

where the right side is known as the collision integral. The collision integral is in general a
function of r, k, and t and a functional of the distribution f . As the k-dependence is the most
important for our concerns, we will write Ik in order to make this dependence explicit. Some
examples should help clarify the situation.

First, let’s consider a very simple model of the collision integral,

Ik[f ] = −
f(r, k, t)− f 0(r, k)

τ(ε(k))
. (5.162)
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This model is known as the relaxation time approximation. Here, f 0(r, k) is a static distribution
function which describes a local equilibrium at r. The quantity τ(ε(k)) is the relaxation time, which
may be energy-dependent. Note that the collision integral indeed depends on the variables
(r, k, t), and has a particularly simple functional dependence on the distribution f .

A more sophisticated model might invoke Fermi’s golden rule, Consider elastic scattering from
a static potential U(r) which induces transitions between different momentum states. We can
then write

Ik[f ] =
2π

~

∑

k′∈Ω̂

|
〈
k
′ ∣∣U

∣∣ k
〉
|2 (fk′ − fk) δ(εk − εk′)

=
2π

~V

∫

Ω̂

d3k′

(2π)3
| Û(k − k′)|2 (fk′ − fk) δ(εk − εk′) ,

(5.163)

where we abbreviate fk ≡ f(r, k, t). In deriving the last line we’ve used plane wave wavefunc-

tions11 ψk(r) = exp(ik · r)/
√
V , as well as the result

∑

k∈Ω̂

A(k) = V

∫

Ω̂

d3k

(2π)3
A(k) (5.164)

for smooth functionsA(k). Note the factor of V −1 in front of the integral in Eqn. 5.163. What this
tells us is that for a bounded localized potential U(r), the contribution to the collision integral
is inversely proportional to the size of the system. This makes sense because the number of
electrons scales as V but the potential is only appreciable over a region of volume ∝ V 0. Later

on, we shall consider a finite density of scatterers, writing U(r) = ∑Nimp

i=1 U(r − Ri), where the

impurity density nimp = Nimp/V is finite, scaling as V 0. In this case Û(k − k′) apparently scales
as V , which would mean Ik{f} scales as V , which is unphysical. As we shall see, the random

positioning of the impurities means that the O(V 2) contribution to |Û(k− k′)|2 is incoherent and
averages out to zero. The coherent piece scales as V , canceling the V in the denominator of
Eqn. 5.163, resulting in a finite value for the collision integral in the thermodynamic limit (i.e.
neither infinite nor infinitesimal).

Later on we will discuss electron-phonon scattering, which is inelastic. An electron with wavevec-
tor k′ can scatter into a state with wavevector k = k′ − q mod G by absorption of a phonon of
wavevector q or emission of a phonon of wavevector −q. Similarly, an electron of wavevec-
tor k can scatter into the state k′ by emission of a phonon of wavevector −q or absorption of
a phonon of wavevector q. The matrix element for these processes depends on k, k′, and the
polarization index of the phonon. Overall, energy is conserved. These considerations lead us

11Rather than plane waves, we should use Bloch waves ψnk(r) = exp(ik · r)unk(r), where cell function unk(r)
satisfies unk(r+R) = unk(r), whereR is any direct lattice vector. Plane waves do not contain the cell functions,
although they do exhibit Bloch periodicity ψnk(r +R) = exp(ik ·R)ψnk(r).
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Figure 5.14: Electron-phonon vertices.

to the following collision integral:

Ik[f, n] =
2π

~V

∑

k′,λ

|gλ(k, k′)|2
{
(1− fk) fk′ (1 + nq,λ) δ(εk + ~ωqλ − εk′) (5.165)

+ (1− fk) fk′ n−qλ δ(εk − ~ω−qλ − εk′)− fk (1− fk′) (1 + n−qλ) δ(εk − ~ω−qλ − εk′)
− fk (1− fk′)nqλ δ(εk + ~ωqλ − εk′)

}
δq,k′−k mod G ,

which is a functional of both the electron distribution fk as well as the phonon distribution nqλ.
The four terms inside the curly brackets correspond, respectively, to cases (a) through (d) in
Fig. 5.14.

Collisional invariants

While collisions will violate crystal momentum conservation, they do not violate conservation
of particle number. Hence we should have12

∫
d3r

∫

Ω̂

d3k

(2π)3
Ik[f ] = 0 . (5.166)

12If collisions are purely local, then
∫

Ω̂

d3k
(2π)3 Ik[f ] = 0 at every point r in space.
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The total particle number,

N =

∫
d3r

∫

Ω̂

d3k

(2π)3
f(r, k, t) (5.167)

is a collisional invariant - a quantity which is preserved in the collision process. Other collisional
invariants include energy (when all sources are accounted for), spin (total spin), and crystal
momentum (if there is no breaking of lattice translation symmetry)13. Consider a function
F (r, k) of position and wavevector. Its average value is

F̄ (t) =

∫
d3r

∫

Ω̂

d3k

(2π)3
F (r, k) f(r, k, t) . (5.168)

Taking the time derivative,

dF̄

dt
=
∂F̄

∂t
=

∫
d3r

∫

Ω̂

d3k

(2π)3
F (r, k)

{
− ∂

∂r
· (ṙf)− ∂

∂k
· (k̇f) + Ik[f ]

}

=

∫
d3r

∫

Ω̂

d3k

(2π)3

{[
∂F

∂r
· dr
dt

+
∂F

∂k
· dk
dt

]
f + F Ik[f ]

}
.

(5.169)

Hence, if F is preserved by the dynamics between collisions, then

dF̄

dt
=

∫
d3r

∫

Ω̂

d3k

(2π)3
F Ik[f ] , (5.170)

which says that F̄ (t) changes only as a result of collisions. If F is a collisional invariant, then
˙̄F = 0. This is the case when F = 1, in which case F̄ is the total number of particles, or when
F = ε(k), in which case F̄ is the total energy.

5.6.2 Local equilibrium

The equilibrium Fermi distribution,

f 0(k) =

{
exp

(
ε(k)− µ
k

B
T

)
+ 1

}−1

(5.171)

is a space-independent and time-independent solution to the Boltzmann equation. Since colli-
sions act locally in space, they act on short time scales to establish a local equilibrium described

13Note that the relaxation time approximation violates all such conservation laws. Within the relaxation time
approximation, there are no collisional invariants.
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by a distribution function

f 0(r, k, t) =

{
exp

(
ε(k)− µ(r, t)
k

B
T (r, t)

)
+ 1

}−1

. (5.172)

This is, however, not a solution to the full Boltzmann equation due to the ‘streaming terms’
ṙ · ∂r + k̇ · ∂k in the convective derivative. These, though, act on longer time scales than those
responsible for the establishment of local equilibrium. To obtain a solution, we write

f(r, k, t) = f 0(r, k, t) + δf(r, k, t) (5.173)

and solve for the deviation δf(r, k, t). We will assume µ = µ(r) and T = T (r) are time-
independent. We first compute the differential of f 0,

df 0 = k
B
T
∂f 0

∂ε
d

(
ε− µ
kBT

)

= k
B
T
∂f 0

∂ε

{
− dµ

kBT
− (ε− µ) dT

kBT
2

+
dε

kBT

}

= −∂f
0

∂ε

{
∂µ

∂r
· dr + ε− µ

T

∂T

∂r
· dr − ∂ε

∂k
· dk
}

,

(5.174)

from which we read off

∂f 0

∂r
=

{
∂µ

∂r
+
ε− µ
T

∂T

∂r

}(
−∂f

0

∂ε

)

∂f 0

∂k
= ~v

∂f 0

∂ε
.

(5.175)

We thereby obtain

∂δf

∂t
+ v ·∇ δf − e

~

[
E +

1

c
v × B

]
· ∂ δf
∂k

+ v ·
[
eE +

ε− µ
T

∇T

](
−∂f

0

∂ε

)
= Ik

[
f 0+ δf

]
, (5.176)

where E = −∇(φ−µ/e) is the gradient of the ‘electrochemical potential’; we’ll henceforth refer
to E as the electric field. Eqn (5.176) is a nonlinear integrodifferential equation in δf , with the
nonlinearity coming from the collision integral. (In some cases, such as impurity scattering, the
collision integral may be a linear functional.) We will solve a linearized version of this equation,
assuming the system is always close to a state of local equilibrium.

Note that the inhomogeneous term in (5.176) involves the electric field and the temperature
gradient ∇T . This means that δf is proportional to these quantities, and if they are small then
δf is small. The gradient of δf is then of second order in smallness, since the external fields
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φ − µ/e and T are assumed to be slowly varying in space. To lowest order in smallness, then,
we obtain the following linearized Boltzmann equation:

∂δf

∂t
− e

~c
v × B · ∂ δf

∂k
+ v ·

[
eE +

ε− µ
T

∇T

](
−∂f

0

∂ε

)
= L δf , (5.177)

where L δf is the linearized collision integral; L is a linear operator acting on δf (we suppress
denoting the k dependence of L). Note that we have not assumed that B is small. Indeed later
on we will derive expressions for high B transport coefficients.

Note also that we also have dropped the term

∂f 0

∂t
= −∂f

0

∂ε

{
∂µ

∂t
+
ε− µ
T

∂T

∂t

}
(5.178)

from the LHS of the linearized Boltzmann equation. This is because we assume that the spa-
tially uniform components of µ(r, t) and T (r, t) are time-independent, which means that the
nonzero contributions to ∂µ/∂t and ∂T/∂t involve at least one space derivative as well as one
time derivative, and are thus doubly small and therefore negligible.

5.7 Conductivity of Normal Metals

5.7.1 Relaxation time approximation

Consider a normal metal in the presence of an electric field E . We’ll assume B = 0, ∇T = 0,
and also that E is spatially uniform as well. This in turn guarantees that δf itself is spatially
uniform. The Boltzmann equation then reduces to

∂ δf

∂t
− ∂f 0

∂ε
ev · E = Ik

[
f 0 + δf

]
. (5.179)

We’ll solve this by adopting the relaxation time approximation for Ik[f ]:

Ik[f ] = −
f − f 0

τ
= −δf

τ
, (5.180)

where τ , which may be k-dependent, is the relaxation time. In the absence of any fields or tem-

perature and electrochemical potential gradients, the Boltzmann equation becomes δ̇f = −δf/τ ,
with the solution δf(t) = δf(0) exp(−t/τ). The distribution thereby relaxes to the equilibrium
one on the scale of τ . In fact, this result is wrong, because the total particle number is a col-
lisional invariant. Electrons can’s simply disappear! Rather, the local number density must
relax to the equilibrium value via the slower mechanism of diffusion. While the fact that colli-
sional invariants are not respected is a defect of the relaxation time approximation, this won’t
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much affect the validity of our conclusions regarding various transport coefficients, such as the
electrical conductivity.

Writing E(t) = E e−iωt, we solve

∂ δf(k, t)

∂t
− e v(k) · E e−iωt ∂f

0

∂ε
= −δf(k, t)

τ(ε(k))
(5.181)

and obtain

δf(k, t) =
eE · v(k) τ(ε(k))
1− iωτ(ε(k))

∂f 0

∂ε
e−iωt . (5.182)

The equilibrium distribution f 0(k) results in zero current, since f 0(−k) = f 0(k). Thus, the
current density is given by the expression

jα(r, t) = −2e
∫

Ω̂

d3k

(2π)3
δf vα

= 2e2 Eβ e−iωt
∫

Ω̂

d3k

(2π)3
τ(ε(k)) vα(k) vβ(k)

1− iωτ(ε(k))

(
−∂f

0

∂ε

)
.

(5.183)

In the above calculation, the factor of two arises from summing over spin polarizations. The
conductivity tensor is defined by the linear relation jα(ω) = σαβ(ω) Eβ(ω). We have thus de-
rived an expression for the conductivity tensor,

σαβ(ω) = 2e2
∫

Ω̂

d3k

(2π)3
τ(ε(k)) vα(k) vβ(k)

1− iωτ(ε(k))

(
−∂f

0

∂ε

)
. (5.184)

Note that the conductivity is a property of the Fermi surface. For k
B
T ≪ εF, we have −∂f 0/∂ε ≈

δ(ε
F
− ε(k)) and the above integral is over the Fermi surface alone. Explicitly, we change vari-

ables to energy ε and coordinates along a constant energy surface, writing

d3k =
dε dSε
|∂ε/∂k| =

dε dSε
~|v| , (5.185)

where dSε is the differential area on the constant energy surface ε(k) = ε, and v(k) = ~−1∇k ε(k)

is the velocity. For T ≪ TF, then,

σαβ(ω) =
e2

4π3~

τ(ε
F
)

1− iωτ(ε
F
)

∫
dSF

vα(k) vβ(k)

|v(k)| . (5.186)

For free electrons in a parabolic band, we write ε(k) = ~2k2/2m∗, so vα(k) = ~kα/m∗. To further
simplify matters, let us assume that τ is constant, or at least very slowly varying in the vicinity
of the Fermi surface. We find

σαβ(ω) = δαβ
2

3m∗
e2τ

1− iωτ

∞∫

−∞

dε g(ε) ε

(
−∂f

0

∂ε

)
, (5.187)
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Figure 5.15: Frequency-dependent conductivity of liquid sodium by T. Inagaki et al, Phys. Rev.
B 13, 5610 (1976).

where g(ε) is the density of states,

g(ε) = 2

∫

Ω̂

d3k

(2π)3
δ (ε− ε(k)) . (5.188)

The (three-dimensional) parabolic band density of states is found to be

g(ε) =
(2m∗)3/2

2π2~3

√
εΘ(ε) , (5.189)

where Θ(x) is the step function. In fact, integrating (5.187) by parts, we only need to know
about the

√
ε dependence in g(ε), and not the details of its prefactor:

∫
dε ε g(ε)

(
−∂f

0

∂ε

)
=

∫
dε f 0(ε)

∂

∂ε
(ε g(ε)) = 3

2

∫
dε g(ε) f 0(ε) = 3

2
n , (5.190)

where n = N/V is the electron number density for the conduction band. The final result for the
conductivity tensor is

σαβ(ω) =
ne2τ

m∗
δαβ

1− iωτ . (5.191)

We have recovered the the Drude theory of electrical conduction in metals.
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5.7.2 Optical conductivity and the Fermi surface

At high frequencies, when ωτ ≫ 1, our expression for the conductivity, Eqn. (5.184), yields

σ(ω) =
ie2

12π3~ω

∫
dε

(
−∂f

0

∂ε

)∫
dSε

∣∣v(k)
∣∣ , (5.192)

where we have presumed sufficient crystalline symmetry to guarantee that σαβ = σ δαβ is di-
agonal. In the isotropic case, and at temperatures low compared with TF, the integral over the
Fermi surface gives 4πk2

F
v
F
= 12π3~n/m∗, whence σ = ine2/m∗ω, which is the large frequency

limit of our previous result. For a general Fermi surface, we can define

σ(ω ≫ τ−1) ≡ ine2

moptω
(5.193)

where the optical mass mopt is given by

1

mopt

=
1

12π3~n

∫
dε

(
−∂f

0

∂ε

)∫
dSε

∣∣v(k)
∣∣ . (5.194)

Note that at high frequencies σ(ω) is purely imaginary. What does this mean? If

E(t) = E cos(ωt) = 1
2
E
(
e−iωt + e+iωt

)
(5.195)

then

j(t) = 1
2
E
{
σ(ω) e−iωt + σ(−ω) e+iωt

}
=

ne2

moptω
E sin(ωt) , (5.196)

where we have invoked σ(−ω) = σ∗(ω). The current is therefore 90◦ out of phase with the
voltage, and the average over a cycle 〈j(t) · E(t)〉 = 0. Recall that we found metals to be
transparent for ω ≫ ωp ≫ τ−1.

At zero temperature, the optical mass is given by

1

mopt

=
1

12π3~n

∫
dS

F

∣∣v(k)
∣∣ . (5.197)

The density of states, g(ε
F
), is

g(ε
F
) =

1

4π3~

∫
dS

F

∣∣v(k)
∣∣−1

, (5.198)

from which one can define the thermodynamic effective mass m∗
th, appealing to the low tem-

perature form of the specific heat,

cV =
π2

3
k2B T g(εF) ≡

m∗
th

me
c0V , (5.199)
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m∗
opt/me m∗

th/me

Metal thy expt thy expt

Li 1.45 1.57 1.64 2.23
Na 1.00 1.13 1.00 1.27
K 1.02 1.16 1.07 1.26

Rb 1.08 1.16 1.18 1.36
Cs 1.29 1.19 1.75 1.79
Cu - - 1.46 1.38
Ag - - 1.00 1.00
Au - - 1.09 1.08

Table 5.1: Optical and thermodynamic effective masses of monovalent metals. (Taken from
Smith and Jensen).

where

c0V ≡
me k

2
B
T

3~2
(3π2n)1/3 (5.200)

is the specific heat for a free electron gas of density n. Thus,

m∗
th =

~

4π(3π2n)1/3

∫
dSF

∣∣v(k)
∣∣−1

(5.201)

5.8 Calculation of the Scattering Time

5.8.1 Potential scattering and Fermi’s golden rule

Let us go beyond the relaxation time approximation and calculate the scattering time τ from
first principles. We will concern ourselves with scattering of electrons from crystalline impuri-
ties. We begin with Fermi’s Golden Rule14,

Ik[f ] =
2π

~

∑

k′

∣∣〈 k′
∣∣U
∣∣ k
〉∣∣2 (fk′ − fk) δ(ε(k)− ε(k′)) , (5.202)

where U(r) is a sum over individual impurity ion potentials, U(r) =∑Nimp

j=1 U(r − Rj). Thus,

∣∣〈 k′
∣∣U
∣∣ k
〉∣∣2 = V −2 |Û(k− k′)|2 ·

∣∣∣∣
Nimp∑

j=1

ei(k−k
′)·Rj

∣∣∣∣
2

, (5.203)

14We’ll treat the scattering of each spin species separately. We assume no spin-flip scattering takes place.
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where V is the volume of the solid and

Û(q) =

∫
d3r U(r) e−iq·r (5.204)

is the Fourier transform of the impurity potential. Note that we are assuming a single species
of impurities; the method can be generalized to account for different impurity species.

To make progress, we assume the impurity positions are random and uncorrelated, and we
average over them. Using

∣∣∣∣
Nimp∑

j=1

eiq·Rj
∣∣∣∣
2

= Nimp +Nimp(Nimp − 1) δq,0 , (5.205)

we obtain ∣∣〈 k′
∣∣U
∣∣ k
〉∣∣2 = Nimp

V 2
|Û(k − k′)|2 + Nimp(Nimp − 1)

V 2
|Û(0)|2 δkk′ . (5.206)

EXERCISE: Verify Eqn. (5.205).

We will neglect the second term in Eqn. 5.206 arising from the spatial average (q = 0 Fourier
component) of the potential. As we will see, in the end it will cancel out. Writing f = f 0 + δf ,
we have

Ik[f ] =
2πnimp

~

∫

Ω̂

d3k′

(2π)3
|Û(k − k′)|2 δ

(
~2k2

2m∗ −
~2k′2

2m∗

)
(δfk′ − δfk) , (5.207)

where nimp = Nimp/V is the number density of impurities. Note that we are assuming a
parabolic band. We next make the Ansatz

δfk = τ(ε(k)) eE · v(k) ∂f
0

∂ε

∣∣∣∣
ε(k)

(5.208)

and solve for τ(ε(k)). The (time-independent) Boltzmann equation is

−eE · v(k) ∂f
0

∂ε
=

2π

~
nimp eE ·

∫

Ω̂

d3k′

(2π)3
|Û(k − k′)|2 δ

(
~2k2

2m∗ −
~2k′2

2m∗

)

×
(
τ(ε(k′)) v(k′)

∂f 0

∂ε

∣∣∣∣
ε(k′)

− τ(ε(k)) v(k) ∂f
0

∂ε

∣∣∣∣
ε(k)

)
.

(5.209)

Due to the isotropy of the problem, we must have τ(ε(k)) is a function only of the magnitude
of k. We then obtain15

~k

m∗ =
nimp

4π2~
τ(ε(k))

∞∫

0

dk′ k′
2

∫
dk̂′ |Û(k − k′)|2 δ(k − k

′)

~2k/m∗
~

m∗ (k − k
′) , (5.210)

15We assume that the Fermi surface is contained within the first Brillouin zone.
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whence
1

τ(ε
F
)
=
m∗ k

F
nimp

4π2~3

∫
dk̂′ |U(k

F
k̂− k

F
k̂
′)|2 (1− k̂ · k̂′) . (5.211)

If the impurity potential U(r) itself is isotropic, then its Fourier transform Û(q) is a function of
q2 = 4k2

F
sin2 1

2
ϑ where cos ϑ = k̂ · k̂′ and q = k′−k is the transfer wavevector. Recalling the Born

approximation for differential scattering cross section,

σ(ϑ) =

(
m∗

2π~2

)2
|Û(k − k′)|2 , (5.212)

we may finally write

1

τ(ε
F
)
= 2πnimpvF

π∫

0

dϑ σ
F
(ϑ) (1− cosϑ) sinϑ , (5.213)

where v
F
= ~k

F
/m∗ is the Fermi velocity16. The mean free path is defined by ℓ = v

F
τ .

Notice the factor (1 − cosϑ) in the integrand of (5.213). This tells us that forward scattering
(ϑ = 0) doesn’t contribute to the scattering rate, which justifies our neglect of the second term
in Eqn. (5.206). Why should τ be utterly insensitive to forward scattering? Because τ(ε

F
) is

the transport lifetime, and forward scattering does not degrade the current. Therefore, σ(ϑ = 0)
does not contribute to the ‘transport scattering rate’ τ−1(ε

F
). Oftentimes one sees reference in

the literature to a ‘single particle lifetime’ as well, which is given by the same expression but
without this factor:

{
τ−1
sp

τ−1
tr

}
= 2πnimpvF

π∫

0

dϑ σ
F
(ϑ)

{
1

(1− cosϑ)

}
sinϑ . (5.214)

Note that τsp = (nimp vF
σF,tot)

−1, where σF,tot is the total scattering cross section at energy ε
F
, a

formula familiar from elementary kinetic theory.

The Boltzmann equation defines an infinite hierarchy of lifetimes classified by the angular mo-
mentum scattering channel. To derive this hierarchy, one can examine the linearized time-
dependent Boltzmann equation with E = 0,

∂ δfk
∂t

= nimp vF

∫
dk̂′ σ(ϑkk′) (δfk′ − δfk) , (5.215)

where v = ~k/m∗ is the velocity, and where the kernel is ϑkk′ = cos−1(k̂ · k̂′). We now expand in
spherical harmonics, writing

σ(ϑkk′) ≡ σtot
∑

L,M

νL YLM(k̂) Y ∗
LM(k̂′) , (5.216)

16The subscript on σF(ϑ) is to remind us that the cross section depends on k
F

as well as ϑ.
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where as before

σtot = 2π

π∫

0

dϑ sinϑσ(ϑ) , (5.217)

which fixes νL=0 = 1. Expanding

δfk(t) =
∑

L,M

ALM(t) YLM(k̂) , (5.218)

the linearized Boltzmann equation simplifies to

∂ALM
∂t

+ (1− νL)nimpvF
σtotALM = 0 , (5.219)

whence one obtains a hierarchy of relaxation rates,

τ−1
L = (1− νL)nimpvF

σtot , (5.220)

which depend only on the total angular momentum quantum number L. These rates describe
the relaxation of nonuniform distributions when δfk(t = 0) is proportional to some spherical
harmonic YLM(k). Note that τ−1

L=0 = 0, which reflects the fact that the total particle number is a
collisional invariant. The single particle lifetime is identified as

τsp ≡ τL→∞ =
(
nimpvF

σtot
)−1

, (5.221)

corresponding to a point distortion of the uniform distribution. The transport lifetime is then

τtr = τL=1.

5.8.2 Screening and the transport lifetime

For a Coulomb impurity, with U(r) = −Ze2/r we have Û(q) = −4πZe2/q2. Consequently,

σF(ϑ) =

(
Ze2

4ε
F
sin2 1

2
ϑ

)2
, (5.222)

and there is a strong divergence as ϑ → 0, with σF(ϑ) ∝ ϑ−4. The transport lifetime diverges
logarithmically! What went wrong?

What went wrong is that we have failed to account for screening. Free charges will rearrange
themselves so as to screen an impurity potential. At long range, the effective (screened) poten-
tial decays exponentally, rather than as 1/r. The screened potential is of the Yukawa form, and
its increase at low q is cut off on the scale of the inverse screening length λ−1. There are two
types of screening to consider:
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• Thomas-Fermi Screening : This is the typical screening mechanism in metals. A weak

local electrostatic potential φ(r) will induce a change in the local electronic density ac-
cording to δn(r) = eφ(r) g(ε

F
), where g(ε

F
) is the density of states at the Fermi level. This

charge imbalance is again related to φ(r) through the Poisson equation. The result is a
self-consistent equation for φ(r),

∇2φ = 4πe δn

= 4πe2g(ε
F
)φ ≡ λ−2

TF φ .
(5.223)

The Thomas-Fermi screening length is λTF =
(
4πe2g(ε

F
)
)−1/2

.

• Debye-Hückel Screening : This mechanism is typical of ionic solutions, although it may

also be of relevance in solids with ultra-low Fermi energies. From classical statistical
mechanics, the local variation in electron number density induced by a potential φ(r) is

δn(r) = n eeφ(r)/kBT − n ≈ neφ(r)

k
B
T

, (5.224)

where we assume the potential is weak on the scale of k
B
T/e. Poisson’s equation now

gives us

∇2φ = 4πe δn =
4πne2

kBT
φ ≡ λ−2

DH φ . (5.225)

A screened test charge Ze at the origin obeys

∇2φ = λ−2 φ− 4πZe δ(r) , (5.226)

the solution of which is

U(r) = −eφ(r) = −Ze
2

r
e−r/λ =⇒ Û(q) = − 4πZe2

q2 + λ−2
. (5.227)

The differential scattering cross section is now

σ
F
(ϑ) =

(
Ze2

4ε
F

· 1

sin2 1
2
ϑ+ (2k

F
λ)−2

)2
(5.228)

and the divergence at small angle is cut off. The transport lifetime for screened Coulomb scat-
tering is therefore given by

1

τ(ε
F
)
= 2πnimpvF

(
Ze2

4ε
F

)2 π∫

0

dϑ sinϑ (1− cosϑ)

(
1

sin2 1
2
ϑ+ (2k

F
λ)−2

)2

= 2πnimpvF

(
Ze2

2ε
F

)2{
ln(1 + πζ)− πζ

1 + πζ

}
,

(5.229)
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Figure 5.16: Residual resistivity per percent impurity.

with ζ = 4
π
k2

F
λ2, In the case of Thomas-Fermi screening, from g(ε

F
) = m∗k

F
/π2~2, and we have

ζ =
4

π
k2

F
λ2 =

~2k
F

m∗e2
= k

F
a∗

B
. (5.230)

Here a∗
B
= ǫ∞ ~2/m∗e2 is the effective Bohr radius (restoring the ǫ∞ factor). The resistivity is

therefore given by

ρ =
m∗

ne2τ
=

h

e2
Z2 a∗

B
(nimp/n)F (kF

a∗
B
) , (5.231)

where

F (ζ) =
1

ζ3

{
ln(1 + πζ)− πζ

1 + πζ

}
. (5.232)

With h/e2 = 25, 813Ω and a∗
B
≈ a

B
= 0.529 Å, we have

ρ = 1.37× 10−4Ω · cm × Z2 (nimp/n)F (kF
a

B
) . (5.233)

In Tab. 5.2, we show the observed residual resistivity per percent impurity for various ions in
copper at low temperatures.
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Impurity ∆ρ per % Impurity ∆ρ per %
Ion (µΩ-cm) Ion (µΩ-cm)

Be 0.64 Si 3.2
Mg 0.60 Ge 3.7
B 1.4 Sn 2.8
Al 1.2 As 6.5
In 1.2 Sb 5.4

Table 5.2: Observed residual resistivity of copper per percent impurity. (From Smith and
Jensen.)

5.9 Dynamics of Holes

5.9.1 Properties of holes

Since filled bands carry no current, we have that the current density from band n is

jn(r, t) = −2e
∫

Ω̂

d3k

(2π)3
fn(r, k, t) vn(k) = +2e

∫

Ω̂

d3k

(2π)3
f̄n(r, k, t) vn(k) , (5.234)

where f̄ ≡ 1− f . Thus, we can regard the current to be carried by fictitious particles of charge
+e with a distribution f̄(r, k, t). These fictitious particles are called holes.

The Four Laws of Holes

1. Under the influence of an applied electromagnetic field, the unoccupied levels of a band
evolve as if they were occupied by real electrons of charge −e. That is, whether or not a
state is occupied is irrelevant to the time evolution of that state, which is described by the
semiclassical dynamics of eqs. (5.146, 5.147).

2. The current density due to a hole of wavevector k is +e vn(k)/V .

3. The crystal momentum of a hole of wavevector k is P = −~k.

4. Any band can be described in terms of electrons or in terms of holes, but not both simul-
taneously. A “mixed” description is redundant at best, wrong at worst, and confusing
always. However, it is often convenient to treat some bands within the electron picture
and others within the hole picture.
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Figure 5.17: Two states:
∣∣ΨA

〉
= e†k h

†
k

∣∣ 0
〉

and
∣∣ΨB

〉
= e†k h

†
−k
∣∣ 0
〉
. Which state carries more

current? What is the crystal momentum of each state?

It is instructive to consider the exercise of Fig. 5.17. The two states to be analyzed are
∣∣ΨA

〉
= ψ†

c,k ψv,k

∣∣Ψ0

〉
= e†k h

†
k

∣∣ 0
〉

∣∣ΨB

〉
= ψ†

c,k ψv,−k
∣∣Ψ0

〉
= e†k h

†
−k
∣∣ 0
〉

,
(5.235)

where e†k ≡ ψ†
c,k is the creation operator for electrons in the conduction band, and h†k ≡ ψv,k is

the creation operator for holes (and hence the destruction operator for electrons) in the valence

band. The state
∣∣Ψ0

〉
has all states below the top of the valence band filled, and all states above

the bottom of the conduction band empty. The state
∣∣ 0
〉

is the same state, but represented now
as a vacuum for conduction electrons and valence holes. The current density in each state is

given by j = e(vh − ve)/V , where V is the volume (i.e. length) of the system. The dispersions
are taken to be εc,v(k) = ±1

2
Eg ± ~

2k2/2m∗, where Eg is the energy gap.

• State
∣∣ΨA

〉
:

The electron velocity is ve = ~k/m∗; the hole velocity is vh = −~k/m∗. The total current

density is j = x−2e~k/m∗V and the total crystal momentum is P = pe+ph = ~k−~k = 0.

• State
∣∣ΨB

〉
:

The electron velocity is ve = ~k/m∗; the hole velocity is vh = −~(−k)/m∗. The total current

density is j = 0, and the total crystal momentum is P = pe + ph = ~k − ~(−k) = 2~k.
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Consider next the dynamics of electrons near the bottom of the conduction band and holes near
the top of the valence band. (We’ll assume a ‘direct gap’, i.e. the conduction band minimum is
located directly above the valence band maximum, which we take to be at the Brillouin zone
center k = 0, otherwise known as the Γ point.) Expanding the dispersions about their extrema
to second order,

εv(k) = εv0 − 1
2
~
2(mv)−1

αβ k
α kβ

εc(k) = εc0 +
1
2
~
2(mc)−1

αβ k
α kβ .

(5.236)

The velocity is

vα(k) =
1

~

∂ε

∂kα
= ±~m−1

αβ k
β , (5.237)

where the + sign is used in conjunction with mc and the − sign with mv. We compute the
acceleration a = r̈ via the chain rule,

aα =
∂vα

∂kβ
· dk

β

dt

= ∓em−1
αβ

[
Eβ +

1

c
(v × B)β

]

F α = mαβ a
β = ∓e

[
Eβ +

1

c
(v × B)β

]
.

(5.238)

Thus, the hole wavepacket accelerates as if it has charge +e but a positive effective mass. Note
that we have above presumed a direct band gap, i.e. that the conduction band minimum lies
directly above the valence band maximum, at the same value of k (typically the Γ point in the
Brillouin zone). However, many materials have an indirect band gap in which case

εv(k) = εv0 − 1
2
~
2(mv)−1

αβ (k
α −Kα

v ) (k
β −Kβ

v )

vαv (k) = −(mv)−1
αβ (k

β −Kβ
v )

(5.239)

and

εc(k) = εc0 +
1
2
~
2(mc)−1

αβ (k
α −Kα

c ) (k
β −Kβ

c )

vαc (k) = +(mc)−1
αβ (k

β −Kβ
c ) .

(5.240)

5.9.2 Boltzmann equation for holes

Finally, what form does the Boltzmann equation take for holes? Starting with the Boltzmann
equation for electrons,

∂f

∂t
+ ṙ · ∂f

∂r
+ k̇ · ∂f

∂k
= Ik[f ] , (5.241)
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we recast this in terms of the hole distribution f̄ = 1− f , and obtain

∂f̄

∂t
+ ṙ · ∂f̄

∂r
+ k̇ · ∂f̄

∂k
= −Ik

[
1− f̄

]
. (5.242)

This then is the Boltzmann equation for the hole distribution f̄ . Recall that we can expand the
collision integral functional as

Ik
[
f 0 + δf

]
= L δf + . . . (5.243)

where L is a linear operator, and the higher order terms are formally of order (δf)2. Note that
the zeroth order term Ik

[
f 0
]

vanishes due to the fact that f 0 represents a local equilibrium.
Thus, after writing f̄ = f̄ 0 + δf̄

− Ik
[
1− f̄

]
= −Ik

[
1− f̄ 0 − δf̄

]
= L δf̄ + . . . (5.244)

and the linearized collisionless Boltzmann equation for holes is

∂δf̄

∂t
− e

~c
v × B · ∂ δf̄

∂k
− v ·

[
eE +

ε− µ
T

∇T

]
∂f̄ 0

∂ε
= L δf̄ , (5.245)

which is of precisely the same form as the electron case in Eqn. (5.177). Note that the local
equilibrium distribution for holes is given by

f̄ 0(r, k, t) =

{
exp

(
µ(r, t)− ε(k)
k

B
T (r, t)

)
+ 1

}−1

. (5.246)

5.10 Magnetoresistance and Hall Effect

5.10.1 Boltzmann theory for ραβ(ω,B)

In the presence of an external magnetic field B, the linearized Boltzmann equation takes the
form17

∂δf

∂t
− e v · E ∂f 0

∂ε
− e

~c
v × B · ∂δf

∂k
= L δf . (5.247)

We will obtain an explicit solution within the relaxation time approximation L δf = −δf/τ and
the effective mass approximation,

ε(k) = ±1
2
~
2m−1

αβ k
α kβ =⇒ vα = ± ~m−1

αβ k
β , (5.248)

where the top sign applies for electrons and the bottom sign for holes. With E(t) = E e−iωt, we
try a solution of the form

δf(k, t) = k · A(ε) e−iωt ≡ δf(k) e−iωt (5.249)

17For holes, we replace f0 → f̄0 and δf → δf̄ .
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where A(ε) is a vector function of ε to be determined. Each component Aα is a function of k
through its dependence on ε = ε(k). We now have

(τ−1 − iω) kµAµ − e

~c
ǫαβγ v

αBβ ∂

∂kγ
(kµAµ) = e v · E ∂f 0

∂ε
, (5.250)

where ǫαβγ is the Levi-Civita tensor. Note that

ǫαβγ v
αBβ ∂

∂kγ
(kµAµ) = ǫαβγ v

αBβ

(
Aγ + kµ

∂Aµ

∂kγ

)

= ǫαβγ v
αBβ

(
Aγ + ~ kµ vγ

∂Aµ

∂ε

)
= ǫαβγ v

αBβAγ ,

(5.251)

owing to the asymmetry of the Levi-Civita tensor: ǫαβγ v
α vγ = 0. We now invoke the identity

~ kα = ±mαβ v
β and match the coefficients of vα in each term of the Boltzmann equation. This

yields, [
(τ−1 − iω)mαβ ±

e

c
ǫαβγ B

γ
]
Aβ = ± ~ e

∂f 0

∂ε
Eα . (5.252)

Defining

Γαβ ≡ (τ−1 − iω)mαβ ±
e

c
ǫαβγ B

γ , (5.253)

we obtain the solution

δf = ±e vαmαβ Γ
−1
βγ Eγ

∂f 0

∂ε
. (5.254)

From this, we can compute the current density and the conductivity tensor. The electrical
current density is

jα = ∓2e
∫

Ω̂

d3k

(2π)3
vα δf = +2e2 Eγ

∫

Ω̂

d3k

(2π)3
vα vνmνβ Γ

−1
βγ (ε)

(
−∂f

0

∂ε

)
, (5.255)

where we allow for an energy-dependent relaxation time τ(ε). Note that Γαβ(ε) is energy-
dependent due to its dependence on τ . The conductivity is then

σαβ(ω,B) = 2~2e2m−1
αµ

{∫

Ω̂

d3k

(2π)3
kµ kν

(
−∂f

0

∂ε

)
Γ−1
νβ (ε)

}

= 2
3
e2

∞∫

−∞

dε ε g(ε)Γ−1
αβ (ε)

(
−∂f

0

∂ε

)
,

(5.256)

where the chemical potential is measured with respect to the band edge. Thus,

σαβ(ω,B) = ne2 〈Γ−1
αβ 〉 , (5.257)
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Figure 5.18: Energy bands in aluminum.

where averages denoted by angular brackets are defined by

〈Γ−1
αβ 〉 ≡

∞∫
−∞
dε ε g(ε)

(
−∂f0

∂ε

)
Γ−1
αβ (ε)

∞∫
−∞
dε ε g(ε)

(
−∂f0

∂ε

) . (5.258)

The quantity n is the carrier density,

n =

∞∫

−∞

dε g(ε)×
{
f 0(ε) (electrons)[
1− f 0(ε)

]
(holes)

(5.259)

EXERCISE: Verify Eqn. (5.256).

For the sake of simplicity, let us assume an energy-independent scattering time, or that the tem-
perature is sufficiently low that only τ(ε

F
) matters, and we denote this scattering time simply

by τ . Putting this all together, then, we obtain

σαβ = ne2 Γ−1
αβ

ραβ =
1

ne2
Γαβ =

1

ne2

[
(τ−1 − iω)mαβ ±

e

c
ǫαβγ B

γ
]

.
(5.260)

We thereby recover the results of §5.5.2.
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5.10.2 Hall effect in high fields

In the high field limit, one may neglect the collision integral entirely, and write (at ω = 0)

− e v · E ∂f 0

∂ε
− e

~c
v × B · ∂δf

dk
= 0 . (5.261)

We’ll consider the case of electrons, and take E = E ŷ and B = Bẑ, in which case the solution is

δf =
~cE
B

kx
∂f 0

∂ε
. (5.262)

Note that kx is not a smooth single-valued function over the Brillouin-zone due to Bloch pe-
riodicity. This treatment, then, will make sense only if the derivative ∂f 0/∂ε confines k to a
closed orbit within the first Brillouin zone. In this case, we have

jx = 2ec
E
B

∫

Ω̂

d3k

(2π)3
kx

∂ε

∂kx

∂f 0

∂ε
= 2ec

E
B

∫

Ω̂

d3k

(2π)3
kx
∂f 0

∂kx
. (5.263)

Now we may integrate by parts, if we assume that f 0 vanishes on the boundary of the Brillouin
zone. We obtain

jx = −
2ecE
B

∫

Ω̂

d3k

(2π)3
f 0 = −nec

B
E . (5.264)

We conclude that
σxy = −σyx = −

nec

B
, (5.265)

independent of the details of the band structure. “Open orbits” – trajectories along Fermi sur-
faces which cross Brillouin zone boundaries and return in another zone – pose a subtler prob-
lem, and generally lead to a finite, non-saturating magnetoresistance. For holes, we have f̄ 0 =
1− f 0 and

jx = −
2ecE
B

∫

Ω̂

d3k

(2π)3
kx
∂f̄ 0

∂kx
= +

nec

B
E (5.266)

and σxy = +nec/B, where n is the hole density.

We define the Hall coefficient RH = −ρxy/B and the Hall number

zH ≡ −
1

nionecRH

, (5.267)

where nion is the ion density. For high fields, the off-diagonal elements of both ραβ and σαβ
are negligible, and ρxy ≈ −1/σxy. Hence RH ≈ ∓1/nec, and zH ≈ ±n/nion. The high field Hall
coefficient is used to determine both the carrier density as well as the sign of the charge carriers;

zH is a measure of valency.
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Figure 5.19: Fermi surfaces for electron (pink) and hole (gold) bands in Aluminum.

In Al, the high field Hall coefficient saturates at zH = −1. Why is zH negative? As it turns out,
aluminum has both electron and hole bands. Its valence is 3; two electrons go into a filled band,

leaving one valence electron to split between the electron and hole bands. Thus n = 3nion The

Hall conductivity is σxy = (nh−ne) ec/B. The difference nh−ne is determined by the following

argument. The electron density in the hole band is n′
e = 2nion − nh, i.e. the total density of

levels in the band (two states per unit cell) minus the number of empty levels in which there

are holes. Thus, nh − ne = 2nion − (ne + n′
e) = nion, where we’ve invoked ne + n′

e = nion, since
precisely one electron from each ion is shared between the two partially filled bands. Thus,

σxy = nionec/B = nec/3B and zH = −1. At lower fields, zH = +3 is observed, which is what one
would expect from the free electron model. Interband scattering, which is suppressed at high
fields, leads to this result.

5.11 Thermal Transport

5.11.1 Boltzmann theory

Consider a small region of solid with a fixed volume ∆V . The first law of thermodynamics
applied to this region gives T∆S = ∆E − µ∆N . Dividing by ∆V gives

dq ≡ T ds = dε− µ dn , (5.268)

where s is the entropy density, ε is energy density, and n the number density. This can be
directly recast as the following relation among current densities:

jq = T js = jε − µ jn , (5.269)
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where jn = j/(−e) is the number current density, jε is the energy current density,

jε = 2

∫

Ω̂

d3k

(2π)3
ε v δf , (5.270)

and js is the entropy current density. Accordingly, the thermal (heat) current density jq is
defined as

jq ≡ T js = jε +
µ

e
j = 2

∫

Ω̂

d3k

(2π)3
(ε− µ) v δf . (5.271)

In the presence of a time-independent temperature gradient and electric field, linearized Boltz-
mann equation in the relaxation time approximation has the solution

δf = −τ(ε) v ·
(
eE +

ε− µ
T

∇T

)(
−∂f

0

∂ε

)
. (5.272)

We now consider both the electrical current j as well as the thermal current density jq. One
readily obtains

j = −2e
∫

Ω̂

d3k

(2π)3
v δf ≡ L11 E − L12 ∇T

jq = 2

∫

Ω̂

d3k

(2π)3
(ε− µ) v δf ≡ L21 E − L22 ∇T

(5.273)

where the transport coefficients L11 etc. are matrices:

Lαβ11 =
e2

4π3~

∞∫

−∞

dε τ(ε)

(
−∂f

0

∂ε

)∫
dSε

vα vβ

|v|

Lαβ21 = TLαβ12 = − e

4π3~

∞∫

−∞

dε τ(ε) (ε− µ)
(
−∂f

0

∂ε

)∫
dSε

vα vβ

|v|

Lαβ22 =
1

4π3~ T

∞∫

−∞

dε τ(ε) (ε− µ)2
(
−∂f

0

∂ε

)∫
dSε

vα vβ

|v| .

(5.274)

If we define the hierarchy of integral expressions

J αβ
n ≡ 1

4π3~

∞∫

−∞

dε τ(ε) (ε− µ)n
(
−∂f

0

∂ε

)∫
dSε

vα vβ

|v| (5.275)
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then we may write

Lαβ11 = e2J αβ
0 Lαβ21 = TLαβ12 = −eJ αβ

1 Lαβ22 =
1

T
J αβ

2 . (5.276)

The linear relations in Eqn. (5.273) may be recast in the following form:

E = ρ j +Q∇T

jq = ⊓ j − κ∇T ,
(5.277)

where the matrices ρ, Q, ⊓, and κ are given by

ρ = L−1
11 Q = L−1

11 L12 (5.278)

⊓ = L21 L
−1
11 κ = L22 − L21 L

−1
11 L12 ,

or, in terms of the Jn,

ρ =
1

e2
J −1

0 Q = − 1

e T
J −1

0 J1 (5.279)

⊓ = −1
e
J1 J −1

0 κ =
1

T

(
J2 − J1J −1

0 J1

)
,

The names and physical interpretation of these four transport coefficients is as follows:

• ρ is the resistivity: E = ρj under the condition of zero thermal gradient (i.e. ∇T = 0).

• Q is the thermopower: E = Q∇T under the condition of zero electrical current (i.e. j = 0).
Q is also called the Seebeck coefficient.

• ⊓ is the Peltier coefficient: jq = ⊓j when ∇T = 0.

• κ is the thermal conductivity: jq = −κ∇T when j = 0 .

One practical way to measure the thermopower is to form a junction between two dissimilar
metals, A and B. The junction is held at temperature T1 and the other ends of the metals are
held at temperature T0. One then measures a voltage difference between the free ends of the
metals – this is known as the Seebeck effect. Integrating the electric field from the free end of A
to the free end of B gives

VA − VB = −
B∫

A

E · dl = (QB −QA)(T1 − T0) . (5.280)

What one measures here is really the difference in thermopowers of the two metals. For an
absolute measurement of QA, replace B by a superconductor (Q = 0 for a superconductor). A
device which converts a temperature gradient into an emf is known as a thermocouple.
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Figure 5.20: A thermocouple is a junction formed of two dissimilar metals. With no electri-
cal current passing, an electric field is generated in the presence of a temperature gradient,
resulting in a voltage V = VA − VB.

The Peltier effect has practical applications in refrigeration technology. Suppose an electrical
current I is passed through a junction between two dissimilar metals, A and B. Due to the
difference in Peltier coefficients, there will be a net heat current into the junction of W = (⊓A−
⊓B) I . Note that this is proportional to I , rather than the familiar I2 result from Joule heating.
The sign of W depends on the direction of the current. If a second junction is added, to make
an ABA configuration, then heat absorbed at the first junction will be liberated at the second18.

5.11.2 The heat equation

We begin with the continuity equations for charge density ρ and energy density ε:

∂ρ

∂t
+∇ · j = 0 ,

∂ε

∂t
+∇ · jε = j · E , (5.281)

where E is the electric field19. Now we invoke local thermodynamic equilibrium and write

∂ε

∂t
=
∂ε

∂n

∂n

∂t
+
∂ε

∂T

∂T

∂t
= −µ

e

∂ρ

∂t
+ cV

∂T

∂t
, (5.282)

18To create a refrigerator, stick the cold junction inside a thermally insulated box and the hot junction outside the
box.

19Note that it is E · j and not E · j which is the source term in the energy continuity equation.
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Figure 5.21: A sketch of a Peltier effect refrigerator. An electrical current I is passed through
a junction between two dissimilar metals. If the dotted line represents the boundary of a ther-
mally well-insulated body, then the body cools when ⊓B > ⊓A, in order to maintain a heat
current balance at the junction.

where n is the electron number density (n = −ρ/e) and cV is the specific heat. We may now write

cV
∂T

∂t
=
∂ε

∂t
+
µ

e

∂ρ

∂t

= j · E −∇ · jε −
µ

e
∇ · j = j · E −∇ · jq .

(5.283)

Invoking jq = ⊓ j − κ∇T , we see that if there is no electrical current (j = 0), we obtain the heat
equation

cV
∂T

∂t
= καβ

∂2T

∂xα ∂xβ
. (5.284)

This results in a time scale τT for temperature diffusion τT = CL2cV /κ, where L is a typical
length scale and C is a numerical constant. For a cube of size L subjected to a sudden external
temperature change, L is the side length and C = 1/3π2 (solve by separation of variables).

5.11.3 Calculation of transport coefficients

We will henceforth assume that sufficient crystalline symmetry exists (e.g. cubic symmetry) to
render all the transport coefficients multiples of the identity matrix. Under such conditions, we
may write J αβ

n = Jn δαβ with

Jn =
1

12π3~

∞∫

−∞

dε τ(ε) (ε− µ)n
(
−∂f

0

∂ε

)∫
dSε |v| . (5.285)
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The low-temperature behavior is extracted using the Sommerfeld expansion (see §5.3.2),

I ≡
∞∫

−∞

dεH(ε)

(
−∂f

0

∂ε

)
= πD csc(πD)H(ε)

∣∣∣
ε=µ

= H(µ) +
π2

6
(k

B
T )2H ′′(µ) + . . . (5.286)

where D ≡ kBT
∂
∂ε

is a dimensionless differential operator.20

Let us now perform some explicit calculations in the case of a parabolic band with an energy-
independent scattering time τ . In this case, one readily finds

Jn =
σ0
e2
ε
−3/2
F πD csc πD ε3/2 (ε− µ)n

∣∣∣
ε=µ

, (5.287)

where σ0 = ne2τ/m∗. Note that

n =
1

3π2

(
2m∗εF
~2

)3/2
(5.288)

and that ε
F

and µ are related by

ε
3/2
F = πD csc πD ε3/2

∣∣∣
ε=µ

. (5.289)

Thus,

J0 =
σ0
e2

, J1 =
σ0
e2
π2

2

(k
B
T )2

ε
F

+ . . . , J2 =
σ0
e2
π2

3
(k

B
T )2 + . . . , (5.290)

from which we obtain the low-T results ρ = σ−1
0 ,

Q = −π
2

2

k2
B
T

e ε
F

, κ =
π2

3

nτ

m∗ k
2
BT , (5.291)

and of course ⊓ = TQ. The predicted universal ratio

κ

σT
=
π2

3
(kB/e)

2 = 2.45× 10−8V2K−2 , (5.292)

is known as the Wiedemann-Franz law. Note also that our result for the thermopower is un-
ambiguously negative. In actuality, several nearly free electron metals have positive low-
temperature thermopowers (Cs and Li, for example). What went wrong? We have neglected
electron-phonon scattering!

20Remember that physically the fixed quantities are temperature and total carrier number density (or charge den-
sity, in the case of electron and hole bands), and not temperature and chemical potential. An equation of state
relating n, µ, and T is then inverted to obtain µ(n, T ), so that all results ultimately may be expressed in terms of
n and T .
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Figure 5.22: QT product for p-type and n-type Ge, from T. H. Geballe and J. W. Hull, Phys.
Rev. 94, 1134 (1954). Samples 7, 9, E, and F are distinguished by different doping properties, or
by their resistivities at T = 300K: 21.5Ω-cm (7), 34.5Ω-cm (9), 18.5Ω-cm (E), and 46.0Ω-cm (F).

5.11.4 Onsager relations

Transport phenomena are described in general by a set of linear relations,

Ji = Lik Fk , (5.293)

where the {Fk} are generalized forces and the {Ji} are generalized currents. Moreover, to each force
Fi corresponds a unique conjugate current Ji, such that the rate of internal entropy production
is

Ṡ =
∑

i

Fi Ji =⇒ Fi =
∂Ṡ

∂Ji
. (5.294)

The Onsager relations (also known as Onsager reciprocity) states that

Lik(B) = ηi ηk Lki(−B) , (5.295)

where ηi describes the parity of Ji under time reversal:

T Ji = ηi Ji . (5.296)

We shall not prove the Onsager relations.

The Onsager relations have some remarkable consequences. For example, they require, for

B = 0, that the thermal conductivity tensor κij of any crystal must be symmetric, independent
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of the crystal structure. In general,this result does not follow from considerations of crystalline
symmetry. It also requires that for every ‘off-diagonal’ transport phenomenon, e.g. the Seebeck
effect, there exists a distinct corresponding phenomenon, e.g. the Peltier effect.

For the transport coefficients studied, Onsager reciprocity means that in the presence of an
external magnetic field,

ραβ(B) = ρβα(−B)
καβ(B) = κβα(−B)
⊓αβ(B) = T Qβα(−B) .

(5.297)

Let’s consider an isotropic system in a weak magnetic field, and expand the transport coeffi-
cients to first order in B:

ραβ(B) = ρ δαβ + ν ǫαβγ B
γ

καβ(B) = κ δαβ +̟ ǫαβγ B
γ

Qαβ(B) = Qδαβ + ζ ǫαβγ B
γ

⊓αβ(B) = ⊓ δαβ + θ ǫαβγB
γ .

(5.298)

Onsager reciprocity requires ⊓ = T Q and θ = T ζ . We can now write

E = ρ j + ν j × B +Q∇T + ζ∇T × B
jq = ⊓ j + θ j × B − κ∇T −̟∇T × B .

(5.299)

There are several new phenomena lurking!

• Hall Effect (∂T
∂x

= ∂T
∂y

= jy = 0)

An electrical current j = jx x̂ and a field B = Bz ẑ yield an electric field E . The Hall
coefficient is RH = Ey/jxBz = −ν.

• Ettingshausen Effect (∂T
∂x

= jy = jq,y = 0)

An electrical current j = jx x̂ and a field B = Bz ẑ yield a temperature gradient ∂T
∂y

. The

Ettingshausen coefficient is P = ∂T
∂y

/
jxBz = −θ/κ.

• Nernst Effect (jx = jy =
∂T
∂y

= 0)

A temperature gradient ∇T = ∂T
∂x
x̂ and a field B = Bz ẑ yield an electric field E . The

Nernst coefficient is Λ = Ey
/
∂T
∂x
Bz = −ζ .

• Righi-Leduc Effect (jx = jy = Ey = 0)

A temperature gradient ∇T = ∂T
∂x
x̂ and a field B = Bz ẑ yield an orthogonal temperature

gradient ∂T
∂y

. The Righi-Leduc coefficient is L = ∂T
∂y

/
∂T
∂x
Bz = ζ/Q.
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5.12 Electron-Phonon Scattering

5.12.1 Introductory remarks

We begin our discussion by recalling some elementary facts about phonons in solids:

• In a crystal with r atoms per unit cell, there are 3(r − 1) optical modes and 3 acoustic
modes, the latter guaranteed by the breaking of the three generators of space translations.

We write the phonon dispersion as ω = ωλ(q), where λ ∈ {1, . . . , 3r} labels the phonon

branch, and q ∈ Ω̂. If j labels an acoustic mode, ωj(q) = cj(q̂) q as q → 0.

• Phonons are bosonic particles with zero chemical potential. The equilibrium phonon
distribution is

n0
qλ =

1

exp(~ωλ(q)/kB
T )− 1

. (5.300)

• The maximum phonon frequency is roughly given by the Debye frequency ωD. The Debye
temperature ΘD = ~ωD ∼ 100K – 1000K in most solids.

At high temperatures, equipartition gives 〈(δRi)2〉 ∝ k
B
T , hence the effective scattering cross-

section σtot increases as T , and τ >∼ 1/nionvF
σtot ∝ T−1. From ρ = m∗/ne2τ , then, we deduce

that the high temperature resistivity should be linear in temperature due to phonon scattering:
ρ(T ) ∝ T . Of course, when the mean free path ℓ = v

F
τ becomes as small as the Fermi wave-

length λF, the entire notion of coherent quasiparticle transport becomes problematic, and rather
than continuing to grow we expect that the resistivity should saturate: ρ(T → ∞) ≈ h/k

F
e2,

known as the Ioffe-Regel limit. For k
F
= 108 cm−1, this takes the value 260µΩcm.

5.12.2 Electron-phonon interaction

Let Ri = R0
i + δRi denote the position of the ith ion, and let U(r) = −Ze2 exp(−r/λTF)/r be the

electron-ion interaction. Expanding in terms of the ionic displacements δRi,

Hel−ion =
∑

i

U(r − R0
i )−

∑

i

δRi ·∇U(r −R0
i ) , (5.301)

where i runs from 1 to Nion
21. The deviation δRi may be expanded in terms of the vibrational

normal modes of the lattice, i.e. the phonons, as

δRα
i =

1√
Nion

∑

qλ

(
~

2ωλ(q)

)1/2
êαλ(q) e

iq·R0
i (aqλ + a†−qλ) . (5.302)
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Figure 5.23: Transverse and longitudinal phonon polarizations. Transverse phonons do not
result in charge accumulation. Longitudinal phonons create local charge buildup and therefore
couple to electronic excitations via the Coulomb interaction.

The phonon polarization vectors satisfy êλ(q) = ê
∗
λ(−q) as well as the generalized orthonor-

mality relations

∑

α

êαλ(q) ê
α
λ′(−q) =M−1 δλλ′

∑

λ

êαλ(q) ê
β
λ(−q) =M−1δαβ ,

(5.303)

where M is the ionic mass. The number of unit cells in the crystal is Nion = V/Ω, where Ω
is the Wigner-Seitz cell volume. Again, we approximate Bloch states by plane waves ψk(r) =

exp(ik · r)/
√
V , in which case

〈
k
′ ∣∣∇U(r −R0

i )
∣∣ k
〉
= − i

V
ei(k−k

′)·R0
i
4πZe2 (k − k′)
(k − k′)2 + λ−2

TF

. (5.304)

The sum over lattice sites gives

Nion∑

i=1

ei(k−k
′+q)·R0

i = Nion δk′,k+q mod G , (5.305)

so that

Hel−ph =
1√
V

∑

kk′σ
qλG

gλ(k, k
′) (a†qλ + a−qλ)ψ

†
kσ ψk′σ δk′,k+q+G , (5.306)

21We assume a Bravais lattice, for simplicity.
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Metal Θs ΘD λel−ph Metal Θs ΘD λel−ph

Na 220 150 0.47 Au 310 170 0.08
K 150 100 0.25 Be 1940 1000 0.59
Cu 490 315 0.16 Al 910 394 0.90
Ag 340 215 0.12 In 300 129 1.05

Table 5.3: Electron-phonon interaction parameters for some metals. Temperatures are in
Kelvins.

with

gλ(k, k + q + G) = −i
(

~

2Ω ωλ(q)

)1/2
4πZe2

(q + G)2 + λ−2
TF

(q + G) · ê∗λ(q) . (5.307)

In an isotropic solid22 (‘jellium’), the phonon polarization at wavevector q either is parallel to q
(longitudinal waves), or perpendicular to q (transverse waves). We see that only longitudinal
waves couple to the electrons. This is because transverse waves do not result in any local
accumulation of charge density, and it is to the charge density that electrons couple, via the
Coulomb interaction.

Restricting our attention to the longitudinal phonon, we have êL(q) = q̂/
√
M and hence, for

small q = k′ − k,

gL(k, k + q) = −i
(

~

2MΩ

)1/2
4πZe2

q2 + λ−2
TF

c
−1/2
L q1/2 , (5.308)

where cL is the longitudinal phonon velocity. Thus, for small q we that the electron-longitudinal

phonon coupling gL(k, k + q) ≡ gq satisfies

|gq|2 = λel−ph ·
~cLq

g(ε
F
)

, (5.309)

where g(ε
F
) is the electronic density of states, and where the dimensionless electron-phonon cou-

pling constant is

λel−ph =
Z2

2Mc2LΩg(εF)
=

2Z

3

m∗

M

(
ε
F

kBΘs

)2
, (5.310)

with Θs ≡ ~cLkF
/kB. Table 5.3 lists Θs, the Debye temperature ΘD, and the electron-phonon

coupling λel−ph for various metals.

EXERCISE: Derive Eqn. (12.35).

22The jellium model ignoresG 6= 0 Umklapp processes.
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5.12.3 Boltzmann equation for electron-phonon scattering

Earlier we had quoted the result for the electron-phonon collision integral,

Ik[f, n] =
2π

~V

∑

k′,λ

|gλ(k, k′)|2
{
(1− fk) fk′ (1 + nq,λ) δ(εk + ~ωqλ − εk′) (5.311)

+ (1− fk) fk′ n−qλ δ(εk − ~ω−qλ − εk′)− fk (1− fk′) (1 + n−qλ) δ(εk − ~ω−qλ − εk′)
− fk (1− fk′)nqλ δ(εk + ~ωqλ − εk′)

}
δq,k′−k mod G .

The four terms inside the curly brackets correspond, respectively, to cases (a) through (d) in
Fig. 5.14. The (1+n) factors in the phonon emission terms arise from both spontaneous as well
as stimulated emission processes. There is no spontaneous absorption.

EXERCISE: Verify that in equilibrium Ik{f 0, n0} = 0.

In principle we should also write down a Boltzmann equation for the phonon distribution nqλ
and solve the two coupled sets of equations. The electronic contribution to the phonon collision
integral is written as Jqλ[f, n], with

Jqλ[f, n] ≡
(
∂nqλ
∂t

)

coll

=
4π

~V

∣∣gqλ
∣∣2∑

k∈Ω̂

{
(1 + nqλ) fk+q (1− fk)

− nqλ fk (1− fk+q)
}
× δ(εk+q − εk − ~ωqλ) .

(5.312)

Phonon equilibrium can be achieved via a number of mechanisms we have not considered
here, such as impurity or lattice defect scattering, anharmonic effects (i.e. phonon-phonon scat-
tering), or grain boundary scattering. At low temperatures,

1

τ(ω)
=





Aω2 impurity scattering

B ω2 T 3 anharmonic phonon scattering

C/L boundary scattering (L = grain size)

(5.313)

where A, B, and C are constants.

Of course phonons and electrons scatter from each other – this is the process we are studying

– and in principle we should write fk = f 0
k + δfk and nqλ = n0

qλ + δnqλ, and linearize the
two Boltzmann equations for the electron and phonon distributions in order to study how
each species comes to equilibrium. To compute the phonon lifetime due to electron-phonon
scattering, we adopt the simplifying assumption that the electrons are in equilibrium at T = 0
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and linearize in δnqλ. This gives a phonon scattering rate of

1

τqλ
=

4π

~
|gqλ|2 ·

1

V

∑

k∈Ω̂

(
f 0
k+q − f 0

k

)
δ(εk+q − εk − ~ωqλ)

=
4π

~2
|gqλ|2

∫

Ω̂

d3k

(2π)3

[
Θ
(
k

F
− |k + q|

)
−Θ

(
k − k

F

)]
δ

(
ωqλ −

~q2

2m∗ −
~k · q
m∗

)

=
4π

~2
|gqλ|2 S

(
q, ωqλ

)
,

(5.314)

where we assume a spherical Fermi surface and isotropic effective mass m∗. Here, S(q, ω) is
the dynamic structure factor (dsf) of the filled Fermi sphere – we will compute this in detail in
chapter three. For now, all we need to know is that

S(q, ω) = g(ε
F
)
πω

2v
F
q

for ω < v
F
q
(
1− q

2k
F

)
. (5.315)

We then obtain, for longitudinal acoustic phonons,

1

τ
L,q

= 2π2λel−ph

c2
L

v
F

q , (5.316)

where c
L

is the acoustic phonon velocity. Thus, τ−1
L

(ω) = 2π2λel−ph (cL/vF
)ω.

To compute the electron lifetime due to electron-phonon scattering, we first make the simplify-

ing assumption that the phonons are in equilibrium, i.e. nqλ = n0
qλ. We then write fk = f 0

k + δfk
and linearize Ik[f ], to obtain

L δf =
2π

~V

∑

qλ

∣∣gqλ
∣∣2
{[

(1− f 0
k + n0

qλ)δfk+q − (f 0
k+q + n0

qλ)δfk

]
δ(εk+q − εk − ~ωqλ)

−
[
(1− f 0

k+q + n0
−qλ)δfk − (f 0

k + n0
−qλ)δfk+q

]
δ(εk+q − εk + ~ω−qλ)

}
.

(5.317)

This integral operator must be inverted in order to solve for δfk in

L δf = e v · E
(
−∂f

0

∂ε

)
. (5.318)

Unfortunately, the inversion is analytically intractable – there is no simple solution of the form

δfk = eτkvk · E (∂f 0/∂ε) as there was in the case of isotropic impurity scattering. However, we

can still identify the coefficient of −δfk in L δf as the scattering rate τ−1
k . As before, τk in fact is

a function of the energy ε(k):

1

τ(ε)
=

1

4π2~2

∫
dε′
∫
dSε′
|gk′−k|2
|vk′ |

{ [
f 0(ε′) + n0

k′−k
]
δ(ε′ − ε− ~ωk′−k)

+
[
1 + f 0(ε′) + n0

k−k′
]
δ(ε′ − ε+ ~ωk−k′)

} (5.319)
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In an isotropic system, τ(ε(k)) is independent of k̂. This means we can take k =
√
2m∗ε/~2 ẑ in

performing the above integral.

It is convenient to define the dimensionless function

α2F (ω) ≡ 1

8π3~2

∫
dSε′
|gk′−k|2
|vk′|

δ(ω − ωk′−k) . (5.320)

For parabolic bands, one obtains

α2F (ω) =
1

8π3~2

λel−ph ~ω

m∗k
F
/π2~2

m∗

~k
F

k2
F

∫
dk̂′ δ

(
ω − c

L
k

F
|k̂′ − ẑ|

)

= λel−ph

(
~ω

k
B
Θs

)2
Θ(2kBΘs − ~ω) .

(5.321)

The scattering rate is given in terms of α2F (ω) as

1

τ(ε)
= 2π

∞∫

0

dω α2F (ω)
{
f 0(ε+ ~ω)− f 0(ε− ~ω) + 2n0(ω) + 1

}
. (5.322)

At T = 0 we have f 0(ε) = Θ(ε
F
− ε) and n0(ω) = 0, whence

1

τ(ε)
= 2π

∞∫

0

dω α2F (ω) {Θ(ε
F
− ε− ~ω)−Θ(ε

F
− ε+ ~ω) + 1}

=





λel−ph

12
2π
~
· |ε−ε

F
|3

(kBΘs)2
if |ε− ε

F
| < 2k

B
Θs

2λel−ph

3
2π
~
· (kBΘs) it |ε− ε

F
| > 2kBΘs .

(5.323)

Note that τ(ε
F
) = ∞, unlike the case of impurity scattering. This is because at T = 0 there are

no phonons! For T 6= 0, the divergence is cut off, and one obtains

1

τ(µ)
=

2πλel−ph

~

kBT
3

Θ2
s

G

(
2Θs

T

)
(5.324)

with

G(y) =

y∫

0

dx
x2

2 sinhx
=





7
4
ζ(3) if y =∞

1
4
y if y ≪ 1 .

(5.325)

Thus,

1

τ(µ)
=





7πζ(3)
2~

kBT
3

Θ2
s
λel−ph if T ≪ Θs

2π
~
k

B
T λel−ph if T ≫ Θs .

(5.326)
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This calculation predicts that τ ∝ T−3 at low temperatures. This is correct if τ is the thermal
lifetime. However, a more sophisticated calculation shows that the transport lifetime behaves as

τtr ∝ T−5 at low T . The origin of the discrepancy is our neglect of the (1− cosϑ) factor present
in the average of the momentum relaxation time. At low T , there is only small angle scattering
from the phonons, and 〈ϑ2〉 ∝ 〈q2/k2F〉 ∝ T 2. The Wiedemann-Franz law, τσ = τκ, is valid for

k
B
T >∼ ~cLkF

, as well as at low T in isotropic systems, where impurity scattering is the dominant
mechanism. It fails at intermediate temperatures.



Chapter 6

Semiconductors and Insulators

6.1 Introduction

The Bloch energy band structure of noninteracting electrons in a periodic potential leads us to
a broad classification of crystalline solids: (i) metals, in which the density of states g(ε

F
) at the

Fermi level is nonzero, and (ii) insulators, where g(ε
F
) = 0. In an insulator, each Bloch band

is either completely filled, corresponding to two electrons per unit cell, or completely empty.
Thus, band insulators necessarily have an even number of electrons per unit cell.

6.1.1 Band gaps and transport

In the presence of a uniform electric field E at T = 0, a metal respond by generating a current
density j = σE, where σ is the conductivity matrix. In isotropic systems1, σ = ne2τ/m∗, as
we have seen. In an insulator, there is an energy gap, which is typically taken to mean σ(T =
0, E) = 0. In fact, this is not quite right, because there can be quantum tunneling between
valence and conduction bands at finite E, a process known as Zener tunneling. For a direct
gap between isotropic valence and conduction bands, the tunneling rate T = 0, i.e. the number
density of electrons tunneling from valence to conduction band per unit time, is found to be2

γ(T = 0, E) =
e2E2m

1/2
r

18π~2∆1/2
exp

(
− πm

1/2
r ∆3/2

2~eE

)
(6.1)

wheremr = m∗
cm

∗
v/(m

∗
c+m

∗
v) is the reduced mass of the valence holes and conduction electrons.

Note that the current response is highly nonlinear, and furthermore that the exponential factor

1With regard to tensors of rank two like σαβ , cubic symmetry is sufficient in order that the conductivity tensor be
a multiple of the unit matrix.

2See E. O. Kane, J. Phys. Chem. Solids 12, 181 (1959).
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Figure 6.1: Schematics of electron occupation in semiconductor valence and conduction bands.
Left: T = 0. Right: 0 < kBT ≪ ∆. Right: Exaggerated schematic of Zener tunneling (T = 0).

exp(−E0/E), with E0 ≡ πm
1/2
r ∆3/2/2e~, overwhelms the E2 prefactor in the E → 0 limit. Here,

E0 = 5.7× 107
V

cm
×
(
∆[eV]

)3/2
√
mr

me
. (6.2)

The current density is then j = eγd, where d is the thickness over which the field extends. At
the level of linear response, though, the T = 0 conductivity of all insulators is zero.

At finite temperature, due to thermal fluctuations there is a finite electron density nc in the
conduction band, and a finite hole density pv in the valence band, with, as we shall see, nc(T ) =
pv(T ) ∝ exp(−∆/2kBT ). The conductivity is

σ(T ) =
nc(T ) e

2τc
m∗

c

+
pv(T ) e

2τv
m∗

v

∝ e−∆/2kBT . (6.3)

At T = 300K, we have kBT = 0.0258 eV, so for an insulator like carbon diamond, for which
∆Si = 5.47 eV (indirect gap), ∆Si/2kB

T = 106, and the room temperature conductivity is essen-
tially zero. Germanium, however, has a gap of ∆Ge = 0.66 eV (also indirect), hence ∆Ge/2kB

T =
12.8, and the Boltzmann weight is not nearly as small. You should know that the energy gap
varies with temperature, mostly because anharmonic lattice vibrations cause the lattice to ex-
pand and the atomic positions to fluctuate. Typically one has ∆(T ) ≃ ∆(0)− ak

B
T with a ≈ 5.

Band gaps are also pressure-dependent, with ∆(p) ≃ ∆(0) + bp, with b ≈ 7 × 10−9 eV/cm2 g.
While there is no sharp distinction between semiconductors and insulators, at room tempera-
ture one typically classifies solids according to their conductivity, viz.

metals : ρ(300K)<∼ 10−6Ω · cm
semiconductors : ρ(300K) ∈

[
10−3Ω · cm , 109Ω · cm

]

insulators : ρ(300K)>∼ 1012Ω · cm .
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group formula ∆ (eV) gap m∗
c/me m∗

v/me ǫ lattice const. (Å) type

IV C 5.47 I 0.2 0.25 5.7 3.567 D

IV Si 1.12 I 1.64(l)/0.082(t) 0.1,(l)/0.49(t) 11.9 5.431 D

IV Ge 0.66 I 0.9,(l)/0.19(t) 0.04(l)/0.28(t) 16.0 5.646 D

IV−IV SiC 3.00 I 0.60 1.00 9.66 3.09(a)/15.1(c) W

III−V AlAs 2.36 I 0.11 0.22 10.1 5.661 Z

III−V AlP 2.42 I 0.212 0.145 9.8 5.464 Z

III−V AlSb 1.58 I 0.12 0.98 14.4 6.136 Z

III−V GaAs 1.42 D 0.063 0.076(lh)/0.5(hh) 12.9 5.653 Z

III−V GaN 3.44 D 0.27 0.8 10.4 3.19(a)/10.4(c) W

III−V GaP 2.26 I 0.82 0.60 11.1 5.451 Z

III−V GaSb 0.72 D 0.042 0.40 15.7 6.096 Z

III−V InAs 0.36 D 0.023 0.40 15.1 6.058 Z

III−V InP 1.35 D 0.077 0.64 12.6 5.869 Z

III−V InSb 0.17 D 0.0145 0.40 16.8 6.479 Z

II−VI CdS 2.5 D 0.14 0.51 5.4 5.825 Z

II−VI CdS 2.49 D 0.20 0.7 9.1 4.14(a)/7.71(c) W

II−VI CdSe 1.70 D 0.13 0.45 10.0 6.050 Z

II−VI ZnS 3.66 D 0.39 0.23 8.4 5.410 Z

II−VI ZnS 3.78 D 0.287 0.49 9.6 3.82(a)/6.26(c) W

IV−VI PbS 041 I 0.25 0.25 17.0 5.936 R

IV−VI PbTe 0.31 I 0.17 0.20 30.0 6.462 R

Table 6.1: Common semiconductors and their properties at T = 3000K. Gap types: D (direct)
and I (indirect). Structure: D (Diamond), W (Wurtzite), Z (Zincblende), R (Rocksalt). Hole
masses: hh (heavy hole), lh (light hole). Source: S. M. Sze, Physics of Semiconductors.

The resistivity of metals and semiconductors depends on the scattering mechanisms which are
responsible for momentum relaxation among the charge carriers.

Most semiconductors are covalently bonded crystals coming from column IV of the periodic
table (e.g., elemental semiconductors Si, Ge, and grey Sn), or compounds such as III-V materials
(GaAs, GaP, InS, InP, GaSb, AlSb, etc.) and II-VI materials (PbS, PbSe, SnTe, etc.).

6.1.2 Hall effect

High field Hall effect measurements, which give σxy = (pv − nc) ec/B, may be used to obtain
an independent measurement of the carrier concentration without requiring knowledge of the
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Figure 6.2: Pseudopotential calculation of band structures of diamond and zincblende semi-
conductors, with spin-orbit effects included. From B. D. Malone and M. L. Cohen, J. Phys.
Condens. Matter 25, 105503 (2013).

scattering times τv and τc, which appear in the diagonal conductivity σxx. Of course, for a
pure (i.e. intrinsic) semiconductor, nc = pv, but in the extrinsic case, impurities (i.e. dopants)
lead to the condition nc 6= pv , as we shall see. Such independent measurements of carrier
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Figure 6.3: Resistivity of antimony-doped germanium as a function of 1/T for varying impu-
rity concentrations. Table at right correlates donor density ND with sample code number. The
magenta “intrinsic limit” line corresponds to the limit ND → 0. Data from H. J. Fritzsche, J.
Phys. Chem. Solids 6, 69 (1958).

concentration confirm that the rapid changes in σxx(T ) are predominantly due to variations in
carrier concentration.

6.1.3 Optical absorption

The energy gap ∆ in a semiconductor may be measured by the temperature dependence of
ln σxx(T ), but more directly by optical absorption. When a photon of energy ~ω > ∆ is absorbed
by a semiconductor, it creates an conduction electron - valence hole pair, as depicted in Fig.
6.4. At the simplest level of description, the absorption edge coincides with the band gap.
At a greater level of refinement, the Coulomb interaction between conduction electron and
valence hole must be accounted for, and results in structure to the absorption curve below the
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Figure 6.4: Left: A photon with ~ω > ∆ creating an electron-hole pair. Right: Optical conduc-
tivity of Si (∆(0K) = 1.17 eV).

∆ threshold. Since ~c = 1973 eV·Å, the wavelength of light at the band gap energy is

λ =
2π~c

∆
=

12400 Å

∆[eV]
. (6.4)

Since both energy and momentum must be conserved3, we have separately kγ = ke − kh as

well as ~ckγ = ∆. Thus, |ke − kh| = ∆/~c = ∆[eV] / 1973 eV · Å. Typically ∆ is on the order of

eV, hence the difference in electron and hole wavevectors is on the order of a milli-Ångstrom,
which is insignificant on the scale of the Brillouin zone. Thus, optical transitions are vertical,
meaning they involve no change in wavevector for the electron as it is excited from valence to
conduction band. The reason is that the speed of light is very big.

Under a constant flux of light, the carrier density nc = pv ≡ n obeys

dn

dt
= α− βn2 . (6.5)

The first term accounts for the creation of e− h pairs due to photoexcitation. The second term
accounts for the recombination of photoexcited e− h pairs. In equilibrium, n = (α/β)1/2.

6.1.4 Direct versus indirect gaps

Fig. 6.5 shows the cases of direct and indirect gap semiconductors. In a direct gap material, the
conduction band minimum and the valence band maximum occur at the same point (or points)

3In fact, only crystal momentum must be conserved, meaning the wavevector k is conserved modulo any reciprocal
lattice vector.
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Figure 6.5: Left: A direct gap semiconductor with a low-energy particle-hole pair. The net
crystal momentum is K = ke − kh = 0. Right: An indirect gap semiconductor with a low-
energy particle-hole pair. The net crystal momentum is K = ke − kh = Q, where Q is the
wavevector difference between valence band maximum and conduction band minimum.

in the Brillouin zone. In an indirect gap material, there is a difference Q = kmin
c − kmax

v (modulo
G). Examples of direct gap materials include α−Sn, Se, Te, GaAs, and ZnS. Examples of indirect
gap materials include Si, Ge, AlSb, GaP, and PbTe. In an indirect gap material, something
other then the photon must supply the missing momentum ~Q in order for the material to
absorb light at the band gap, and that something is usually a phonon (i.e. a lattice vibration).
Since phonon frequencies are on the order of meV (Debye temperatures hundreds of Kelvins,
k

B
= 86.2µeV/K), the additional phonon energy is small compared with ∆, except perhaps in

narrow gap materials. Since the number of phonons vanishes as T 3 at low temperatures, the
optical absorption at ~ω = ∆ will be temperature dependent.

6.1.5 Mobility

Mobility µ is defined by the relation of the diffusional drift velocity to the applied electric field
strength:

vdrift = ∓µE , (6.6)

with the upper sign holding for electrons and the lower sign for holes. The current density is
j = nqvdrift = n|q|µE, where q is the charge. Hence we have σ = n|q|µ. When both signs of
carriers are present,

σ = nc e µc + pv e µv . (6.7)
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6.1.6 Effective mass

Generally speaking, the dispersion in the vicinity of a local extremum in the conduction (max-
imum) or valence (minimum) band dispersions obeys

Ec(k) = E0
c +

1
2
~
2 (m∗

c)
−1
αβ (k

α −Qα
c )(k

β −Qβ
c ) + . . .

Ev(k) = E0
v − 1

2
~
2 (m∗

v)
−1
αβ (k

α −Qα
v )(k

β −Qβ
v) + . . . ,

(6.8)

where Qc,v is the wavevector of the extremum, and m∗
c,v is the effective mass tensor. The band

gap is given by ∆ = E0
c − E0

v .

Since the effective mass tensors are each symmetric, they may be diagonalized along their
principal axes, in which case we may write

E(k) = E0 ±
(
~2(∆k1)

2

2m∗
1

+
~2(∆k2)

2

2m∗
2

+
~2(∆k3)

2

2m∗
3

)
+O

(
(∆k)4

)
, (6.9)

where ∆k = k − Q. Nota bene : the tensors m∗
c and m∗

v may not commute, in which case their
principal axes do not coincide, and they may not both be rendered diagonal in the same basis.
Furthermore, since the extrema of Ec,v(k) may not lie at the Γ point, the level sets of Ec,v(k)
may not be connected, i.e. they may consist of several disjoint components. Indeed this is the
case in silicon, where the six equivalent conduction band minima lie along the ΓX directions
(〈100〉). In germanium, the conduction band minima occur at the fourfold degenerate L point.
Oftentimes, as in the cases of Si, CdTe, InSb, and several other materials, there are more than
one electron or hole bands in play.

6.2 Number of Carriers in Thermal Equilibrium

We define

nc(T, µ) = number density of electrons in the conduction band

pv(T, µ) = number density of holes in the valence band .

Quantum thermodynamics in the grand canonical ensemble then says

nc(T, µ) =

∞∫

E0
c

dε gc(ε) f(ε− µ) (6.10)

and

pv(T, µ)

E0
v∫

−∞

dε gv(ε)
{
1− f(ε− µ)

}
=

E0
v∫

−∞

dε gv(ε) f(µ− ε) , (6.11)
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where f(u) =
[
exp(u/k

B
T )+ 1

]−1
is the Fermi distribution. For quadratic extrema, the conduc-

tion and valence band densities of states behave as gc(ε) ∝ (ε− E0
c )

1/2 and gv(ε) ∝ (E0
v − ε)1/2.

We can define the function f̄(u) ≡ f(−u) to be the Fermi distribution function for holes.

The dependence of nc(T, µ) and pv(T µ) on the chemical potential in Eqns. 6.10 and 6.11 is
complicated. In the Maxwell-Boltzmann limit, however, where |E0

c,v − µ| ≫ k
B
T , the Fermi

functions become f(ε−µ) ≃ e−(ε−µ)/kBT for ε > E0
c and f(µ− ε) ≃ e−(µ−ε)/kBT for ε < E0

v . Thus,
we may write

nc(T, µ) = Nc(T ) e
−(E0

c−µ)/kBT

pv(T, µ) = Pv(T ) e
−(µ−E0

v)/kBT ,
(6.12)

where

Nc(T ) =

∞∫

E0
c

dε gc(ε) e
−(ε−E0

c )/kBT

Pv(T ) =

E0
v∫

−∞

dε gv(ε) e
−(E0

v−ε)/kBT .

(6.13)

Now for ellipsoidal bands as in Eqn. 6.9, the density of states, including spin degeneracy, is
given by

g(ε) =

√
2

π2~3

√
m∗

1m
∗
2m

∗
3 ε

1/2Θ(ε) , (6.14)

in which case

Nc(T ) = 2 λ−3
T,c , Pv(T ) = 2 λ−3

T,v , (6.15)

where the thermal wavelengths are given by λT,c/v =
(
2π~2/m∗

c/vkBT
)1/2

, with the DOS mass

m∗
c/v given by m∗

c/v =
(
m∗

1,c/vm
∗
2,c/vm

∗
3,c/v

)1/3
. It is convenient to express the quantities Nc(T )

and Pv(T ) as

Nc(T ) = 2.51× 1019 cm−3

(
m∗

c

me

)3/2(
T

300K

)3/2

Pv(T ) = 2.51× 1019 cm−3

(
m∗

v

me

)3/2(
T

300K

)3/2

,

(6.16)

which, along with Eqn. 6.12, tells us that 1019 cm−3 is an approximate upper limit to the carrier
concentration in a nondegenerate semiconductor4.

4“Nondegenerate” means |E0
c,v − µ| ≫ k

B
T .
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6.2.1 Intrinsic semiconductors

How do we find the chemical potential µ(T )? In an intrinsic semiconductor, the number of
conduction electrons must be equal to the number of valence holes, hence

nc(T, µ) = pv(T, µ) , (6.17)

which is one equation in the two unknowns (T, µ). The solution set is thus the desired function
µ(T ). The above equation is difficult to solve owing to the complicated dependence of the
integrals in Eqns. 6.10 and 6.11 on µ, but if we are in the Maxwell-Boltzmann limit, a solution
is readily available. Writing

nc(T, µ) = Nc(T ) e
−(E0

c−µ)/kBT = Pv(T ) e
−(µ−E0

c )/kBT = pv(T, µ) , (6.18)

we have

e(2µ−E
0
c−E0

v)/kBT =
Pv(T )

Nc(T )
=

(
m∗

v

m∗
c

)3/2

, (6.19)

and we find

µ(T ) = 1
2

(
E0

c + E0
v

)
+ 3

4
k

B
T ln

(
m∗

v

m∗
c

)
. (6.20)

As T → 0, the chemical potential tends to the average µ(0) = 1
2

(
E0

c+E
0
v

)
. For finite temperature

T , µ(T ) increases with temperature ifm∗
v > m∗

c and decreases with T ifm∗
v < m∗

c . Since the ratio
m∗

v/m
∗
c is of order unity, we have |µ−E0

c,v| = 1
2
∆+O(1) · k

B
T , and provided k

B
T ≪ ∆, the de-

generacy condition applies. In most semiconductors, ∆≫ kBTroom, so intrinsic semiconductors
are almost always degenerate at and below room temperature.

6.2.2 Extrinsic semiconductors

In an extrinsic semiconductor, dopant ions with energy levels just above the valence band (ac-
ceptors) or just below the conduction band (donors) contribute valence holes or conduction
electrons, respectively, and there is an imbalance nc−pv = ∆n. When acceptors are present, the
chemical potential lies close to the valence band maximum, and the system is said to be p-type.
The charge carriers are then valence holes. When donors are present, the chemical potential lies
close to the conduction band minimum, and the system is said to be n-type. The charge car-
riers are then conduction electrons. The densities nc and pv denote only conduction electrons
and valence holes, and do not include contributions from impurity states. Regardless of the
shift in µ due to extrinsic effects, in the Maxwell-Boltzmann limit the product nc(T, µ) pv(T, µ)
is independent of µ, and given by

nc(T, µ) pv(T, µ) = Nc(T )Pv(T ) e
−(E0

c−E0
v)/kBT ≡ n2

i (T ) , (6.21)
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Figure 6.6: Bands and their fillings in metals, semiconductors, and insulators. Narrow red-
shaded regions denote impurity bands of acceptors (p-type) and donors (n-type).

where

ni(T ) ≡ 2 λ̄
−3/2
T e−∆/2kBT

= 2.5× 1019 cm−3

(√
m∗

vm
∗
c

me

)3/2(
T

300K

)3/2

e−∆/2kBT ,
(6.22)

with λ̄T ≡
√
λT,c λT,v .

In the extrinsic case, then, nc − pv = ∆n and nc pv = n2
i are two equations in two unknowns,

with the solution

nc =
√
n2
i +

1
4
(∆n)2 + 1

2
∆n

pv =
√
n2
i +

1
4
(∆n)2 − 1

2
∆n .

(6.23)

If we furthermore define the quantity µi such that

nc(T, µ) ≡ ni(T ) e
(µ−µi)/kBT , pv(T, µ) ≡ ni(T ) e

(µi−µ)/kBT , (6.24)

then the quantities (∆n , µi) are related by

∆n = 2ni(T ) sinh

(
µ− µi

kBT

)
. (6.25)
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Figure 6.7: Relevant group II through group VI elements and their electronic configurations.

Now if ∆n/ni is small, then |µ−µi| ≪ k
B
T , and if the degeneracy condition applies, this means

that µ is far from E0
c,v, and both nc ≈ pv ≈ ni. This remains the case so long as |∆n| ≪ ni.

In the opposite limit, when |∆n| ≫ ni, we have

√
n2
i +

1
4
(∆n)2 = 1

2
|∆n|+ n2

i

|∆n| + . . . , (6.26)

and therefore

n-type :
∆n

ni

≫ +1 ⇒ nc = ∆n , pv =
n2
i

∆n

p-type :
∆n

ni

≪ −1 ⇒ nc =
n2
i

|∆n| , pv = |∆n| .

(6.27)
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6.3 Donors and Acceptors

6.3.1 Impurity charges in a semiconductor

Silicon is a group IV element in the periodic table. To its left sits aluminum and to its right sits
phosphorus. Consider a Si crystal in which one of the Si atoms has been replaced by a P atom.
Compared to silicon, phosphorus has one extra nuclear charge and one additional electron. In
free space, this last P electron has a binding energy of 10.5 eV, the first ionization potential of P.
In a crystal, this binding energy is drastically reduced, due to two effects:

• The static dielectric constant of the semiconductor crystal is typically large (ǫSi = 11.9,
ǫInSb = 16.8, ǫPbTe = 30). Small gaps lead to large dielectric constants5. Later on we shall
derive the expression

ǫ <∼ 1 +

(
~ωpv

∆

)2
, (6.28)

where ωpv = (4πnve
2/me)

1/2, with nv the number density of valence electrons. So the
attraction between the phosphorus core and the added electron is reduced by a factor of
ǫ, provided the radius of the electronic orbit is on the order of several lattice spacings.

• The effective mass of the electrons in the conduction band ism∗
c , which is generally about

a tenth of the electron mass me.

The radius of the orbit is thus not a
B
= ~2/me2, but rather

r0 =
ǫ ~2

m∗
ce

2
=
me

m∗
c

ǫ aB . (6.29)

If ǫ ≈ 10 andm∗
c ≈ 0.1me, we have r0 ≈ 100 a

B
. The binding energy W of the lowest hydrogenic

state is then given by

Wd =
e2

2ǫ r0
=

13.6 eV︷︸︸︷
e2

2a
B

·

≈ 10−3

︷ ︸︸ ︷
m∗

c

me

1

ǫ2
(6.30)

Thus, the donor binding energy is Wd ≈ 10−3 Ry, which is usually very small in comparison
with the band gap ∆. This means that the donor levels lie just below the conduction band
minimum E0

c , as depicted in Fig. 6.8. The calculation for hole binding by acceptors is identical,
aside from the replacement of m∗

c by m∗
v. Thus,

Ed = E0
c −

e2

2a
B

· m
∗
c

me

1

ǫ2

Ea = E0
v +

e2

2a
B

· m
∗
v

me

1

ǫ2
.

(6.31)

5In a metal, where ther is no gap, ǫ =∞.
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Figure 6.8: Donors and acceptors.

group III : acceptors group V : donors

∆(300K) Wa B Al Ga In Tl Wd N P As Sb Bi

Si 1.12 48 45.0 68.5 71 155 245 113 140 45.3 53.7 42.7 70.6

Ge 0.67 15 10.8 11.1 11.3 12.0 13.5 28 − 12.9 14.2 10.3 12.8

Table 6.2: Donor and acceptor binding energies in Si and Ge (in meV).

6.3.2 Donor and acceptor quantum statistics

In the presence of donor and acceptor ions, the net change in the background ionic charge
density is given by ∆ρion = e (Nd − Na). Since the net system is charge neutral, this must be
balanced by the net electronic charge density, ∆ρelec = −e (nc+nd−pv−pa) where nd and pa are
the number densities of donor electrons and acceptor holes in equilibrium, respectively. The
charge neutrality condition is then ∆ρion +∆ρelec = 0, which requires

nc − pv + nd − pa = Nd −Na . (6.32)

The question now arises of how to compute nd and pa. The simplest assumption is to assume
the donor and acceptor levels of each spin are independently occupied according to a Fermi
distribution, just like the conduction and valence band levels. Under this assumption,

nd = 2Nd f(Ed − µ) , pa = 2Na f(µ− Ea) , (6.33)

where the factor of 2 comes from spin degeneracy. However, donor and acceptor state wave-
functions are localized in space, and so donor states with two electrons and acceptor states with
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|Ψ 〉 E n̂

| 0 〉 0 0

|↑ 〉 , |↓ 〉 Ed 1

|↑↓ 〉 2Ed + U 2

Table 6.3: Donor states and their energies.

two holes are energetically disfavored. Consider the case of a donor level. When one electron
of either spin polarization is present

(
|↑ 〉 or |↓ 〉

)
, the energy is E = Ed. When two electrons

are present in the state |↑↓ 〉, the energy is E = 2Ed+U , where U is an extra Coulomb repulsion
energy between the two electrons. Thus, in thermal equilibrium at temperature T , the average
donor occupancy is

〈n̂〉 = 2 e−β(Ed−µ) + 2 e−β(2Ed−2µ+U)

1 + 2 e−β(Ed−µ) + e−β(2Ed−2µ+U)
. (6.34)

When U = 0, we obtain 〈n〉 = 2f(Ed − µ). When e−βU ≪ 1, we have

〈n̂〉 = 2

eβ(Ed−µ) + 2
. (6.35)

More generally, for a donor with a gd-fold degeneracy of the n̂ = 1, and for acceptor states with
a ga-fold degeneracy of the p̂ = 1 level (i.e. one hole), we have that the average occupancy is

〈n̂〉 = gd
eβ(Ed−µ) + gd

, 〈p̂〉 = ga
eβ(µ−Ea) + ga

. (6.36)

This means that the donor electron density and acceptor hole density are given by

nd(T, µ) =
gdNd

eβ(Ed−µ) + gd
, pa(T, µ) =

gaNa

eβ(µ−Ea) + ga
. (6.37)

Typically gd = 2, but in many cases there is an extra degeneracy of the acceptor states. We are
left with the following equation to be solved for µ(T ):

Nc(T ) e
−(E0

c−µ)/kBT − Pv(T ) e
−(µ−E0

v)/kBT =
Nd

gd e
β(µ−Ed) + 1

− Na

ga e
β(Ea−µ) + 1

. (6.38)

Consider now the case where Ed−µ≫ k
B
T and µ−Ea ≫ k

B
T . In this case, Eqn. 6.38 becomes

Nc(T ) e
−(E0

c−µ)/kBT − Pv(T ) e
−(µ−E0

v)/kBT = Nd −Na . (6.39)

From Eqn. 6.23, we have the solution
{
nc

pv

}
= 1

2

√
(Nd −Na)

2 + 4n2
i ± 1

2
(Nd −Na) . (6.40)
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with ni(T ) = 2 λ̄
−3/2
T e−∆/2kBT . For light doping, where |Nd −Na| ≪ ni , we have

{
nc

pv

}
≈ ni ± 1

2
(Nd −Na) . (6.41)

In the opposite limit, where |Nd −Na| ≫ ni , we have

Nd > Na : nc ≈ Nd −Na , pv ≈
n2
i

Nd −Na

(6.42)

and

Nd < Na : nc ≈
n2
i

Na −Nd

, pv ≈ Na −Nd . (6.43)

6.3.3 Chemical potential versus temperature in doped semiconductors

How does the chemical potential µ(T ) behave as a function of temperature in a doped semi-
conductor? In n-doped materials, charge neutrality requires that all the acceptor levels are
singly occupied at T = 0, to compensate for the extra background charge. Thus, ε

F
= µ(T = 0)

must lie between the donor energy Ed and the conduction band minimum E0
c . For p-doped

materials, ε
F
= µ(T = 0) lies between the acceptor energy Ea and the valence band maximum

E0
v .

What happens for large T ? The answer depends on what we mean by ”large”, i.e. large com-
pared to what? Assuming ∆ ≫ |Ed,a − µ| , we have, from Eqn. 6.20, µ(T ) = 1

2

(
E0

c + E0
v

)
+

3
4
kBT ln

(
m∗

v/m
∗
c

)
. At still higher temperatures, if we make the dubious assumption that there

is a further separation of energy scales which allows us to consider only the valence and con-
duction bands, we may write

2 =

E+
c∫

E−
v

dε g(ε) f(ε− µ) =
E+

c∫

E−
v

dε
g(ε)

2 + β(ε− µ) + . . .
= 2− βµ+ 1

4
β

E+
c∫

E−
v

dε g(ε) ε+O(β2) , (6.44)

where g(ε) = gv(ε) + gc(ε) is the total density of states per unit cell for both bands, and where
E−

v and E+
c denote the lowest energy of the valence band and highest energy of the conduction

band, respectively. Recall that
∞∫

−∞
dε gv,c(ε) = 2 , i.e. each band accommodates a maximum of

two electrons per cell. Thus, we conclude

µ(T ≫ ∆) = 1
2
〈ε〉v + 1

2
〈ε〉c ≡ Ēcv , (6.45)

where

〈ε〉v = 1
2

E0
v∫

E−
v

dε gv(ε) ε , 〈ε〉c = 1
2

E+
c∫

E0
c

dε gc(ε) ε (6.46)
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Figure 6.9: Evolution of the chemical potential with temperature in extrinsic semiconductors.
The high temperature limit still assumes that only the valence and conduction bands need be
considered.

are the average band energies. The situation is depicted in Fig. 6.9.

Of course, eventually other bands will enter the picture. In the infinite temperature limit,
even the crystalline potential is irrelevant, and we can appeal to the classical result nσ =
λ−3
T exp(µ/kBT ), for each spin polarization σ, where λT = (2π~2/mekBT )

1/2. One then has
µ ∼ −3

2
T lnT as T →∞.

6.4 Inhomogeneous Semiconductors

Most of the technological uses of semiconductors are associated with materials which have
inhomogeneous doping profiles: p -n junctions, MOSFETs, heterojunctions, etc. The parade
example is the p -n junction, depicted in Fig. 6.10. We imagine a doping gradient such that the

Figure 6.10: The p -n junction. Left: idealized case. Right: typical doping profile.
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Figure 6.11: A GaAs - AlxGaxAs heterostructure formed by δ-doping.

system is p-doped for x < 0 and n-doped for x > 0. Typically this is accomplished by varying
the impurity concentration in a melt from which the solid is formed. Advances in growth
techniques such as MBE (molecular beam epitaxy) now allow for layer-by-layer growth and
doping profiles with nearly atomic precision. An important example of this is the δ-doped
GaAs - AlxGaxAs heterostructure sketched in Fig. 6.11. As we shall discuss further below,
AlxGax has a larger band gap than GaAs. Substituting Si for an Al atom results in a donor,
but, as we shall see, the valence electrons in the AlxGax migrate over to the GaAs side of the
heterostructure. By placing the Si dopants far from the interface, one thereby creates a two-
dimensional electron gas (2DEG) with extremely high mobility. This feature was crucial to the
1982 discovery of the fractional quantum Hall effect in by Tsui, Störmer, and Gossard.

6.4.1 Modeling the p -n junction

Here we follow the rather clear discussion in chapter 29 of Ashcroft and Mermin, Solid State
Physics.

We assume that the acceptor and donor densities are spatially varying according to

Nd(x) = Nd Θ(x) , Na(x) = NaΘ(−x) . (6.47)

In general, inhomogeneous doping along the x-direction in space will lead to a spatially vary-
ing electrostatic potential φ(x). Semiclassically, Bloch electrons in such a spatially varying po-
tential are described by the Hamiltonian

Hn = En

(
p

~
+

e

~c
A(r)

)
− e φ(x) . (6.48)

We will consider the case with B = 0, in which case we may choose a gauge in which A =
0. Notice that the crystalline potential is not present explicitly, but rather is embodied in the
Bloch dispersion En(k). Such a description is valid provided the potential φ(x) varies slowly
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on atomic scales., i.e. |∇φ| ≪ ∆/ae. If we further assume that the nondegeneracy condition
|E0

c,v − µ| ≫ k
B
T holds, then we have

nc(x) = 2 λ−3
T,c exp

(
− E0

c − e φ(x)− µ
kBT

)

pv(x) = 2 λ−3
T,v exp

(
− µ+ e φ(x)− E0

v

k
B
T

)
.

(6.49)

Thus, at the ends of the junction, we have

nc(x = +∞) = 2 λ−3
T,c exp

(
− E0

c − e φ(+∞)− µ
kBT

)
= Nd

pv(x = −∞) = 2 λ−3
T,v exp

(
− µ+ e φ(−∞)− E0

v

k
B
T

)
= Na ,

(6.50)

where the second equality in each line follows from the analysis of §6.3.2, assuming that the

condition |Nd−Na| ≫ 2 (λT,v λT,c)
−3/4 e−∆/2kBT ≡ ni(T ) holds. Multiplying these two equations

yields the result
e∆φ = ∆+ k

B
T ln

(
1
2
Naλ

3
T,v

)
+ k

B
T ln

(
1
2
Ndλ

3
T,c

)
, (6.51)

where ∆φ ≡ φ(+∞)− φ(−∞) is the potential drop across the sample. We may now write

nc(x) = Nd e
−e[φ(+∞)−φ(x)]/kBT

pv(x) = Na e
−e[φ(x)−φ(−∞)]/kBT . (6.52)

Next we would like to determine the potential function φ(x) throughout the sample. To do this,
we invoke Poisson’s equation,

d2φ

dx2
= −4πρ

ǫ
=

4πe

ǫ

{
Na(x) + nc(x)−Nd(x)− pv(x)

}
, (6.53)

Figure 6.12: The p -n junction in equilibrium. Left: charge density ρ(x). Middle: electrical
potential φ(x). Right: electric field Ex(x).
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Figure 6.13: The p -n junction. Top left: p-type (left) and n-type (right) doped semiconductor at
finite T with mismatched chemical potentials µn(x) (dotted horizontal lines). Top right: Con-
duction band electrons fill valence band holes, thereby lowering the total energy and creating a
depletion region devoid of mobile carriers, where the local imbalance of donor versus acceptor
ions produces a local charge density ρ(x) and electric potential φ(x). Bottom: The p -n junction
in equilibrium. The electrochemical potential µ = µn(x) − eφ(x) is constant throughout space.
The energy bands bend with the local potential φ(x).

where we are further assuming nd(x)≪ Nd(x) and pa(x)≪ Na(x), which are valid provided

∣∣Ed,a − µ− e φ(x)
∣∣≫ k

B
T . (6.54)

Since nc(x) and pv(x) depend on φ(x) through Eqn. 6.49, Eqn. 6.53 may be regarded as a
nonlinear second order ODE for φ(x), rendered inhomogeneous through the appearance of the
source terms Na(x) and Nd(x). The self-consistent nature of Poisson’s equation calls to mind
the Debye-Hückel theory of screening in classical plasmas, except here we are not permitted to
linearize in β = (k

B
T )−1. To render our problem analytically tractable, we’ll assume that x > dn

that nc(x) = nc(+∞) = Nd and thus ρ(x > dn) = 0 ; similarly we assume that for x < −dp
that pv(x) = pv(−∞) = Na and ρ(x < −dp) = 0 . In the course of our calculations, we shall
determine the unknown distances dn,p.

Outside of the region x ∈ [−dp , dn], called the depletion region or the space charge later, the charge
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density is zero. Within the space charge layer, we take

− ǫ

4π

d2φ

dx2
= ρ(x) ≈





0 if x 6 −dp
−eNa if − dp < x 6 0

+eNd if 0 < x 6 dn
0 if x > dn .

(6.55)

Integrating, we have

φ(x) =





φ(−∞) if x 6 −dp
φ(−∞) + 2πǫ−1eNa (x+ dp)

2 if − dp < x 6 0

φ(+∞)− 2πǫ−1eNd (x− dn)2 if 0 < x 6 dn
φ(+∞) if x > dn .

(6.56)

We now match the potential φ(x) and its derivative φ′(x) at x = 0, obtaining

φ(0−) = φ(0+) ⇒ ∆φ = 2πǫ−1e
(
Ndd

2
n +Nad

2
p

)
(6.57)

and
φ; (0−) = φ; (0+) ⇒ dnNd = dpNa . (6.58)

Solving these two equations for the unknowns dn,p, we have

dp =

[
Nd/Na

Nd +Na

· ǫ∆φ
2πe

]1/2
, dn =

[
Na/Nd

Nd +Na

· ǫ∆φ
2πe

]1/2
, (6.59)

where ∆φ is given in Eqn. 6.51. Typically dn,p are on the order of 100 Å to 1000 Å. The charge
density ρ, electrical potential φ, and electric field Ex = −dφ/dx are all depicted in Fig. 6.12.

Let’s reflect on the physics of why all this happens, following the sketches in Fig. 6.13. Conduc-
tion electrons on the n-type (x > 0) side of the junction can lower their energy by recombining
with valence holes on the p-type side (x < 0). This leads to a departure from local charge neu-
trality, which thereby discourages further charge separation. Finally, a built-in potential φ(x) is
established.

6.4.2 Rectification

Under equilibrium conditions, the electrochemical potential µ is constant across the junction.
What happens if a bias voltage V is imposed? We’ll define V > 0 (forward bias) as the condition
where the external voltage source raises the electrical potential on the p side, and V < 0 (reverse
bias) as the condition where the external voltage source raises the electrical potential on the n
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Figure 6.14: The biased p -n junction. Left: zero bias. Center: forward bias. Right: reverse bias.

side. Let φ0(x) be the V = 0 solution we have just derived, and let φ(x) be the solution in the
presence of the external voltage source. Then

φ(+∞)− φ(−∞) = φ0(+∞)− φ0(−∞)− V . (6.60)

Most of this potential drop still occurs in the depletion region. The reason is the depletion
refion is depleted of charge carriers (duh!) and therefore has a higher electrical resistance than
the bulk p-type and n-type regions. As you know, in a circuit comprised of several resistors
in series, the greatest potential drop occurs across the largest resistor. Therefore we have from
Eqn. 6.59,

dn,p(V ) = dn,p(0) ·
(
1− V

∆φ0

)1/2
. (6.61)

As shown in the sketch in Fig. 6.13, there are no conduction electrons on the p-side of the
junction, nor valence holes on the n-side. Strictly speaking, this is incorrect, since thermal
fluctuations will produce particle-hole excitations across the gap. This is a small but crucial
effect. In a homogeneous semiconductor, these excitations would simply recombine without
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Figure 6.15: j(V ) for a biased p -n junction.

significant consequence, however in a p -n junction, there is an internal electric field pushing
positive charges to the left and negative charges to the right. So valence holes move to the p
side and conduction electrons to the n side, even at V = 0. This leads to a generation current
jgen = e (Jh − Je) , where Jh > 0 and Je < 0 are the number current densities of holes and
electrons, respectively. Both these currents are proportional to exp(−∆/k

B
T ) and are fairly

insensitive to any bias V .

In equilibrium, there can be no net hole or electron current. Therefore there must be a counter-
current of holes flowing from p to n, and of electrons flowing from n to p. These currents, which
are akin to salmon swimming upstream, since they must flow in opposition to the electric field
and overcome the built-in potential barrier ∆φ = ∆φ0 − V , are called recombination currents.
When V = 0, there is precise cancellation of the generation and recombination currents. Since
J rec ∝ exp

[
− e(∆φ0 − V )

]
and J rec(V = 0) = −Jgen (for each species), we conclude

J rec(V ) = −Jgen eeV/kBT . (6.62)

The electrical current is then

j(V ) = e J rec
h + e Jgen

h − e J rec
e − e Jgen

e

= e
(
Jgen
h − Jgen

e )
(
1− eeV/kBT

)
= e

(
|Jgen

h |+ |Jgen
e |)

(
eeV/kBT − 1

)
.

(6.63)

Note that |Jgen
h | and |Jgen

e | are each proportional to exp(−∆/k
B
T ). The current-voltage relation-

ship is sketched in Fig. 6.15. A p -n junction is thus a current rectifier. This is how a diode works:
passing alternating current through such a junction yields a direct current.
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6.4.3 MOSFETs and heterojunctions

In a metal, internal electric fields are efficiently screened and excess charge migrates rapidly to
the surface, with charge density fluctuations attenuated exponentially as one enters the bulk.

The Thomas-Fermi screening length, λ
TF

=
(
4πe2g(ε

F
)
)−1/2

, is short (a few Ångstroms) due to
the large density of states at the Fermi level. In semiconductors, the Fermi level lies somewhere
in the gap between valence and conduction bands, and the density of states at ε

F
is quite low.

Screening is due to thermally excited charge carriers, and since the carrier density is small in
comparison to that in metals, the screening length is many lattice spacings.

Consider now a junction between a semiconductor and a metal, with an intervening insulating
layer. This is called MIS, or metal-insulator-ssemiconductor, junction. If the metal is unbiased
relative to the semiconductor, their chemical potentials will align. The situation for a p-type
semiconductor - metal junction is depicted in the left panel of Fig. 6.16. Next consider the
case in which the metal is biased negatively with respect to the semiconductor, i.e. the metal is
placed at a negative voltage −V . There is then an electric field E = −∇φ pointing out of the
semiconductor. Electric fields point in the direction positive charges want to move, hence in
this case valence holes are attracted to the interface, creating an accumulation layer of holes, as
depicted in the right panel of Fig. 6.16. On the metallic side, electrons migrate to the interface
for the same reason. No charges move across the insulating barrier. Thus, a dipole layer is created
across the barrier, with the dipole moment pointing into the semiconductor. This creates an in-
ternal potential whose net difference φmetal − φsemiconductor(−∞) = V exactly cancels the applied
bias. This condition in fact is what determines the width of the accumulation layer.

Figure 6.16: Junction between a p-type semiconductor and a metal. Left: Zero bias. Right:
Metal biased negative with respect to semiconductor, creating an accumulation layer of holes
and a net dipole moment at the interface.
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Figure 6.17: Junction between a p-type semiconductor and a metal. Left: Metal biased positive
with respect to semiconductor, creating a space charge depletion layer. Right: Strong positive
bias creates an inversion layer of n-type carriers in the p-type material.

What happens when the metal is biased positively? In this case, the electric field points into
the semiconductor, and valence holes are repelled from the semiconductor surface, which is
then negatively charged. This, in turn, repels electrons from the nearby metallic surface. The
result is a space charge depletion layer in the semiconductor, which is devoid of charge carriers
(i.e. valence holes). This situation is sketched in the left panel of Fig. 6.17.

Finally, what happens if the bias voltage on the metal exceeds the band gap? In this case, the
field is so strong that not only are valence holes expelled from the surface, but conduction
electrons are present, as shown in the right panel of Fig. 6.17. The presence of n-type carriers
in a p-type semiconductor is known as n-inversion.

Remember this:

• Accumulation : presence of additional n-carriers in an n-type material, or additional p-
carriers in a p-type material.

• Depletion : absence of n-carriers in an n-type material, or p-carriers in a p-type material.

• Inversion : presence of n-carriers in a p-type material, or p-carriers in an n-type material.

Inversion occurs when the presence of a depletion layer does not suffice to align the chemical
potentials of the two sides of the junction.
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Figure 6.18: The MOSFET.

The MOSFET

A MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor) consists of two back-to-back
p -n junctions, and, transverse to this, a gate-bulk-oxide capacitor. The situation is depicted in
Fig. 6.18. If there is no gate voltage (Vg = 0), then current will not flow at any bias voltage V
because necessarily one of the p -n junction will be reverse-biased. The situation changes dras-
tically if the gate is held at a high positive potential Vg, for then an n-type accumulation layer
forms at the bulk-gate interface, thereby connecting source and drain directly and resulting in
a gate-controlled current flow. Although not shown in the figure, generally both source and
drain are biased positively with respect to the bulk in order to avoid current leakage.

6.4.4 Heterojunctions

Potential uses of a junction formed from two distinct semiconductors were envisioned as early
as 1951 by Shockley. Such devices, known as heterojunctions, have revolutionized the electronics
industry and experimental solid state physics, the latter due to the advent of epitaxial technol-
ogy which permits growth patterning to nearly atomic precision. Whereas the best inversion
layer mobilities in Si MOSFETs are µ ≈ 2 × 104 cm2/V · s, values as high as 107 cm2/V · s are
possible in MBE-fabricated GaAs−AlxGa1−xAs heterostructures. There are three reasons for
this:

(i) MBE (molecular beam epitaxy), as mentioned above, can produce layers which are smooth
on an atomic scale. This permits exquisite control of layer thicknesses and doping pro-
files.
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Figure 6.19: GaAs−AlxGa1−xAs heterojunction.

(ii) Use of ternary compounds such as AlxGa1−xAs makes for an excellent match in lattice
constant across the heterojunction interface, i.e. on the order of or better than 1%. By
contrast, the Si−SiOs interface is very poor, since SiO2 is a glass.

(iii) By doping the AlxGa1−xAs layer far from the interface, Coulomb scattering between in-
version layer electrons and dopant ions is suppressed.

Let’s consider the chemical potential alignment problem in the case of an n -n heterojunction,
sketched in Fig. 6.20. In the GaAs−AlxGa1−xAs heterojunction, GaAs has the smaller of the two
band gaps. Initially there is a mismatch, as depicted in the left panel of the figure. By forming a
depletion layer on the side with the larger band gap (AlxGa1−xAs), and an accumulation layer
on the side with the smaller gap (GaAs), an internal potential φ(x) is established which aligns
the chemical potentials.

Fig. 6.21 shows the phenomena of accumulation and inversion in different possible heterojunc-
tions. There are four possibilities: (a) n -n , (b) p - p (c) n - p with the n-type material having the

Figure 6.20: Accumulation layer formation in an n-n heterojunction.
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Figure 6.21: Accumulation and inversion in semiconductor heterojunctions. Red regions rep-
resent presence of conduction electrons. Blue regions represent presence of valence holes.

larger gap, and (d) n - p with the p-type material having the larger gap.

6.5 Insulators

An insulator is a system in which there is an energy gap for charged excitations at T = 0. Here
we shall consider a subclass known as band insulators, i.e. materials which may be adequately
idealized as noninteracting electrons in a crystalline potential with a Fermi level ε

F
which lies

in a band gap. Intrinsic semiconductors are then a subclass of band insulators. As we’ve
seen above, extrinsic semiconductors can be modeled by including donor and acceptor levels
to the intrinsic semiconductor band structure, and assuming that the dopant concentration is
sufficiently low that the different donor/acceptor states associated with different ions may be
considered noninteracting.

Insulators where the charge gap arises from strong electron-electron interactions are known as
Mott-Hubbard insulators. Consider a tight-binding model with a single orbital per site, with
the Hamiltonian

H = −1
2

∑

i 6=j

(
t〈ij〉 c

†
iσ cjσ + t∗ij c

†
jσ ciσ

)
+ U

∑

i

ni↑ ni↓ , (6.64)

The second term on the RHS imposes an energy cost U whenever there are two electrons on
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the same site i. Consider now this model in which there is one electron per site. Assuming the
crystal is a Bravais lattice, there is one band, and the Fermi level must cut through it in such
a way that half the band is occupied and half is empty (since a filled band accommodates two
electrons per site – one of each spin polarization). Thus, at U = 0 the system is a metal. But
now consider the case where U ≫ W , where W is the bandwidth at U = 0. Any state with one
electron per site, with arbitrary spin polarization, e.g., |ψ 〉 = |↑↑↓↑↓↑↓↑ · · · 〉 requires an energy
∆E ≈ U − W to add an electron, since the added electron will necessarily result in double
occupation of some site. This is called the Mott-Hubbard gap.

In this section, we will be concerned only with band insulators, and in particular with their
dielectric properties. Mott-Hubbard systems are particularly interesting and important in con-
densed matter physics, but their analysis lies beyond the scope of this course.

6.5.1 Maxwell’s equations in polarizable media

Maxwell’s equations in the presence of sources are

∇ · e = 4πρ ∇× e = −1
c

∂b

∂t
(6.65)

∇ · b = 0 ∇× b =
4π

c
j +

1

c

∂e

∂t
.

Here, e(r), b(r), ρ(r), and j(r) are the microscopic fields and sources. In a crystalline solid, the
charge density ρ(r) is a rapidly oscillating function of space, with positive delta-function like
spikes at each ionic core and a negative contribution from the electron distribution which is
localized for the core band states but more uniformly distributed between ions for the valence
band states. The strongly fluctuating, microscopic description of electrodynamics at the atomic
scale is not useful for our purposes6.

Consider now a smoothing function f(r)which satisfies
∫
d3rf(r) = 1 , and define the smoothed

fields

E(r) =

∫
d3r′ f(r − r′) e(r′) , B(r) =

∫
d3r′ f(r − r′) b(r′) (6.66)

and the smoothed sources

̺(r) =

∫
d3r′ f(r − r′) ρ(r′) , J(r) =

∫
d3r′ f(r − r′) j(r′) . (6.67)

Now evaluate each of Eqns. 6.65 at r′, multiply by f(r − r′), and integrate over r. Integration

6In the following description of macroscopic electrodynamics, we follow the pellucid discussion in A. Garg, Clas-
sical Electrodynamics in a Nutshell (Princeton, 2012).
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by parts then yields the macroscopic Maxwell equations,

∇ · E = 4π̺ ∇× E = −1
c

∂B

∂t
(6.68)

∇ · B = 0 ∇× B =
4π

c
J +

1

c

∂E

∂t
.

These take the same form as the microscopic Eqns. 6.65, however, the meanings of the fields
and the sources are quite different. Unfortunately, without a theory for the sources ̺ and J , the
above version of the macroscopic Maxwell equations is rather useless.

Macroscopic charge density

In a solid, charges may be free, such as conduction electrons or valence holes, or bound, such
as the core electrons. Free charges may execute macroscopic motion in response to external
fields, while bound charges remain local. To grasp the significance of bound charges, consider
a system of neutral atoms or molecules, each of which has a dipole moment d. If their number
density is n, then the dipole moment per unit volume is P = nd, which is called the electrical
polarization.

The electrical potential φ(r) due to a dipole at the origin is given by φ(r) = d · r/r3. Now
consider a region Ω containing dipolar matter is then

φ(r) =

∫

Ω

d3r′
P (r′) · (r − r′)
|r − r′|3 =

∫

Ω

d3r′ P (r′) ·∇′ 1

|r − r′|

=

∫

∂Ω

d2r′
P (r′) · n̂′

|r − r′| −
∫

Ω

d3r′
∇

′ ·P (r′)
|r − r′|

≡
∫

∂Ω

d2r′
σpol(r

′)

|r − r′| −
∫

Ω

d3r′
̺pol(r

′)

|r − r′| ,

(6.69)

where σpol = P · n̂ is the surface charge density and ̺pol = −∇ ·P is the polarization charge
density. We may now write ̺ = ̺free + ̺pol , and defining the electrical displacement field
D ≡ E + 4πP , we obtain the relation

∇ ·D = 4π̺free . (6.70)

The polarization charge density is the bound charge density. While a body may be electrically
neutral overall, the local charge density may vary. One writes D = ǫE, where ǫ is the electric
permittivity (dielectric constant). Note that

P =
ǫ− 1

4π
E . (6.71)
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Macroscopic current density

The macroscopic current density may be written j = jfree + jpol + jmag , i.e. as a sum of con-
tributions from the motion of free charges, from polarization currents, and from Amperean
(magnetization) currents7. From ̺pol = −∇ ·P , we have that jpol = ∂P/∂t , in order that the
continuity equation ∂t̺pol +∇·jpol = 0 be satisfied.

LetM(r) be the magnetic dipole moment density. The vector potential due to a magnetic dipole
m located at the origin is A(r) = m× r/r3, hence

A(r) =

∫

Ω

d3r′
M(r′)× (r − r′)
|r − r′|3 =

∫

Ω

d3r′ M(r′)×∇
′ 1

|r − r′|

=

∫

∂Ω

d2r′
M(r′)× n̂′

|r − r′| −
∫

Ω

d3r′
∇

′ × P (r′)
|r − r′|

≡ 1

c

∫

∂Ω

d2r′
Kmag(r

′)

|r − r′| −
1

c

∫

Ω

d3r′
jmag(r

′)

|r − r′| ,

(6.72)

where Kmag ≡ cM × n̂ is the surface current density and jmag = c∇×M is the magnetization
volume current. Defining the field H = B − 4πM , then we have

∇×H =
4π

c
jfree +

1

c

∂D

∂t
. (6.73)

One calls E the electric field and D the (electric) displacement field. Many texts call B the magnetic
induction field and H the magnetic field. We will adopt the terminology of Garg (2012), who calls
B the magnetic field and H the magnetizing field.

6.5.2 Clausius-Mossotti relation

In isotropic systems, we write D = ǫE and B = µH . How to connect the electric permittiv-
ity (dielectric constant) ǫ and the magnetic permeability µ to microscopic quantities such the
atomic polarizability α which relates the atomic or molecular dipole moment d = αe to the
microscopic local electric field e ? We begin by writing e = enear + efar as a sum of contributions
from nearby atoms and those which are far away. The distinction is that the far field is such that
it is equal, to high precision, to its local average, i.e. efar(r) = Efar(r) =

∫
d3r′ f(r − r′) efar(r′) ,

provided r > R. We expect R should be on the order of a hundred lattice spacings. Thus,
Efar(r) is the field that would exist at a point r if one were to remove all the material from a
radius R about this point. The corresponding macroscopic near field, Enear , is that due to a

7There is a fourth term, jconv, due to convection currents, given by jconv = (̺free + ̺pol)u, where u is the velocity
of the convective flow. Convection currents arise in liquids and gases, but not in solids.
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uniformly polarized sphere of dipole density P , which from elementary electrostatics is given
by Enear = −4π

3
P . Since E = Enear + Efar , we have that

Efar = E + 4π
3
P =

ǫ+ 2

3
E (6.74)

and therefore

e = Efar + enear =
ǫ+ 2

3
E + enear . (6.75)

In an isotropic system such as a liquid, or in a crystal with cubic symmetry, one has that
enear(r) = 0 if r is an atomic position about which the symmetry is manifested. We then have

P =
ǫ− 1

4π
E = nαe =

(
ǫ+ 2

3

)
nαE , (6.76)

and therefore
ǫ− 1

ǫ+ 2
=

4πnα

3
, (6.77)

a result known as the Clausius-Mossotti relation. Solving for ǫ,

ǫ = 1 +
4πnα

1− 4π
3
nα

. (6.78)

If |nα| ≪ 1, which is typical, then we have

ǫ ≈ 1 + 4πnα . (6.79)

6.5.3 Theory of atomic polarizability

Consider an atom with Z valence electrons. A crude classical model of atomic polarizability by
writing F = ma for each valence electron, viz.

mer̈ = −kr − e e(t) , (6.80)

where r is the displacement from equilibrium and e is the microscopic electric field. The dipole
moment is then d = Ze r. If all quantities are taken to vary as e−iωt, we obtain d̂(ω) = α(ω) ê(ω) ,
with

α(ω) =
Ze2

me(ω
2
0 − ω2)

, (6.81)

where we’ve defined k ≡ meω
2
0 . Quantum mechanically, we expect ~ω0 to be on the order of

an atomic transition energy, which is typically on the order of electron volts, and since ~ =
6.58× 10−16 eV · s, this corresponds to frequencies on the order of 1016Hz. For ω ≪ ω0, we have
α = Ze2/meω

2
0 , which is frequency-independent. This is valid up to frequencies ν0 = ω0/2π

which are in the ultraviolet regime.
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In polar crystals, the unit cell consists of positively and negatively charged ions. Examples
include III-V and II-VI semiconductors, for example. For the sake of simplicity, we analyze the
case of one positive and one negative ion per cell, with charges ±q, respectively. The equations
of motion for the ionic vibrations are

M+ü
α
+(R) = −

∑

R′

∑

β

[
Φαβ++(R− R′) uβ+(R

′) + Φαβ+−(R− R′) uβ−(R
′)
]
+ q eα

M−ü
α
−(R) = −

∑

R′

∑

β

[
Φαβ−+(R− R′) uβ+(R

′) + Φαβ−−(R− R′) uβ−(R
′)
]
− q eα ,

(6.82)

where

Φαβηη′(R−R′) =
∂2U

∂uαη (R) u
β
η′(R

′)
(6.83)

are force constants for the lattice potential. Consider the k = 0 mode, where u±(R) is indepen-
dent of R , i.e. all unit cell motions are in phase. Subtracting the second of the above equations
from the first, we obtain

üα+ − üα− = − 1

M+

∑

R

Φαβ++(R) u
β
+ −

1

M+

∑

R

Φαβ+−(R) u
β
−

+
1

M−

∑

R

Φαβ−+(R) u
β
+ +

1

M−

∑

R

Φαβ−−(R) u
β
− +

q eα

M+

+
q eα

M−
.

(6.84)

However, the fact that there is no restoring force for a uniform translation of the crystal requires

∑

R

[
Φαβ++(R) + Φαβ+−(R)

]
=
∑

R

[
Φαβ−+(R) + Φαβ−−(R)

]
= 0 , (6.85)

and therefore, with δ ≡ u+ − u− , and assuming cubic symmetry,

δ̈α = −

≡ ω̄2 δαβ︷ ︸︸ ︷
∑

R

(
Φαβ++(R)

M+

+
Φαβ−−(R)

M−

)
δβ +

q eα

M−
. (6.86)

We may rewrite this as

δ̈ = −ω̄2
δ +

q e

M∗ , (6.87)

where M∗ = M+M−/(M+ +M−) is the reduced mass. Here ω̄ is the frequency of the k = 0
optical phonon. mode The polarization density is then P = qδ/v0 , where v0 is the unit cell
volume. Solving for an oscillating electric field e e−iωt , we obtain

δ(t) =
q e

M∗ ·
e−iωt

ω̄2 − ω2
. (6.88)
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We conclude that the displacement polarizability is

αdisp =
q2

M∗(ω̄2 − ω2)
. (6.89)

Now in addition to the displacement polarizability, we also have to add in the individual
atomic polarizabilities of the positive and negative ions, hence our final result is

α(ω) = α+ + α− + αdisp(ω) . (6.90)

Thus, from the Clausius-Mossotti relation Eqn. 6.77, we have

ǫ(ω)− 1

ǫ(ω) + 2
=

4π

3v0

(
α+ + α− +

q2

M∗(ω̄2 − ω2)

)
, (6.91)

provided ω ≪ ω0. We then have, at ω = 0,

ǫ0 − 1

ǫ0 + 2
=

4π

3v

(
α+ + α− +

q2

M∗ω̄2

)
, (6.92)

while for ω̄ ≪ ω ≪ ω0, which we call ‘infinite’ frequency for our purposes,

ǫ∞ − 1

ǫ∞ + 2
=

4π

3v

(
α+ + α−

)
. (6.93)

These equations allow us to write

ǫ(ω) = ǫ∞ ·
ω2 − ω2

L

ω2 − ω2
T

, (6.94)

where

ω
T
=

(
ǫ∞ + 2

ǫ0 + 2

)1/2
ω̄ , ω

L
=
(
ǫ0/ǫ∞

)1/2
ω

T
. (6.95)

Note that ǫ(ω
L
) = 0 and ǫ(ω

T
) =∞, and that

(
ω

L

ω
T

)2
=

ǫ0
ǫ∞

> 1 , (6.96)

a result known as the Lyddane-Sachs-Teller relation. The behavior of ǫ(ω) is sketched in the left
panel of Fig. 6.22.

6.5.4 Electromagnetic waves in a polar crystal

Consider now the propagation of electromagnetic waves in a polar crystal. Assuming the ab-
sence of free charges, we have ∇·D = 0 and ∇×E = −c−1∂tB governing the macroscopic fields.
We will ignore the c−1∂tB term and justify this later on. A plane wave solution with E and D

both proportional to exp(ik · r) thereby requires k · D = k × E = 0 , which has no nontrivial
solutions ifD = ǫ(ω)E. I.e. either E = 0 orD = 0. Thus we have the following two possibilities:
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• longitudinal mode : E ‖ k with ǫ = 0, hence ω = ω
L

and D = 0.

• transverse mode : D ⊥ k with ǫ =∞, hence ω = ω
T

and E = 0.

These conclusions hold valid in the k → 0 limit. To find the dispersion for general k, we need
to solve Eqns. 6.82 under general conditions, i.e. not assuming all the unit cells are in phase.
This yields a dispersion as shown in the right panel of Fig. 6.22.

Why were we allowed to drop the c ∂tB term in Faraday’s equation? This is because it is neg-
ligible in the limit ck ≫ ω. Since optical frequencies are on the order of that of zone edge
phonons, this means we must satisfy k ≫ (π/a) · (s/c), where a is the lattice spacing, s is the
acoustic phonon velocity, and c the speed of light. Since s/c ∼ 10−5 − 10−4, we are in good
shape provided k is not extremely close to the zone center. Finally, since the reflectivity is

R(ω) =

∣∣∣∣∣

√
ǫ(ω)− 1√
ǫ(ω) + 1

∣∣∣∣∣

2

, (6.97)

for ω ∈ [ω
T
, ω

L
] the dielectric function ǫ(ω) is purely imaginary and thus the crystal is purely

reflecting.

Nota bene : The ”charge” q is poorly defined, since it is spread out in a continuous distribution
rather than a Dirac delta function. Thus, Eqn. 6.94 and the LST relation are much more useful
than Eqn. 6.91, since we can always measure ǫ0 and ǫ∞.

Figure 6.22: Left: dielectric function ǫ(ω) in a polar crystal. Right: solution to the equation
ω = ck/ǫ1/2(ω) showing the polariton dispersion branches ω±(k).
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Chapter 7

Mesoscopia

7.1 Introduction

Current nanofabrication technology affords us the remarkable opportunity to study condensed
matter systems on an unprecedented small scale. For example, small electron boxes known
as quantum dots have been fabricated, with characteristic size ranging from 10 nm to 1 µm;
the smallest quantum dots can hold as few as one single electron, while larger dots can hold
thousands. In systems such as these, one can probe discrete energy level spectra associated
with quantization in a finite volume. Oftentimes systems are so small that Bloch’s theorem and
the theoretical apparatus of Boltzmann transport are of dubious utility.

7.2 The Landauer Formula

Consider a disordered one-dimensional wire connected on each end to reservoirs at fixed chem-
ical potential µL and µR. For the moment, let us consider only a single spin species, or imagine

that the spins are completely polarized. Suppose further that µL > µR, so that a current I flows
from the left reservoir (L) to the right reservoir (R). Next, consider a cross-sectional surface Σ
just to the right of the disordered region. We calculate the current flowing past this surface as
a sum over three terms:

IΣ = −e
∫
dεN (ε) v(ε)

{
T (ε) f(ε− µ

L
) +R′(ε) f(ε− µ

R
)− f(ε− µ

R
)
}

. (7.1)

Here, N (ε) is the density of states in the leads per spin degree of freedom, and corresponding

to motion in a given direction (right or left but not both); v(ε) is the velocity, and f (ε−µL,R) are
the respective Fermi distributions. T (ε) is the transmission probability that electrons of energy ε
emerging from the left reservoir will end up in right reservoir; R′(ε) is the reflection probability

345
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that electrons emerging from right reservoir will return to the right reservoir. The three terms
on the right hand side of (7.1) correspond, respectively, to: (i) electrons emerging from L which
make it through the wire and are deposited in R, (ii) electrons emerging from R which fail to
‘swim upstream’ to L and are instead reflected back into R, and (iii) all electrons emerging from
reservoir R (note this contribution is of opposite sign). The transmission and reflection prob-
abilities are obtained by solving for the quantum mechanical scattering due to the disordered
region. If the incoming flux amplitudes from the left and right sides are i and i′, respectively,
and the outgoing flux amplitudes on those sides o′ and o, linearity of the Schrödinger equation
requires that (

o′

o

)
= S

(
i
i′

)
; S =

(
r t′

t r′

)
. (7.2)

The matrix S is known as the scattering matrix (or S-matrix, for short). The S-matrix elements
r, t, etc. are reflection and transmission amplitudes. The reflection and transmission probabilities
are given by

R = |r|2 T ′ = |t′|2
T = |t|2 R′ = |r′|2 .

(7.3)

Going back to (7.1), let us assume that we are close to equilibrium, so the difference µR − µL in
chemical potentials is slight. We may then expand

f(ε− µR) = f(ε− µL) + f ′(ε− µL) (µL − µR) + . . . (7.4)

and obtain the result

I = e(µ
R
− µ

L
)

∫
dεN (ε) v(ε)

(
−∂f

0

∂ε

)
T (ε)

=
e

h
(µR − µL)

∫
dε

(
−∂f

0

∂ε

)
T (ε) ,

(7.5)

valid to lowest order in (µR−µL). We have invoked here a very simple, very important result for
the one-dimensional density of states. Considering only states moving in a definite direction
(left or right) and with a definite spin polarization (up or down), we have

N (ε) dε =
dk

2π
=⇒ N (ε) =

1

2π

dk

dε
=

1

hv(ε)
(7.6)

where h = 2π~ is Planck’s constant. Thus, there is a remarkable cancellation in the product
N (ε) v(ε) = h−1. Working at T = 0, we therefore obtain

I =
e

h
(µ

R
− µ

L
) T (ε

F
) , (7.7)
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where T (ε
F
) is the transmission probability at the Fermi energy. The chemical potential varies

with voltage according to µ(V ) = µ(0)− eV , hence the conductance G = I/V is found to be

G =
e2

h
T (ε

F
) (per spin channel)

=
2e2

h
T (ε

F
) (spin degeneracy included)

(7.8)

The quantity h/e2 is a conveniently measurable 25, 813Ω.

We conclude that conductance is transmission - G is e2/h times the transmission probability T (ε
F
)

with which an electron at the Fermi level passes through the wire. This has a certain intuitive
appeal, since clearly if T (ε

F
) = 0 we should expect G = 0. However, two obvious concerns

should be addressed:

• The power dissipated should be P = I2R = V 2G. Yet the scattering in the wire is as-
sumed to be purely elastic. Hence no dissipation occurs within the wire at all, and the
Poynting vector immediately outside the wire must vanish. What, then, is the source of
the dissipation?

• For a perfect wire, T (ε
F
) = 1, and G = e2/h (per spin) is finite. Shouldn’t a perfect (i.e. not

disordered) wire have zero resistance, and hence infinite conductance?

The answer to the first of these riddles is simple – all the dissipation takes place in the R reser-
voir. When an electron makes it through the wire from L to R, it deposits its excess energy

µL − µR in the R reservoir. The mechanism by which this is done is not our concern – we
only need assume that there is some inelastic process (e.g. electron-phonon scattering, electron-
electron scattering, etc.) which acts to equilibrate the R reservoir.

The second riddle is a bit more subtle. One solution is to associate the resistance h/e2 of a
perfect wire with the contact resistance due to the leads. The intrinsic conductance of the wire
Gi is determined by assuming the wire resistance and contact resistances are in series:

G−1 = G−1
i +

h

e2
=⇒ Gi =

e2

h

T (ε
F
)

1− T (ε
F
)
=
e2

h

T (ε
F
)

R(ε
F
)

, (7.9)

where Gi is the intrinsic conductance of the wire, per spin channel. Now we see that when
T (ε

F
) → 1 the intrinsic conductance diverges: Gi → ∞. When T ≪ 1, Gi ≈ G = (e2/h)T . This

result (7.9) is known as the Landauer Formula.

To derive this result in a more systematic way, let us assume that the disordered segment is
connected to the left and right reservoirs by perfect leads, and that the leads are not in equi-

librium at chemical potentials µL and µR but instead at µ̃L and µ̃R. To determine µ̃L and µ̃R, we
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compute the number density (per spin channel) in the leads,

n
L
=

∫
dεN (ε)

{[
1 +R(ε)

]
f(ε− µ

L
) + T ′(ε) f(ε− µ

R
)
}

nR =

∫
dεN (ε)

{
T (ε)f(ε− µL) +

[
1 +R′(ε)

]
f(ε− µR)

} (7.10)

and associate these densities with chemical potentials µ̃L and µ̃R according to

nL = 2

∫
dεN (ε) f(ε− µ̃L)

n
R
= 2

∫
dεN (ε) f(ε− µ̃

R
) ,

(7.11)

where the factor of two accounts for both directions of motion. To lowest order, then, we obtain

2(µ
L
− µ̃

L
) = (µ

L
− µ

R
) T ′ =⇒ µ̃

L
= µ

L
+ 1

2
T ′ (µ

R
− µ

L
)

2(µR − µ̃R) = (µR − µL) T =⇒ µ̃R = µR + 1
2
T (µL − µR)

(7.12)

and therefore

(µ̃
L
− µ̃

R
) =

(
1− 1

2
T − 1

2
T ′) (µ

L
− µ

R
)

= (1− T ) (µ
L
− µ

R
) ,

(7.13)

where the last equality follows from unitarity (S†S = SS† = 1). There are two experimental
configurations to consider:

• Two probe measurement – Here the current leads are also used as voltage leads. The

voltage difference is ∆V = (µR − µL)/e and the measured conductance is given by the

expression G2−probe = (e2/h) T (ε
F
).

• Four probe measurement – Separate leads are used for current and voltage probes. The

observed voltage difference is ∆V = (µ̃R − µ̃L)/e and the measured conductance is given

by the expression G4−probe = (e2/h) T (ε
F
)/R(ε

F
).

7.2.1 Example: potential step

Perhaps the simplest scattering problem is one-dimensional scattering from a potential step,
V (x) = V0Θ(x). The potential is piecewise constant, hence the wavefunction is piecewise a
plane wave:

x < 0 : ψ(x) = I eikx +O′ e−ikx

x > 0 : ψ(x) = O eik
′x + I ′ e−ik

′x ,
(7.14)
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Figure 7.1: Scattering at a potential step.

with

E =
~2k2

2m
=

~2k′2

2m
+ V0 . (7.15)

The requirement that ψ(x) and its derivative ψ′(x) be continuous at x = 0 gives us two equa-
tions which relate the four wavefunction amplitudes:

I +O′ = O + I ′

k(I − O′) = k′(O − I ′) .
(7.16)

As emphasized earlier, the S-matrix acts on flux amplitudes. We have
(
i
o′

)
=
√
v

(
I
O′

)
,

(
o
i′

)
=
√
v′
(
O
I ′

)
, (7.17)

with v = ~k/m and v′ = ~k′/m. One easily finds the S-matrix, defined in eqn. 7.2, is given by

S =



r t′

t r′


 =




1−ǫ
1+ǫ

2
√
ǫ

1+ǫ

2
√
ǫ

1+ǫ
ǫ−1
1+ǫ


 , (7.18)

where ǫ ≡ v′/v = k′/k =
√
1− V0

E
, where E = ε

F
is the Fermi energy. The two- and four-

terminal conductances are then given by

G2−probe =
e2

h
|t|2 = e2

h
· 4ǫ

(1 + ǫ)2

G4−probe =
e2

h

|t|2
|r|2 =

e2

h
· 4ǫ

(1− ǫ)2 .

(7.19)
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Figure 7.2: Dimensionless two-terminal conductance g versus k′/k for the potential step. The
conductance is maximized when k′ = k.

Both are maximized when the transmission probability T = |t|2 = 1 is largest, which occurs for
ǫ = 1, i.e. k′ = k.

7.3 Multichannel Systems

The single channel scenario described above is obtained as a limit of a more general multichan-
nel case, in which there are transverse degrees of freedom (due e.g. to finite cross-sectional area
of the wire) as well. We will identify the transverse states by labels i. Within the perfect leads,
the longitudinal and transverse energies are decoupled, and we may write

ε = ε⊥i + ε‖(k) , (7.20)

where ε‖(k) is the one-dimensional dispersion due to motion along the wire (e.g. ε‖(k) =

~
2k2/2m∗, ε‖(k) = −2t cos ka, etc.). k is the component of the wavevector along the axis of

the wire. We assume that the transverse dimensions are finite, so fixing the Fermi energy ε
F

in
turn fixes the total number of transverse channels, Nc, which contribute to the transport:

Nc(ε) =
∑

i

Θ(ε− ε⊥i) (continuum)

=
∑

i

Θ
(
2t− |ε− ε⊥i|

)
(tight binding) .

(7.21)
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Equivalently, an electron with energy ε in transverse state i has wavevector ki which satisfies

ε‖(ki) = ε− ε⊥i . (7.22)

Nc is the number of real positive roots of (7.22). Typically Nc ≈ kd−1
F

A, where A is the cross-
sectional area and k

F
is the Fermi wavevector. The velocity vi is

vi(ε) =
1

~

∂ε

∂k

∣∣∣∣
ki

=
1

~

∂ε‖(k)

∂k

∣∣∣∣∣
k=ki

. (7.23)

The density of states Ni(ε) (per unit spin, per direction) for electrons in the ith transverse chan-
nel is

Ni(ε) =
∫

Ω̂

dk

2π
Θ
(
v(k)

)
δ
(
ε− ε⊥i − ε‖(k)

)
=

1

2π

dk

dε‖

∣∣∣∣∣
k=ki

, (7.24)

so once again we have for the product h vi(ε)Ni(ε) = 1.

Consider now a section of disordered material connected to perfect leads on the left and right.
The solution to the Schrödinger equation on either side of the disordered region is

ψleft(x⊥, z) =

NL
c∑

j=1

{
Ij e

+ikjz +O′
i e

−ikjz
}
ϕL

j (x⊥)

ψright(x⊥, z) =

NR
c∑

a=1

{
Oa e

+ikaz + I ′a e
−ikaz

}
ϕR

a(x⊥) .

(7.25)

Here, we have assumed a general situation in which the number of transverse channels NL,R
c

may differ between the left and right lead. The quantities {Ij, O′
j, Oa, I

′
a} are wave function

amplitudes. The S-matrix, on the other hand, acts on flux amplitudes {ij , o′j, oa, i′a}, which are
related to the wavefunction amplitudes as follows:

ii = v
1/2
i Ii oa = v1/2a Oa

o′i = v
1/2
i O′

i i′a = v1/2a I ′a .

(7.26)

The S-matrix is a (NR
c +NL

c )× (NR
c +NL

c ) matrix,

S =

(
rNL

c ×NL
c

t′NL
c ×NR

c

tNR
c ×NL

c
r′NR

c ×NR
c

)
(7.27)

which relates outgoing and incoming flux amplitudes:

(
o′

o

)
=

S︷ ︸︸ ︷(
r t′

t r′

) (
i
i′

)
. (7.28)
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Unitarity of S means that S†S = SS† = I, where

S =

(
r t′

t r′

)
=⇒ S† =

(
r† t†

t′† r′†

)
, (7.29)

and hence unitarity says

rik r
∗
jk + t′ic t

′∗
jc = δij r∗ki rkj + t∗ci tcj = δij

tak t
∗
bk + r′ac r

′∗
bc = δab t′∗ka t

′
kb + r′∗ca r

′
cb = δab (7.30)

rik t
∗
ak + t′ic r

′∗
ac = 0 r∗ki t

′
ka + t∗ci r

′
ca = 0 ,

or, in matrix notation,

r r† + t′ t′† = r† r + t†t = I
NL

c ×NL
c

t t† + r′ r′† = t′† t′ + r′† r′ = I
NR

c ×NR
c

(7.31)

r t† + t′ r′† = r† t′ + t† r′ = O
NL

c ×NR
c

t r† + r′ t′† = t′† r + r′† t = O
NR

c ×NL
c

.

We define the probabilities

Ri =

NL
c∑

k=1

rik r
∗
ik , Ta =

NL
c∑

k=1

tak t
∗
ak , T ′

i =

NR
c∑

c=1

t′ic t
′∗
ic , R′

a =

NR
c∑

c=1

r′∗ac r
′
ac , (7.32)

for which it follows that
Ri + T ′

i = 1 , R′
a + Ta = 1 (7.33)

for all i ∈ {1, . . . , NL
c } and a ∈ {1, . . . , NR

c }. Unitarity of the S-matrix preserves particle flux:

|i|2 − |i′|2 = |o|2 − |o′|2 , (7.34)

which is shorthand for

NL
c∑

j=1

|ij|2 +
NR

c∑

a=1

|i′a|2 =
NR

c∑

a=1

|oa|2 +
NL

c∑

j=1

|o′j |2 . (7.35)

Onsager reciprocity demands that S(−H) = St(H).

Let us now compute the current in the right lead flowing past the imaginary surface Σ

IΣ = −e
NR

c∑

a=1

∫
dεNa(ε) va(ε)

{
Ta(ε)︷ ︸︸ ︷

NL
c∑

i=1

∣∣tai(ε)
∣∣2 f(ε− µL) +

[
R′
a(ε)︷ ︸︸ ︷

NR
c∑

b=1

∣∣r′ab(ε)
∣∣2 −1

]
f(ε− µR)

}

=
e

h
(µ

R
− µ

L
)

∫
dε

(
−∂f

0

∂ε

) NR
c∑

a=1

Ta(ε) .

(7.36)



7.3. MULTICHANNEL SYSTEMS 353

Thus, the result of a two-probe measurement would be

G2−probe =
eI

µR − µL

=
e2

h

∫
dε

(
−∂f

0

∂ε

) NR
c∑

a=1

Ta(ε) . (7.37)

At zero temperature, then,

G2−probe =
e2

h
Tr tt† (7.38)

where

Tr tt† = Tr t†t =

NL
c∑

i=1

NR
c∑

a=1

∣∣tai
∣∣2 . (7.39)

To determine G4−probe, we must compute the effective chemical potentials µ̃L and µ̃R in the
leads. We again do this by equating expressions for the electron number density. In the left
lead,

nL =

NL
c∑

i=1

∫
dεNi(ε)

{[
1 +Ri(ε)

]
f(ε− µL) + T ′

i (ε) f(ε− µR)

}

= 2
∑

i

∫
dεNi(ε) f(ε− µ̃L

)

=⇒ µ̃
L
= µ

L
− 1

2
T ′ (µ

L
− µ

R
)

(7.40)

where T ′ is a weighted average,

T
′ ≡

∑
i v

−1
i T ′

i∑
i v

−1
i

. (7.41)

Similarly, one obtains for the right lead,

n
R
=

NR
c∑

a=1

∫
dεNa(ε)

{
Ta(ε) f(ε− µL

) +
[
1 +R′

a(ε)
]
f(ε− µ

R
)

}

= 2
∑

a

∫
dεNa(ε) f(ε− µ̃R

)

=⇒ µ̃
R
= µ

R
+ 1

2
T (µ

L
− µ

R
)

(7.42)

where

T ≡
∑

a v
−1
a Ta∑

a v
−1
a

. (7.43)

(We have assumed zero temperature throughout.) The difference in lead chemical potentials is
thus

(µ̃
L
− µ̃

R
) =

(
1− 1

2
T − 1

2
T ′
)
· (µ

L
− µ

R
) . (7.44)
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Hence, we obtain the 4-probe conductance,

G4−probe =
e2

h

∑
a Ta

1− 1
2

(∑
i T

′
i v

−1
i

/∑
i v

−1
i

)
− 1

2

(∑
a Ta v

−1
a

/∑
a v

−1
a

) (7.45)

7.3.1 Transfer matrices: the Pichard formula

The transfer matrix S acts on incoming flux amplitudes to give outgoing flux amplitudes. This
linear relation may be recast as one which instead relates flux amplitudes in the right lead to
those in the left lead, i.e.

(
o′

o

)
=

S︷ ︸︸ ︷(
r t′

t r′

) (
i
i′

)
=⇒

(
o
i′

)
=

M︷ ︸︸ ︷(
M11 M12

M21 M22

) (
i
o′

)
. (7.46)

M is known as the transfer matrix. Note that each of the blocks of M is of dimension NR
c ×

NL
c , andM itself is a rectangular 2NR

c × 2NL
c matrix. The individual blocks of M are readily

determined:

o′ = r i+ t′ i′ =⇒ i′ = −t′−1 r i+ t′−1 o′

o = t i+ r′ i′ =⇒ o = (t− r′ t′−1 r) i+ r′ t′−1 o′ ,
(7.47)

so we conclude

M11 = t†−1 , M12 = r′ t′−1 , M21 = −t′−1 r , M22 = t′−1 . (7.48)

WARNING: None of this makes any sense if NL
c 6= NR

c ! The reason is that it is problematic to take
the inverse of a rectangular matrix such as t or t′, as was blithely done above in Eqns. 7.47. We
therefore must assume NR

c = NL
c = Nc, and that the scatterers are separated by identical perfect

regions. Practically, this imposes no limitations at all, since the width of the perfect regions can
be taken to be arbitrarily small.

EXERCISE: Show thatM11 = t− r′ t′−1 r = t†−1.

The virtue of transfer matrices is that they are multiplicative. Consider, for example, two dis-
ordered regions connected by a region of perfect conductor. The outgoing flux o from the first

region becomes the incoming flux i for the second, as depicted in fig. 7.3. Thus, ifM1 is the

transfer matrix for scatterer #1, andM2 is the transfer matrix for scatterer #2, the transfer matrix
for the two scatterers in succession isM =M2M1:

(
o2
i′2

)
=

(
M11

2 M12
2

M21
2 M22

2

)(
i2
o′2

)
=

M=M2 M1︷ ︸︸ ︷(
M11

2 M12
2

M21
2 M22

2

)(
M11

1 M12
1

M21
1 M22

1

) (
i1
o′1

)
. (7.49)
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Figure 7.3: Two quantum scatterers in series. The right side data for scatterer #1 become the
left side data for scatterer #2.

Clearly, then, if we have many scatterers in succession, this result generalizes to

M =MNMN−1 · · ·M1 . (7.50)

Unitarity of the S-matrix means that the transfer matrix is pseudo-unitary in that it satisfies

M†ΣM = Σ where Σ =

(
INc×Nc

ONc×Nc

ONc×Nc
−INc×Nc

)
. (7.51)

This, in turn, implies conservation of the pseudo-norm,

|o|2 − |i′|2 = |i|2 − |o′|2 , (7.52)

which is simply a restatement of (7.34).

We now assert that
[
M†M+ (M†M)−1 + 2 · I

]−1

= 1
4

(
t†t 0
0 t′t′†

)
. (7.53)

This result is in fact easily derived once one notes that

M−1 = ΣM†Σ =

(
M†

11 −M†
21

−M†
12 M†

22

)
. (7.54)

EXERCISE: Verify eqn. (7.53).

The 2-probe conductance (per spin channel) may now be written in terms of the transfer matrix
as

G2−probe =
2e2

h
Tr
[
M†M+ (M†M)−1 + 2 · I

]−1

(7.55)

This is known as the Pichard Formula.
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7.3.2 Discussion of the Pichard formula

It is convenient to work in an eigenbasis of the Hermitian matrix M†M. The eigenvalues of
M†M are roots of the characteristic polynomial

p(λ) = det (λ−M†M) . (7.56)

Owing to the pseudo-unitarity ofM, we have

p(λ) = det
(
λ−M†M

)

= det
(
λ− ΣM−1Σ · ΣM†−1Σ

)

= det
(
λ− ΣM−1M†−1Σ

)

= λ2Nc det
(
λ−1 −M†M

)/
det
(
M†M

)
,

(7.57)

from which we conclude that p(λ) = 0 implies p(λ−1) = 0, and the eigenvalues ofM†M come
in (λ, λ−1) pairs. We can therefore write Pichard’s formula as

G2−probe =
e2

h

Nc∑

i=1

4

λi + λ−1
i + 2

, (7.58)

where without loss of generality we assume λi > 1 for each i ∈ {1, . . . , Nc}. We define the ith

localization length ξi through

λi ≡ exp

(
2L

ξi

)
=⇒ ξi =

2L

lnλi
, (7.59)

where L is the length of the disordered region. We now have

G2−probe =
e2

h

Nc∑

i=1

2

1 + cosh(2L/ξi)
(7.60)

If Nc is finite, then as L → ∞ the {ξi} converge to definite values, for a wide range of dis-
tributions P (Mn) for the individual scatterer transfer matrices. This follows from a version
of the central limit theorem as applied to nonabelian multiplicative noise (i.e. products of ran-
dom matrices), known as Oseledec’s theorem. We may choose to order the eigenvalues such that
λ1 < λ2 < · · · < λNc

, and hence ξ1 > ξ2 > · · · > ξNc
. In the L → ∞ limit, then, the conductance

is dominated by the largest localization length, and

G(L) ≃ 4e2

h
e−2L/ξ1 (Nc finite, L→∞) . (7.61)

(We have dropped the label ‘2-probe’ on G.) The quantity ξ ≡ ξ1 is called the localization length,
and it is dependent on the (Fermi) energy: ξ = ξ(ε).
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Suppose now that L is finite, and furthermore that ξ1 > 2L > ξNc
. Channels for which 2L≪ ξj

give cosh(2L/ξj) ≈ 1, and therefore contribute a quantum of conductance e2/h to G. These
channels are called open. Conversely, when 2L≫ ξj , we have cosh(2L/ξj) ∼ 1

2
exp(2L/ξj) ≫ 1,

and these closed channels each contribute ∆Gj = (2e2/h)e−2L/ξj to the conductance, a negligible
amount. Thus,

G(L) ≃ e2

h
Nopen

c , Nopen
c ≡

Nc∑

j=1

Θ(ξj − 2L) . (7.62)

Of course, N closed
c = Nc − Nopen

c , although there is no precise definition for open vs. closed
for channels with ξj ∼ 2L. This discussion naturally leads us to the following classification
scheme:

• WhenL > ξ1, the system is in the localized regime. The conductance vanishes exponentially
with L according to G(L) ≈ (4e2/h) exp(−2L/ξ), where ξ(ε) = ξ1(ε) is the localization
length. In the localized regime, there are no open channels: Nopen

c = 0.

• When Nopen
c = ℓNc/L, where ℓ is the elastic scattering length, one is in the Ohmic regime.

In the Ohmic regime, for a d-dimensional system of length L and ((d − 1)-dimensional)
cross-sectional area A,

GOhmic ≈
e2

h

ℓ

L
kd−1

F A =
e2

h
kd−1

F ℓ · A
L

. (7.63)

Note that G is proportional to the cross sectional area A and inversely proportional to the
length L, which is the proper Ohmic behavior: G = σ A/L, where

σ ≈ e2

h
kd−1

F ℓ (7.64)

is the conductivity.

• When L < ξNc
, all the channels are open: Nopen

c = Nc. The conductance is

G(L) =
e2

h
Nc ≈

e2

h
kd−1

F A . (7.65)

This is the ballistic regime.

If we keep Nc ∝ (k
F
L)d−1, then for L → ∞ Oseledec’s theorem does not apply, because the

transfer matrix is∞-dimensional. If ξ1(ε) nonetheless remains finite, thenG(L) ≈ (4e2/h) exp(−L/ξ)→
0 and the system is in the localized regime. If, on the other hand, ξ1(ε) diverges as L→∞ such

that exp(L/ξ1) is finite, then G > 0 and the system is a conductor.

If we define νi ≡ lnλi, the dimensionless conductance g = (h/e2)G is given by

g = 2

∞∫

0

dν
σ(ν)

1 + cosh ν
, (7.66)
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where

σ(ν) =

Nc∑

i=1

δ(ν − νi) (7.67)

is the density of ν values. This distribution is normalized so that
∫∞
0
dν σ(ν) = Nc. Spectral

properties of the {νi} thus determine the statistics of the conductance. For example, averaging
over disorder realizations gives

〈g〉 = 2

∞∫

0

dν

〈
σ(ν)

〉

1 + cosh ν
. (7.68)

The average of g2, though, depends on the two-point correlation function, viz.

〈g2〉 = 4

∞∫

0

dν

∞∫

0

dν ′
〈
σ(ν) σ(ν ′)

〉

(1 + cosh ν)(1 + cosh ν ′)
. (7.69)

7.3.3 Two quantum resistors in series

Let us consider the case of two scatterers in series. For simplicity, we will assume that Nc = 1,
in which case the transfer matrix for a single scatterer may be written as

M =

(
1/t∗ −r∗/t∗
−r/t′ 1/t′

)
. (7.70)

A pristine segment of wire of length L has a diagonal transfer matrix

N =

(
eiβ 0
0 e−iβ

)
, (7.71)

where β = kL. Thus, the composite transfer matrix for two scatterers joined by a length L of

pristine wire isM =M2NM1, i.e.

M =

(
1/t∗2 −r∗2/t∗2
−r2/t′2 1/t′2

)(
eiβ 0
0 e−iβ

)(
1/t∗1 −r∗1/t∗1
−r1/t′1 1/t′1

)
. (7.72)

In fact, the inclusion of the transfer matrix N is redundant; the phases e±iβ can be completely
absorbed via a redefinition of {t1, t′1, r1, r′1}.
Extracting the upper left element ofM gives

1

t∗
=
eiβ − e−iβ r′∗1 r∗2

t∗1t
∗
2

, (7.73)
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hence the transmission coefficient T for the composite system is

T =
T1T2

1 +R1R2 − 2
√
R1R2 cos δ

(7.74)

where δ = 2β + arg(r′1r2). The dimensionless Landauer resistance is then

R =
R

T
=
R1 +R2 − 2

√
R1R2 cos δ

T1T2

= R1 +R2 + 2R1R2 − 2
√
R1R2(1 +R1)(1 +R2) cos δ .

(7.75)

If we average over the random phase δ, we obtain

〈R〉 = R1 +R2 + 2R1R2 . (7.76)

The first two terms correspond to Ohm’s law. The final term is unfamiliar and leads to a diver-
gence of resistivity as a function of length. To see this, imagine that thatR2 = ̺ dL is small, and
solve (7.76) iteratively. We then obtain a differential equation for the dimensionless resistance
R(L):

dR = (1 + 2R) ̺ dL =⇒ R(L) = 1
2

(
e2̺L − 1

)
. (7.77)

In fact, the distribution PL(R) is extremely broad, and it is more appropriate to average the
quantity ln(1 +R). Using

2π∫

0

dδ

2π
ln(a− b cos δ) = ln

(
1
2
a+ 1

2

√
a2 − b2

)
(7.78)

with

a = 1 +R1 +R2 + 2R1R2

b = 2
√
R1R2(1 +R1)(1 +R2) ,

(7.79)

we obtain the result
〈ln(1 +R)〉 = ln(1 +R1) + ln(1 +R2) . (7.80)

We define the quantity
x(L) ≡ ln

{
1 +R(L)

}
, (7.81)

and we observe
〈
x(L)

〉
= ̺L

〈
ex(L)

〉
= 1

2

(
e2̺L + 1

)
.

(7.82)

Note that 〈ex〉 6= e〈x〉. The quantity x(L) is an appropriately self-averaging quantity in that its
root mean square fluctuations are small compared to its average, i.e. it obeys the central limit
theorem. On the other hand,R(L) is not self-averaging, i.e. it is not normally distributed.
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Abelian multiplicative random processes

Let p(x) be a distribution on the nonnegative real numbers, normalized according to

∞∫

0

dx p(x) = 1 , (7.83)

and define

X ≡
N∏

i=1

xi , Y ≡ lnX =

N∑

i=1

ln xi . (7.84)

The distribution for Y is

PN(Y ) =

∞∫

0

dx1

∞∫

0

dx2 · · ·
∞∫

0

dxN p(x1) p(x2) · · · p(xN) δ
(
Y −

N∑

i=1

ln xi

)

=

∞∫

−∞

dω

2π
eiωY





∞∫

0

dx p(x) e−iω lnx





N

=

∞∫

−∞

dω

2π
eiωY

[
1− iω〈ln x〉 − 1

2
ω2〈ln2x〉+O(ω3)

]N

=

∞∫

−∞

dω

2π
eiω(Y −N〈lnx〉) e−

1
2
Nω2(〈ln2x〉−〈lnx〉2)+O(ω3)

=
1√

2πNσ2
e−(Y−Nµ)2/2Nσ2 ·

{
1 +O(N−1)

}
,

(7.85)

with

µ = 〈lnx〉 , σ2 = 〈ln2x〉 − 〈ln x〉2 (7.86)

and

〈
f(x)

〉
≡

∞∫

0

dx p(x) f(x) . (7.87)

Thus, Y is normally distributed with mean 〈Y 〉 = Nµ and standard deviation 〈(Y − Nµ)2〉 =
Nσ2. This is typical for extensive self-averaging quantities: the average is proportional to the

size N of the system, and the root mean square fluctuations are proportional to
√
N . Since

limN→∞ Yrms/〈Y 〉 ∼ σ/
√
Nµ→ 0, we have that

PN→∞(Y ) ≃ δ
(
Y −Nµ

)
. (7.88)
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This is the central limit theorem (CLT) at work. The quantity Y is a sum of independent ran-
dom variables: Y =

∑
i ln xi, and is therefore normally distributed with a mean Ȳ = Nµ and

standard deviation
√
Nσ, as guaranteed by the CLT. On the other hand, X = exp(Y ) is not

normally distributed. Indeed, one readily computes the moments of X to be

〈Xk〉 = ekNµ eNk
2/2σ2 , (7.89)

hence
〈Xk〉
〈X〉k = eNk(k−1)/2σ2 , (7.90)

which increases exponentially with N . In particular, one finds

√
〈X2〉 − 〈X〉2
〈X〉 =

(
eN/σ

2 − 1
)1/2

. (7.91)

The multiplication of random transfer matrices is a more difficult problem to analyze, owing
to its essential nonabelian nature. However, as we have seen in our analysis of series quantum
resistors, a similar situation pertains: it is the logarithm ln(1 + R), and not the dimensionless
resistance R itself, which is an appropriate self-averaging quantity.

7.3.4 Two quantum resistors in parallel

The case of parallel quantum resistors is more difficult than that of series resistors. The reason
for this is that the conduction path for parallel resistances is multiply connected, i.e. electrons
can get from start to finish by traveling through either resistor #1 or resistor #2.

Consider electrons with wavevector k > 0 moving along a line. The wavefunction is

ψ(x) = I eikx +O′ e−ikx , (7.92)

hence the transfer matrixM for a length L of pristine wire is

M(L) =

(
eikL 0
0 e−ikL

)
. (7.93)

Now let’s bend our wire of length L into a ring. We therefore identify the points x = 0 and
x = L = 2πR, where R is the radius. In order for the wavefunction to be single-valued we must
have [

M(L)− I

](
I
O′

)
= 0 , (7.94)

and in order to have a nontrivial solution (i.e. I andO′ not both zero), we must demand det(M−
I) = 0, which says cos kL = 1, i.e. k = 2πn/L with integer n. The energy is then quantized:

εn = ε‖(k = 2πn/L).
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Next, consider the influence of a vector potential on the transfer matrix. Let us assume the
vector potential A along the direction of motion is nonzero over an interval from x = 0 to
x = d. The Hamiltonian is given by the Peierls substitution,

H = ε‖

(
− i∂x + e

~c
A(x)

)
. (7.95)

Note that we can write

H = Λ†(x) ε‖(−i∂x) Λ(x)

Λ(x) = exp

{
ie

~c

x∫

0

dx′A(x′)

}
.

(7.96)

Hence the solutions ψ(x) to Hψ = εψ are given by

ψ(x) = I Λ†(x) eikx +O′Λ†(x) e−ikx . (7.97)

The transfer matrix for a segment of length d is then

M(d, A) =

(
eikd e−iγ 0

0 e−ikd e−iγ

)
(7.98)

with

γ =
e

~c

d∫

0

dxA(x) . (7.99)

We are free to choose any gauge we like forA(x). The only constraint is that the gauge-invariant
content, which is encoded in he magnetic fluxes through every closed loop C,

ΦC =

∮

C

A · dl , (7.100)

must be preserved. On a ring, there is one flux Φ to speak of, and we define the dimensionless

flux φ = eΦ/~c = 2πΦ/φ0, where φ0 = hc/e = 4.137 × 10−7G · cm2 is the Dirac flux quantum.
In a field of B = 1 kG, a single Dirac quantum is enclosed by a ring of radius R = 0.11µm. It
is convenient to choose a gauge in which A vanishes everywhere along our loop except for a
vanishingly small region, in which all the accrued vector potential piles up in a δ-function of
strength Φ. The transfer matrix for this infinitesimal region is then

M(φ) =

(
eiφ 0
0 eiφ

)
= eiφ · I . (7.101)

If k > 0 corresponds to clockwise motion around the ring, then the phase accrued is −γ, which
explains the sign of φ in the above equation.
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Figure 7.4: Energy versus dimensionless magnetic flux for free electrons on a ring. The degen-
eracies are lifted in the presence of a crystalline potential.

For a pristine ring, then, combining the two transfer matrices gives

M =

(
eikL 0
0 e−ikL

)(
eiφ 0
0 eiφ

)
=

(
eikL eiφ 0

0 e−ikL eiφ

)
, (7.102)

and thus det(M− I) = 0 gives the solutions,

kL = 2πn− φ (right-movers)

kL = 2πn+ φ (left-movers) .
(7.103)

Note that different n values are allowed for right- and left-moving branches since by assump-
tion k > 0. We can simplify matters if we simply write ψ(x) = Aeikx with k unrestricted in
sign, in which case k = (2πn− φ)/L with n chosen from the entire set of integers. The allowed
energies for free electrons are then

εn(φ) =
2π2~2

mL2
·
(
n− φ

2π

)2
, (7.104)

which are plotted in fig. 7.4.

Now let us add in some scatterers. This problem was first considered in a beautiful paper by
Büttiker, Imry, and Azbel, Phys. Rev. A 30, 1982 (1984). Consider the ring geometry depicted
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Figure 7.5: Scattering problem for a ring enclosing a flux Φ. The square and triangular blocks
represent scattering regions and are describes by 2 × 2 and 3 × 3 S-matrices, respectively. The
dot-dash line represents a cut across which the phase information due to the enclosed flux is
accrued discontinuously.

in fig. 7.5. We want to compute the S-matrix for the ring. We now know how to describe the
individual quantum resistors #1 and #2 in terms of S-matrices (or, equivalently,M-matrices).
Assuming there is no magnetic field penetrating the wire (or that the wire itself is infinitesi-

mally thin), we have S = St for each scatterer. In this case, we have t = t′ =
√
T eiα. We know

|r|2 = |r′|2 = 1 − |t|2, but in general r and r′ may have different phases. The most general 2× 2
transfer matrix, under conditions of time-reversal symmetry, depends on three parameters,
which may be taken to be the overall transmission probability T and two phases:

M(T, α, β) =
1√
T

(
eiα

√
1− T eiβ√

1− T e−iβ e−iα

)
. (7.105)

We can include the effect of free-particle propagation in the transfer matrixM by multiplying
M on the left and the right by a free propagation transfer matrix of the form

N =

(
eiθ/4 0
0 e−iθ/4

)
, (7.106)

where θ = kL = 2πkR is the phase accrued by a particle of wavevector k freely propagating
once around the ring. N is the transfer matrix corresponding to one quarter turn around the
ring. One easily finds

M→NM(T, α, β)N =M(T, α+ 1
2
θ, β). (7.107)

For pedagogical reasons, we will explicitly account for the phases due to free propagation, and
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write (
β1
α′
1

)
= N M1N

(
α1

β ′
1

)
,

(
β ′
2

α2

)
= N M̃2N

(
α′
2

β2

)
, (7.108)

where M̃2 is the transfer matrix for scatterer #2 going from right to left.

EXERCISE: Show that the right-to-left transfer matrix M̃ is related to the left-to-right transfer
matrixM according to

M̃ = ΛΣM†ΣΛ , (7.109)

where

Σ =

(
1 0
0 −1

)
, Λ =

(
0 1
1 0

)
. (7.110)

We now have to model the connections between the ring and the leads, which lie at the con-
fluence of three segments. Accordingly, these regions are described by 3 × 3 S-matrices. The
constraints S = S† (unitarity) and S = St (time-reversal symmetry) reduce the number of in-
dependent real parameters in S from 18 to 5. Further assuming that the scattering is symmetric
with respect to the ring branches brings this number down to 3, and finally assuming S is real
reduces the dimension of the space of allowed S-matrices to one. Under these conditions, the
most general 3× 3 S-matrix may be written



−(a + b)

√
ǫ
√
ǫ√

ǫ a b√
ǫ b a


 (7.111)

where

(a + b)2 + 2ǫ = 1

a2 + b2 + ǫ = 1 .
(7.112)

The parameter ǫ, which may be taken as a measure of the coupling between the ring and the
leads (ǫ = 0 means ring and leads are decouped) is restricted to the range 0 6 ǫ 6 1

2
. There are

four solutions for each allowed value of ǫ:

a = ±1
2

(√
1− 2ǫ− 1

)
, b = ±1

2

(√
1− 2ǫ+ 1

)
(7.113)

and
a = ±1

2

(√
1− 2ǫ+ 1

)
, b = ±1

2

(√
1− 2ǫ− 1

)
. (7.114)

We choose the first pair, since it corresponds to the case |b| = 1 when ǫ = 0, i.e. perfect trans-
mission through the junction. We choose the top sign in (7.113).

We therefore have at the left contact,


o′

α2

α1


 =



−(aL + bL)

√
ǫ
L

√
ǫ
L√

ǫ
L

aL bL√
ǫ
L

bL aL





i
β ′
2

β ′
1


 , (7.115)
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Figure 7.6: Two-probe conductance G(φ, κ) of a model ring with two scatterers. The enclosed
magnetic flux is φ~c/e, and κ = 2πkR (ring radius R). G vs. φ curves for various values of κ are
shown.

and at the right contact



o
α̃′
1

α′
2


 =



−(aR + bR)

√
ǫ
R

√
ǫ
R√

ǫ
R

aR bR√
ǫ
R

bR aR





i′

β̃1
β2


 , (7.116)

where accounting for the vector potential gives us

β̃1 = eiφ β1 , α̃′
1 = eiφ α′

1 . (7.117)

We set i = 1 and i′ = 0, so that the transmission and reflection amplitudes are obtained from
t = o and r = o′.

From (7.115), we can derive the relation

(
α1

β ′
1

)
=

QL︷ ︸︸ ︷
1

bL

(
b2
L
− a2

L
aL

−aL 1

) (
β ′
2

α2

)
+

√
ǫL

bL

(
bL − aL

−1

)
. (7.118)
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Figure 7.7: Two-probe conductance G(φ, κ) of a model ring with two scatterers. The enclosed
magnetic flux is φ~c/e, and κ = 2πkR (ring radius R). G vs. φ curves for various values of κ are
shown. The coupling between leads and ring is one tenth as great as in fig. 7.6, and accordingly
the resonances are much narrower. Note that the resonances at κ = 0.45π and κ = 0.85π are
almost completely suppressed.

Similarly, from (7.116), we have

(
α′
2

β2

)
=

QR︷ ︸︸ ︷
1

bR

(
b2R − a2R aR

−aR 1

)
eiφ
(
β1
α′
1

)
. (7.119)

The matrices QL and QR resemble transfer matrices. However, they are not pseudo-unitary:
Q†ΣQ 6= Σ. This is because some of the flux can leak out along the leads. Indeed, when
ǫ = 0, we have b = 1 and a = 0, hence Q = 1, which is pseudo-unitary (i.e. flux preserving).
Combining these results with those in (7.108), we obtain the solution

(
α1

β ′
1

)
=
{
I− eiφQ

L
N M̃2N QR

N M1N
}−1
√
ǫL

bL

(
bL − aL

−1

)
. (7.120)

From this result, using (7.108), all the flux amplitudes can be obtained.

We can define the effective ring transfer matrix P as

P ≡ eiφQ
L
N M̃2N QR

N M1N , (7.121)
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Figure 7.8: Two-probe conductance G(φ, κ) of a model ring with two scatterers. The enclosed
magnetic flux is φ~c/e, and κ = 2πkR (ring radius R). G vs. κ curves for various values of φ are
shown.

which has the following simple interpretation. Reading from right to left, we first move 1
4
-turn

clockwise around the ring (N ). Then we encounter scatterer #1 (M1). After another quarter

turn (N ), we encounter the right T-junction (QR). Then it’s yet another quarter turn (N ) until

scatterer #2 (M2), and one last quarter turn (N ) brings us to the left T-junction (QL), by which
point we have completed one revolution. As the transfer matrix acts on both right-moving and
left-moving flux amplitudes, it accounts for both clockwise as well as counterclockwise motion
around the ring. The quantity

{
I−P

}−1
= 1 + P + P2 + P3 + . . . , (7.122)

then sums up over all possible integer windings around the ring. In order to properly account
for the effects of the ring, an infinite number of terms must be considered; these may be re-
summed into the matrix inverse in (7.121). The situation is analogous to what happens when
an electromagnetic wave reflects off a thin dielectric slab. At the top interface, the wave can re-
flect. However, it can also refract, entering the slab, where it may undergo an arbitrary number
of internal reflections before exiting.

The transmission coefficient t is just the outgoing flux amplitude: t = o. We have from
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(7.116,7.108) that

t =
√
ǫR
(
β1 e

iφ + β2
)

=

√
ǫR

bR

(
bR − aR 1

)(β1
α′
1

)

=

√
ǫL ǫR

bL bR

(
Y−1

12 + Y−1
22 − Y−1

11 − Y−1
21

)
(7.123)

where
Y = Q

L
N M̃2N QR

− e−iφN−1M−1
1 N−1 . (7.124)

It is straightforward to numerically implement the above calculation. Sample results are shown
in figs. 7.6 and 7.8.

7.4 Universal Conductance Fluctuations in Dirty Metals

The conductance of a disordered metal is a function of the strength and location of the individ-
ual scatterers. We now ask, how does the conductance fluctuate when the position or strength
of a scatterer or a group of scatterers is changed. From the experimental point of view, this
seems a strange question to ask, since we generally do not have direct control over the posi-
tion of individual scatterers within a bulk system. However, we can imagine changing some
external parameter, such as the magnetic field B or the chemical potential µ (via the density n).
Using computer modeling, we can even ‘live the dream’ of altering the position of a single scat-
terer to investigate its effect on the overall conductance. Naı̈vely, we would expect there to be
very little difference in the conductance if we were to, say, vary the position of a single scatterer

by a distance ℓ, or if we were to change the magnetic field by ∆B = φ0/A, where A is the cross
sectional area of the system. Remarkably, though, what is found both experimentally and nu-
merically is that the conductance exhibits fluctuations with varying field B, chemical potential
µ, or impurity configuration (in computer models). The root-mean-square magnitude of these
fluctuations for a given sample is the same as that between different samples, and is on the
order δG ∼ e2/h. These universal conductance fluctuations (UCF) are independent on the degree
of disorder, the sample size, the spatial dimensions, so long as the inelastic mean free path (or
phase breaking length) satisfies Lφ > L, i.e. the system is mesoscopic.

Theoretically the phenomenon of UCF has a firm basis in diagrammatic perturbation theory.
Here we shall content ourselves with understanding the phenomenon on a more qualitative
level, following the beautiful discussion of P. A. Lee in Physica 140A, 169 (1986). We begin with
the multichannel Landauer formula,

G =
e2

h
Tr tt† =

e2

h

Nc∑

a,j=1

|taj |2 . (7.125)



370 CHAPTER 7. MESOSCOPIA

The transmission amplitudes taj can be represented as a quantum mechanical sum over paths
γ,

taj =
∑

γ

Aaj(γ) , (7.126)

whereAaj(γ) is the probability amplitude for Feynman path γ to connect channels j and a. The
sum is over all such Feynman paths, and ultimately we must project onto a subspace of definite
energy – this is, in Lee’s own words, a ‘heuristic argument’. Now assume that the Aaj(γ) are
independent complex random variables. The fluctuations in |taj |2 are computed from

〈
|taj |4

〉
=
∑

γ1,γ2
γ3,γ4

〈
Aaj(γ1)A∗

aj(γ2)Aaj(γ3)A∗
aj(γ4)

〉

= 2
〈∑

γ

∣∣Aaj(γ)
∣∣2
〉2

+
〈∑

γ

∣∣Aaj(γ)
∣∣4〉

= 2
〈
|taj |2

〉2 ·
{
1 +O(M−1)

}
,

(7.127)

where M is the (extremely large) number of paths in the sum over γ. As the O(M−1) term is
utterly negligible, we conclude

〈
|taj |4

〉
−
〈
|taj |2

〉2
〈
|taj |2

〉2 = 1 . (7.128)

Now since

var(G) = 〈G2〉 − 〈G〉2

=
e4

h2

∑

a,a′

j,j′

{〈
|taj |2 |ta′j′|2

〉
−
〈
|taj |2

〉〈
|taj |2

〉}
, (7.129)

we also need to know about the correlation between |taj |2 and |ta′j′|2. The simplest assumption
is to assume they are uncorrelated unless a = a′ and j = j′, i.e.

〈
|taj |2 |ta′j′|2

〉
−
〈
|taj|2

〉〈
|taj |2

〉
=
(〈
|taj |4

〉
−
〈
|taj |2

〉2)
δaa′ δjj′ , (7.130)

in which case the conductance is a given by a sum of N2
c independent real random variables,

each of which has a standard deviation equal to its mean, i.e. equal to
〈
|taj |2

〉
. According to the

central limit theorem, then, the rms fluctuations of G are given by

∆G =
√
var(G) =

e2

h
Nc

〈
|taj |2

〉
. (7.131)

Further assuming that we are in the Ohmic regime where G = σ Ld−2, with σ ≈ (e2/h) kd−1
F ℓ,

and Nc ≈ (k
F
L)d−1, we finally conclude

〈
|taj |2

〉
≈ 1

Nc
· ℓ
L

=⇒ ∆G ≈ e2

h

ℓ

L
. (7.132)
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This result is much smaller than the correct value of ∆G ∼ (e2/h).

To reiterate the argument in terms of the dimensionless conductance g,

g =
∑

a,j

|taj |2 ≃ Nc ·
ℓ

L
=⇒

〈
|taj |2

〉
=

g

N2
c

, (7.133)

and thus we might expect

var(g) =
∑

a,a′

j,j′

{〈
|taj |2 |ta′j′|2

〉
−
〈
|taj |2

〉〈
|taj |2

〉}

≈
∑

aj

{〈
|taj |4

〉
−
〈
|taj |2

〉2}

=
∑

aj

〈
|taj |2

〉2 ≈ N2
c ·
( g

N2
c

)2
=

g2

N2
c

(???) ,

(7.134)

and therefore √
var(g) ≈ g

Nc
=

ℓ

L
(WRONG!) . (7.135)

What went wrong? The problem lies in the assumption that the contributions Aaj(γ) are in-
dependent for different paths γ. The reason is that in disordered systems there are certain
preferred channels within the bulk along which the conduction paths run. Different paths γ
will often coincide along these channels. A crude analogy: whether you’re driving from La
Jolla to Burbank, or from El Cajon to Malibu, eventually you’re going to get on the 405 freeway
– anyone driving from the San Diego area to the Los Angeles area must necessarily travel along
one of a handful of high-volume paths. The same is not true of reflection, though! Those same
two hypothetical drivers executing local out-and-back trips from home will in general travel
along completely different, hence uncorrelated, routes. Accordingly, let us compute var(Nc−g),
which is identical to var(g), but is given in terms of a sum over reflection coefficients. We will
see that making the same assumptions as we did in the case of the transmission coefficients
produces the desired result. We need only provide a sketch of the argument:

Nc − g =
∑

i,j

|rij|2 ≃ Nc ·
(
1− ℓ

L

)
=⇒

〈
|rij|2

〉
=
Nc − g
N2

c

, (7.136)

so

var(Nc − g) =
∑

i,i′

j,j′

{〈
|rij|2 |ri′j′|2

〉
−
〈
|rij|2

〉〈
|ri′j′|2

〉}

≈
∑

ij

{〈
|rij|4

〉
−
〈
|rij|2

〉2}

=
∑

ij

〈
|rij|2

〉2 ≈ N2
c ·
(Nc − g

N2
c

)2
=
(
1− ℓ

L

)2
,

(7.137)
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and therefore √
var(Nc − g) =

√
var(g) =

(
1− ℓ

L

)
. (7.138)

The assumption of uncorrelated reflection paths is not as problematic as that of uncorrelated
transmission paths. Again, this is due to the existence of preferred internal channels within the
bulk, along which transmission occurs. In reflection, though there is no need to move along
identical segments.

There is another bonus to thinking about reflection versus transmission. Let’s express the re-
flection probability as a sum over paths, viz.

|rij|2 =
∑

γ,γ′

Aij(γ)A∗
ij(γ

′) . (7.139)

Each path γ will have a time-reversed mate γT for which, in the absence of external magnetic
fields,

Aij(γ) = Aij(γT) . (7.140)

This is because the action functional,

S[r(t)] =

t2∫

t1

dt
{

1
2
mṙ2 − V (r)− e

c
A(r) · ṙ

}
(7.141)

satisfies
S[r(t)] = S[r(−t)] if B = 0 . (7.142)

There is, therefore, an extra negative contribution to the conductance G arising from phase co-
herence of time-reversed paths. In the presence of an external magnetic field, the path γ and its

time-reversed mate γT have a relative phase η = 4πΦγ/φ0, where Φγ is the magnetic flux en-
closed by the path γ. A magnetic field, then, tends to destroy the phase coherence between
time-reversed paths, and hence we expect a positive magnetoconductance (i.e. negative magne-
toresistance) in mesoscopic disordered metals.

Conductance fluctuations in metallic rings

The conductance of a ring must be periodic under Φ → Φ + nφ0 for any integer n – rings
with flux differing by an integer number of Dirac quanta are gauge-equivalent, provided no
magnetic field penetrates the ring itself. The conductance as a function of the enclosed flux Φ
must be of the form

G(Φ) = Gcl +

∞∑

m=1

Gm cos
(2πmΦ

φ0
+ αm

)
(7.143)

where Gcl is the classical (Boltzmann) conductance of the ring. The second harmonic Gm=2

is usually detectable and is in many cases much larger than the m = 1 term. The origin of
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the m = 2 term, which is periodic under Φ → Φ + 1
2
φ0, lies in the interference between time-

reversed paths of winding number ±1. The m = 1 fundamental is easily suppressed, e.g. by
placing several rings in series.

7.4.1 Weak localization

A more rigorous discussion of enhanced backscattering was first discussed by Altshuler, Aronov,
and Spivak (AAS) in 1981. AAS showed that there are corrections to Boltzmann transport of

the form σ = σ0 + δσ, where σ0 = ne2τ/m∗ is the Drude conductivity and (including a factor of
2 for spin),

δσ = −2e
2

h
ℓ2 · 1

V

∫
ddr C(r, r) , (7.144)

where ℓ is the elastic mean free path and C(r, r′) is the Cooperon propagator, which satisfies

{
− ℓ2

(
∇+

2ie

~c
A(r)

)2
+
τ

τφ

}
C(r, r′) = δ(r − r′) , (7.145)

where τφ is the inelastic collision time, τφ = L2
φ/D, where D = v

F
ℓ = ℓ2/τ is the diffusion

constant. The linear differential operator

L = −ℓ2
(
∇+

2ie

~c
A(r)

)2
(7.146)

bears a strong resemblance to the Hamiltonian of a particle of charge e∗ = 2e in an external
magnetic field B = ∇× A. Expanding in eigenfunctions of L, we obtain the solution

(
L+

τ

τφ

)
C(r, r′) = δ(r − r′)

Lψα(r) = λαψα(r)

C(r, r′) =
∑

α

ψα(r)ψ
∗
α(r

′)

λα +
τ
τφ

,

(7.147)

which resembles a Green’s function from quantum mechanics, where the energy parameter is
identified with −τ/τφ. There is accordingly a path integral representation for C(r, r′):

C(r1, r2) =
∫
ds e−isτ/τφ

∫

r(0)=r
1

r(s)=r
2

Dr[u] exp
{
i

s∫

0

du

[
1

4ℓ2

(∂r
∂u

)2
− 2e

~c
A(r) · ∂r

∂u

]}
. (7.148)

Notice that there is no potential term V (r) in the action of (7.148). The effect of the static random
potential here is to provide a ‘step length’ ℓ for the propagator. According to the AAS result
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(7.144), the corrections to the conductivity involve paths which begin and end at the same point
r in space. The charge e∗ = 2e which appears in the Cooperon action arises from adding up
contributions due to time-reversed paths, as we saw earlier.

Let’s try to compute δσ, which is called the weak localization correction to the conductivity. In
the absence of an external field, the eigenvalues of L are simply k2ℓ2, where kµ = 2πnµ/L. We
then have

C(r, r) =
∫

ddk

(2π)d
1

k2ℓ2 + τ
τφ

. (7.149)

A cutoff Λ is needed in dimensions d > 2 in order to render the integral convergent in the

ultraviolet. This cutoff is the inverse step size for diffusion: Λ ∼ ℓ−1. This gives, for τ ≪ τφ,

δσd ∼
e2

h
·





−ℓ−1 (d = 3)

− ln(τφ/τ) (d = 2)

−ℓ
√
τφ/τ (d = 1) .

(7.150)

Let us now compute the magnetoconductance in d = 2. In the presence of a uniform magnetic
field, L has evenly spaced eigenvalues

λn = (n+ 1
2
)
( 2ℓ
ℓB

)2
, (7.151)

where ℓB =
√

~c/eB is the magnetic length (for a charge q = −e electron). Each of these Landau
levels has a macroscopic degeneracy of 2eBA/hc = A/πℓ2B , Thus,

δσ(B) = −2e
2

h

ℓ2

πℓ2B

ℓ2B/4ℓ
2∑

n=0

1

(n + 1
2
)4ℓ

2

ℓ2B
+ τ

τφ

= − e2

2πh

ℓ2B/4ℓ
2∑

n=0

1

n + 1
2
+

ℓ2B
L2
φ

,

(7.152)

where we have invoked τ/τφ = ℓ2/L2
φ. The magnetoconductance is then

δσ(B)− δσ(0) = − 1

2π

e2

h

{
Ψ
(1
2
+
ℓ2B
4ℓ2

)
−Ψ

(1
2
+

ℓ2B
4L2

φ

)}
, (7.153)

where

Ψ(z) =
1

Γ(z)

dΓ(z)

dz
= ln z +

1

2z
− 1

12z2
+ . . . (7.154)
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is the digamma function. If the field is weak, so that ℓB ≫ ℓ, then

δσ(B)− δσ(0) = +
1

6π

e2

h

(Lφ
ℓB

)2
, (7.155)

which is positive, as previously discussed. The magnetic field suppresses phase coherence
between time-reversed paths, and thereby promotes diffusion by suppressing the resonant
backscattering contributions to δσ. At large values of the field, the behavior is logarithmic.
Generally, we can write

δσ(B)− δσ(0) = 1

2π

e2

h
f
( B
Bφ

)
, (7.156)

where
2πBφ

B
≡ ℓ2B

4L2
φ

=⇒ Bφ =
φ0

8πL2
φ

(7.157)

and

f(x) = ln x+Ψ
(
1
2
+ 1

x

)
=

{
x2

24
as x→ 0

lnx− 1.96351 . . . as x→∞ .
(7.158)

7.5 Anderson Localization

In 1958, P. W. Anderson proposed that static disorder could lead to localization of electronic
eigenstates in a solid. Until this time, it was generally believed that disorder gave rise to an
elastic scattering length ℓ and a diffusion constant D = v

F
ℓ. The diffusion constant is related to

the electrical conductivity through the Einstein relation: σ = 1
2
e2D(ε

F
)N (ε

F
). If the states at the

Fermi level are localized, then D(ε
F
) = 0.

Anderson considered an electron propagating in a random potential:

H = − ~2

2m
∇

2 + V (r) , (7.159)

where V (r) is chosen from an ensemble of random functions. Physically, V (r) is bounded and
smooth, although often theorists often study uncorrelated ‘white noise’ potentials where the
ensemble is described by the distribution functional

P [V (r)] = exp
{
− 1

2γ

∫
ddr V 2(r)

}
, (7.160)

for which 〈
V (r) V (r′)

〉
= γ δ(r − r′) . (7.161)

A tight binding version of this model would resemble

H = −t
∑

〈ij〉

(
c†i cj + c†j ci

)
+
∑

i

εi c
†
i ci , (7.162)
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Figure 7.9: Schematic picture of density of states in a disordered system showing mobility
edges (dashed lines) and localized states in band tails.

where the single site energies {εi} are independently distributed according to some function
p(ε). The first term can be diagonalized by Fourier transform:

H0 = −t
∑

〈ij〉

(
c†i cj + c†j ci

)
= −zt

∑

k

γk c
†
k ck , (7.163)

where γk = z−1
∑

δ e
ik·δ, where δ is a nearest neighbor direct lattice vector and z is the lattice

coordination number; the bandwidth is 2zt. What happens when we add the random potential
term to (7.163)? Suppose the width of the distribution p(ε) is W , e.g. p(ε) = W−1Θ(1

4
W 2 − ε2),

with W ≪ zt. We expect that the band edges shift from ±zt to ±(zt + 1
2
W ). The density of

states must vanish for |ε| > zt + 1
2
W ; the regions in the vicinity of ±(zt + 1

2
W ) are known as

Lifshitz tails.

Aside from the formation of Lifshitz tails, the density of states doesn’t change much. What
does change is the character of the eigenfunctions. Suppose we can find a region of contiguous
sites all of which have energies εi ≈ 1

2
W . Then we could form an approximate eigenstate by

concentrating the wavefunction in this region of sites, setting its phase to be constant through-
out. This is an example of a localized state. We can think of such a state as a particle in a box – the
electron binds itself to local fluctuations in the potential. Outside this region, the wavefunction
decays, typically exponentially. Scattering states are then extended states, and are associated
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with ‘average’ configurations of the {εi}. The typical spatial extent of the localized states is
given by the localization length ξ(ε). The localization length diverges at the mobility edges as

ξ(ε) ∼ |ε− εc|−ν . (7.164)

There is no signature of the mobility edge in the density of states itself – N (ε) is completely
smooth through the mobility edge εc.

7.5.1 Characterization of localized and extended states

One way of characterizing the localization properties of quantum mechanical eigenstates (of
H) is to compute the participation ratio Q. The inverse participation ratio for the state α is given
by

Q−1
α =

∑

i

∣∣ψα(i)
∣∣4
/(∑

i

∣∣ψα(i)
∣∣2
)2

(discrete)

=

∫
ddx
∣∣ψα(x)

∣∣4
/(∫

ddx
∣∣ψα(x)

∣∣2
)2

(continuous)

(7.165)

Consider the discrete case. If ψα is localized on a single site, then we have
∑

i

∣∣ψα(i)
∣∣k = 1

for all k, i.e. Qα = 1. But if ψα is spread evenly over N sites, then Q−1
α = N/N2 = N−1, and

Qα = N . Hence, Qα tells us approximately how many states
∣∣ i
〉

participate in the state
∣∣ψα

〉
.

The dependence of Qα on the system size (linear dimension) L can be used as a diagnostic:

∣∣ψα
〉

localized =⇒ Qα ∝ L0

∣∣ψα
〉

extended =⇒ Qα ∝ Lβ ,
(7.166)

where β > 0.

Another way to distinguish extended from localized states is to examine their sensitivity to
boundary conditions:

ψ(x1 , . . . , xµ + L , . . . , xd) = eiθµ ψ(x1 , . . . , xµ , . . . , xd) , (7.167)

where µ ∈ {1, . . . , d}. For periodic boundary conditions θµ = 0, while antiperiodic boundary
conditions have θµ = π. For plane wave states, this changes the allowed wavevectors, so that
kµ → kµ + π/L. Thus, for an extended state,

δεext = εpbc − εapbc ≃ ∂ε

∂k
δk ∝ L−1 . (7.168)

For a localized state,
δεloc ∝ e−L/ξ(ε) . (7.169)
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One defines the dimensionless Thouless number

Th(ε, L) =
∣∣εpbc − εapbc

∣∣ · N (ε) . (7.170)

In the vicinity of a mobility edge, a scaling hypothesis suggests

Th(ε, L) = f
(
L/ξ(ε)

)
, (7.171)

where f(x) is a universal scaling function.

As the Fermi level passes through the mobility edge into a region of localized states, the con-
ductivity vanishes as

σ(ε
F
) ∼ |ε

F
− εc|s , (7.172)

where s > 0. Since the density is a continuous function of ε
F
, this can also be turned into a

statement about the behavior of σ(n):

σ(n) ∼ (n− nc)
sΘ(n− nc) . (7.173)

7.5.2 Numerical studies of the localization transition

Pioneering work in numerical studies of the localization transition was performed by MacK-

innon and Kramer in the early 1980’s. They computed the localization length ξM(W/t, E) for
systems of dimension Md−1 ×N , from the formula

ξ−1
M

(W
t
,E
)
= − lim

N→∞

1

2N

〈
ln

Md−1∑

i,j=1

∣∣G1i,Nj(E)
∣∣2
〉

, (7.174)

where G(E) = (E+ iǫ−H)−1 is the Green’s function, and i, j label transverse sites. The average
〈· · · 〉 is over disorder configurations. It is computationally very convenient to compute the
localization length in this manner, rather than from exact diagonalization, because the Green’s
function can be computed recursively. For details, see A. MacKinnon and B. Kramer, Phys. Rev.
Lett. 47, 1546 (1981). Note also that it is 〈|G|2〉 which is computed, rather than 〈G〉. The reason
for this is that the Green’s function itself carries a complex phase which when averaged over

disorder configurations results in a decay of 〈GR,R′〉 on the scale of the elastic mean free path ℓ.

MacKinnon and Kramer computed the localization length by employing the Ansatz of finite size
scaling. They assumed that

ξM

(W
t
,E
)
=Mf

(
ξ∞

(W
t
,E
)/

M

)
, (7.175)

where f(x) is a universal scaling function which depends only on the dimension d. MK exam-
ined the band center, at E = 0; for d > 2 this is the last region to localize as W/t is increased
from zero. A mock-up of typical raw data is shown in fig. 7.10.
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Figure 7.10: Mock-up of typical raw data from numerical study of localization length for d = 2
(left panel) and d = 3 (right panel) systems. For d = 2, ξ∞(W/t) is finite and monotonically
decreasing with increasing W/t. For d = 3, there is a critical value of W/t. For W/t < (W/t)c,
ξM(W/t) diverges as M → ∞; this is the extended phase. For W/t > (W/t)c, ξM(W/t) remains
finite as M →∞; this is the localized phase.

In the d = 2 case, all states are localized. Accordingly, ξM/M → 0 as M → ∞, and ξM(W/t)
decreases with increasing W/t. In the d = 3 case, states at the band center are extended for

weak disorder. As W/t increases, ξM(W/t) decreases, but with ξ∞(W/t) still divergent. At the
critical point, (W/t)c, this behavior changes. The band center states localize, and ξ∞(W/t) is

finite for W/t > (W/t)c. If one rescales and plots ξM/M versus ξ∞/M , the scaling function f(x)
is revealed. This is shown in fig. 7.11, which is from the paper by MacKinnon and Kramer.
Note that there is only one branch to the scaling function for d = 2, but two branches for d = 3.
MacKinnon and Kramer found (W/t)c ≃ 16.5 for a disordered tight binding model on a simple
cubic lattice.

7.5.3 Scaling theory of localization

In the metallic limit, the dimensionless conductance of a Ld hypercube is given by the Ohmic
result

g(L) =
hσ

e2
Ld−2 , (7.176)
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Figure 7.11: Scaling function λM/M versus λ∞/M for the localization length λM of a system of
thickness M for (a) d = 2, and (b) d = 3. Insets show the scaling parameter λ∞ as a function of
the disorder W . From A. MacKinnon and B. Kramer, Phys. Rev. Lett. 47, 1546 (1981).

whereas in the localized limit we have, from Pichard’s formula,

g(L) = 4 e−2L/ξ . (7.177)

It is instructive to consider the function,

β(g) ≡ d ln g

d lnL
, (7.178)

which describes the change of g when we vary the size of the system. We now know the
limiting values of β(g) for small and large g:

metallic (g ≫ 1) =⇒ β(g) = d− 2

localized (g ≪ 1) =⇒ β(g) = −2L
ξ

= ln g + const.
(7.179)

If we assume that β(g) is a smooth monotonic function of g, we arrive at the picture in fig. 7.12.
Note that in d = 1, we can compute β(g) exactly, using the Landauer formula,

g =
T

1− T , (7.180)
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Figure 7.12: Sketch of the β-function for the localization problem for d = 1, 2, 3. A critical point
exists at g = gc for the d = 3 case.

where T ∝ exp(−L/ξ). From this, we obtain

βd=1(g) = −(1 + g) ln(1 + g−1) . (7.181)

It should be stressed that the very existence of a β-function is hardly clear. If it does exist, it says
that the conductance of a system of size L is uniquely determined by its conductance at some
other length scale, typically chosen to be microscopic, e.g. L0 = ℓ. Integrating the β-function,
we obtain an integral equation to be solved implicitly for g(L):

ln

(
L

L0

)
=

ln g(L)∫

ln g(L0)

d ln g

β(g)
. (7.182)

A priori it seems more likely, though, that as L is increased the changes to the conductance
may depend on more than g alone. E.g. the differential change dg might depend on the entire
distribution function P (W ) for the disorder.

Integrating the β-function: d = 3

We know β(g → 0) ≃ ln g and β(g →∞) = 1, hence by the intermediate value theorem there is
at least one point were β(g) vanishes. Whenever g satisfies β(g) = 0, the conductance g is scale
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invariant – it does not change with increasing (or decreasing) system size L. We will assume
the situation is reflected by the sketch of fig. 7.12, and that there is one such point, gc.

We now apply (7.182). Not knowing the precise form of β(g), we approximate it piecewise:

β(g) ≃





1 if g > g+

α ln(g/gc) if g− < g < g+

ln g if g < g− ,

(7.183)

where α = gc β
′(gc). We determine g+ and g− by continuity:

ln g+ = ln gc +
1

α

ln g− =
α

α− 1
ln gc .

(7.184)

Now suppose we start with g0 = gc + δg, where |δg| ≪ 1. We integrate out to g = g+ and then
from g+ to g ≫ 1:

ln

(
L+

L0

)
=

ln g+∫

ln g0

d ln g

α ln(g/gc)
=

1

α
ln

(
ln(g+/gc)

ln(g0/gc)

)

ln

(
L

L+

)
=

ln g∫

ln g+

d ln g = ln(g/g+) ,

(7.185)

which together imply

g(L) = A+ gc ·
L

L0
· (g0 − gc)1/α , (7.186)

where A+ = (eα/gc)
1/α. The conductivity is

σ =
e2

h
· g
L

=
e2

h
· A+ gc
L0

· (g0 − gc)1/α . (7.187)

If instead we start with g0 = gc − δg and integrate out to large negative values of ln g, then

ln

(
L−
L0

)
=

ln g−∫

ln g0

d ln g

α ln(g/gc)
=

1

α
ln

(
ln(gc/g−)

ln(gc/g0)

)

ln

(
L

L−

)
=

ln g∫

ln g−

d ln g

ln g
= ln

(
ln g

ln g−

)
,

(7.188)
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which says

g(L) = e−2L/ξ

ξ =
2L0

A−
· (gc − g0)−1/α ,

(7.189)

with

A− =
ln(1/g−)

gc ·
[
ln(gc/g−)

]1/α . (7.190)

On the metallic side of the transition, when g0 > gc, we can identify a localization length
through

g ≡ gc/ξ , (7.191)

which says

ξ =
L0

A+
(g0 − gc)−1/α . (7.192)

Finally, since g0 is determined by the value of the Fermi energy ε
F
. we can define the critical

energy, or mobility edge εc, through
g(L0, εc) = gc , (7.193)

in which case

δg ≡ g(L0, εF)− gc =
∂g(L0, ε)

∂ε

∣∣∣∣
ε=εc

·
(
ε
F
− εc

)
. (7.194)

Thus, δg ∝ δε ≡ (ε
F
− εc).

Integrating the β-function: d = 2

In two dimensions, there is no fixed point. In the Ohmic limit g ≫ 1, we have

β(g) = − c
g
+O(g−2) , (7.195)

where c is a constant. Thus,

ln

(
L

L0

)
=

ln g∫

ln g0

d ln g

β(g)
= −g − g0

c
+ . . . (7.196)

and
g(L) = k

F
ℓ− c ln(L/ℓ) , (7.197)

where we have used the Drude result g = k
F
ℓ, valid for L0 = ℓ. We now see that the local-

ization length ξ is the value of L for which the correction term is on the same order as g0:
ξ = ℓ exp(k

F
ℓ/c). A first principles treatment yields c = 2

π
. The metallic regime in d = 2 is often

called the weak localization regime.
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2 + ǫ dimensions

At or below d = 2 dimensions, there is no mobility edge and all eigenstates are localized. d = 2
is the lower critical dimension for the localization transition. Consider now the problem in d = 2+ ǫ
dimensions. One has

β(g) = ǫ− c

g
+O(g−2) . (7.198)

The critical conductance lies at gc = c/ǫ. For ǫ → 0+, this is large enough that higher order
terms in the expansion of the β-function can safely be ignored in the metallic limit. An analysis
similar to that for d = 3 now yields

g > gc =⇒ g(L) =
h

e2
σ Lǫ

g < gc =⇒ g(L) = e−2L/ξ ,

(7.199)

with

σ =
e2

h
Lǫ0 · (g0 − gc)

ξ =
2L0

A−
· (gc − g0) .

(7.200)

Note that α = gc β
′(gc) = +c/gc = ǫ. We thus obtain

ξ(ε) ∝ |ε− εc|−ν (7.201)

with ν = 1 +O(ǫ). Close to the transition on the metallic side, the conductivity vanishes as

σ(ε) ∝ |ε− εc|s . (7.202)

The relation s = (d − 2)ν, which follows from the above treatment, may be used to relate the
localization length and conductivity critical exponents. (In d = 3, MacKinnon and Kramer
obtained ν = s ≃ 1.2.)

7.5.4 Finite temperature

In the metallic regime, one obtains from the scaling theory,

σd=3(L) =
e2

h
·
{
2k2

F
ℓ

3π
− 2

π2

(
1

ℓ
− 1

L

)}

σd=2(L) =
e2

h
·
{
k

F
ℓ− 2

π
ln

(
L

ℓ

)}

σd=1(L) =
e2

h
·
{
4ℓ− 2(L− ℓ)

}
.

(7.203)
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Clearly the d = 1 result must break down for even microscopic L>∼ 3ℓ. The above results are
computed using the β-function

β(g) = (d− 2)− cd
g
+O(g−2) , (7.204)

where the coefficients cd are computed from perturbation theory in the disorder.

At finite temperature, the cutoff becomes min(L, Lφ), where Lφ =
√
Dτφ is the inelastic scatter-

ing length and D = v
F
ℓ is the diffusion constant. Suppose that τφ(T ) ∝ T−p as T → 0, so that

Lφ = a (T/T0)
−p/2, where T0 is some characteristic temperature (e.g. the Debye temperature, if

the inelastic mechanism is electron-phonon scattering). Then, for Lφ > L,

σd=3(T ) = σB

d=3 −
2

π2

e2

h

{
1

ℓ
− 1

a

(
T

T0

)p/2}

σd=2(T ) = σB

d=2 −
2

π

e2

h

{
ln
(a
ℓ

)
− p

2
ln

(
T

T0

)}

σd=1(T ) = σB

d=1 − 2
e2

h

{
a

(
T0
T

)p/2
− ℓ
}

,

(7.205)

where σB
d is the Boltzmann conductivity. Note that σ(T ) decreases with decreasing temperature,

unlike the classic low T result for metals, where ρ(T ) = ρ0 + AT 2. I.e. usually ρ(T ) increases
as T increases due to a concomitant decrease in transport scattering time τ . Weak localization
physics, though, has the opposite effect, as the enhanced backscattering is suppressed as T

increases and Lφ decreases. The result is that ρ(T ) starts to decrease as T is lowered from high
temperatures, but turns around at low T and starts increasing again. This behavior was first
observed in 1979 by Dolan and Osheroff, who studied thin metallic PdAu films, observing a

logarithmic increase in ρd=2(T ) at the lowest temperatures.
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Chapter 8

Hartree-Fock and Density Functional
Theories

8.1 Second Quantization

8.1.1 Basis states and creation/annihilation operators

Second quantization is a convenient scheme to label basis states of a many particle quantum
system. We are ultimately interested in solutions of the many-body Schrödinger equation,

ĤΨ(x1, . . . , xN) = EΨ(x1, . . . , xN) (8.1)

where the Hamiltonian is

Ĥ =

N∑

i=1

(
− ~2

2m
∇

2
i + vext(xi)

)
+

N∑

j<k

u(xj − xk)

≡ T̂ + Û + V̂ ,

(8.2)

where T̂ is the kinetic energy, Û the one-body potential energy, and V̂ the two-body potential
energy. To the coordinate labels {x1, . . .xN} we may also append labels for internal degrees of

freedom, such as spin polarization, denoted {σ1, . . . , σN}. Since
[
Ĥ, π

]
= 0 for all permutations

π ∈ SN , the many-body wavefunctions may be chosen to transform according to irreducible
representations of the symmetric group SN . Thus, for any π ∈ SN ,

Ψ
(
xπ(1), . . . , xπ(N)

)
=

{
1

sgn(π)

}
Ψ(x1, . . . , xN) , (8.3)

where the upper choice is for Bose-Einstein statistics and the lower sign for Fermi-Dirac statis-
tics. Here xj may include not only the spatial coordinates of particle j, but its internal quantum
number(s) as well, such as the spin polarization σj .

387
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A convenient basis for the many body states is obtained from the single-particle eigenstates{
|α 〉

}
of some single-particle Hamiltonian Ĥ0 , with 〈 x |α 〉 = ϕα(x) and Ĥ0 |α 〉 = εα |α 〉. The

basis may be taken as orthonormal, i.e. 〈α |α′ 〉 = δαα′ . Now define

Ψ{α1 , ... , αN}(x1, . . . , xN) =
1√

N !
∏

α nα!

∑

π∈SN

{
1

sgn(π)

}
ϕα

π(1)
(x1) · · ·ϕα

π(N)
(xN) . (8.4)

These states form a basis for the N-particle Hilbert space. Here nα is the number of times the
index α appears among the set {α1, . . . , αN}. For BE statistics, nα ∈ {0, 1, 2, . . .} , whereas for
FD statistics, nα ∈ {0, 1} . Note that the above states are normalized1:

∫
ddx1 · · ·

∫
ddxN

∣∣Ψ{α1 , ... , αN}(x1, . . . , xN)
∣∣2 = 1

N !
∏

α nα!

∑

π,µ∈SN

{
1

sgn(πµ)

} N∏

j=1

∫
ddxj ϕ

∗
α
π(j)

(xj)ϕα
µ(j)

(xj)

=
1∏
α nα!

∑

π∈SN

N∏

j=1

δαj ,απ(j)
= 1 . (8.5)

Note that
∑

π∈SN

ϕα
π(1)

(x1) · · ·ϕα
π(N)

(xN) ≡ per
{
ϕαi(xj)

}

∑

π∈SN

sgn(π) ϕα
π(1)

(x1) · · ·ϕα
π(N)

(xN) ≡ det
{
ϕαi(xj)

}
,

(8.6)

which stand for permanent and determinant, respectively. We may now write

Ψ{α1 , ... , αN}(x1, . . . , xN) =
〈
x1 , . . . , xN

∣∣α1 · · · αN
〉

, (8.7)

where

|α1 · · · αN 〉 =
1√

N !
∏

α nα!

∑

π∈SN

{
1

sgn(π)

}
|απ(1) 〉 ⊗ |απ(2) 〉 ⊗ · · · ⊗ |απ(N) 〉 . (8.8)

Note that |απ(1) · · ·απ(N) 〉 = (±1)π |α1 · · ·αN 〉 , where by (±1)π we mean 1 in the case of BE

statistics and sgn(π) in the case of FD statistics.

We may express |α1 · · ·αN 〉 as a product of creation operators acting on a vacuum | 0 〉 in Fock
space. For bosons,

|α1 · · · αN 〉 =
∏

α

(b†α)
nα

√
nα!
| 0 〉 ≡ | {nα} 〉 , (8.9)

1In the normalization integrals, each
∫
ddx implicitly includes a sum

∑
ζ over any internal indices that may be

present.
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where nα is the multiplicity of the label α in the set {α1, . . . , αN}. Consequently, N =
∑

α nα .
The Hermitian conjugate of the creation operator b†α is the annihilation operator bα. The rela-
tions among these operators are

[
bα , bβ

]
= 0 ,

[
b†α , b

†
β

]
= 0 ,

[
bα , b

†
β

]
= δαβ , (8.10)

where [ • , • ] is the commutator.

For fermions,

|α1 · · · αN 〉 =
∏

α

(c†α)
nα | 0 〉 = c†α1

c†α2
· · · c†αN | 0 〉 ≡ | {nα} 〉 , (8.11)

where each nα ∈ {0, 1} and where
∑

α nα = N . Thus nα = 1 for each α ∈ {α1, . . . , αN} and
nα = 0 otherwise. We also implicitly assume a canonical, though arbitrary, ordering of the
single particle labels α. The fermionic creation and annihilation operators satisfy the relations

{
cα , cβ

}
= 0 ,

{
c†α , c

†
β

}
= 0 ,

{
cα , c

†
β

}
= δαβ , (8.12)

where {• , •} is the anticommutator. Because the fermion creation operators all anticommute,
we have

c†α
π(1)
c†α

π(2)
· · · c†α

π(N)
| 0 〉 = sgn(π) | {nα} 〉 , (8.13)

for any π ∈ SN .

We may also define the operators

b(x) =
∑

α

ϕα(x) bα , c(x) =
∑

α

ϕα(x) cα , (8.14)

which satisfy
[
b(x) , b†(x′)

]
= δ(x− x′) ,

{
c(x) , c†(x′)

}
= δ(x− x′) . (8.15)

In cases where there are internal (e.g., spin) degrees of freedom, the above relations become

[
bm(x) , b

†
m′(x

′)
]
= δ(x− x′) δmm′ ,

{
cm(x) , c

†
m′(x

′)
}
= δ(x− x′) δmm′ . (8.16)

In other words,

bα,m =

∫
ddx ϕ∗

α(x, m) bm(x) , cα,m =

∫
ddx ϕ∗

α(x, m) cm(x) . (8.17)

Note the difference between the many-body states

| x1 · · · xN 〉 ≡ ψ†(x1) · · ·ψ†(xN) | 0 〉

=
1√
N !

∑

π∈SN

{
1

sgn(π)

}
| xπ(1) , . . . , xπ(N) 〉 (8.18)
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and
| x1 , . . . , xN 〉 = | x1 〉 ⊗ · · · ⊗ | xN 〉 . (8.19)

In particular, 〈
x1 , . . . , xN

∣∣α1 · · · αN
〉
= Ψ{α1 , ... , αN}(x1, . . . , xN) (8.20)

but 〈
x1 · · · xN

∣∣α1 · · · αN
〉
=
√
N ! Ψ{α1 , ... , αN}(x1, . . . , xN) . (8.21)

A general normalizedN-body wavefunction Ψm1, ... , mN
(x1, . . . , xN) may be expressed in second

quantized notation as

|Ψ 〉 = 1√
N !

∑

m1

· · ·
∑

mN

∫
ddx1 · · ·

∫
ddxN Ψm1, ... ,mN

(x1, . . . , xN) ψ
†
m1

(x1) · · ·ψ†
mN

(xN) | 0 〉 (8.22)

where ψ†
m(x) is the bosonic or fermionic creation operator for particles of internal index m at

position x. Dropping for the moment the internal indices for the sake of simplicity, note that

〈 0 |ψ(y2)ψ(y1)ψ†(x1)ψ
†(x2) | 0 〉 = 〈 0 |ψ(y2)ψ†(x2) | 0 〉 δ(x1 − y1)

± 〈 0 |ψ(y2)ψ(x1)ψ†(y1)ψ
†(x2) | 0 〉

= δ(x1 − y1) δ(x2 − y2)± δ(x1 − y2) δ(x2 − y1) .

(8.23)

Reasoning thusly, we conclude that

〈 0 |ψ(yN) · · ·ψ(y1)ψ†(x1) · · ·ψ†(xN) | 0 〉 =
∑

σ∈SN

{
1

sgn(π)

} N∏

j=1

δ(yj − xσ(j)) . (8.24)

Including the internal indices, then,

〈 0 |ψ(yN)nN· · ·ψm1
(y1)ψ

†
m1

(x1) · · ·ψ†
nN

(xN) | 0 〉 =
∑

σ∈SN

{
1

sgn(π)

} N∏

j=1

δ(yj − xσ(j)) δnj , mσ(j) .

(8.25)
We then have

〈Φ |Ψ 〉 =
∑

m1

· · ·
∑

mN

∫
ddx1 · · ·

∫
ddxN Φ∗

m1, ... ,mN
(x1, . . . , xN) Ψm1, ... ,mN

(x1, . . . , xN) (8.26)

Another useful thing to derive are expressions for the one- and two-body density matrices.
Note that (with internal indices once again suppressed)

ψ(x)ψ†(x1) · · ·ψ†(xN) = δ(x− x1)ψ†(x2) · · ·ψ†(xN)± δ(x− x2)ψ†(x1)ψ
†(x3) · · ·ψ†(xN)

+ . . .+ (±1)N−1 δ(x− xN)ψ†(x1) · · ·ψ†(xN−1) , (8.27)



8.1. SECOND QUANTIZATION 391

from which we may derive the one-body density matrix,

n1(x | y) ≡ 〈Ψ |ψ†(y)ψ(x) |Ψ 〉

= N

∫
ddx2 · · ·

∫
ddxN Ψ∗(y, x2, . . . , xN) Ψ(x, x2, . . . , xN) .

(8.28)

Similarly, the two-body density matrix is given by

n2(x, x
′ | y, y′) ≡ 〈Ψ |ψ†(y′)ψ†(y)ψ(x)ψ(x′) |Ψ 〉

= N(N − 1)

∫
ddx3 · · ·

∫
ddxN Ψ∗(y, y′, x3, . . . , xN) Ψ(x, x′, x3, . . . , xN) .

(8.29)

Note the sum rules upon integrating the diagonal elements, viz.
∫
ddx n1(x | x) = N

∫
ddx

∫
ddx′ n2(x, x

′ | x, x′) = N(N − 1) .

(8.30)

In a plane wave basis, we write

ψk =
1√
V

∫
ddx ψ(x) e−ik·x (8.31)

and therefore

〈Ψ |ψ†
k ψk′ |Ψ 〉 =

1

V

∫
ddx

∫
ddr ei(k−k

′)·x e−ik
′·r 〈Ψ |ψ†(x)ψ(x+ r) |Ψ 〉

= δk,k′

∫
ddr e−ik·r 〈Ψ |ψ†(0)ψ(r) |Ψ 〉

= δk,k′

∫
ddr e−ik·r

∫
ddx2 · · ·

∫
ddxNΨ

∗(0, x2, . . . , xN) Ψ(r, x2, . . . , xN) .

(8.32)

8.1.2 The second quantized Hamiltonian

Now consider the action of permutation-symmetric first quantized operators such as the kinetic

energy T̂ = − ~2

2m

∑N
i=1∇

2
i =

∑N
i=1 t̂i and the potential energy Û =

∑N
i<j u(xi − xj). For a one-

body operator such as T̂ , we have

〈α1 · · · αN | T̂ |α′
1 · · · α′

N 〉 =
∫
ddx1 · · ·

∫
ddxN

(∏

α

nα!
)−1/2(∏

α

n′
α!
)−1/2

(8.33)

×
∑

π∈SN

(±1)πϕ∗
α
π(1)

(x1) · · ·ϕ∗
α
π(N)

(xN)
N∑

k=1

t̂i ϕα′
π(1)

(x1) · · ·ϕα′
π(N)

(xN)

=
∑

π∈SN

(±1)π
(∏

α

nα!n
′
α!
)−1/2

N∑

i=1

∏

j
(j 6=i)

δαj ,α′
π(j)

∫
ddx1 ϕ

∗
αi
(x1) t̂1 ϕα′

π(i)
(x1) .



392 CHAPTER 8. HARTREE-FOCK AND DENSITY FUNCTIONAL THEORIES

One may verify that any permutation-symmetric one-body operator such as T̂ is faithfully
represented by the second quantized expression,

T̂ =
∑

α,β

〈α | t̂ | β 〉ψ†
α ψβ , (8.34)

where ψ†
α is b†α or c†α as the application determines, and

〈α | t̂ | β 〉 =
∫
ddx ϕ∗

α(x) t̂(∇)ϕβ(x) ≡ ταβ . (8.35)

Similarly,

V̂ =
∑

α,β

〈α | v̂ext | β 〉ψ†
α ψβ , (8.36)

where

〈α | v̂ext | β 〉 =
∫
ddx ϕ∗

α(x) v̂ext(x)ϕβ(x) ≡ vextαβ . (8.37)

Two-body operators such as Û are represented as

Û = 1
2

∑

α,β,γ,δ

〈αβ | û | γδ 〉ψ†
α ψ

†
β ψδ ψγ , (8.38)

where

〈αβ | û | γδ 〉 =
∫
ddx

∫
ddx′ ϕ∗

α(x)ϕ
∗
β(x

′) û(x, x′)ϕδ(x
′)ϕγ(x) ≡ uαβγδ . (8.39)

The general form for an n-body operator is then

R̂ =
1

n!

∑

α1···αn
β1··· βn

〈α1 · · · αn | r̂ | β1 · · · βn 〉ψ†
αn
· · ·ψ†

αn
ψβn · · ·ψβ1 (8.40)

where

〈α1 · · · αn | r̂ | β1 · · · βn 〉 =
∫
ddx1 · · ·

∫
ddxn ϕ

∗
α1
(x1) · · ·ϕ∗

αn
(xn) r̂(x1, . . . , xn)ϕβn(xn) · · ·ϕβ1(x1) .

(8.41)
If the particles have no internal degrees of freedom, then the operators r̂(x1, . . . , xn) are just
functions of the spatial coordinates {xi}. If there are (discrete) internal degrees of freedom,
then r̂(x1, . . . , xn) also has operator content in the internal Hilbert space as well.

Finally, if the Hamiltonian is noninteracting, consisting solely of one-body operators, then

Ĥ =
∑

α

εα ψ
†
α ψα , (8.42)

where {εα} is the spectrum of the single particle Hamiltonian.
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8.2 Hartree-Fock Theory

Consider the interacting electron Hamiltonian

Ĥ =

N∑

i=1

{
− ~2

2m
∇

2
i + v(xi)

}
+

N∑

i<j

u(xi − xj) . (8.43)

We now endeavor to construct the best possible single Slater determinant state,

Ψ(x1 σ1 , . . . , xN σN ) =
1√
N !
A
[
ϕ
α1

(x1, σ1) · · ·ϕαN (xN , σN)
]

=
1√
N !

∑

π∈SN

sgn(π)
N∏

i=1

ϕαi(xπ(i) , σπ(i)) ,
(8.44)

where A is the antisymmetrizer, and ϕα(x, σ) is a single particle wavefunction. Typically we
will take α = (j, γ) to be a composite label, and write

ϕα(x, σ) = ϕj(x) ηγ(σ) , (8.45)

with ηγ(σ) = δσγ . In second-quantized notation, the wavefunction is given by

|Ψ 〉 =
OCC∏

α

c†α | 0 〉 . (8.46)

The set OCC comprises the N distinct occupied orbitals.

The second-quantized Hamiltonian is

Ĥ =

∫
ddx ψ†

σ(x)

{
− ~2

2m
δστ∇

2 + vextστ (x)

}
ψτ (x)

+ 1
2

∫
ddx

∫
ddx′ ψ†

σ(x)ψ
†
σ′(x

′) uστσ′τ ′(x− x′)ψτ ′(x′)ψτ (x) ,

(8.47)

where {σ, τ, σ′, τ ′} are spin polarizations, and where the two-body interaction for spin-isotropic
systems is written as

uστσ′τ ′(x− x′) = uSCALAR(x− x′) δστ δσ′τ ′ + uSPIN(x− x′) σστ · σσ′τ ′ . (8.48)

Here uSCALAR is the scalar component and uSPIN the Heisenberg component of the two-body in-
teraction, and σ are the Pauli matrices. Throughout we adopt the Einstein convention over
summing over repeated indices.
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In order to evaluate the expectation value E = 〈Ψ | Ĥ |Ψ 〉, we need the following:

〈Ψ|ψ†
σ(x)ψτ (y)|Ψ〉 =

OCC∑

α

ϕ∗
α(x, σ)ϕα(y, τ) (8.49)

〈Ψ|ψ†
σ(x)ψ

†
σ′(x

′)ψτ ′(x
′)ψτ (x)|Ψ〉 =

OCC∑

α,β

ϕ∗
α(x, σ)ϕ

∗
β(x

′, σ′)
(
ϕα(x, τ)ϕβ(x

′, τ ′) − ϕβ(x, τ)ϕα(x′, τ ′)
)

.

This generalizes to

〈Ψ |ψ†
σ1
(x1) · · ·ψ†

σn
(xn)ψτn(xn) · · ·ψτ1(x1) |Ψ 〉 =

OCC∑

α1 ··· αn

(
n∏

i=1

ϕ∗
αi
(xi, σi)

)
det
[
ϕαj (xk, τk)

]
.

(8.50)
The RHS is necessarily zero if n > N because there is then a linear dependence among the rows
of the matrix Mj,k = det

[
ϕαj(xk, σk)

]
.

We now have E = T + V + U , with

T =
OCC∑

α

∫
ddx ϕ∗

α(x, σ) t̂στ (∇)ϕα(x, τ) , V =
OCC∑

α

∫
ddx ϕ∗

α(x, σ) v̂
ext
στ (x)ϕα(x, τ) (8.51)

and

U = 1
2

OCC∑

α,β

∫
ddx

∫
ddx′uστσ′τ ′(x−x′)ϕ∗

α(x, σ)ϕ
∗
β(x

′, σ′)
(
ϕα(x, τ)ϕβ(x

′, τ ′)−ϕβ(x, τ)ϕα(x′, τ ′)
)

.

Now let’s functionally vary with respect to the wavefunction ϕ∗
α(x, σ). We have

δT

δϕ∗
α(x, σ)

= t̂στ (∇)ϕα(x, τ) ,
δV

δϕ∗
α(x, σ)

= v̂extστ (x)ϕα(x, τ) (8.52)

and

δU

δϕ∗
α(x, σ)

=

∫
ddx′ uστσ′τ ′(x−x′)

OCC∑

β

ϕ∗
β(x

′, σ′)
(
ϕα(x, τ)ϕβ(x

′, τ ′)−ϕβ(x, τ)ϕα(x′, τ ′)
)

. (8.53)

In order to maintain orthonormality of the single particle wavefunctions, i.e. 〈ϕα |ϕβ 〉 = δαβ ,
we extremize not E but rather E∗, where

E∗ = T + V + U −
∑

α,β

Λαβ

(
〈ϕα |ϕβ 〉 − δαβ

)
, (8.54)
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where the {Λαβ} are a set of Lagrange multipliers. The condition δE∗ = 0 now yields

{
− ~2

2m
δστ∇

2 + vextστ (x) +

∫
ddx′ uστσ′τ ′(x− x′)

OCC∑

β

ϕ∗
β(x

′, σ′)ϕβ(x
′, τ ′)

}
ϕα(x, τ)

−
∫
ddx′ uστσ′τ ′(x− x′)ϕα(x′, τ ′)

OCC∑

β

ϕ∗
β(x

′, σ′)ϕβ(x, τ) =

OCC∑

β

Λαβ ϕβ(x, σ) .

(8.55)

One can show that the matrix Λ must be Hermitian, which means it can be diagonalized by a
unitary matrix Uaα , with (UΛU †)ab = εa δab . Defining ϕa(x, σ) = Uaα ϕα(x, σ), we then obtain
the Hartree-Fock equations ,

{
− ~2

2m
δστ∇

2 + vextστ (x) +

∫
ddx′ uστσ′τ ′(x− x′)

OCC∑

b

ϕ∗
b(x

′, σ′)ϕb(x
′, τ ′)

}
ϕa(x, τ)

−
∫
ddx′ uστσ′τ ′(x− x′)ϕa(x′, τ ′)

OCC∑

b

ϕ∗
b(x

′, σ′)ϕb(x, τ) = εa ϕa(x, σ) ,

(8.56)

with no sum on a. The quantities {εa} are the single particle Hartree-Fock energies. Note that the
last term in the curly brackets can be interpreted as a renormalization of the one-body potential,
with

vHστ (x) =

∫
ddx′ uστσ′τ ′(x− x′)

OCC∑

b

ϕ∗
b(x

′, σ′)ϕb(x
′, τ ′) . (8.57)

This is known as the Hartree potential. The Fock term, arising from exchange, has the interpreta-
tion of a nonlocal potential, viz.

vFστ (x, x
′) = −uστ ′σ′τ (x− x′)

OCC∑

b

ϕ∗
b(x

′, σ′)ϕb(x, τ
′) . (8.58)

Thus, the Hartree-Fock (HF) equations may be written

{
− ~2

2m
δστ∇

2 + vextστ (x) + vHστ (x)

}
ϕa(x, τ) +

∫
ddx′ vFστ (x, x

′)ϕa(x
′, τ) = εa ϕa(x, σ) . (8.59)

Note that if we multiply Eqn. 8.56 by ϕ∗
a(x, σ) and then integrate over x and sum on σ, we

obtain the relation

εa =

∫
ddx ϕ∗

a(x, σ)

{
− ~2

2m
δστ∇

2 + vextστ (x) + vHστ (x)

}
ϕα(x, τ)

+

∫
ddx

∫
ddx′ vFστ (x, x

′)ϕ∗
a(x, σ)ϕa(x

′, τ) .

(8.60)
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If we now sum over all occupied states a, we obtain the result

OCC∑

a

εa = T + V + 2U . (8.61)

Thus, the sum over all the single particle HF energies is not the total energy E = 〈Ψ | Ĥ |Ψ 〉 .
Rather, the interpretation of εa is that

δE

δN
= E(N)− E(N − 1) = εa (8.62)

when the electron in state a is removed to form the (N − 1)-electron system. Put another way,
the energy required to transfer an electron from an orbital | a 〉 to an orbital | b 〉 is εb− εa . These
results presume that this transfer does not affect the other wavefunctions ϕc(x, σ) for c 6= a, b .
This is presumably valid in the thermodynamic limit N →∞ , but need not be so for finite N .
The difference in ground state energies is thus given by the smallest value mina εa .

When vextστ (x) = v(x) δστ and uστσ′τ ′(x−x′) = u(x−x′) δστ δσ′τ ′ , the spin degree of freedom is just a
spectator, and we may obtain a solution where the states are labeled by an index j ∈ {1, . . . , N}
and a spin polarization σ ∈ {↑, ↓}, with polarization-independent single particle HF energies
εj . The HF equations then become

{
− ~2

2m
∇

2 + vext(x) + vH(x)

}
ϕj(x) +

∫
ddx′ vF(x− x′)ϕj(x′) = εj ϕj(x) , (8.63)

where

vH(x) = 2

∫
ddx′ u(x− x′)

OCC∑

l

|ϕl(x′)|2

vF(x, x′) = −u(x− x′)
OCC∑

l

ϕ∗
l (x

′)ϕl(x) .

(8.64)

Translationally invariant systems

For translationally invariant systems, the plane wave basis ϕk(x) = V −1/2 exp(ik · x) yields a
solution. The Hartree and Fock potentials are then

vH(x) = n û(0)

v
F
(x− x′) = −u(x− x′)

∫
ddk

(2π)d
eik·(x−x

′) Θ(k
F
− k) ,

(8.65)

where

n = 2

∫
ddk

(2π)d
Θ(k

F
− k) = 2Ωd k

d
F

d (2π)d
(8.66)
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is the number density. Here Ωd = 2πd/2/Γ(d/2) is the total solid angle in d space dimensions.
One then has the Hartree-Fock energies

ε(k) =
~
2k2

2m
+ n û(0)−

∫
ddk′

(2π)d
û(k − k′) Θ(k

F
− k′) , (8.67)

where û(k) is the Fourier transform of u(x).

HF theory for atoms

In atomic physics, we have the one-body ion core potential vext(x) = −Ze2/|x| (neglecting spin-
orbit effects) and the two-body electron-electron interaction u(x− x′) = e2/|x− x′|. It is then a
good approximation to assume that the Hartree-Fock wavefunctions ϕi(x) are of the form

ϕα(x) = Rnl(r) Ylm(θ, φ) , (8.68)

independent of σ. This follows from the rotational isotropy of the ion core potential. We can
then classify the single particle states by the quantum numbers n ∈ {1, 2, . . .}, l ∈ {0, 1, . . . , n−
1}, ml ∈ {−l, . . . ,+l}, and ms = ±1

2
. The essential physics introduced by the Hartree-Fock

method is that of screening. Close to the origin, a given electron senses a potential −Ze2/r due
to the unscreened nucleus. Farther away, though, the nuclear charge is screened by the core
electrons, and the potential decays faster than 1/r.2 Whereas states of different l and identical n
are degenerate for the noninteracting hydrogenic atom, when the nuclear potential is screened,
states of different l are no longer degenerate. Smaller l means lower energy, since these states
are localized closer to the nucleus, where the potential is large and negative and relatively
unscreened. Based on the HF energy levels, the order in which the electron shells are filled
throughout the periodic table is roughly given by that in Fig. 14.1. This is known as the Aufbau
principle from the German Aufbau = ”building up” (see Fig. 14.1). The order in which the
orbitals are filled follows the diagonal rule, which says that orbitals with lower values of n + l
are filled before those with higher values, and that in the case of equal n + l values, the orbital
with the lower n is filled first. For a given l and n there are (2s + 1) × (2l + 1) = 4l + 2 states
(s = 1

2
), labeled by the angular momentum and spin polarization quantum numbers ml and

ms ; this group of orbitals is called a shell.

HF theory for the electron gas

The so-called jellium model of the electron gas consists of N electrons moving in a uniform
neutralizing (i.e. positively charged) background. The system is translationally invariant, hence
the HF wavefunctions are labeled by wavevectors k, with ϕk(x) = V −1/2 exp(ik · x) . In all

2Within the Thomas-Fermi approximation, the potential at long distances decays as −Ce2a3
B
/r4, where C ≃ 100 is

a numerical factor, independent of Z .
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Figure 8.1: The Aufbau principle and the diagonal rule. Image credit: Wikipedia.

dimensions, the neutralizing background contributions precisely cancel the Hartree term in
the energy. The single particle HF energies are then given by (d = 3 dimensions assumed)

ε(k) =
~2k2

2m
−
∫

d3k′

(2π)3
4πe2

(k− k′)2 Θ(k
F
− k′) = ε0(k) +Σ(k) , (8.69)

where n = k3
F
/3π2 is the electron density. The bare dispersion for noninteracting electrons is

ε0(k) = ~2k2/2m, and the self-energy is

Σ(k) =
e2k

F

2π

(
k2 − k2

F

kk
F

ln

∣∣∣∣
k + k

F

k − k
F

∣∣∣∣− 2

)
. (8.70)

If we expand about the Fermi wavevector, writing k = (k
F
+ q) n̂, where n̂ is any unit vector, we

obtain

ε(k
F
+ q) = ε

F
+

~2k
F

m
q +

e2

π
q ln

∣∣∣∣
2k

F

q

∣∣∣∣ +O(q2) , (8.71)

where ε
F
=

~2k2F
2m
− e2k

F

π
is the Fermi energy within HF theory. The velocity in the vicinity

perpendicular to the Fermi surface is then with

v(q) =
1

~

∂ε(k
F
+ q)

∂q
=

~k
F

m
+
e2

π~

(
ln

∣∣∣∣
2k

F

q

∣∣∣∣− 1

)
, (8.72)

which diverges logarithmically in the limit q → 0 . This divergence of the Fermi velocity is an
artifact of the HF approach, which neglects screening effects, which we shall consider later on.

The total kinetic energy per particle is given by

T

N
=

1

N
× 2

∑

|k|<k
F

ε0(k) =
2

n

∫
d3k

(2π)3
~
2k2

2m
Θ(k

F
− k) = 3~2k2F

10m
. (8.73)
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The total potential energy comes from the sum of the (i) self-interaction of the neutralizing
background, (ii) the energy of interaction between the neutralizing background and the uni-
form density electron gas, (iii) the Hartree energy of the electron gas EH, and (iv) the exchange
energy of the electron gas EX. The first three of these sum to zero, leaving EX, where

EX

N
=

1

2N
× 2

∑

|k|<k
F

Σ(k) =
1

n

∫
d3k

(2π)3
Σ(k) Θ(k

F
− k)

= −e
2k

F

4π3

1∫

0

dx x2

{
2 +

1− x2
x

ln

∣∣∣∣
1 + x

1− x

∣∣∣∣

}
= −3e

2k
F

4π
.

(8.74)

Note the factor of 1
2

multiplying the above result, which corrects for the factor of 2 in Eqn. 8.61.

It is conventional to define a dimensionless length rs according to 4
3
π(rs aB)

3 n ≡ 1, where aB =
~2/me2 is the Bohr radius. Thus

rs =

(
3

4π

)1/3
n−1/3 a−1

B , k
F
=

(
9π

4

)1/3
r−1
s a−1

B . (8.75)

The kinetic energy per particle is then

T

N
=

3~2

10m

(
9π

4

)2/3
r−2
s a−2

B =
3

5

(
9π

4

)2/3
e2

2aB
· 1
r2s
≃ 2.21

r2s
Ryd , (8.76)

while the exchange energy per particle is

EX

N
= − 3

2π

(
9π

4

)1/3
e2

2aB
· 1
rs
≃ −0.916

rs
Ryd , (8.77)

where 1Ryd = e2/2aB = 13.6057 eV. Thus, interaction effects dominate when rs is large, mean-
ing the density n is small. This is because the kinetic energy term involves two gradients, hence
scales as L−2, whereas the Coulomb interaction scales as L−1. For short-ranged interactions, in-
teraction effects dominate at large densities, which perhaps is more intuitive.

8.3 Density Functional Theory

In any interacting electronic system, the kinetic energy of each electron is given by p2/2m and
the interaction between any two electrons is the Coulomb energy v(x− x′) = e2/|x− x′|. What
differs in the description from one material to the next is the one-body potential vext(x). This is
what distinguishes the Hamiltonian for table salt (NaCl) from that of elemental iron (Fe)3. Thus,

3For large Z ions, the spin-orbit interaction is also important. This can be included in the one-body potential
vext(x) by extending vext to a function vext(x,p,σ) of position, momentum, and spin.
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the ground state wavefunction of any many-electron system Ψσ1···σN (x1, . . .xN) is completely

determined by vext(x). From the wavefunction we can also determine the one-body electron
density for spin polarization σ, which is

nσ(x) = 〈Ψ |ψ†
σ(x)ψσ(x) |Ψ 〉 = N

∑

σ2

· · ·
∑

σN

∫
d3x2 · · ·

∫
d3xN

∣∣Ψσ σ2···σN (x, x2, . . .xN)
∣∣2 .

(8.78)
Summing over both spin polarizations, we obtain the total electron number density,

n(x) =
∑

σ

nσ(x) . (8.79)

Though at first consideration counterintuitive, it turns out that the entire ground state wave-
function can be considered to be a functional of the electron number density. A number of highly
consequential and extremely useful results follow. This is the subject of density functional the-
ory (DFT), which revolutionized the study of electronic structure of molecules and solids4, and
which was recognized by the 1998 Nobel Prize in Chemistry to Walter Kohn and John Pople.

8.3.1 Hohenberg-Kohn theorems

The mathematical basis underpinning DFT are two theorems by Hohenberg and Kohn.

THEOREM #1 : The ground state energy of a many-electron system is a functional of the total
electron density n(x) =

∑
σ 〈Ψ |ψ†

σ(x)ψσ(x) |Ψ 〉.
To prove this theorem – in our callow physicist’s sort of way – let |Ψ 〉 and |Ψ′ 〉 be the ground
states corresponding respectively to the two external potentials vext(x) and v′ext(x). We assume
these ground states are normalized and distinct, meaning that in any finite volume their over-

lap is less than unity in magnitude. The Hamiltonians are Ĥ = T̂ + V̂ + Û and Ĥ ′ = T̂ + V̂ ′+ Û ,
and it must be that

E ′ = 〈Ψ′ |H ′ |Ψ′ 〉 < 〈Ψ | Ĥ ′ |Ψ 〉 = 〈Ψ | Ĥ |Ψ 〉+ 〈Ψ | V̂ ′ − V̂ |Ψ 〉 , (8.80)

where

V̂ =

∫
d3x vext(x) n̂(x) , V̂ ′ =

∫
d3x v′ext(x) n̂(x) . (8.81)

Thus we conclude E ′ < E + 〈Ψ | V̂ ′ − V̂ |Ψ 〉 . But then E < E ′ + 〈Ψ′ | V̂ − V̂ ′ |Ψ′ 〉 as well,
simply by exchanging the definitions of the primed and unprimed systems. Adding these two
results we obtain

0 < 〈Ψ | V̂ ′ − V̂ |Ψ 〉+ 〈Ψ′ | V̂ − V̂ ′ |Ψ′ 〉 . (8.82)

4Here we follow the discussion in chapter 15 of Girvin and Yang, Condensed Matter Physics (Cambridge, 2019).
See also G. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid (Cambridge, 2005).
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and thus if 〈Ψ | n̂(x) |Ψ 〉 = 〈Ψ′ | n̂(x) |Ψ′ 〉 = n(x), we arrive at a contradiction: 0 < 0 . We
conclude that the ground state wavefunctions for different one-body potentials cannot yield
the exact same density n(x).

THEOREM #2: The ground state energy may be expressed as a functional of the density, E[n],
such that minimizing this functional with respect to n(x) yields the true ground state density.

To see that this is the case, note that theorem #1 entails that for each density n(x) corresponding
to the many-body ground state in some external potential, there is a corresponding ground
state wavefunction |Ψ[n] 〉. Now define the functional

E[n] =

Ejel[n]︷ ︸︸ ︷
〈Ψ[n] | T + U |Ψ[n] 〉 +

∫
d3x vext(x)n(x) . (8.83)

Here Ejel[n] is the energy functional for jellium, with vext = 0. Note that this requires that we

take the two-body potential term Û to be

Û =
1

2

∫
d3x

∫
d3x′

(
n̂(x)− n0

) e2

|x− x′|
(
n̂(x′)− n0

)
, (8.84)

where n0 corresponds to a uniform neutralizing background. Charge neutrality requires that

lim
N→∞

1

N

∫
d3x

(
n(x)− n0

)
= 0 (8.85)

lest the Coulomb energy diverge. Now, since E[ñ] = 〈Ψ[ñ] |H |Ψ[ñ] 〉 > E[n], which follows
by considering |Ψ[ñ] 〉 to be a variational ground state for the Hamiltonian whose true ground
state density is n(x), we conclude that the functional E[n] is indeed minimized when n(x) is
the true ground state density when the external potential is vext(x).

How do we know that a given density n(x) corresponds to the actual ground state density
for Coulomb-interacting electrons in some external potential vext(x)? The short answer is that
we don’t. Indeed for the single particle system, where there are no Coulomb interactions, any
density function n(x) which vanishes at any location cannot possibly be the actual ground state
density for any nonsingular potential vext(x) due to the Perron-Frobenius ”no nodes theorem”.
Functions n(x) which do correspond to the ground state density of a fermionic system for
some potential vext(x) are called V -representable. A weaker condition is that ofN-representability,
which means that for a given density function n(x), there exists an N-fermion wavefunction
Ψσ1···σN (x1, . . . , xN) such that

n(x) =
∑

σ

〈Ψ |ψ†
σ(x)ψσ(x) |Ψ 〉

= N
∑

σ

∑

σ2

· · ·
∑

σN

∫
d3x2 · · ·

∫
d3xN

∣∣Ψσσ2···σN (x, x2, . . .xN)
∣∣2 .

(8.86)
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Levy5 and Lieb 6 showed that one could extend the domain of density functionals thusly, so that
the energy minimization is to be carried out over all |Ψ 〉 such that 〈Ψ | n̂(x) |Ψ 〉 = n(x), where
n̂(x) =

∑
σ ψ

†
σ(x)ψσ(x). Note that while obtaining n(x) from |Ψ 〉 is formally defined by Eqn.

8.86, the inverse process, by which one extracts an N-body wavefunction Ψσ1···σN (x1, . . . , xN)

from a given N-representable density function n(x) is impractically complex for any N > 1.
The virtue of the Kohn-Sham procedure, discussed in the next section, is that it provides us
with a constructive way to implement the extremization procedure within a class of many-
body wavefunctions.

8.3.2 Kohn-Sham equations

For Coulomb-interacting electrons, the functional Ejel[n] is universal and is given by

Ejel[n] = min
|Ψ〉→n(x)

〈Ψ[n] | T̂ + Û |Ψ[n] 〉 , (8.87)

where the minimization is with respect to all totally antisymmetric N-body wavefunctions
yielding a one-body density n(x). For noninteracting systems, the ground state is a Slater deter-
minant |ΨS[n] 〉 , and we define the functional

TS[n] ≡ min
|Ψ

S
〉→n(x)

〈ΨS[n] | T̂ |ΨS[n] 〉 , (8.88)

where |ΨS 〉 is an N-particle Slater determinant. We may write

n(x) =
∑

α

∑

σ

nα
∣∣ϕα(x, σ)

∣∣2 , (8.89)

where nα ∈ {0, 1} is the occupation of the single particle state ϕα(x, σ), with N =
∑

α nα . We
may write

TS[n] = −
~2

2m

∑

α

nα 〈ϕα | ∇2 |ϕα 〉 . (8.90)

Aside – I want to comment yet again on the extremely complex and unusual nature of the
functionals Ejel[n] and TS[n]. Functions, such as the iconic f(x), eat numbers (x ∈ R) and excrete
numbers (f(x) ∈ R). Functionals, such as F [f(x)], by contrast eat entire functions (f(x) ∈ C∞(R))
and excrete numbers7 (F [f(x)] ∈ R). Usually it is the case that the functionals we deal with are
specified explicitly. Such it is with the action functional in classical mechanics, S[q(t)], where

S[q(t)] =

t2∫

t1

dt L(q, q̇, t) (8.91)

5M. Levy, Proc. Nat. Acad. Sci 76, 6062 (1979).
6E. H. Lieb, Int. J. Quantum Chem. 24, 243 (1983).
7We can of course generalize to complex functions and complex functionals and functions of several variables
f(x) ∈ C∞(Rn).
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with L = 1
2
mq̇2 − V (q). In this case, if you give me the function q(t), which typically must

satisfy certain boundary conditions such as being fixed at the endpoints, I can in principle
perform the above integral and hand you back S[q(t)]. Things are not so straightforward with
regard to TS[n] and Ejel[n]. Rather, the prescriptions are as follows:

• For TS[n], you give me some function n(x) ∈ C∞(Rd) and I rummage through my file cab-
inet of N-particle Slater determinant wavefunctions ΨS(x1, . . . , xN) = det{ϕαi(xj)} con-

structed from inequivalent orthonormal bases, and I set aside only those functions for
which the density 〈ΨS | n̂(x) |ΨS 〉 = n(x) agrees with your specified function. Then, one-

by-one, I go through this collection, computing 〈ΨS | T̂ |ΨS 〉 for each, and I find which ΨS

yields the lowest expectation value, which is then the value of TS[n].

• For Ejel[n], you give me a function n(x), and I along with a bunch of volunteers search my
giant warehouse of totally antisymmetric N-particle functions Ψ(x1, . . . , xN) for those Ψ
yielding 〈Ψ | n̂(x) |Ψ 〉 = n(x).8 For each of these surviving wavefunctions, we evaluate

〈Ψ | T̂ + Û |Ψ 〉 and find which Ψ yields the lowest expectation value. This is then the
value of Ejel[n].

As you can see, TS[n] and Ejel[n] are indeed functionals of n(x), because there is an explicit, if
impractical, prescription for how they may be evaluated. Turning the evaluation of Ejel[n] into
an implementable variational scheme was the genius of Kohn and Sham, to whose program
we now return.

Having defined the functionals Ejel[n] and TS[n], we next define the exchange-correlation func-
tional EXC[n] according to the relation

Ejel[n] = TS[n] + EH[n] + EXC[n] , (8.92)

where EH[n] is the Hartree functional,

EH[n] =
1

2

∫
d3x

∫
d3x′

(
n(x)− n0

) e2

|x− x′|
(
n(x′)− n0

)
. (8.93)

Note that Eqn. 8.92 is a definition of the functional EXC[n] in terms of the universal functionals
Ejel[n] (which exists but is unknown), EH[n] (which is explicitly given in Eqn. 8.93), and TS[n]
(which is given in Eqn. 8.90). Note that TS[n] is the kinetic energy of a fictional noninteracting
fermion system which has the same density n(x) as the interacting system under consideration.

At this point, rather than vary with respect to n(x), we instead vary with respect to each of the single
particle wavefunctions ϕ∗

α(x, σ), subject to the conditions of orthonormality.

8This is of course vastly bigger than my file cabinet of Slater determinants, a copy of which is stored somewhere
in the warehouse, since

{
ΨS | 〈ΨS | n̂ |ΨS 〉 = n

}
∈
{
Ψ | 〈Ψ | n̂ |Ψ 〉 = n

}
.
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This results in the Kohn-Sham equations,
{
− ~2

2m
∇2 + vext(x) + vH(x) + vXC(x)

}
ϕα(x, σ) = εα ϕα(x, σ) , (8.94)

where nα = 1,

vH(x) =
δEH[n]

δn(x)
=

∫
d3x′

e2

|x− x′|
(
n(x′)− n0

)
(8.95)

and where

vXC(x) =
δEXC[n]

δn(x)
(8.96)

are functional derivatives. Note that we have used the functional chain rule,

δF [n]

δϕ∗
α(x)

=
δF [n]

δn(x)
· δn(x)
δϕ∗

α(x)
=
δF [n]

δn(x)
ϕα(x) (8.97)

for any functional F [n]. Note that vXC(x) is local, unlike in Hartree-Fock theory where the Fock
potential vF(x, x

′) is nonlocal.

It is worth emphasizing that while the Kohn-Sham orbitals ϕα(x, σ) have no obvious physical
significance, they are often interpreted as Bloch energy bands for the interacting system (what-
ever that means!). The KS eigenvalues εα do not in general correspond to physical excitation
energies of the system, and the Slater determinant formed from the N lowest-lying KS orbitals
is in general not a good approximation to the actual ground state wavefunction. Indeed the HF
wavefunction is often a better approximation in that regard. However, in the N → ∞ limit, it
can be proven9 that in gapless systems the eigenvalue εN corresponding to the highest occupied
KS energy state is indeed the actual Fermi energy of the system.

At this point, the problem has been reduced to finding the best approximation to the unknown
functional EXC[n].

LDA: the local density approximation

The most commonly used such approximation is called the local density approximation, or LDA.
One writes

ELDA
XC =

∫
d3x n(x) εXC

(
n(x)

)
. (8.98)

The quantity εXC
(
n(x)

)
is the exchange-correlation energy per particle for uniform density jel-

lium. Taking the functional derivative,

µXC

(
n(x)

)
=
δELDA

XC

δn(x)
= εXC

(
n(x)

)
+ n(x)

∂εXC(n)

∂n

∣∣∣∣∣
n(x)

. (8.99)

9G. Giuliani and G. Vignali, op cit.
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Recall how in the HF approximation in d = 3, EX/V = −(3e2/4π)nk
F
∝ n4/3, hence

µXC(n) =
4
3
εXC(n) = −

e2k
F
(n)

π
, (8.100)

where k
F
(n) = (3π2n)1/3 .

Gradient expansions

If we expand about the jellium density n0, we may write

EGEA
XC [n0 + δn] =

1

2

∫
d3x

{
A(n0)

[
δn(x)

]2
+B(n0)

[
∇δn(x)

]2
+ . . .

}
. (8.101)

This procedure goes under the name gradient expansion approximation, or GEA10. One can also
define spin-resolved expansions viz.

ESGEA
XC [n0↑ + δn↑, n0↓ + δn↓] =

1

2

∫
d3x

{
Aσσ′(n0↑, n0↓) δnσ(x) δnσ′(x) (8.102)

+Bσσ′(n0↑, n0↓)∇δnσ(x) ·∇δnσ′(x) + . . .

}
.

Alas, in applications to real materials, the GEA is often less accurate than the LDA.

Major applications of DFT

Girvin and Yang provide a brief list of popular applications of DFT. For each such application
there are many thousands of papers in the literature:

• Structural determination : Given a set of atoms, what sort of crystal structure will they
form? The external potential is given by

vext(x) = −
∑

l

Zl e
2

|Rl − x|
. (8.103)

The total energy is then

Etot

[
{Rl}, n(x)

]
= Ejel[n] +

∫
d3x n(x) vext(x) +

∑

l<l′

Zl Zl′ e
2

|Rl − Rl′ |
. (8.104)

10Density functional theory is replete with acronyms.
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For a given set of nuclear positions {Rl}, the energy functional is minimized with respect
to the density n(x). The resulting energy is then a function of the nuclear positions, and
is then minimized with respect to these variables, yielding the crystal structure. Typically
one works with periodic boundary conditions and with as large a crystallite cell as one
can computationally afford in order to approximate the thermodynamic limit.

• Cohesive energy : The difference between the minimum energy per unit cell in the crys-
talline state and the total atomic energy of each atom in the unit cell is called the cohesive
energy Ecoh = Ecrystal − Eatomic . If Ecoh < 0, then crystal formation is advantageous, and
the difference is the crystalline binding energy per unit cell.

• Elastic constants : After the optimal crystalline structure is determined, by varying with
respect to the nuclear positions one can obtain the elastic constants.

• Phase diagram under pressure : At T = 0 the Gibbs free energy G = E − TS + pV is the
enthalpy H = E + pV . Including the pV term in the energy, one can evaluate the T = 0
Gibbs free energy at any finite pressure.

8.4 Response Functions

8.4.1 Linear response theory

What can we do with Ejel[n]? For starters, we can compute response functions for the jellium
system. If the uniform density for pure jellium is n0 , then upon introducing a potential vext(x)
we may write n(x) = n0 + δn(x). Expanding the functional Ejel[n] about n = n0, we have that
the total energy functional E[n] = Ejel[n] + V [n], to second order in δn, is given by

E[n0 + δn] = Ejel[n0] +
1

2

∫
d3x

∫
d3x′

δEjel[n]

δn(x) δn(x′)

∣∣∣∣∣
n0

δn(x) δn(x′) +

∫
d3x

(
n0 + δn(x)

)
vext(x) .

(8.105)
Note that the first functional variation δEjel[n0] = 0 vanishes for n = n0 by definition. Thus,

δE[n]

δn(x)

∣∣∣∣∣
n0

= vext(x) +

∫
d3x′ χ−1(x, x′) δn(x′) , (8.106)

where11

χ−1(x, x′) ≡
δ2Ejel[n]

δn(x) δn(x′)

∣∣∣∣∣
n0

. (8.107)

11Note that this definition differs by a minus sign by that in ch. 15 of Girvin and Yang, Modern Condensed Matter
Physics.



8.4. RESPONSE FUNCTIONS 407

The function χ−1(x, x′) is the inverse density susceptibility. The relation between χ−1 and χ is

∫
d3x′ χ−1(x, x′)χ(x′, x′′) = δ(x− x′′) , (8.108)

thus Eqn. 8.106 is equivalent to

δn(x) = −
∫
d3x′ χ(x, x′) vext(x

′) . (8.109)

The above formula is an example of linear response. Had we expandedE[n0+δn] to higher order
in δn, we’d have obtained higher order terms on the RHS, arranged as a functional Taylor series
in vext(x).

Since the jellium system is translationally invariant, we must have χ(x, x′) = χ(x−x′). We now
define the Fourier transform χ̂(q) as

χ̂(q) ≡
∫
ddx χ(x) e−iq·x , (8.110)

where d = 3 in the present discussion. The FT of χ−1(x − x′) is χ̂−1(q) = 1/χ̂(q). Thus, within
linear response,

δn̂(q) = −χ̂(q) v̂ext(q) . (8.111)

We write, as above,
E[n] = TS[n] + V [n] + EH[n] + EXC[n] . (8.112)

We define the noninteracting susceptibility according to

χ−1
0 (x, x′) =

δ2TS[n]

δn(x) δn(x′)

∣∣∣∣∣
n0

=
1

V

∑

q

χ̂−1
0 (q) eiq·(x−x

′) , (8.113)

where, as we shall derive later,

χ̂0(q) = 2

∫
ddk

(2π)d
f 0(k + q)− f 0(k)

ε0(k)− ε0(k + q)
, (8.114)

where ε0(k) = ~2k2/2m is the noninteracting dispersion, and

f 0(k) =
1

exp
(
ε0(k)−µ
kBT

)
+ 1

(8.115)

is the Fermi distribution. At T = 0, we have f 0(k) = Θ(k
F
−k) . Performing the integral in d = 3

dimensions, we obtain
χ̂0(q, T = 0) = g(ε

F
)L(q/2k

F
) , (8.116)
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where g(ε
F
) = mk

F
/π2

~
2 is the DOS at the Fermi level, with k

F
(n) = (3π2n)1/3, and where

L(x) =
1

2
+

1− x2
4x

ln

∣∣∣∣
1 + x

1− x

∣∣∣∣ (8.117)

is the Lindhard function. We may now write

χ−1(x, x′) = χ−1
0 (x, x′) +

e2

|x− x′| + χ−1
XC(x, x

′) (8.118)

where

χ−1
XC(x, x

′) =
δ2EXC[n]

δn(x) δn(x′)

∣∣∣∣∣
n0

. (8.119)

Note that

χ−1
H (x, x′) =

δ2EH[n]

δn(x) δn(x′)

∣∣∣∣∣
n0

=
e2

|x− x′| . (8.120)

Assuming translational invariance, χa(x, x
′) = χa(x − x′) for all labels a (e.g., χ, χ0, χH, χXC),

and χ−1
a (x, x′) = χ−1

a (x− x′) as well. Taking the Fourier transforms, then, we obtain

χ̂−1(q) = χ̂−1
0 (q) +

4πe2

q2
+ χ̂−1

XC(q) ≡ ⊓̂
−1
(q) +

4πe2

q2
, (8.121)

where the inverse of the polarization function ⊓̂(q) is defined according to

⊓̂−1
(q) = χ̂−1

0 (q) + χ̂−1
XC(q) . (8.122)

8.4.2 Static screening

We conclude that in the presence of an external potential vext(x), there is to first order a density
response δn̂(q) = −χ̂(q) v̂ext(q). The corresponding charge profile is then δ ˆ̺(q) = −e δn̂(q).
Hence the potential is screened. Within linear response, this results in an effective screened
potential

vscr(x) = vext(x) +

∫
d3x′

e2

|x− x′| δn(x
′)

v̂scr(q) = v̂ext(q)−
4πe2

q2
χ̂(q) v̂ext(q) ≡

v̂ext(q)

ǫ̂(q)
,

(8.123)

where ǫ̂(q) is the static (i.e. zero frequency) dielectric constant, given. by

ǫ̂−1(q) = 1− 4πe2

q2
χ̂(q)

= 1− 4πe2/q2

⊓̂−1
(q) + 4πe2/q2

=
1

1 + 4πe2

q2
⊓̂(q)

.
(8.124)
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Thus,

ǫ̂(q) = 1 +
4πe2

q2
⊓̂(q) . (8.125)

If we ignore the q-dependence and approximate ⊓̂(q) ≈ ⊓̂(0) ≡ Q2/4πe2, which defines a
quantity Q with dimensions of inverse length, then

ǫ̂(q) ≈ 1 +
Q2

q2
(8.126)

and for vext(r) = −Ze2/r, we have v̂ext(q) = −4πZe2/q2 and the FT of the screened potential is

v̂scr(q) = −
4πZe2

q2 +Q2
, (8.127)

which in real space (d = 3) corresponds to a Yukawa potential,

vscr(r) = −
Ze2 exp(−Qr)

r
. (8.128)

Thus, the screened potential is much weaker at long distances (exponentially so) than the bare
1/r Coulomb potential.

Note that the total number of electrons accumulated within linear response theory is

δN =

∫
d3x δn(x) = − lim

q→0
χ̂(q) v̂ext(q)

= lim
q→0

Z

1 + (q2/4πe2) ⊓̂−1
(q)

.
(8.129)

Thus, provided q2/⊓̂(q) vanishes in the limit q → 0, we obtain perfect screening by an induced
charge Q = −e δN = −Ze of the charge +Ze impurity.

We emphasize that throughout this section we are discussing only the linear response of the
jellium system. To compute the linear response of a material like elemental Pb, say, we’d need
to solve the KS equations and evaluate the various functional derivatives at a number density
n(x) which is the ground state electron density for Pb.

8.4.3 Approximate forms for the polarization function

The static dielectric function ǫ̂(q) is given to us, in Eqn. 8.125, in terms of the unknown polar-
ization function ⊓̂(q). There are two common approximations we shall discuss here.

The first is the Lindhard approximation, in which we ignore χ̂XC(q) and write ⊓̂(q) ≈ ⊓̂L(q) where
⊓̂L(q) = χ̂0(q), which is given in Eqns. 8.116 and 8.117 above. Thus

χ̂(q) ≈ χ̂L(q) ≡
χ̂0(q)

1 + 4πe2

q2
χ̂0(q)

, ǫ̂(q) ≈ ǫ̂L(q) ≡ 1 +
4πe2

q2
χ̂0(q) . (8.130)
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In the q → 0 limit, ⊓̂L(q) = g(ε
F
)+O(q2), which entails perfect screening of a Coulomb impurity,

i.e. δN = Z. However, rather than obtaining a Yukawa form for the screened potential, one
instead finds

vscr(r) ∝
cos(2k

F
r)

r3
(8.131)

in the long distance limit. This arises from the logarithmic singularity in the Lindhard function
L(q/2k

F
) (Eqn. 8.117) at q = 2k

F
, which is a feature of the sharp Fermi surface.

A further simplification is the Thomas-Fermi (new acronym: TF) approximation, in which we
also ignore the q-dependence and write ⊓̂(q) ≈ ⊓̂L(0) = g(ε

F
) ≡ Q2

TF/4πe
2, where QTF =√

4πe2g(ε
F
) is the TF wavevector. Thus ǫ̂TF(q) = 1 +

Q2
TF

q2
and the screened potential is of

the Yukawa form. For a quick and dirty way to derive TF theory, assume that the electric
potential φ(x) varies slowly in space, and imagine locally shifting the Fermi energy by the lo-
cal electrostatic energy, i.e. from ε

F
to ε

F
+ e φ(x). This results in a local density accumulation

δn(x) = e φ(x) g(ε
F
), and invoking Poisson’s equation,

∇2φ = −4π̺ = 4πe δn = 4πe2g(ε
F
)φ = Q2

TF φ , (8.132)

whence the Yukawa potential. By ignoring the q-dependence, we have missed the Fermi sur-
face singularity which is present in the (more realistic) Lindhard approximation. Note that the
TF wavelength, λTF = Q−1

TF , is given by

λTF =

(
π

12

)1/6√
rs aB ≈ 0.800

√
rs aB . (8.133)

Recall that 4
3
π(rs aB)

3n ≡ 1 defines rs, hence rs ∝ n−1/3. TF theory is statistical and can only
be justified if there are a large number of electrons within a sphere of radius λTF, which says
rs<∼ (π/12)1/3 ≃ 0.640 .

There is another kind of screening in solids which is relevant when the temperature is much
larger than the Fermi energy. This is called Debye-Hückel screening and the argument goes
as follows. Let the background charge density be ̺0 = e n0 . Classical statistical physics then
yields a local electron density n(x) = n0 exp

[
eφ(x)/kBT

]
, and invoking Poisson results in the

equation ∇2φ = Q2
DH φ , where QDH =

√
k

B
T/4πn0e

2 .



Chapter 9

Landau Fermi Liquid Theory

9.1 Normal 3He Liquid

3He is a neutral atom consisting of two protons, one neutron, and two electrons. A composite
of five fermions, it behaves as a hard-sphere (radius a ≈ 1.35Å) fermion of (nuclear) spin I = 1

2

at energies below the scale of electronic transitions1. It exhibits a fairly rich phase diagram,
depicted in the left hand panel of Fig. 9.1. 3HeA and 3HeB are superfluid phases which differ
in the symmetry of their respective order parameters. 3HeN is a normal fluid which behaves
much like a free Fermi gas, but in which interaction effects play an essential role in its physical
properties. It is known as a Fermi liquid2 In a Fermi liquid, as in the noninteracting Fermi gas,
the low-temperature specific heat cV (T ) is linear in T and the magnetic susceptibility χ(T ) is
Pauli-like (χ ∝ T 0), as shown in Fig. 9.2. An important distinction between 3HeN and most
metals is that the mass of the 3He atom is about 6,000 times greater than that of the electron.
Thus at a typical density n = 1.64 × 1022 cm−3 and m3 = 5.01 × 10−24 g one obtains a Fermi
temperature

TF =
~
2

2mk
B

(3π2n)2/3 = 4.97K , (9.1)

which is much much smaller than TF(Cu) ≈ 81, 000K and TF(Al) ≈ 135, 000K. This explains
why one begins to see Curie-like behavior in the magnetic susceptibility, i.e. χ(T ) ≃ nµ2

0/kB
T , at

temperatures T >∼ 1K. Here µ0 = −10.746×10−27 J/T = −1.1574µ
B

is the 3He nuclear magnetic
moment, and µB = e~/2mec is the Bohr magneton, withme the electron mass. Recall these basic

1E1 − E0 ≈ 20 eV, and the first ionization energy is 24.6 eV.
2The general theory of Fermi liquids was developed principally by the Russian physicist Lev Landau in the 1950s.

411
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Figure 9.1: Phase diagrams of 3He (left) and 4He (right).

results for the free spin-1
2

Fermi gas with ballistic dispersion ε(k) = ~2k2/2m :

Fermi wavevector : k
F
= (3π2n)1/3

density of states : g(ε
F
) =

mk
F

π2~2

occupancy : f(ε) =

[
exp
(ε− µ
k

B
T

)
+ 1

]−1

specific heat : cV =
1

V

(
∂E

∂T

)

N,V

=
π2

3
g(ε

F
) k2BT +O(T 3)

magnetic susceptibility : χ =

(
∂M

∂H

)

N,V

= µ2
0 g(εF) +O(T 2)

compressibility : κ = n−2

(
∂n

∂µ

)

T

= n−2g(ε
F
) +O(T 2) .

(9.2)

Experimental data for cV (T ) and χ(T ) in 3He are shown in Fig. 9.2. Note that cV (T )/T and
χ(T ) are each pressure-dependent constants as T → 0. The same is true for the compress-
ibility κ(T ), which is obtained from measurements of the velocity of thermodynamic sound,
s = (m3nκ)

−1/2. In a noninteracting Fermi gas, all these quantities are proportional to the den-
sity of states g(ε

F
), up to constant factors. We can define c0V (T, n), χ

0(T, n), and κ0(T, n) to be
the corresponding free Fermi gas expressions for a system of spin-1

2
fermions of mass m3 and

density n. One finds that the ratios cV /c
0
V , χ/χ0, and κ/κ0 all tend to different constants as

T → 0. Thus, it is impossible to reconcile the data by positing a phenomenological effective
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Figure 9.2: Left: cV (T )/RT for normal 3He. From D. S. Greywall, Phys. Rev. B 27, 2747
(1983). Numbers give the sample pressures in bars at T = 0.1K. Right: Normalized magnetic
susceptibility χ(T ) v0/Cm of normal 3He, where v0 is the molar volume andCm ≡ limT→∞ Tχ(T )
is the Curie constant. From V. Goudon et al., J. Phys.: Conf. Ser. 150, 032024 (2009).

mass m∗, since that would require that these ratios all tend to the same value. Furthermore, the
T → 0 limits of these ratios are all pressure-dependent. Another issue is that the first correc-
tion to the low temperature linear specific heat in a Fermi gas go as T 3, whereas experiments
yield a co.rrection on the order of T 3 lnT We shall see below how Landau’s theory is capable
of reproducing the observed temperature dependences, and moreover introduces additional
interaction parameters which allow us to describe all these behaviors in a consistent way. We
shall largely follow here the treatments by Nozieres and Pines, and by Baym and Pethick3.

9.2 Fermi Liquid Theory : Statics and Thermodynamics

9.2.1 Adiabatic continuity

The idea behind Fermi liquid theory is that the many-body eigenstates of the free Fermi gas

with Hamiltonian Ĥ0, which are Slater determinants, each evolve adiabatically into eigenstates

of the interacting Hamiltonian Ĥ = Ĥ0+ Ĥ1, where Ĥ1 is the interaction part. Typically we will

3P. Nozieres and D. Pines, Theory of Quantum Liquids (Avalon, 1999); G. Baym and C. Pethick, Landau Fermi-
Liquid Theory : Concepts and Applications (Wiley, 1991).
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Figure 9.3: Two particle, two hole excitation of the state |F〉 obtained via first order perturbation

theory in the interaction Hamiltonian Ĥ1.

consider

Ĥ0 =
∑

k,σ

ε0k c
†
k,σck,σ , (9.3)

with ε0k = ~2k2/2m . The general form of interactions in a translationally invariant system is

Ĥ1 =
1

2

∑

k,p,q

∑

α,β

∑

α′,β′

ûαβα′β′(q) c†k+q,α c
†
p−q,α′ cp,β′ ck,β . (9.4)

In systems with spin isotropy, we can write

ûαβα′β′(q) = ûS(q) δαβ δα′β′ + ûH(q) ταβ · τα′β′ , (9.5)

where ûS,H(q) are the scalar and Heisenberg exchange parts of the interaction, respectively.

We will focus here on the case where ûH = 0, in which case we may write

Ĥ1 =
1

2

∑

k,p,q

∑

σ,σ′

û(q) c†k+q,σ c
†
p−q,σ′ cp,σ′ ck,σ . (9.6)

When Ĥ1 = 0, the N-particle ground state is the filled Fermi sphere, |F 〉 =∏′
k,σ c

†
k,σ | 0 〉 , where

the prime denotes the restriction |k| 6 k
F

. Treating the interaction in first order perturbation
theory, we have the perturbed ground state |F′ 〉 is given by

|F′ 〉 = |F 〉+
∑

α

|α 〉 〈α | Ĥ1 |F 〉
E0

F − E0
α

+O(Ĥ2
1 ) . (9.7)

This results in contributions such as that depicted in Fig. 9.3. Proceeding to still higher orders
of perturbation theory, the perturbed ground state appears as a seething, bubbling ’soup’ of
particle-hole pairs.
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We can associate interacting and noninteracting eigenstates, however, through the process of
adiabatic evolution. Define

Ĥ(λ) = Ĥ0 + λĤ1 , (9.8)

so Ĥ(0) = Ĥ0 and Ĥ(1) = Ĥ0 + Ĥ1 = Ĥ. Suppose λ(t) is a monotonically increasing function
of t for t < 0, with λ(−∞) = 0 and λ(0) = 1. The unitary evolution operator is then

Û(0,−∞) = T exp

{
− i

~

0∫

−∞

dt Ĥ(t)

}

= T exp

{
− i

~

1∫

0

dλ

λ̇
Ĥ(λ)

}
= T exp

{
− i

~ǫ

1∫

0

dλ

λ
Ĥ(λ)

}
≡ Ûǫ ,

(9.9)

where in the final expression we take λ(t) = exp(−ǫ|t|). Thus, we can consider the adiabatic
map,

Ûǫ : |F 〉 → |F′
ǫ 〉 = Ûǫ |F 〉 (9.10)

where Ĥ |F′ 〉 = E ′ |F′ 〉 . We then consider the limit as ǫ → 0. One wrinkle here is that the
phase of |F′

ǫ 〉 in the limit ǫ → 0 is generally divergent, and to cancel it out we could instead
define the state

| F̃′ 〉 ≡ lim
ǫ→0

{(〈F |U †
ǫ |F 〉

〈F |Uǫ |F 〉

)1/2
Ûǫ |F 〉

}
, (9.11)

in which the phase cancels.

Suppose that rather starting with theN-particle state |F 〉, we start with the state c†k,σ |F 〉, where

|k| > k
F
. We then adiabatically evolve with Ûǫ as described above (including our nifty phase

divergence cancellation protocol). We then obtain a state |Ψk,σ 〉, about which we know three
things: (i) its total particle number is N + 1, (ii) its total momentum is ~k, and (iii) its total spin
polarization is σ. We may write

|Ψ′
k,σ 〉 = q†k,σ |F′ 〉 , (9.12)

where

q†k,σ = lim
ǫ→0

{
Uǫ c

†
k,σ U

†
ǫ

}

= Zk,σ c
†
k,σ +

∑

k1,k2

∑

σ1,σ2

A
σ1,σ2
k1,k2

c†k1,σ1c
†
k2,σ2

ck1+k2−k,σ1+σ2−σ + . . . .
(9.13)

Thus, the operator which when acting on the interacting ground state |F′ 〉 creates the excited state
|Ψk,σ 〉 is a complicated linear combination of products of creation and annihilation operators
where each term has fixed total particle number, momentum, and spin polarization. We say

that q†k,σ creates a quasiparticle of momentum ~k and spin polarization σ. The factor Zk,σ is
called the quasiparticle weight (typically independent of σ in unmagnetized systems) and tells
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Figure 9.4: A quasi-particle is to a real particle as a quasi-horse is to a real horse. From R. D.
Mattuck, A Guide to Feynman Diagrams in the Many-Body Problem (Dover, 1992).

us what fraction of the quasiparticle content is the single bare fermion c†k,σ . The rest is what
we in the many-body biz call dressing. The bare particle, or what’s left of it, is surrounded by a
cloud of particle-hole pairs in various combinations. See Fig. 9.4 for a vivid analogy.

Now imagine starting with a general Fock basis state,

∣∣Ψ0

[
{Nk,σ}

] 〉
=
∏

k,σ

(
c†k,σ
)N

k,σ
∣∣ 0
〉

, (9.14)

which is an eigenstate of Ĥ0 with eigenvalue E0
[
{Nk,σ}

]
=
∑

k,σNk,σ ε
0
k,σ . We then perform

our adiabatic evolution, which generates the interacting eigenstate
∣∣Ψ
[
{Nk,σ}

]〉
, which must be

an eigenstate of Ĥ = Ĥ0 + Ĥ1. Its associated eigenvalue E must then be a function, however
complicated, of the set {Nk,σ}, i.e. E = E

[
{Nk,σ}

]
. Since we can adiabatically evolve any many-

body eigenstate of Ĥ0, we can also evolve a density matrix of the form

̺0
[
{nk,σ}

]
=
⊗

k,σ

[(
1− nk,σ

)
| 0 〉〈 0 |+ nk,σ c

†
k,σ | 0 〉〈 0 | ck,σ

]
(9.15)

Here we may take the distribution {nk,σ} to be smooth as a function of k for each σ, and regard

the energy to be a function (or functional4) of the distributions {nk,σ}.
It is important to note that the principle of adiabatic continuity can easily fail, for example when
a phase boundary is crossed as λ evolves over the interval λ ∈ [0, 1]. This is indeed the case for
phases of matter such as charge and spin density waves, exciton condensates, superconductors,
etc.

4If we regard k as a continuous variable, then E[{nk,σ}] is a functional of the functions nk,↑ and nk,↓.
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9.2.2 First law of thermodynamics for Fermi liquids

We begin with the formula for the entropy of a distribution of fermions,

S[{nk,σ}] = −kB Tr (̺0 ln ̺0)

= −kB

∑

k,σ

{
nk,σ lnnk,σ + (1− nk,σ) ln(1− nk,σ)

}
.

(9.16)

Note that the entropy does not change under adiabatic evolution of the density matrix. The
first variation of the entropy is then

δS = −kB

∑

k,σ

ln

(
nk,σ

1− nk,σ

)
δnk,σ . (9.17)

The total particle number operator is N̂ =
∑

k,σ n̂k,σ, hence

N = Tr
(
̺0 N̂

)
=
∑

k,σ

nk,σ , δN =
∑

k,σ

δnk,σ . (9.18)

Note that the particle number, like the entropy, is preserved by adiabatic evolution.

Finally, the energy E, as discussed in the previous section, is a functional of the distribution,
which means that we may write

δE =
∑

k,σ

ε̃k,σ δnk,σ , ε̃k,σ =
δE

δnk,σ
(9.19)

is the first functional variation of E. The energy is not an adiabatic invariant. It is crucial to note
that ε̃k,σ is simultaneously a function of k and σ and a functional of the distribution. Indeed, we
shall write

δ2E

δnk,σ δnk′,σ′
=

δε̃k,σ
δnk′,σ′

≡ 1

V
f̃kσ,k′σ′ , (9.20)

where f̃kσ,k′σ′ has dimensions of energy × volume and is itself, in principle, a functional of the
distribution.

Writing the First Law as

T δS = δE − µ δN , (9.21)

and using the fact that the δnk,σ are all independent variations, we have

− kBT ln

(
nk,σ

1− nk,σ

)
= ε̃k,σ − µ , (9.22)
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for each (k, σ), which is equivalent to

nk,σ =
1

exp
(
ε̃
k,σ

−µ
kBT

)
+ 1

. (9.23)

This has the innocent appearance of the Fermi distribution familiar from elementary quantum
statistical physics, but it must be emphasized again that ε̃k,σ is a functional of the distribu-
tion, hence Eqn. 9.23 is in fact a complicated implicit, nonlinear equation for the individual
occupations nk,σ .

At T = 0, however, we have

nk,σ(T = 0) = Θ(µ− ε̃k,σ) ≡ n0
k,σ . (9.24)

It is now convenient to define the deviation

δnk,σ ≡ nk,σ − n0
k,σ , (9.25)

where n0
k,σ is the ground state distribution at T = 0. In an isotropic system with no external

magnetic field, we have n0
k,σ = Θ(k

F
− k). We may now write the energy E as a functional of

the δnk,σ, viz.

E = E0 +
∑

k,σ

εk,σ δnk,σ +
1

2V

∑

k,σ

∑

k′,σ′

fkσ,k′σ′ δnk,σ δnk′,σ′ + . . . . (9.26)

Though it may not be obvious at this stage, it turns out that this is as far as we need to go in
the expansion of the energy as a functional Taylor series in the δnk,σ. Note that

ε̃k,σ =
δE

δnk,σ
= εk,σ +

1

V

∑

k′,σ′

fkσ,k′σ′ δnk′,σ′ + . . . (9.27)

and thus

εk,σ =
δE

δnk,σ

∣∣∣∣∣
δn=0

. (9.28)

Similarly,

δ2E

δnk,σ δnk′,σ′

∣∣∣∣∣
δn=0

=
δε̃k,σ
δnk′,σ′

∣∣∣∣∣
δn=0

≡ 1

V
fkσ,k′σ′ . (9.29)

Compare with Eqn. 9.20. In isotropic systems, the Fermi velocity is given by

1

~

∂εk,σ
∂k

∣∣∣∣
k=k

F

= v
F
k̂ , (9.30)
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and we define the effective mass m∗ by the relation v
F
= ~k

F
/m∗. The Fermi energy is then given

by ε
F
= εk,σ

∣∣
k=k

F

, and the density of states at the Fermi energy is

g(ε
F
) =

∑

σ

∫
d3k

(2π)3
δ(ε

F
− εk,σ) =

m∗k
F

π2~2
, (9.31)

where, recall, k
F
= (3π2n)1/3.

In systems with spin isotropy, we may define the functions f s
k,k′ and f a

k,k′ as follows:

fk↑,k′↑ = fk↓,k′↓ ≡ f s
k,k′ + f a

k,k′

fk↑,k′↓ = fk↓,k′↑ ≡ f s
k,k′ − f a

k,k′ .
(9.32)

Equivalently,
fkσ,k′σ′ = f s

k,k′ + σσ′f a
k,k′ . (9.33)

Recall that fkσ,k′σ′ has dimensions of energy × volume. Thus we may define the dimensionless
function Fkσ,k′σ′ by multiplying fkσ,k′σ′ by the density of states g(ε

F
):

Fkσ,k′σ′ ≡ g(ε
F
) fkσ,k′σ′ , F s,a

k,k′ ≡ g(ε
F
) f s,a

k,k′ , (9.34)

with Fkσ,k′σ′ = F s
k,k′ + σσ′F a

k,k′ . When k and k′ both lie on the Fermi surface, we may write

F s,a

k
F
k̂,k

F
k̂′
≡ F s,a(ϑ

k̂,k̂′
) , (9.35)

where k̂ · k̂′ = cosϑ
k̂,k̂′

. Furthermore, we may expand F s,a(ϑ) in terms of the Legendre polyno-

mials, viz.

F s,a(ϑ) =
∞∑

n=0

F s,a
n Pn(cosϑ) . (9.36)

Recall the generating function for the Legendre polynomials,

(1− 2xt + t2)−1/2 =

∞∑

n=0

tn Pn(x) , (9.37)

as well as the recurrence relation

Pn+1(x) =
2n+ 1

n+ 1
xPn(x)−

n

n+ 1
Pn−1(x) , (9.38)

and the orthogonality relation

1∫

−1

dx Pm(x)Pn(x) =
2

2n+ 1
δmn . (9.39)

Therefore if F (ϑ) =
∑

ℓ Fℓ Pℓ(ϑ) then
∫

dΩ

4π
F (ϑ) Pn(cosϑ) =

Fn
2n+ 1

, (9.40)

where dΩ is the differential solid angle.
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parameter p = 0 bar p = 27 bar
m∗/m 2.80 5.17
F s
0 9.28 68.17
F s
1 5.39 12.79

F a
0 −0.696 −0.760

(F a
1 )

∗ −0.54 −1.00
(F a

1 )
∗ −0.46 −0.27

vF (cm/sec) 5.90× 103 3.57× 103

c1 (cm/sec) 1.829× 104 3.893× 104

Table 9.1: Fermi liquid parameters for 3HeN (from Baym and Pethick, p. 117). Two estimates
for the parameter F a

1 are given, based on two different methods.

9.2.3 Low temperature equilibrium properties

Entropy and specific heat

From the first law, we have

T δS =
∑

k,σ

(ε̃k,σ − µ) δnk,σ

=
∑

k,σ

(ε̃k,σ − µ)
{
∂nk,σ
∂ε̃k,σ

δε̃k,σ +
∂nk,σ
∂µ

δµ+
∂nk,σ
∂T

δT

}

=
∑

k,σ

(ε̃k,σ − µ)
(
∂nk,σ
∂ε̃k,σ

){(
δε̃k,σ − δµ

)
−
(
ε̃k,σ − µ

T

)
δT

}
.

(9.41)

It turns out that the contribution of the (δε̃k,σ − δµ) term inside the curly brackets results in a
contribution of order T 3 lnT , which we shall accept on faith for the time being5. Thus, we are
left with

δS = −
∑

k,σ

(
∂nk,σ
∂ε̃k,σ

)
(ε̃k,σ − µ)2

δT

T 2
= −V g(ε

F
)
δT

T 2

∞∫

0

dε
∂n

∂ε
(ε− µ)2

= −V g(ε
F
) k2

B
δT

∞∫

−∞

dx
∂

∂x

(
1

exp(x) + 1

)
x2 =

π2

3
V g(ε

F
) k2

B
δT .

(9.42)

We conclude

S(T, V,N) = V
π2

3
g(ε

F
) k2B T (9.43)

5For a justification, see §1.4 of Baym and Pethick.
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and

cV (T, n) =
T

V

(
∂S

∂T

)

V,N

=
π2

3
g(ε

F
) k2B T . (9.44)

The difference between this result and that of the free fermi gas is the appearance of the effective
massm∗ in the density of states g(ε

F
). If c0V (T ) is defined to be the low-temperature specific heat

in a free Fermi gas of particles of mass m at the same density n, then

cV (T )

c0V (T )
=
m∗

m
. (9.45)

From δF
∣∣
V,N

= −S δT , we integrate and obtain the temperature dependence of the ltz free
energy,

F (T, V,N) = E0(V,N) + V
π2

6
g(ε

F
) (kBT )

2 . (9.46)

Thus the chemical potential is

µ(n, T ) = − ∂F
∂N

∣∣∣∣
T,V

= −
(
∂(F/V )

∂(N/V )

)

T

= µ(n, T = 0) +
π2

6
(k

B
T )2

∂g(ε
F
)

∂n

= µ(n, 0)− π2

4
k

B

(
1

3
+
∂ lnm∗

∂ lnn

)
T 2

TF

,

(9.47)

where kBTF ≡ ~
2k2F/2m

∗.

Compressibility and sound velocity

Consider a swollen Fermi surface of radius k
F
+ dk

F
, as depicted in Fig. 9.5. The change in the

chemical potential is then given by

dµ = ε̃k
F
+dk

F
− ε̃k

F
= dε̃k

F
, (9.48)

where we assume no spin dependence in the dispersion. Thus,

dµ = dεk
F
+

1

V

∑

k′,σ′

fkFσ,k′σ′ δnk′,σ′ = ~v
F
dk

F

{
1 +

∫
d3k′

(2π)3

∑

σ′

fkFσ.k′σ′ δ(εk′ − µ)
}

= ~v
F
dk

F

{
1 + 2

∫
dΩ

4π
f s(ϑ)

∫
d3k′

(2π)3
δ(εk′ − µ)

}
= ~v

F
dk

F

{
1 + F s

0

}
.

(9.49)
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Figure 9.5: δnkσ for a swollen Fermi surface.

We can now write

κ = n−2 ∂n

∂µ
= n−2 ∂n

∂k
F

∂k
F

∂µ

= n−2 k
2
F

π2

1

~v
F
(1 + F s

0)
=
n−2 g(ε

F
)

1 + F s
0

=
9π2m∗

~2k5
F
(1 + F s

0)
.

(9.50)

Thus, if κ0 = n−2 g0(εF) is the compressibility of the free Fermi gas with mass m at the same
density n, we have

κ

κ0
=
m∗/m

1 + F s
0

. (9.51)

To derive the connection with sound propagation, we examine the inviscid, weak flow limit
of the Navier-Stokes equations, yielding ∂t(̺u) = −∇p, where ̺ = mn is the density, with m
the bare mass and n the number density, and p the pressure. Local thermodynamics then gives
∇p = (∂p/∂̺) ∇̺ = (1/̺κ)∇̺ . Taking the divergence,

− 1

κ
∇ ·

(1
̺
∇̺

)
=

∂

∂t
∇ · (̺u) = −∂

2̺

∂t2
, (9.52)

where in the last equality we have invoked the continuity equation ∂t̺ + ∇ · (̺u) = 0 . Since
∇̺ is presumed to be small, we arrive at the Helmholtz equation,

1

¯̺κ
∇2̺ =

∂2̺

∂t2
, (9.53)

with wave propagation speed s = 1/
√
¯̺κ, where ¯̺ is the average density.

Uniform magnetic susceptibility

In the presence of an external magnetic field B, there is an additional Zeeman contribution to

the Hamiltonian, ĤZ = −µ0B
∑

k,σ σnk,σ. This causes the ↑ Fermi surface to expand and the ↓
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Figure 9.6: δnkσ in the presence of a magnetic field.

Fermi surface to contract. Thus dk
F↑ = −dkF↓ ≡ dk

F
and δnk,σ = σ δ(k

F
− k) dk

F
. The situation is

depicted in Fig. 9.6. If particle number is conserved, then the chemical potential, which is the
same for each spin species, is unchanged to lowest order in B. Thus,

0 = dε̃k
F
,σ = −σµ0 dB + dεk

F
,σ +

1

V

∑

k′,σ′

fkFσ,k′σ′ δnk′,σ′

= −σµ0 dB + ~v
F
dk

F

{
σ +

∫
d3k′

(2π)3
fkFσ,k′σ′ σ

′ δ(εk′ − µ)
}

= −σµ0 dB + σ~v
F
dk

F

{
1 + g(ε

F
)

∫
dΩ

4π
f a(ϑ)

}

= −σµ0 dB + σ~v
F
(1 + F a

0 ) dkF
.

(9.54)

Note that we have invoked the fact that
∑

σ′ σ
′fkσ,k′σ′ = 2σf a

k,k′ . We conclude that

∂k
F

∂B
=

µ0

~v
F
(1 + F a

0 )
. (9.55)

The magnetic susceptibility is then

χ =
1

V

(
∂M

∂B

)

N,V,B=0

= µ0

(
∂n↑
∂B
−
∂n↓
∂B

)
= µ0

(
∂n↑
∂k

F↑
+
∂n↓
∂k

F↓

)(
∂k

F

∂B

)

B=0

=
µ2
0 g(εF)

1 + F a
0

, (9.56)
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and therefore
χ

χ0
=

m∗/m

1 + F a
0

, (9.57)

where χ0 = µ2
0 g0(εF)

Galilean invariance

Consider now a Galilean transformation to an inertial primed frame of reference moving at
constant velocity u with respect to our unprimed inertial laboratory frame. The Hamiltonian
in the primed frame is

Ĥ ′ =

N∑

i=1

(pi −mu)2
2m

+ Ĥ1

= Ĥ − u · P + 1
2
Mu

2 ,

(9.58)

where P =
∑

i pi is the total momentum and M = Nm is the total mass. Let’s now add a
particle of momentum p = ~k and spin polarization σ in the lab frame at T = 0, where its
energy is then εk,σ. In the primed frame, however, the added particle has momentum ~k −mu
and energy ε̃k,σ = εk,σ − ~k · u+ 1

2
mu2. Thus, ε̃′k−~−1mu,σ = εk,σ − ~k · u+ 1

2
mu2, or, equivalently,

ε̃′k,σ = εk+~−1mu,σ − ~k · u− 1
2
mu2 . (9.59)

Note though that ε̃′k,σ = ε̃′k,σ[{n′
k,σ}], with

n′
k,σ = n0

k+~−1mu,σ = n0
k,σ +

mu

~
·∇k n

0
k,σ

= n0
k −mvF

u · k̂ δ(εk,σ − µ) .
(9.60)

This relation is illustrated in Fig. 9.7. Thus, we have

ε̃′k,σ = εk,σ +
1

V

∑

k′,σ′

fkσ,k′σ′ δn
′
k′σ′

= εk,σ −mvF

∑

σ′

∫
d3k′

(2π)3
fkσ,k′σ′ u · k̂′ δ(εk′,σ′ − µ)

= εk,σ −mvF
g(ε

F
) u ·
∫
dk̂′

4π
k̂
′ f s
k,k′F

(9.61)

We are only interested in the case where |k| ≈ k
F

, and thus we may write

ε̃′kF,σ = εkF,σ −mvF
u ·
∫
dk̂′

4π
k̂
′ F s

kF,k
′
F

= εkF,σ −mvF
u · k̂

∫
dk̂′

4π
k̂ · k̂′ F s

kF,k
′
F

= εkF,σ −
1
3
F s
1 mvF

u · k̂ .

(9.62)
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Figure 9.7: Distribution of quasiparticle occupancies in a frame moving with velocity u.

Note that we have used above the fact that the integral

∫
dk̂′

4π
k̂
′ F s

kF,k
′
F
= Ck̂ (9.63)

must by rotational isotropy lie along k̂. Taking the dot product with k̂ then gives

C =

∫
dk̂′

4π
k̂ · k̂′ F s(ϑ

k̂,k̂′
) = 1

3
F s
1 . (9.64)

Putting this all together, we have

ε̃′kF,σ = εkF,σ −
1
3
F s
1 mvF

u · k̂

= εkF+~−1mu,σ − ~k · u− 1
2
mu2

= εkF,σ +
mu

~
·∇k εk,σ

∣∣
k=kF

− ~k
F
u · k̂ − 1

2
mu2

= εkF,σ + (m−m∗)v
F
u · k̂ − 1

2
mu2 ,

(9.65)

Thus, to lowest order in u, we have

(m−m∗) = −1
3
F s
1 m ⇒ m∗

m
= 1 + 1

3
F s
1 . (9.66)
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This result is connected with the following point. The total particle current is given by

J =
∑

k,σ

1

~

∂ε̃k,σ
∂k

nk,σ , (9.67)

where it is ε̃k,σ and not εk,σ which appears.

We again stress that this relationship between m∗/m and F s
1 is valid only in Galilean invari-

ant systems, such as liquid 3HeN. The imposition of a crystalline lattice potential breaks the
Galilean symmetry and invalidates the above result.

9.2.4 Thermodynamic stability at T = 0

Consider a T = 0 distortion of the Fermi surface. The Landau free energy Ω = E − TS + µN
must be a minimum with respect to all possible such distortions. We adopt the parameteriza-
tion

nk,σ = Θ(k
F
(k̂, σ)− k) = Θ(k

F
+ δk

F
(k̂, σ)− k)

= Θ(k
F
− k) + δ(k

F
− k) δk

F
(k̂, σ) + 1

2
δ′(k

F
− k)

[
δk

F
(k̂, σ)

]2
+ . . . ,

(9.68)

where δk
F
(k̂, σ) is the local FS distortion in the direction k̂ for spin polarization σ. We now

evaluate Ω(T = 0) = E − µN to second order in δk
F
:

Ω = Ω0 +
∑

k,σ

(εk,σ − µ) δnk,σ +
1

2V

∑

k,σ

∑

k′,σ′

fkσ,k′σ′ δnk,σ δnk′,σ′

= Ω0 +
∑

k,σ

(εk,σ − µ)
{
δ(k

F
− k) δk

F
(k̂, σ) + 1

2
δ′(k

F
− k)

[
δk

F
(k̂, σ)

]2}

+
1

2V

∑

k,σ

∑

k′,σ′

fkσ,k′σ′ δ(kF
− k) δ(k

F
− k′) δk

F
(k̂, σ) δk

F
(k̂′, σ′) ,

(9.69)

which entails

Ω −Ω0

V
=
∑

σ

∫
d3k

(2π)3

{
− ∂

∂k
δ(k

F
− k)

}[
δk

F
(k̂, σ)

]2

+
k4

F

8π4

∑

σ,σ′

∫
dk̂

4π

∫
dk̂′

4π
fσ,σ′(ϑk̂,k̂′) δkF

(k̂, σ) δk
F
(k̂′, σ′)

=
~2k3

F

4π2m∗

{
∑

σ

∫
dk̂

4π

[
δk

F
(k̂, σ)

]2

+
1

2

∑

σ,σ′

∫
dk̂

4π

∫
dk̂′

4π
Fσ,σ′(ϑk̂,k̂′) δkF

(k̂, σ) δk
F
(k̂′, σ′)

}
.

(9.70)
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Recall now that Fkσ,k′σ′ = F s
k,k′ + σσ′F a

k,k′ , so if we define the symmetric and antisymmetric
components of the FS distortion

δks
F
(k̂) ≡

∑

σ

δk
F
(k̂, σ) , δka

F
(k̂) ≡

∑

σ

σ δk
F
(k̂, σ) , (9.71)

then

Ω −Ω0

V
=

~2k3
F

8π2m∗

∑

ν=s,a

{∫
dk̂

4π

[
δkνF(k̂)

]2
+

∫
dk̂

4π

∫
dk̂′

4π
F ν(ϑ

k̂,k̂′
) δkνF(k̂) δk

ν
F(k̂

′)

}
. (9.72)

Having resolved the free energy into contributions from the spin symmetric and antisymmetric
distortions of the FS, we now further resolve it into angular momentum channels, writing

δkν
F
(k̂) =

∞∑

ℓ=0

ℓ∑

m=−ℓ
Aνℓ,m Yℓ,m(k̂) , (9.73)

where Aνℓ,−m = Aν∗ℓ,m since δkνF(k̂) is real. We also have

F ν(ϑ
k̂,k̂′

) =
∞∑

ℓ=0

F ν
ℓ Pℓ(ϑk̂,k̂′) =

∞∑

ℓ=0

ℓ∑

m=−ℓ

4π

2ℓ+ 1
F ν
ℓ Y

∗
ℓ,m(k̂) Yℓ,m(k̂

′) , (9.74)

and invoking the orthonormality of the spherical harmonics,
∫
dk̂ Y ∗

ℓ,m(k̂) Yℓ′m′(k̂) = δℓℓ′ δmm′ , (9.75)

we obtain the pleasingly compact expression

Ω −Ω0

V
=

~2k3
F

32 π3m∗

∑

ν=s,a

(
1 +

F ν
ℓ

2ℓ+ 1

)
|Aνℓ,m|2 . (9.76)

The stability criterion in each angular momentum channel is then

F ν
ℓ > −(2ℓ+ 1) , (9.77)

where ν ∈ {s, a}.
What happens when these stability criteria are violated? According to Eqn. 9.76, the free energy
can be made arbitrarily negative by increasing the amplitude(s) Aνℓ,m of any FS distortion for
which F ν

ℓ < −(2ℓ + 1). This is unphysical, and an artifact of going only to order (δkν
F
)2 in the

expansion of the Landau free energy. Suppose though we add a fourth order correction to Ω of
the form

∆Ω

V
=

~2k3
F

4πm∗

∑

ν=s,a

λν

(∫
dk̂

4π

[
δkν

F
(k̂)
]2
)2

=
~2k3

F

64π3m∗

∑

ν=s,a

λν

(
∑

ℓ,m

|Aνℓ,m|2
)2

(9.78)
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so that

Ω +∆Ω −Ω0

V
=

~2k3
F

32 π3m∗

∑

ν=s,a

{
∑

ℓ,m

(
1 +

F ν
ℓ

2ℓ+ 1

)
|Aνℓ,m|2 + 1

2
λν

(∑

ℓ,m

|Aνℓ,m|2
)2}

. (9.79)

Such a term lies beyond the expansion for the internal energy of a Fermi liquid that we have
considered thus far. To minimize the free energy, we set the variation with respect to each Aν∗ℓ,m
to zero. For stable channels where F ν

ℓ > −(2ℓ + 1), we then find Aνℓ,m = 0. But for unstable
channels, we obtain

ℓ∑

m=−ℓ
|Aνℓ,m|2 = −

1

λν

(
1 +

F ν
ℓ

2ℓ+ 1

)
> 0 . (9.80)

Thus, the weight of the distortion in each unstable (ν, ℓ) sector is distributed over all (2ℓ + 1)
of the coefficients Aνℓ,m such that the sum of their squares is fixed as specified above. Thus, an
ℓ = 1 instability results in a dipolar distortion of the FS, while an ℓ = 2 instability results in a
quadrupolar distortion of the FS, etc.

9.3 Collective Dynamics of the Fermi Surface

9.3.1 Landau-Boltzmann equation

We first review some basic features of the Boltzmann equation, which was discussed earlier
in §5.6. Consider the classical dynamical system governing flow on an N-dimensional phase
space Γ , where X = (X1, . . . , XN) ∈ Γ is a point in phase space. The dynamical system is

dX

dt
= V (X) (9.81)

where each V µ = V µ(X1, . . . , XN)6. Now consider a distribution function f(X, t). The continu-
ity equation says

∂f

∂t
+∇·(Vf) = 0 , (9.82)

where ∇ =
(

∂
∂X1 , . . . ,

∂
∂XN

)
. Assuming phase flow is incompressible, ∇·V = 0 and the continuity

equation takes the form
Df

Dt
=
∂f

∂t
+ V ·∇f = 0 , (9.83)

where Df
Dt

= d
dt
f(X(t), t), called the convective derivative, is the total derivative of the distribution

in the frame comoving with the flow.

6This autonomous system can be extended to a time-dependent one, i.e. Ẋ = V (X, t), which is a dynamical
system in one higher (N + 1) dimensions, taking XN+1 = t and V N+1 = 1.
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For our application, phase space has dimension N = 6, with X = (r, k). We also add to the
RHS a source/sink term corresponding to collisions between particles. Typically these are local
in position r but nonlocal in the wavevector k. An example is shown in Fig. 9.3, where a col-
lision results in an instantaneous wavevector q transfer between two interacting particles. We
also must account for spin, and the most straightforward way to do this is to specify indepen-
dent distributions for each spin polarization. Writing f(r, k, σ, t) = nk,σ(r, t), our Boltzmann
equation takes the form

∂nk,σ(r, t)

∂t
+ 〈ṙ〉σ ·

∂nk,σ(r, t)

∂r
+ 〈k̇〉σ ·

∂nk,σ(r, t)

∂k
= I[n] , (9.84)

where I[n] is the collision term. We now invoke Landau’s Fermi liquid theory, but on a local
scale, and write the energy density E(r, t) as a functional of the distribution δnk,σ(r, t), viz.

E(r, t) = E0 +
∑

σ

∫
d3k

(2π)3
εk,σ δnk,σ(r, t) +

1

2

∑

σ,σ′

∫
d3k

(2π)3

∫
d3k′

(2π)3
fkσ,k′σ′ δnk,σ(r, t) δnk′,σ′(r, t) ,

(9.85)
where δnk,σ(r, t) is dimensionless and indicates the local number density of fermions of wavevec-
tor k and spin polarization σ in units of the bulk number density n. Note that the above expres-
sion is local in position space. We then have the Landau-Boltzmann equation7,

∂nk,σ(r, t)

∂t
+

〈ṙ〉σ︷ ︸︸ ︷
1

~

∂ε̃k,σ(r, t)

∂k
·∂nk,σ(r, t)

∂r
−

−〈k̇〉σ︷ ︸︸ ︷
1

~

∂ε̃k,σ(r, t)

∂r
·∂nk,σ(r, t)

∂k
= I[n] , (9.86)

where

ε̃k,σ(r, t) = Vσ(r, t) + εk,σ(r, t) +
∑

σ′

∫
d3k′

(2π)3
fkσ,k′σ′ δnk′,σ′(r, t) . (9.87)

Here we have included Vσ(r, t), the external local potential for particles at position r at time t.
Note that

∂

∂r
ε̃k,σ(r, t) =

∂

∂r
Vσ(r, t) +

∑

σ′

∫
d3k′

(2π)3
fkσ,k′σ′

∂

∂r
δnk′,σ′(r, t) (9.88)

Now we write linearize, writing n = n0 + δn, obtaining

∂ δnk,σ
∂t

+
1

~

∂εk,σ
∂k
·
∂ δnk,σ
∂r

− 1

~

∂n0
k,σ

∂k
·
∂ε̃k,σ
∂r

= I[n0 + δn] . (9.89)

If Vσ(r, t) = δV̂σ e
i(q·r−ωt), then the solution for the distribution in the linearized theory will be

δnk,σ(r, t) = δn̂k,σ e
i(q·r−ωt), with

ω δn̂k,σ−q ·vk,σ δn̂k,σ+
(
∂n0

k,σ

∂εk,σ

)
q ·vk,σ

[
δV̂σ+

∑

σ′

∫
d3k′

(2π)3
fkσ,k′σ′ δn̂k′,σ′

]
= −

[
L δn̂

]
k,σ

, (9.90)

7We assume no curvatureΩ(k) contributing to the velocity ṙ.
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where L is the linearized collision operator. Note that this is a linear integral (or integrodifferen-

tial, depending on the form of L) equation for δn̂k,σ in terms of δV̂σ.

9.3.2 Zero sound : free FS oscillations in the collisionless limit

We now consider the case of free oscillations of the Fermi surface, i.e. the case Vσ(r, t) = 0, in
the collisionless limit (L = 0). We are left with

(ω − q · vk,σ) δn̂k,σ + q · vk,σ
(
∂n0

k,σ

∂εk,σ

)∑

σ′

∫
d3k′

(2π)3
fkσ,k′σ′ δn̂k′,σ′ = 0 . (9.91)

This is an eigenvalue equation for ω(q), where the eigenvector is the distribution δn̂k,σ. If we
write

δnk,σ(r, t) = ~v
F
δ(ε

F
− εk,σ) δkF

(k̂, σ) ei(q·r−ωt) , (9.92)

then we arrive at

(ω − q · vkF,σ) δkF
(k̂, σ)− q · vkF,σ

∑

σ′

∫
d3k′

(2π)3
δ(ε

F
− εk′,σ′) fkFσ,k′Fσ′ δkF

(k̂′, σ′) = 0 . (9.93)

We now take vk,σ = v
F
k̂, independent of σ. Thus,

(λ− q̂ · k̂) δk
F
(k̂, σ)− 1

2
q̂ · k̂

∫
dk̂′

4π
Fσ,σ′(ϑk̂,k̂′) δkF

(k̂′, σ′) = 0 , (9.94)

where λ ≡ ω/v
F
q . This is immediately resolved into symmetric and antisymmetric channels

ν ∈ {s, a}, viz.

(q̂ · k̂ − λ) δkνF(k̂) + q̂ · k̂
∫
dk̂′

4π
F ν(ϑ

k̂,k̂′
) δkνF(k̂

′) = 0 (9.95)

Thus,

δkν
F
(k̂) =

q̂ · k̂
λ− q̂ · k̂

∫
dk̂′

4π
F ν(ϑ

k̂,k̂′
) δkν

F
(k̂′) , (9.96)

and resolving into angular momentum channels as before, writing

F ν(ϑ
k̂,k̂′

) =
∑

ℓ,m

4π F ν
ℓ

2ℓ+ 1
Yℓ,m(k̂) Y

∗
ℓ,m(k̂

′) , δkν
F
(k̂) =

∞∑

ℓ=0

ℓ∑

m=−ℓ
Aνℓ,m Yℓ,m(k̂) , (9.97)

multiplying the above equation by Y ∗
ℓ,m(k̂) and then integrating over the unit k̂ sphere, we

obtain

Aνℓ,m =
∑

ℓ′,m′

F ν
ℓ′

2ℓ′ + 1

[∫
dk̂

q̂ · k̂
λ− q̂ · k̂ Y

∗
ℓ,m(k̂) Yℓ′,m′(k̂)

]
Aνℓ′,m′ (9.98)

The oscillations of the FS are called zero sound.
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Simple model for zero sound

Eqn. 9.98 defines an eigenvalue equation for the infinite length vectorA = {A0,0, A1,−1, A1,0, . . .}.
So simplify matters, consider the case where F ν

ℓ = F ν
0 δℓ,0. We drop the ν superscript for clarity.

Eqn. 9.98 then reduces to

1 = F0

∫
dk̂

4π

q̂ · k̂
λ− q̂ · k̂ = F0

[
λ

2
ln

(
λ+ 1

λ− 1

)
− 1

]
, (9.99)

which is equivalent to (
1 +

1

F0

)
λ−1 = tanh−1(λ−1) . (9.100)

This is a transcendental equation for λ(F0). It may be solved graphically by plotting the LHS
and RHS versus the quantity u ≡ λ−1. One finds that a nontrivial solution with real λ exists
provided F0 > 0. For F0 ∈ [−1, 0] , a complex solution exists, corresponding to a damped
oscillation. We may also solve explicitly in two limits:

F0 → 0 ⇒ λ→ 1 ⇒ λ

2
ln

(
λ+ 1

λ− 1

)
=

1

2
ln

(
2

λ− 1

)
+ . . . ⇒ λ ≃ 1 + 2 e−2/F0

F0 →∞ ⇒ λ→∞ ⇒ λ

2
ln

(
λ+ 1

λ− 1

)
= 1 +

1

3λ2
+ . . . ⇒ λ ≃

√
F0

3
(9.101)

The ratio of zero sound to first sound velocities is thus

c0
c1

=

√
3λ(F s

0)√
(1 + F s

0)(1 +
1
3
F s
1)

. (9.102)

Another zero sound mode

Consider next the truncated Landau interaction function

F (ϑ
k̂,k̂′

) = F0 + F1 k̂ · k̂′

= F0 + F1 cos θ cos θ′ + 1
2
F1 sin θ sin θ′

(
eiφ e−iφ

′

+ e−iφeiφ
′
)

.
(9.103)

We posit a Fermi surface distortion of the form δk
F
(k̂) = u(θ) eiφ, resulting in the eigenvalue

equation

u(θ) =
F1

4

sin θ cos θ

λ− cos θ

π∫

0

dθ′ sin2θ′ u(θ′) . (9.104)
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Multiply by sin θ and integrate to obtain

4

F1

=

1∫

−1

dx
x− x3
λ− x = −λ(λ2 − 1) ln

(
λ+ 1

λ− 1

)
+ 2λ2 − 4

3
, (9.105)

where x = cos θ. Note that at the limiting value λ = 0 the integral returns a value of 2
3
, corre-

sponding to F1 = 6. In the opposite limit λ → ∞, the RHS takes the value 2/3λ2. Thus, there
should be a solution for F1 ∈ [6,∞]. According to Tab. 9.1, in 3HeN at high pressure one indeed
has F s

1 > 6, yet so far as I am aware this mode has yet to be observed.

Separable kernel

Finally, consider the case of the separable kernel,

F (k̂, k̂′) = Lw(k̂)w(k̂′) , (9.106)

resulting in the eigenvalue equation

δk
F
(k̂) =

L q̂ · k̂w(k̂)
λ− q̂ · k̂

∫
dk̂′

4π
w(k̂′) δk

F
(k̂′) . (9.107)

Multiplying by w(k̂) and integrating, we obtain
∫
dk̂

4π

(
q̂ · k̂

λ− q̂ · k̂

)
w2(k̂) = L−1 . (9.108)

Note that λ = λ(q̂) will in general be a function of direction if the function w(k̂) is not isotropic.

9.4 Dynamic Response of the Fermi Liquid

We now restore the driving term V (r, t) = δV̂ (q, ω) ei(q·r−ωt), taken to be spin-independent, and
solve the inhomogeneous linear equation Eqn. 9.89 at T = 0 for δn̂k,σ(q, ω) in the collisionless
limit. The Fourier components of the bulk density are given by

δn̂(q, ω) =

∫
d3k

(2π)3
δn̂k,σ(q, ω) ≡ −χ(q, ω) δV̂ (q, ω) , (9.109)

where χ(q, ω) is the dynamical density response function, which we first met in chapter 9.
We work in the symmetric channel and suppress the symmetry index ν = s. The linearized
collisionless Landau-Boltzmann equation then takes the form

δk
F
(k̂) =

q̂ · k̂
λ− q̂ · k̂

{∫
dk̂′

4π
F (ϑ

k̂,k̂′
) δk

F
(k̂′) +

δV̂ (q̂, ω)

~v
F

}
, (9.110)
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with λ = ω/qv
F

as before. The density response is related to the Fermi surface distortion ac-
cording to

δn̂(q, ω) =
k2

F

π2

∫
dk̂

4π
δk

F
(k̂) . (9.111)

Note that δk
F
(k̂) is implicity a function of q and ω.

The difficulty in solving the above equation is that the different angular momentum channels
don’t decouple. However, in the simplified model where the interaction function F (ϑ) = F0 is
isotropic, we can make progress. We then have

δn̂(q, ω) =

≡ −G(λ)︷ ︸︸ ︷∫
dk̂

4π

(
q̂ · k̂

λ− q̂ · k̂

) {
F0 δn̂(q̂, ω) +

k2
F

π2

δV̂ (q̂, ω)

~v
F

}
(9.112)

where

G(λ) = −
∫
dk̂

4π

(
q̂ · k̂

λ− q̂ · k̂

)
= 1− λ

2
ln

(
λ+ 1

λ− 1

)
. (9.113)

Thus we find

χ(q, ω) =
g(ε

F
)G(ω/v

F
|q|)

1 + F0G(ω/vF
|q|) . (9.114)

Note that the pole of the response function lies at the natural frequency of the FL oscillations,
i.e. when 1 + F0G(ω/qvF

) = 0 .
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Chapter 10

Linear Response of Quantum Systems

10.1 Response and Resonance

10.1.1 Forced damped oscillator

Consider a damped harmonic oscillator subjected to a time-dependent forcing:

ẍ+ 2γẋ+ ω2
0x = f(t) , (10.1)

where γ is the damping rate (γ > 0) and ω0 is the natural frequency in the absence of damping1.
We adopt the following convention for the Fourier transform of a function H(t):

H(t) =

∞∫

−∞

dω

2π
Ĥ(ω) e−iωt , Ĥ(ω) =

∞∫

−∞

dtH(t) e+iωt . (10.2)

Note that if H(t) is a real function, then Ĥ(−ω) = Ĥ∗(ω). In Fourier space, then, eqn. (10.1)
becomes

(ω2
0 − 2iγω − ω2) x̂(ω) = f̂(ω) , (10.3)

with the solution

x̂(ω) =
f̂(ω)

ω2
0 − 2iγω − ω2

≡ χ̂(ω) f̂(ω) (10.4)

where χ̂(ω) is the susceptibility function:

χ̂(ω) =
1

ω2
0 − 2iγω − ω2

=
−1

(ω − ω+)(ω − ω−)
, (10.5)

1Note that f(t) has dimensions of acceleration.

435
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with

ω± = −iγ ±
√
ω2
0 − γ2 . (10.6)

The complete solution to (10.1) is then

x(t) =

∞∫

−∞

dω

2π

f̂(ω) e−iωt

ω2
0 − 2iγω − ω2

+ xh(t) (10.7)

where xh(t) is the homogeneous solution,

xh(t) = A+e
−iω+t + A−e

−iω−t . (10.8)

Since Im (ω±) < 0, xh(t) is a transient which decays in time. The coefficients A± may be chosen
to satisfy initial conditions on x(0) and ẋ(0), but the system ‘loses its memory’ of these initial
conditions after a finite time, and in steady state all that is left is the inhomogeneous piece,
which is completely determined by the forcing.

In the time domain, we can write

x(t) =

∞∫

−∞

dt′ χ(t− t′) f(t′) , χ(s) ≡
∞∫

−∞

dω

2π
χ̂(ω) e−iωs , (10.9)

which brings us to a very important and sensible result:

Claim: The response is causal, i.e. χ(t− t′) = 0 when t < t′, provided that χ̂(ω) is analytic in the
upper half plane of the variable ω.

Proof: Consider eqn. (10.9). Of χ̂(ω) is analytic in the upper half plane, then closing in the
UHP we obtain χ(s < 0) = 0.

For our example (10.5), we close in the LHP for s > 0 and obtain

χ(s > 0) = (−2πi)
∑

ω ∈ LHP

Res

{
1

2π
χ̂(ω) e−iωs

}

=
ie−iω+s

ω+ − ω−
+

ie−iω−s

ω− − ω+

,

(10.10)

i.e.

χ(s) =





e−γs√
ω2
0−γ2

sin
(√

ω2
0 − γ2

)
Θ(s) if ω2

0 > γ2

e−γs√
γ2−ω2

0

sinh
(√

γ2 − ω2
0

)
Θ(s) if ω2

0 < γ2 ,
(10.11)

where Θ(s) is the step function: Θ(s > 0) = 1, Θ(s < 0) = 0. Causality simply means that
events occuring after the time t cannot influence the state of the system at t. Note that, in
general, χ(t) describes the time-dependent response to a δ-function impulse at t = 0.
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10.1.2 Energy dissipation

How much work is done by the force f(t)? Since the power applied is P (t) = f(t) ẋ(t), we have

P (t) = f(t)
d

dt

∞∫

−∞

dt′
∞∫

−∞

dω

2π
χ̂(ω) e−iω(t−t

′)f(t′)

= f(t)

∞∫

−∞

dt′
∞∫

−∞

dω

2π
(−iω) χ̂(ω) e−iω(t−t′)f(t′)

∆E =

∞∫

−∞

dt P (t) =

∞∫

−∞

dω

2π
(−iω) χ̂(ω)

∣∣f̂(ω)
∣∣2 .

(10.12)

Separating χ̂(ω) into real and imaginary parts,

χ̂(ω) = χ̂′(ω) + iχ̂′′(ω) , (10.13)

we find for our example

χ̂′(ω) =
ω2
0 − ω2

(ω2
0 − ω2)2 + 4γ2ω2

= +χ̂′(−ω)

χ̂′′(ω) =
2γω

(ω2
0 − ω2)2 + 4γ2ω2

= −χ̂′′(−ω) .

(10.14)

The energy dissipated may now be written

∆E =

∞∫

−∞

dω

2π
ω χ̂′′(ω)

∣∣f̂(ω)
∣∣2 . (10.15)

The even function χ̂′(ω) is called the reactive part of the susceptibility; the odd function χ̂′′(ω)
is the dissipative part. When experimentalists measure a lineshape, they usually are referring to
features in ω χ̂′′(ω), which describes the absorption rate as a function of driving frequency.

10.1.3 Kramers-Kronig relations

Let χ̂(z) be a complex function of the complex variable z which is analytic in the upper half
plane. Then the following integral must vanish,

∮

C

dz

2πi

χ̂(z)

z − ζ = 0 , (10.16)



438 CHAPTER 10. LINEAR RESPONSE OF QUANTUM SYSTEMS

Figure 10.1: The complex integration contour C.

whenever Im (ζ) 6 0, where C is the contour depicted in fig. 10.1.

Now let ω ∈ R be real, and define the complex function χ̂(ω) of the real variable ω by

χ̂(ω) ≡ lim
ǫ→0+

χ̂(ω + iǫ) . (10.17)

Assuming χ̂(z) vanishes sufficiently rapidly that Jordan’s lemma may be invoked (i.e. that the
integral of χ̂(z) along the arc of C vanishes), we have

0 =

∞∫

−∞

dν

2πi

χ̂(ν)

ν − ω + iǫ

=

∞∫

−∞

dν

2πi

[
χ̂′(ν) + iχ̂′′(ν)

] [ P
ν − ω − iπδ(ν − ω)

] (10.18)

where P stands for ‘principal part’. Taking the real and imaginary parts of this equation reveals
the Kramers-Kronig relations:

χ̂′(ω) = P
∞∫

−∞

dν

π

χ̂′′(ν)

ν − ω , χ̂′′(ω) = −P
∞∫

−∞

dν

π

χ̂′(ν)

ν − ω . (10.19)

The Kramers-Kronig relations are valid for any function χ̂(z) which is analytic in the upper half
plane. If χ̂(z) is analytic everywhere off the Im (z) = 0 axis, we may write

χ̂(z) =

∞∫

−∞

dν

π

χ̂′′(ν)

ν − z = −i sgn(Im z)

∞∫

−∞

dν

π

χ̂′(ν)

ν − z . (10.20)
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This immediately yields the result

lim
ǫ→0+

[
χ̂(ω + iǫ)− χ̂(ω − iǫ)

]
= 2i χ̂′′(ω) . (10.21)

As an example, consider the function

χ̂′′(ω) =
ω

ω2 + γ2
. (10.22)

Then, choosing γ > 0,

χ̂(z) =

∞∫

−∞

dω

π

1

ω − z ·
ω

ω2 + γ2
=

{
+i/(z + iγ) if Im (z) > 0

−i/(z − iγ) if Im (z) < 0 .
(10.23)

Note that χ̂(z) is separately analytic in the UHP and the LHP, but that there is a branch cut
along the Re z axis, where χ̂(ω ± iǫ) = ±i/(ω ± iγ).
EXERCISE: Show that eqn. (10.21) is satisfied for χ̂(ω) = ω/(ω2 + γ2).

If we analytically continue χ̂(z) from the UHP into the LHP, we find a pole and no branch cut:

˜̂χ(z) =
i

z + iγ
. (10.24)

The pole lies in the LHP at z = −iγ.

10.2 Quantum Mechanical Response Functions

10.2.1 First order perturbation theory

Consider a time-dependent quantum system with Hamiltonian Ĥ = Ĥ0 + Ĥ1(t), where

Ĥ1(t) = −
∑

i

Q̂i φi(t) , (10.25)

where each Q̂i is an operator labeled by an index i. In continuous systems, the operators may
carry spatial labels as well, in which case we would write

Ĥ(t) = Ĥ0 −
∑

i

∫
ddx Q̂i(x)φi(x, t) . (10.26)
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The quantities φi(t) or φi(x, t) are spatiotemporally varying fields, such as a local scalar poten-
tial or local magnetic field. Some examples:

Ĥ1(t) =





−M̂ · B(t) magnetic moment – magnetic field

+
∫
d3x ˆ̺(x)φ(x, t) charge density – scalar potential

−1
c

∫
d3x ̂(x) ·A(x, t) electromagnetic current – vector potential

(10.27)

Let’s suppress for now the spatial label x, which may be subsumed by the label i if we so desire.

The time-dependent expectation value of the operator Q̂i is given by

Qi(t) ≡ 〈Ψ(t) | Q̂i |Ψ(t) 〉 (10.28)

where i~∂t |Ψ(t)〉 = Ĥ(t) |Ψ(t)〉. Without loss of generality, we may assume that the operators

{Q̂i} are each defined in such a way that 〈Ψ0| Q̂i |Ψ0〉 = 0 for all i, where |Ψ0〉 is the ground state
of H0, which itself is in general an interacting many-body Hamiltonian. We therefore expect
that, to lowest nontrivial order in the fields {φi}, that the observed response should be linear,
i.e.

Qi(t) =

∞∫

−∞

dt′ χij(t− t′) φj(t′) +O(φ2) . (10.29)

The function χij(t − t′) is called a response function. It describes how the operator Q̂i responds
at time t to the imposition of a field φj at time t′. We presume that the responses are all causal,
i.e. χij(t− t′) = 0 for t < t′. To compute χij(t− t′), we will use first order perturbation theory to

obtain
〈
Q̂i(t)

〉
and then functionally differentiate with respect to φj(t

′):

χij(t− t′) =
δ
〈
Q̂i(t)

〉

δφj(t′)

∣∣∣∣∣
φ=0

. (10.30)

The first step is to establish the result,

|Ψ(t) 〉 = T̂ exp




− i
~

t∫

t0

dt′
[
Ĥ0 + Ĥ1(t

′)
]



|Ψ(t0) 〉 , (10.31)

where T̂ is the time ordering operator, which places earlier times to the right. This is easily
derived starting with the Schrödinger equation,

i~
d

dt
|Ψ(t) 〉 = Ĥ(t)|Ψ(t) 〉 , (10.32)

where Ĥ(t) = Ĥ0 + Ĥ1(t). Integrating this equation from t to t+ ǫ with infinitesimal ǫ gives

|Ψ(t+ ǫ) 〉 =
(
1− iǫ

~
Ĥ(t)

)
|Ψ(t) 〉 . (10.33)
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Now let us integrate the Schrödinger equation from t = t1 to t = t2 where t1 < t2 . We have

|Ψ(t2) 〉 = Û(t2, t1) |Ψ(t1) 〉 (10.34)

where

Û(t2, t1) = lim
N→∞

(
1− iǫ

~
Ĥ
(
t1 + (N − 1)ǫ

))
· · ·
(
1− iǫ

~
Ĥ(t1)

)

≡ T̂ exp



−

i

~

t2∫

t1

dt Ĥ(t)



 ,

(10.35)

where ǫ ≡ (t2 − t1)/N . The operator Û(t2, t1) is unitary operator (i.e. Û † = Û−1), and is known
as the time evolution operator between times t1 and t2.

EXERCISE: Show that, for t1 < t2 < t3 that Û(t3, t1) = Û(t3, t2) Û(t2, t1).

If t1 < t < t2, then differentiating U(t2, t1) with respect to φi(t) yields

δÛ(t2, t1)

δφj(t)
=
i

~
Û(t2, t) Q̂j Û(t, t1) , (10.36)

since ∂Ĥ(t)/∂φj(t) = −Q̂j . We may therefore write (assuming t0 < t, t′)

δ |Ψ(t)〉
δφj(t′)

∣∣∣∣
{φi=0}

=
i

~
e−iĤ0(t−t′)/~ Q̂j e

−iĤ0(t
′−t0)/~ |Ψ(t0) 〉Θ(t− t′)

=
i

~
e−iĤ0t/~ Q̂j(t

′) e+iĤ0 t0/~ |Ψ(t0) 〉Θ(t− t′) ,

(10.37)

where

Q̂j(t) ≡ eiĤ0t/~ Q̂j e
−iĤ0t/~ (10.38)

is the operator Qj in the time-dependent interaction representation. Finally, we have

χij(t− t′) =
δ

δφj(t′)
〈Ψ(t) | Q̂i |Ψ(t) 〉 = δ〈Ψ(t)|

δφj(t′)
Q̂i |Ψ(t)〉+ 〈Ψ(t)| Q̂i

δ|Ψ(t)〉
δφj(t′)

=

{
− i

~
〈Ψ(t0) | e−iĤ0 t0/~ Q̂j(t

′) e+iĤ0 t/~ Q̂i |Ψ(t) 〉

+
i

~
〈Ψ(t) | Q̂i e

−iĤ0 t/~ Q̂j(t
′) e+iĤ0 t0/~ |Ψ(t0) 〉

}
Θ(t− t′)

=
i

~

〈[
Q̂i(t), Q̂j(t

′)
]〉

Θ(t− t′) ,

(10.39)
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were averages are with respect to the wavefunction | Ψ̃0 〉 ≡ exp(iĤ0 t0/~) |Ψ(t0) 〉, where we
take t0 → −∞, or, at finite temperature, with respect to a Boltzmann-weighted distribution of
such states. To reiterate,

χij(t− t′) =
i

~

〈[
Q̂i(t), Q̂j(t

′)
]〉

Θ(t− t′) . (10.40)

This is sometimes known as the retarded response function.

10.2.2 Spectral representation

We now derive an expression for the response functions in terms of the spectral properties of

the Hamiltonian Ĥ0 , which may describe a fully interacting system. Write Ĥ0 |n 〉 = En |n 〉, in
which case2

χ̂ij(ω) =
i

~

∞∫

0

dt eiωt
〈[
Q̂i(t), Q̂j(0)

]〉

=
i

~

∞∫

0

dt eiωt
∑

m,n

Pm

{
〈m | Q̂i |n 〉 〈n | Q̂j |m 〉 e+i(ωm−ωn)t

− 〈m | Q̂j |n 〉 〈n | Q̂i |m 〉 e+i(ωn−ωm)t
}

,

(10.41)

where β = 1/kBT , Pm = Z−1 exp(−βEm) the Boltzmann weight, with Z = Tr exp(−βĤ0) the

partition function, and the excitation frequencies are defined as ωm ≡ (Em −E0)/~ where E0 is

the ground state energy of Ĥ0 , which, recall, is the Hamiltonian of a fully interacting system.
Regularizing the integrals at t→∞ with exp(−ǫt) with ǫ = 0+, we use

∞∫

0

dt ei(ω−Ω+iǫ)t =
i

ω − Ω + iǫ
(10.42)

to obtain the spectral representation of the (retarded) response function3,

χ̂ij(ω + iǫ) =
1

~

∑

m,n

Pm

{
〈m | Q̂j |n 〉 〈n | Q̂i |m 〉

ω − ωm + ωn + iǫ
− 〈m | Q̂i |n 〉 〈n | Q̂j |m 〉

ω + ωm − ωn + iǫ

}
. (10.43)

We will refer to this as χ̂ij(ω), although formally χ̂ij(ω) has poles or a branch cut (for continuous
spectra) along the Re (ω) axis. Note that χ̂∗

ij(ω) = χ̂ij(−ω), which also follows from the fact that

2Note that we are using hats to denote operators such as Ĥ and T̂ as well as Fourier transforms such as χ̂ij(ω). Be
alert and understand what all the hatted symbols mean!

3The spectral representation is sometimes known as the Lehmann representation.
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χij(t − t′) ∈ R is a real function of its argument. Diagrammatic perturbation theory does not
give us χ̂ij(ω), but rather the time-ordered response function,

χT

ij(t− t′) ≡
i

~

〈
T̂ Q̂i(t) Q̂j(t

′)
〉

=
i

~

〈
Q̂i(t) Q̂j(t

′)
〉
Θ(t− t′) + i

~

〈
Q̂j(t

′) Q̂i(t)
〉
Θ(t′ − t) .

The spectral representation of χ̂T
ij(ω) is

χ̂T

ij(ω + iǫ) =
1

~

∑

m,n

Pm

{
〈m | Q̂j |n 〉〈n | Q̂i |m 〉
ω − ωm + ωn − iǫ

− 〈m | Q̂i |n 〉〈n | Q̂j |m 〉
ω + ωm − ωn + iǫ

}
. (10.44)

The difference between χ̂ij(ω) and χ̂T
ij(ω) is thus only in the sign of the infinitesimal ±iǫ term

in one of the denominators.

Let us now define the real and imaginary parts of the product of expectations values encoun-
tered above:

〈m | Q̂i |n 〉〈n | Q̂j |m 〉 ≡ Amn(ij) + iBmn(ij) . (10.45)

That is4,

Amn(ij) =
1

2
〈m | Q̂i |n 〉 〈n | Q̂j |m 〉+

1

2
〈m | Q̂j |n 〉 〈n | Q̂i |m 〉

Bmn(ij) =
1

2i
〈m | Q̂i |n 〉 〈n | Q̂j |m 〉 −

1

2i
〈m | Q̂j |n 〉 〈n | Q̂i |m 〉.

(10.46)

Note that Amn(ij) is separately symmetric under interchange of either m and n, or of i and j,
whereas Bmn(ij) is separately antisymmetric under these operations:

Amn(ij) = +Anm(ij) = Anm(ji) = +Amn(ji)

Bmn(ij) = −Bnm(ij) = Bnm(ji) = −Bmn(ji) .
(10.47)

We define the spectral densities

{
̺Aij(ω)

̺Bij(ω)

}
≡ ~

−1
∑

m,n

Pm

{
Amn(ij)

Bmn(ij)

}
δ(ω − ωn + ωm) , (10.48)

which satisfy

̺Aij(ω) = +̺Aji(ω) , ̺Aij(−ω) = +e−β~ω ̺Aij(ω)

̺Bij(ω) = −̺Bji(ω) , ̺Bij(−ω) = −e−β~ω ̺Bij(ω) .
(10.49)

4We assume all the Q̂i are Hermitian, i.e. Q̂i = Q̂†
i .
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In terms of these spectral densities,

χ̂′
ij(ω) = P

∞∫

−∞

dν
2ν

ν2 − ω2
̺Aij(ν)− π(1− e−β~ω) ̺Bij(ω) = +χ̂′

ij(−ω)

χ̂′′
ij(ω) = P

∞∫

−∞

dν
2ω

ν2 − ω2
̺Bij(ν) + π(1− e−β~ω) ̺Aij(ω) = −χ̂′′

ij(−ω).
(10.50)

For the time ordered response functions, we find

χ̂′T
ij (ω) = P

∞∫

−∞

dν
2ν

ν2 − ω2
̺Aij(ν)− π(1 + e−β~ω) ̺Bij(ω)

χ̂′′T
ij (ω) = P

∞∫

−∞

dν
2ω

ν2 − ω2
̺Bij(ν) + π(1 + e−β~ω) ̺Aij(ω) .

(10.51)

Hence, knowledge of either the retarded or the time-ordered response functions is sufficient to
determine the full behavior of the other:

χ̂′
ij(ω) =

eβ~ω χ̂′T
ij (ω)

eβ~ω + 1
+

χ̂′T
ji (ω)

eβ~ω + 1
, χ̂′′

ij(ω) =
eβ~ω χ̂′′T

ij (ω)

eβ~ω + 1
− χ̂′′T

ji (ω)

eβ~ω + 1
. (10.52)

For the diagonal responses, with i = j, we then have

χ̂′
jj(ω) = χ̂′T

jj (ω) , χ̂′′
jj(ω) = χ̂′′T

jj (ω) tanh(
1
2
β~ω) . (10.53)

10.2.3 Energy dissipation

The rate at which work is done by the external fields is the power dissipated, and is given by

P (t) =
d

dt
〈Ψ(t) | Ĥ0 |Ψ(t) 〉 = − i

~
〈Ψ(t) | [Ĥ0, Ĥ1(t)] |Ψ(t) 〉

=
i

~

∑

i

φi(t) 〈Ψ(t) | [Ĥ0, Q̂i] |Ψ(t) 〉
(10.54)

Now recall |Ψ(t) 〉 = Û(t, t0) |Ψ(t0) 〉, where we shall take t0 → −∞. We will evaluate the power
dissipated to quadratic order in the fields, and for this we need the expansion of the evolution

operator Û(t, t0) to linear order in the fields, which is to say to linear order in the perturbation

Ĥ1. From Eqn. 10.35 we have

Û(t, t0) = Û0(t, t0)−
i

~

t∫

t0

ds Û0(t, s) Ĥ1(s) Û0(s, t0) + . . . (10.55)
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where Û0(t2, t1) = e−iĤ0(t2−t1)/~ and Ĥ1(s) = −
∑

i Q̂i φi(t) . Thus, we have

|Ψ(t) 〉 = Û(t, t0) |Ψ0 〉

= e−iĤ0 t/~




1− i

~

t∫

t0

dt′ eiĤ0 t
′/~Ĥ1(s) e

−iĤ0 t
′/~ + . . .




| Ψ̃0 〉

(10.56)

Thus, to lowest nontrivial order in the fields,

P (t) =
i

~

∑

i

φi(t) 〈Ψ(t) | [Ĥ0, Q̂i] |Ψ(t) 〉

= − 1

~2

∑

i,j

φi(t)

t∫

t0

dt′ φj(t
′) 〈 Ψ̃0 |

[
[Ĥ0, Q̂i(t)], Q̂j(t

′)
]
| Ψ̃0 〉

=
i

~

∑

i,j

φi(t)

t∫

t0

dt′ φj(t
′)
d

dt
〈 Ψ̃0 | [Q̂i(t), Q̂j(t

′)
]
| Ψ̃0 〉

=
∑

i,j

φi(t)

∞∫

−∞

dt′
d

dt
χij(t− t′)φj(t′) =

∑

i

φi(t)
d〈Q̂j(t)〉

dt
.

(10.57)

The total energy dissipated is thus a functional of the external fields {φi(t)}:

W =

∞∫

−∞

dt P (t) = −
∞∫

−∞

dt

∞∫

−∞

dt′ χij(t− t′) φ̇i(t)φj(t′)

=

∞∫

−∞

dω

2π
(−iω) φ̂∗

i (ω) χ̂ij(ω) φ̂j(ω) ,

(10.58)

where we now adopt the convention that we sum on the repeated indices i and j. Since the

{Q̂i} are Hermitian observables, the {φi(t)} must be real fields, in which case their conjugates

are given by φ̂∗
i (ω) = φ̂j(−ω), whence

W =

∞∫

−∞

dω

4π
(−iω)

[
χ̂ij(ω)− χ̂ji(−ω)

]
φ̂∗
i (ω) φ̂j(ω)

=

∞∫

−∞

dω

2π
Mij(ω) φ̂

∗
i (ω) φ̂j(ω)

(10.59)
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where

Mij(ω) ≡ 1
2
(−iω)

{
χ̂ij(ω)− χ̂ji(−ω)

}

= πω
(
1− e−β~ω

)(
̺Aij(ω) + i̺Bij(ω)

)
.

(10.60)

Note that as a matrixM(ω) =M†(ω), so thatM(ω) has real eigenvalues.

10.2.4 Correlation functions

We define the correlation function

Sij(t− t′) ≡
1

2π

〈
Q̂i(t) Q̂j(t

′)
〉

, (10.61)

which has the spectral representation

Ŝij(ω) = ~̺Aij(ω) + i~̺Bij(ω)

=
∑

m,n

Pm 〈m | Q̂i |n 〉 〈n | Q̂j |m 〉 δ(ω − ωn + ωm) .
(10.62)

Note that

Ŝij(−ω) = e−β~ω Ŝ∗
ij(ω) , Ŝji(ω) = Ŝ∗

ij(ω) . (10.63)

and that

Mij(ω) =
ω

2i

{
χ̂ij(ω)− χ̂ji(−ω)

}
=
πω

~

(
1− e−β~ω

)
Ŝij(ω) . (10.64)

This result is known as the fluctuation-dissipation theorem, as it relates the equilibrium fluctua-
tions Sij(ω) to the dissipation kernelMij(ω).

Time Reversal Symmetry

If the operators Q̂i have a definite symmetry under time reversal, say

T̂ Q̂iT̂ −1 = ηi Q̂i , (10.65)

then the correlation function satisfies

Ŝij(ω) = ηi ηj Ŝji(ω) . (10.66)
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10.2.5 Continuous systems

The indices i and j could contain spatial information as well. Typically we will separate out
spatial degrees of freedom, and write

Sij(x− x′, t− t′) =
1

2π

〈
Q̂i(x, t) Q̂j(x

′, t′)
〉

, (10.67)

where we have assumed space and time translation invariance. The Fourier transform is de-
fined as

Ŝij(k, ω) =

∞∫

−∞

dt

∫
d3x e−ik·x eiωt Sij(x, t)

=
1

2πV

∞∫

−∞

dt e+iωt
〈
Q̂i(k, t) Q̂j(−k, 0)

〉
.

(10.68)

10.3 A Spin in a Magnetic Field

Consider a S = 1
2

object in an external field, described by the Hamiltonian

Ĥ0 = γB0 S
z (10.69)

with B0 > 0. (Without loss of generality, we can take the DC external field B0 to lie along ẑ.)
The eigenstates are | ± 〉, with ω± = ±1

2
γB0. We apply a perturbation,

Ĥ1(t) = γS · B1(t) . (10.70)

At T = 0, the susceptibility tensor is

χαβ(ω) =
γ2

~

∑

n

{〈− |Sβ |n 〉〈n |Sα | − 〉
ω − ω− + ωn + iǫ

− 〈− |S
α |n 〉〈n |Sβ | − 〉

ω + ω− − ωn + iǫ

}

=
γ2

~

{〈− |Sβ |+ 〉〈+ |Sα | − 〉
ω + γB0 + iǫ

− 〈− |S
α |+ 〉〈+ |Sβ | − 〉
ω − γB0 + iǫ

}
,

(10.71)

where we have dropped the hat on χ̂αβ(ω) for notational convenience. The only nonzero matrix
elements are

χ+−(ω) =
~γ2

ω + γB0 + iǫ
, χ−+(ω) =

−~γ2
ω − γB0 + iǫ

, (10.72)
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or, equivalently,

χxx(ω) =
1
4
~γ2

{
1

ω + γB0 + iǫ
− 1

ω − γB0 + iǫ

}
= +χyy(ω)

χxy(ω) =
i
4
~γ2

{
1

ω + γB0 + iǫ
+

1

ω − γB0 + iǫ

}
= −χyx(ω) .

(10.73)

10.3.1 Bloch Equations

The torque exerted on a magnetic moment µ by a magnetic field H is N = µ × H , which is
equal to the rate of change of the total angular momentum: J̇ = N . Since µ = γJ , where γ
is the gyromagnetic factor, we have µ̇ = γµ × H . For noninteracting spins, the total magnetic
moment, M =

∑
i µi then satisfies

dM

dt
= γM ×H . (10.74)

Now suppose that H = H0 ẑ + H⊥(t), where ẑ · H⊥ = 0. In equilibrium, we have M = M0 ẑ,
with M0 = χ0H0, where χ0 is the static susceptibility. Phenomenologically, we assume that
the relaxation to this equilibrium state is described by a longitudinal and transverse relaxation
time, respectively known as T1 and T2:

Ṁx = γMyHz − γMzHy −
Mx

T2

Ṁy = γMzHx − γMxHz −
My

T2

Ṁz = γMxHy − γMyHx −
Mz −M0

T1
.

(10.75)

These are known as the Bloch equations. Mathematically, they are a set of coupled linear, first
order, time-dependent, inhomogeneous equations. These may be recast in the form

Ṁα +RαβM
β = ψα , (10.76)

with Rαβ(t) = T−1
αβ − γ ǫαβδHδ(t), ψα = T−1

αβ M
β
0 , and

Tαβ =



T2 0 0
0 T2 0
0 0 T1


 . (10.77)
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The formal solution is written

M(t) =

t∫

0

dt′ U(t− t′)ψ(t′) + U(t)ψ(0) , (10.78)

where the evolution matrix,

U(t) = T̂ exp



−

t∫

0

dt′R(t′)



 , (10.79)

is given in terms of the time-ordered exponential (earlier times to the right).

We can make analytical progress if we write write M = M0 ẑ +m and suppose |H⊥| ≪ H0 and
|m| ≪M0, in which case we have

ṁx = γ H0my − γ HyM0 −
mx

T2

ṁy = γ HxM0 − γ H0mx −
my

T2

ṁz = −
mz

T1
,

(10.80)

which are equivalent to the following:

m̈x + 2T−1
2 ṁx +

(
γ2H2

0 + T−2
2

)
mx = γ M0

(
γ H0Hx − T−1

2 Hy − Ḣy

)

m̈y + 2T−1
2 ṁy +

(
γ2H2

0 + T−2
2

)
my = γ M0

(
γ H0Hy + T−1

2 Hx + Ḣx

) (10.81)

and mz(t) = mz(0) exp(−t/T1). Solving the first two by Fourier transform,

(
γ2H2

0 + T−2
2 − ω2 − 2iT−2

2 ω
)
m̂x(ω) = γM0

(
γ H0Hx(ω) + (iω − T−1

2 )Hy(ω)
)

(
γ2H2

0 + T−2
2 − ω2 − 2iT−2

2 ω
)
m̂y(ω) = γM0

(
γ H0Hy(ω)− (iω − T−1

2 )Hx(ω)
)

,
(10.82)

from which we read off

χxx(ω) =
γ2H0M0

γ2H2
0 + T−2

2 − ω2 − 2iT−1
2 ω

= χyy(ω)

χxy(ω) =
(iω − T−1

2 ) γM0

γ2H2
0 + T−2

2 − ω2 − 2iT−1
2 ω

= −χyx(ω) .

(10.83)
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Note that Onsager reciprocity is satisfied:

χxy(ω,H0) = χT
yx(ω,H0) = χyx(ω,−H0) = −χyx(ω,H0) . (10.84)

The lineshape is given by

χ′
xx(ω) =

(γ2H2
0 + T−2

2 − ω2) γ2H0M0(
γ2H2

0 + T−2
2 − ω2

)2
+ 4 T−2

2 ω2

χ′′
xx(ω) =

2 γ H0M0 T
−1
2 ω

(
γ2H2

0 + T−2
2 − ω2

)2
+ 4 T−2

2 ω2
,

(10.85)

so a measure of the linewidth is a measure of T−1
2 .

10.4 Density Response and Correlations

In many systems, external probes couple to the number density n̂(x) =
∑N

i=1 δ(x− xi), and we
may write the perturbing Hamiltonian as

Ĥ1(t) = −
∫
d3x n̂(x)φ(x, t) . (10.86)

The response δn ≡ n− 〈n〉0 is given by

〈δn(x, t)〉 =
∫
dt′
∫
d3x′ χ(x− x′, t− t′)φ(x′, t′)

〈δn̂(q, ω)〉 = χ̂(q, ω) φ̂(q, ω) ,

(10.87)

where

χ̂(q, ω) =
1

~V

∑

m,n

Pm

{ ∣∣〈m | n̂q |n 〉
∣∣2

ω − ωm + ωn + iǫ
−

∣∣〈m | n̂q |n 〉
∣∣2

ω + ωm − ωn + iǫ

}

=
1

~

∞∫

−∞

dν S(q, ν)

{
1

ω + ν + iǫ
− 1

ω − ν + iǫ

}
.

(10.88)

The function

S(q, ω) =
1

V

∑

m,n

Pm
∣∣〈m | n̂q |n 〉

∣∣2 δ(ω − ωn + ωm) (10.89)

is known as the dynamic structure factor (dsf). Note that n̂q =
∑N

i=1 e
−iq·xi and that n̂†

q = n̂−q .
In a scattering experiment, where an incident probe (e.g. a neutron) interacts with the system
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via a potential φ(x − R), where R is the probe particle position, Fermi’s Golden Rule says that
the rate at which the incident particle deposits momentum ~q and energy ~ω into the system is
given by

I(q, ω) = 2π

~

∑

m,n

Pm
∣∣〈m ; p

∣∣ Ĥ1

∣∣n ; p− ~q
〉∣∣2 δ(ω − ωn + ωm)

=
2π

~
|φ̂(q)|2 S(q, ω) .

(10.90)

The quantity |φ̂(q)|2 is called the form factor. In neutron scattering, the “on-shell” condition
requires that the incident energy ε and momentum p are related via the ballistic dispersion
ε = p2/2mn. Similarly, the final energy and momentum are related, hence

ε− ~ω =
p2

2mn

− ~ω =
(p− ~q)2

2mn

=⇒ ~ω =
~q · p
mn

− ~2q2

2mn

. (10.91)

Hence, for fixed momentum transfer ~q, the frequency ω can be varied by changing the incident
momentum p.

Another case of interest is the response of a system to a foreign object moving with trajectory
R(t) = V t. In this case, φ(x, t) = φ

(
x− R(t)

)
, and

φ̂(q, ω) =

∫
dt

∫
d3x e−iq·x eiωt φ(x− V t) = 2π δ(ω − q · V ) φ̂(q) (10.92)

so that
〈δn(q, ω)〉 = 2π δ(ω − q · V ) χ̂(q, ω) φ̂(q) . (10.93)

10.4.1 Sum rules

From eqn. (10.89) we find

∞∫

−∞

dω ω S(q, ω) =
1

V

∑

m,n

Pm
∣∣〈m | n̂q |n 〉

∣∣2 (ωn − ωm)

=
1

~V

∑

m,n

Pm 〈m | n̂q |n 〉 〈n | [Ĥ, n̂†
q] |m 〉

=
1

~V

〈
n̂q [Ĥ, n̂

†
q]
〉
=

1

2~V

〈[
n̂q, [Ĥ, n̂

†
q]
]〉

,

(10.94)

where the last equality is guaranteed by q → −q symmetry. Now if the potential is velocity
independent, i.e. if

Ĥ = − ~2

2m

N∑

i=1

∇
2
i + V (x1, . . . , xN) , (10.95)
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then with n̂†
q =

∑N
i=1 e

iq·xi we obtain

[Ĥ, n̂†
q] = −

~2

2m

N∑

i=1

[
∇

2
i , e

iq·xi] = ~2

2im
q ·

N∑

i=1

(
∇i e

iq·xi + eiq·xi ∇i

)

[
n̂q, [Ĥ, n̂

†
q]
]
=

~2

2im
q ·

N∑

i=1

N∑

j=1

[
e−iq·xj ,∇i e

iq·xi + eiq·xi ∇i

]
=
N~2q2

m
.

(10.96)

We have derived the f -sum rule:

∞∫

−∞

dω ω S(q, ω) =
n~q2

2m
, (10.97)

where n = N/V is the overall number density. Note that this integral, which is the first moment
of the structure factor, is independent of the potential!. The nth moment of the dsf distribution is
given by

∞∫

−∞

dω ωn S(q, ω) =
1

~V

〈
n̂q

[
n times︷ ︸︸ ︷

Ĥ,
[
Ĥ, · · · [Ĥ, n̂†

q] · · ·
]]〉

. (10.98)

Moments with n 6= 1 in general depend on the potential, unlike the n = 1 moment from the
f -sum rule. The n = 0 moment gives

S(q) ≡
∞∫

−∞

dω S(q, ω) =
1

~V

〈
n̂†
q n̂q

〉

=
1

~

∫
d3x 〈n(x)n(0)〉 e−iq·x ,

(10.99)

which is the Fourier transform of the density-density correlation function.

Compressibility sum rule

The isothermal compressibility is given by

κT = − 1

V

∂V

∂n

∣∣∣∣
T

=
1

n2

∂n

∂µ

∣∣∣∣
T

. (10.100)

Since a constant potential v(x, t) is equivalent to a chemical potential shift, we have

〈δn〉 = χ̂(q = 0, ω = 0) δµ =⇒ κT =
2

~n2
lim
q→0

∞∫

−∞

dω
S(q, ω)

ω
. (10.101)

This is known as the compressibility sum rule.



10.4. DENSITY RESPONSE AND CORRELATIONS 453

Single mode approximation at T = 0

For each wavevector q, the dynamical structure factor S(q, ω) may be regarded as a distribution
function of the frequency ω. The normalized average nth moment 〈ωn〉q is given by

〈ωn〉q =
∞∫

−∞

dω ωn S(q, ω)

/ ∞∫

−∞

dω S(q, ω) . (10.102)

Thus, we can define a set of quantities
{
Ωn,m(q)

}
, each of which has dimensions of frequency,

according to

[
Ωn,m(q)

]n−m ≡ 〈ω
n〉q

〈ωm〉q
=

∞∫

−∞

dω ωn S(q, ω)

/ ∞∫

−∞

dω ωm S(q, ω) . (10.103)

If, for each wavevector q, all the oscillator strength |〈G | n̂q |n 〉|2 in the dsf is saturated by a
single mode, then

S(q, ω) ≈ SSMA(q, ω) ≡ SSMA(q) δ
(
ω −ΩSMA(q)

)
. (10.104)

If the SMA is exact, then SSMA(q) is the static structure factor S(q) from Eqn. 10.99. Within
the SMA, the nth moment of the dsf in Eqn. 10.98 is

[
ΩSMA(q)

]n · SSMA(q), in which case each
Ωn,m(q) from Eqn. 10.103 is given by ΩSMA(q). Thus, the SMA frequency may be approximated
by Ωn,m(q) for any n and m. For example, if we take n = +1 and m = −1, we have

Ω2
1,−1(q) =

nq2

mχ̂(q)
, (10.105)

where

χ̂(q) =
2

~

∞∫

0

dω
S(q, ω)

ω
(10.106)

is the static susceptibility. If instead we were to choose n = 1 and m = 0, we arrive at

Ω1,0(q) =
n~q2

2S(q)
. (10.107)

Note that within the SMA, we have χ̂(q) ≈ χ̂SMA(q) = 2SSMA(q)/~ΩSMA(q) .

10.4.2 Dynamic Structure Factor for the Electron Gas

The dynamic structure factor S(q, ω) tells us about the spectrum of density fluctuations. The
density operator n̂†

q =
∑

i e
iq·xi increases the wavevector by q. At T = 0, in order for 〈n | n̂†

q |G 〉
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to be nonzero (where |G〉 is the ground state, i.e. the filled Fermi sphere), the state n must
correspond to a particle-hole excitation. For a given q, the maximum excitation frequency is
obtained by taking an electron just inside the Fermi sphere, with wavevector k = k

F
q̂ and

transferring it to a state outside the Fermi sphere with wavevector k + q. For |q| < 2k
F
, the

minimum excitation frequency is zero – one can always form particle-hole excitations with
states adjacent to the Fermi sphere. For |q| > 2k

F
, the minimum excitation frequency is obtained

by taking an electron just inside the Fermi sphere with wavevector k = −k
F
q̂ to an unfilled state

outside the Fermi sphere with wavevector k + q. These cases are depicted in fig. 10.4.

We therefore have

ωmax(q) =
~q2

2m
+

~k
F
q

m
(10.108)

and

ωmin(q) =

{
0 if q 6 2k

F

~q2

2m
− ~k

F
q

m
if q > 2k

F
.

(10.109)

This is depicted in fig. 10.2. Outside of the region bounded by ωmin(q) and ωmax(q), there are
no single pair excitations. It is of course easy to create multiple pair excitations with arbitrary
energy and momentum, as depicted in fig. 10.3. However, these multipair states do not couple
to the ground state |G 〉 through a single application of the density operator n̂†

q, hence they have
zero oscillator strength: 〈n | n̂†

q |G 〉 = 0 for any multipair state |n 〉.

Explicit T = 0 calculation

We start with

2π S(x, t) = 〈n(x, t)n(0, 0)〉

=

∫
d3k

(2π)3

∫
d3k′

(2π)3
eik·x

∑

i,j

〈
e−ik·xi(t) eik

′·xj
〉

.
(10.110)

The time evolution of the operator xi(t) is given by xi(t) = xi+pit/m, where pi = −i~∇i. Using
the result

eA+B = eA eB e−
1
2
[A,B] , (10.111)

which is valid when [A, [A,B]] = [B, [A,B]] = 0, we have

e−ik·xi(t) = ei~k
2t/2m e−ik·xi e−ik·pi t/m , (10.112)

hence

2π S(x, t) =

∫
d3k

(2π)3

∫
d3k′

(2π)3
ei~k

2t/2m eik·x
∑

i,j

〈
e−ik·xi eik·pit/m eik

′·xj〉 . (10.113)
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Figure 10.2: Spread of particle-hole excitation frequencies ω in units of εF/~ versus wavevector
q in units of kF. Outside the hatched areas, there are no single pair excitations.

We now break the sum up into diagonal (i = j) and off-diagonal (i 6= j) terms.

For the diagonal terms, with i = j, we have

〈
e−ik·xi e−ik·pit/m eik

′·xi〉 = e−i~k·k
′t/m

〈
ei(k

′−k)·xi eik·pit/m
〉

= e−i~k·k
′t/m (2π)3

NV
δ(k− k′)

∑

q

Θ(k
F
− q) e−i~k·qt/m ,

(10.114)

since the ground state |G 〉 is a Slater determinant formed of single particle wavefunctions

ψk(x) = exp(iq · x)/
√
V with q < k

F
.

For i 6= j, we must include exchange effects. We then have

〈
e−ik·xi e−ik·pit/m eik

′·xj
〉
=

1

N(N − 1)

∑

q

∑

q′

Θ(k
F
− q) Θ(k

F
− q′) (10.115)

×
∫
d3xi
V

∫
d3xj
V

e−i~k·qt/m
{
e−ik·xi eik

′xj − ei(q−q′−k)·xi ei(q′−q+k′)·xj
}

=
(2π)6

N(N − 1)V 2

∑

q

∑

q′

Θ(k
F
− q) Θ(k

F
− q′)

× e−i~k·qt/m
{
δ(k) δ(k′)− δ(k− k′) δ(k + q

′ − q)
}

.
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Figure 10.3: With multiple pair excitations, every part of (q, ω) space is accessible. However,
these states to not couple to the ground state

∣∣G
〉

through a single application of the density
operator n̂†

q.

Summing over the i = j terms gives

2π Sdiag(x, t) =

∫
d3k

(2π)3
eik·x e−i~k

2t/2m

∫
d3q

(2π)3
Θ(k

F
− q) e−i~k·qt/m , (10.116)

while the off-diagonal terms yield

2π Soff−diag(x, t) =

∫
d3k

(2π)3
eik·x

∫
d3q

(2π)3

∫
d3q′

(2π)3
Θ(k

F
− q) Θ(k

F
− q′) (10.117)

× (2π)3
{
δ(k)− e+i~k2t/2m e−i~k·qt/m δ(q − q′ − k)

}

= n2 −
∫

d3k

(2π)3
eik·x e+i~k

2t/2m

∫
d3q

(2π)3
Θ(k

F
− q) Θ(k

F
− |k− q|) e−i~k·qt/m ,

and hence

2π S(k, ω) = n2 (2π)4δ(k) δ(ω) +

∫
d3q

(2π)3
Θ(k

F
− q)

{
2π δ

(
ω − ~k2

2m
− ~k · q

m

)
(10.118)

−Θ(k
F
− |k− q|) 2πδ

(
ω +

~k2

2m
− ~k · q

m

)}

= (2π)4n2δ(k)δ(ω) +

∫
d3q

(2π)3
Θ(k

F
− q) Θ(|k + q| − k

F
) · 2πδ

(
ω − ~k2

2m
− ~k · q

m

)
.
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Figure 10.4: Minimum and maximum frequency particle-hole excitations in the free electron
gas at T = 0. (a) To construct a maximum frequency excitation for a given q, create a hole just
inside the Fermi sphere at k = kF q̂ and an electron at k′ = k+ q. (b) For |q| < 2kF the minumum
excitation frequency is zero. (c) For |q| > 2kF, the minimum excitation frequency is obtained by
placing a hole at k = −kF q̂ and an electron at k′ = k + q.

For k, ω 6= 0, then,

2π S(k, ω) =
1

2π

k
F∫

0

dq q2
1∫

−1

dxΘ
(√

k2 + q2 + 2kqx− k
F

)
δ
(
ω − ~k2

2m
− ~kq

m
x
)

=
m

2π~k

k
F∫

0

dq q Θ
(√

q2 +
2mω

~
− k

F

) 1∫

−1

dx δ
(
x+

k

2q
− mω

~kq

)

=
m

4π~k

k2F∫

0

duΘ
(
u+

2mω

~
− k2F

)
Θ

(
u−

∣∣∣k
2
− mω

~k

∣∣∣
2
)

.

(10.119)

The constraints on u are

k2
F
> u > max

(
k2

F
− 2mω

~
,

∣∣∣∣
k

2
− mω

~k

∣∣∣∣
2
)

. (10.120)

Clearly ω > 0 is required. There are two cases to consider.

The first case is

k2F −
2mω

~
>

∣∣∣k
2
− mω

~k

∣∣∣
2

=⇒ 0 6 ω 6
~k

F
k

m
− ~k2

2m
, (10.121)

which in turn requires k 6 2k
F
. In this case, we have

2π S(k, ω) =
m

4π~k

{
k2

F
−
(
k2

F
− 2mω

~

)}
=

m2ω

2π~2k
. (10.122)
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Figure 10.5: The dynamic structure factor S(k, ω) for the electron gas at various values of k/kF.

The second case

k2F −
2mω

~
6

∣∣∣∣
k

2
− mω

~k

∣∣∣∣
2

=⇒ ω >
~k

F
k

m
− ~k2

2m
. (10.123)

However, we also have that
∣∣∣k
2
− mω

~k

∣∣∣
2

6 k2F , (10.124)

hence ω is restricted to the range

~k

2m
|k − 2k

F
| 6 ω 6

~k

2m
|k + 2k

F
| . (10.125)

The integral in (10.119) then gives

2π S(k, ω) =
m

4π~k

{
k2

F
−
∣∣∣∣
k

2
− mω

~k

∣∣∣∣
2
}

. (10.126)
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Putting it all together,

2π S(k, ω) =





mk
F

π2~2
· πω
2v

F
k

if 0 < ω 6 v
F
k − ~k2

2m

mk
F

π2~2
· πkF

4k

[
1−

(
ω
v
F
k
− k

2k
F

)2 ]
if
∣∣∣vF
k − ~k2

2m

∣∣∣ 6 ω 6 v
F
k + ~k2

2m

0 if ω > v
F
k + ~k2

2m
.

(10.127)

Integrating over all frequency gives the static structure factor,

S(k) =
1

V

〈
n†
k nk

〉
=

∞∫

−∞

dω S(k, ω) . (10.128)

The result is

S(k) =





(
3k
4k

F

− k3

16k3F

)
n if 0 < k 6 2k

F

n if k > 2k
F

V n2 if k = 0 ,

(10.129)

where n = k3F/6π
2 is the density (per spin polarization).

10.5 Charged Systems: Screening and Dielectric Response

10.5.1 Definition of the charge response functions

Consider a many-electron system in the presence of a time-varying external charge density

ρext(x, t). The perturbing Hamiltonian is then

Ĥ1 = −e
∫
d3x

∫
d3x′

n(x) ρext(x
′, t)∣∣x− x′
∣∣

= −e
∫

d3k

(2π)3
4π

k2
n̂(k) ρ̂ext(−k, t) .

(10.130)

The induced charge is −e δn, where δn is the induced number density:

δn̂(q, ω) =
4πe

q2
χ̂(q, ω) ρ̂ext(q, ω) . (10.131)

We can use this to determine the dielectric function ǫ(q, ω):

∇ ·D = 4πρext

∇ · E = 4π
(
ρext − e 〈δn〉

)
.

(10.132)



460 CHAPTER 10. LINEAR RESPONSE OF QUANTUM SYSTEMS

In Fourier space,

iq ·D(q, ω) = 4πρ̂ext(q, ω)

iq · E(q, ω) = 4πρ̂ext(q, ω)− 4πe
〈
δn̂(q, ω)

〉
,

(10.133)

so that from D(q, ω) = ǫ(q, ω)E(q, ω) follows

1

ǫ(q, ω)
=
iq · E(q, ω)
iq ·D(q, ω)

= 1− δn̂(q, ω)

Zn̂ext(q, ω)

= 1− 4πe2

q2
χ̂(q, ω) .

(10.134)

A system is said to exhibit perfect screening if

ǫ(q → 0, ω = 0) =∞ =⇒ lim
q→0

4πe2

q2
χ̂(q, 0) = 1 . (10.135)

Here, χ̂(q, ω) is the usual density-density response function,

χ̂(q, ω) =
1

~V

∑

j

2ωj
ω2
j − (ω + iǫ)2

∣∣〈 j | n̂q | 0 〉
∣∣2 , (10.136)

where we content ourselves to work at T = 0, and where ωj ≡ (Ej − E0)/~ is the excitation
frequency for the state |n 〉.

From jcharge = σE and the continuity equation

iq · 〈ĵcharge(q, ω)〉 = −ieω〈n̂(q, ω)〉 = iσ(q, ω) q · E(q, ω) , (10.137)

we find
iq·E(q,ω)︷ ︸︸ ︷(

4πρ̂ext(q, ω)− 4πe
〈
δn̂(q, ω)

〉)
σ(q, ω) = −iωe

〈
δn̂(q, ω)

〉
, (10.138)

or
4πi

ω
σ(q, ω) =

〈
δn̂(q, ω)

〉

e−1ρ̂ext(q, ω)−
〈
δn̂(q, ω)

〉 =
1− ǫ−1(q, ω)

ǫ−1(qω)
= ǫ(q, ω)− 1 . (10.139)

Thus, we arrive at

1

ǫ(q, ω)
= 1− 4πe2

q2
χ̂(q, ω) , ǫ(q, ω) = 1 +

4πi

ω
σ(q, ω) . (10.140)

Taken together, these two equations allow us to relate the conductivity and the charge response
function,

σ(q, ω) = −iω
q2

e2χ̂(q, ω)

1− 4πe2

q2
χ̂(q, ω)

. (10.141)
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10.5.2 Static screening: Thomas-Fermi approximation

Imagine a time-independent, slowly varying electrical potential φ(x). We may define the ‘local
chemical potential’ µ̃(x) as

µ ≡ µ̃(x)− eφ(x) , (10.142)

where µ is the bulk chemical potential. The local chemical potential is related to the local
density by local thermodynamics. At T = 0,

µ̃(x) ≡ ~2

2m
k2F(x) =

~2

2m

(
3π2n + 3π2δn(x)

)2/3

=
~2

2m
(3π2n)2/3

{
1 +

2

3

δn(x)

n
+ . . .

}
,

(10.143)

hence, to lowest order,

δn(x) =
3en

2µ
φ(x) . (10.144)

This makes sense – a positive potential induces an increase in the local electron number density.
In Fourier space,

〈δn̂(q, ω = 0)〉 = 3en

2µ
φ̂(q, ω = 0) . (10.145)

Poisson’s equation is −∇2φ = 4πρtot, i.e.

iq · E(q, 0) = q
2 φ̂(q, 0) = 4πρ̂ext(q, 0)− 4πe 〈δn̂(q, 0)〉

= 4πρ̂ext(q, 0)−
6πne2

µ
φ̂(q, 0) ,

(10.146)

and defining the Thomas-Fermi wavevector qTF by

q2TF ≡
6πne2

µ
, (10.147)

we have

φ̂(q, 0) =
4πρ̂ext(q, 0)

q2 + q2TF

, (10.148)

hence

e 〈δn̂(q, 0)〉 = q2
TF

q2 + q2TF

· ρ̂ext(q, 0) =⇒ ǫ(q, 0) = 1 +
q2
TF

q2
. (10.149)

Note that ǫ(q → 0, ω = 0) =∞, so there is perfect screening.

The Thomas-Fermi wavelength is λTF = q−1
TF , and may be written as

λ
TF

=
( π
12

)1/6√
rs aB

≃ 0.800
√
rs aB

, (10.150)
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where rs is the dimensionless free electron sphere radius, given in units of the Bohr radius

aB = ~2/me2 = 0.529Å, defined by 4
3
π(rsaB)

3 n = 1, hence rs ∝ n−1/3. Small rs corresponds
to high density. Since Thomas-Fermi theory is a statistical theory, it can only be valid if there

are many particles within a sphere of radius λTF, i.e. 4
3
πλ3TF n > 1, or rs<∼ (π/12)1/3 ≃ 0.640. TF

theory is applicable only in the high density limit.

In the presence of a δ-function external charge density ρext(x) = Ze δ(x), we have its Fourier

transform ρ̂ext(q, 0) = Ze, and

〈δn̂(q, 0)〉 = Zq2TF

q2 + q2
TF

=⇒ 〈δn(x)〉 = Z e−r/λTF

4πr
(10.151)

Note the decay on the scale of λTF. Note also the perfect screening:

e 〈δn̂(q → 0, ω = 0)〉 = ρ̂ext(q → 0, ω = 0) = Ze . (10.152)

10.5.3 High frequency behavior of ǫ(q, ω)

We have

ǫ−1(q, ω) = 1− 4πe2

q2
χ̂(q, ω) (10.153)

and, at T = 0,

χ̂(q, ω) =
1

~V

∑

j

∣∣〈 j | n̂†
q | 0 〉

∣∣2
{

1

ω + ωj + iǫ
− 1

ω − ωj + iǫ

}
, (10.154)

where the number density operator is

n̂†
q =

{∑
i e
iq·xi (1st quantized)∑

k ψ
†
k+q ψk (2nd quantized: {ψk, ψ†

k′} = δkk′) .
(10.155)

Taking the limit ω →∞, we find

χ̂(q, ω →∞) = − 2

~V ω2

∑

j

∣∣〈 j | n̂†
q | 0 〉

∣∣2 ωj = −
2

~ω2

∞∫

−∞

dω′

2π
ω′ S(q, ω′) . (10.156)

Invoking the f -sum rule, the above integral is n~q2/2m, hence

χ̂(q, ω →∞) = − nq2

mω2
, (10.157)
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Figure 10.6: Perturbation expansion for RPA susceptibility bubble. Each bare bubble con-
tributes a factor χ0(q, ω) and each wavy interaction line v̂(q). The infinite series can be summed,
yielding eqn. 10.162.

and

ǫ−1(q, ω →∞) = 1 +
ω2
p

ω2
, (10.158)

where

ωp ≡
√

4πne2

m
(10.159)

is the plasma frequency.

10.5.4 Random phase approximation (RPA)

The electron charge appears nowhere in the free electron gas response function χ0(q, ω). An in-
teracting electron gas certainly does know about electron charge, since the Coulomb repulsion
between electrons is part of the Hamiltonian. The idea behind the RPA is to obtain an approxi-
mation to the interacting χ̂(q, ω) from the noninteracting χ0(q, ω) by self-consistently adjusting

the charge so that the perturbing charge density is not ρext(x), but rather ρext(x, t)− e 〈δn(x, t)〉.
Thus, we write

e 〈δn̂(q, ω)〉 = 4πe2

q2
χRPA(q, ω) ρ̂ext(q, ω)

=
4πe2

q2
χ0(q, ω)

{
ρ̂ext(q, ω)− e 〈δn̂(q, ω)〉

}
,

(10.160)

which gives

χRPA(q, ω) =
χ0(q, ω)

1 + 4πe2

q2
χ0(q, ω)

. (10.161)
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Several comments are in order.

1. If the electron-electron interaction were instead given by a general v̂(q) rather than the
specific Coulomb form v̂(q) = 4πe2/q2, we would obtain

χRPA(q, ω) =
χ0(q, ω)

1 + v̂(q)χ0(q, ω)
. (10.162)

2. Within the RPA, there is perfect screening:

lim
q→0

4πe2

q2
χRPA(q, ω) = 1 . (10.163)

3. The RPA expression may be expanded in an infinite series,

χRPA = χ0 − χ0 v̂ χ0 + χ0 v̂ χ0 v̂ χ0 − . . . , (10.164)

which has a diagrammatic interpretation, depicted in fig. 10.6. The perturbative expan-
sion in the interaction v̂ may be resummed to yield the RPA result.

4. The RPA dielectric function takes the simple form

ǫRPA(q, ω) = 1 +
4πe2

q2
χ0(q, ω) . (10.165)

5. Explicitly,

Re ǫRPA(q, ω) = 1 +
q2
TF

q2

{
1

2
+
k

F

4q

[(
1− (ω − ~q2/2m)2

(v
F
q)2

)
ln

∣∣∣∣
ω − v

F
q − ~q2/2m

ω + v
F
q − ~q2/2m

∣∣∣∣

+

(
1− (ω − ~q2/2m)2

(v
F
q)2

)
ln

∣∣∣∣
ω − v

F
q + ~q2/2m

ω + v
F
q + ~q2/2m

∣∣∣∣

]} (10.166)

and

Im ǫRPA(q, ω) =





πω
2v

F
q
· q2TF

q2
if 0 6 ω 6 v

F
q − ~q2/2m

πk
F

4q

(
1− (ω−~q2/2m)2

(v
F
q)2

)
q2TF

q2
if v

F
q − ~q2/2m 6 ω 6 v

F
q + ~q2/2m

0 if ω > v
F
q + ~q2/2m

(10.167)

6. Note that

ǫRPA(q, ω →∞) = 1− ω2
p

ω2
, (10.168)

in agreement with the f -sum rule, and

ǫRPA(q → 0, ω = 0) = 1 +
q2TF

q2
, (10.169)

in agreement with Thomas-Fermi theory.
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7. When ω = 0 we have

ǫRPA(q, 0) = 1 +
q2
TF

q2

{
1

2
+
k

F

2q

(
1− q2

4k2F

)
ln

∣∣∣∣
q + 2k

F

q − 2k
F

∣∣∣∣

}
, (10.170)

which is real and which has a singularity at q = 2k
F
. This means that the long-distance

behavior of 〈δn(x)〉 must oscillate. For a local charge perturbation, ρext(x) = Ze δ(x), we
have

〈δn(x)〉 = Z

2π2r

∞∫

0

dq q sin(qr)

{
1− 1

ǫ(q, 0)

}
, (10.171)

and within the RPA one finds for long distances

〈δn(x)〉 ∼ Z cos(2k
F
r)

r3
, (10.172)

rather than the Yukawa form familiar from Thomas-Fermi theory.

10.5.5 Plasmons

The RPA response function diverges when v̂(q)χ0(q, ω) = −1. For a given value of q, this
occurs for a specific value (or for a discrete set of values) of ω, i.e. it defines a dispersion relation
ω = Ω(q). The poles of χRPA and are identified with elementary excitations of the electron gas
known as plasmons.

To find the plasmon dispersion, we first derive a result for χ0(q, ω), starting with

χ0(q, t) =
i

~V

〈[
n̂(q, t), n̂(−q, 0)

]〉
Θ(t)

=
i

~V

〈[∑

kσ

ψ†
k,σ ψk+q,σ,

∑

k′,σ′

ψ†
k′,σ′ ψk′−q,σ′

]〉
ei(ε(k)−ε(k+q))t/~ Θ(t) ,

(10.173)

where ε(k) is the noninteracting electron dispersion. For a free electron gas, ε(k) = ~
2k2/2m.

Next, using

[
AB,CD

]
= A

{
B,C

}
D −

{
A,C

}
BD + CA

{
B,D

}
− C

{
A,D

}
B (10.174)

we obtain

χ0(q, t) =
i

~V

∑

kσ

(fk − fk+q) ei(ε(k)−ε(k+q))t/~ Θ(t) , (10.175)

and therefore

χ0(q, ω) = 2

∫
d3k

(2π)3
fk+q − fk

~ω − ε(k + q) + ε(k) + iǫ
. (10.176)
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Here,

fk =
1

e(ε(k)−µ)/kBT + 1
(10.177)

is the Fermi distribution. At T = 0, fk = Θ(k
F
− k), and for ω ≫ v

F
q we can expand χ0(q, ω) in

powers of ω−2, yielding

χ0(q, ω) = − k3
F

3π2
· q2

mω2

{
1 +

3

5

(
~k

F
q

mω

)2

+ . . .

}
, (10.178)

so the resonance condition becomes

0 = 1 +
4πe2

q2
χ0(q, ω)

= 1− ω2
p

ω2

{
1 +

3

5

(
v
F
q

ω

)2

+ . . .

}
.

(10.179)

This gives the dispersion

ω = ωp

{
1 +

3

10

(
v
F
q

ωp

)2

+ . . .

}
. (10.180)

Recall that the particle-hole continuum frequencies are bounded by ωmin(q) and ωmax(q), which
are given in eqs. 10.109 and 10.108. Eventually the plasmon penetrates the particle-hole contin-
uum, at which point it becomes heavily damped since it can decay into particle-hole excitations.

10.5.6 Jellium

Finally, consider an electron gas in the presence of a neutralizing ionic background. We assume
one species of ion with mass Mi and charge +Zie, and we smear the ionic charge into a contin-
uum as an approximation. This nonexistent material is known in the business of many-body
physics as jellium. Let the ion number density be ni, and the electron number density be ne.
Then Laplace’s equation says

∇2φ = −4πρcharge = −4πe
(
ni − ne + next

)
, (10.181)

where next = ρext/e, where ρext is the test charge density, regarded as a perturbation to the
jellium. The ions move according to

Mi

dv

dt
= Zi eE = −Zi e∇φ . (10.182)

They also satisfy continuity, which to lowest order in small quantities is governed by the equa-
tion

n0
i ∇·v +

∂ni

∂t
= 0 , (10.183)
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where n0
i is the average ionic number density. Taking the time derivative of the above equation,

and invoking Newton’s law for the ion’s as well as Laplace, we find

− ∂2ni(x, t)

∂t2
=

4πn0
iZie

2

Mi

(
ni(x, t) + next(x, t)− ne(x, t)

)
. (10.184)

In Fourier space,

ω2 n̂i(q, ω) = Ω2
p,i

(
n̂i(q, ω) + n̂ext(q, ω)− n̂e(q, ω)

)
, (10.185)

where

Ωp,i =

√
4πn0

i Zie
2

Mi

(10.186)

is the ionic plasma frequency. Typically Ωp,i ≈ 1013 s−1.

Since the ionic mass Mi is much greater than the electron mass, the ionic plasma frequency is
much greater than the electron plasma frequency. We assume that the ions may be regarded as
‘slow’ and that the electrons respond according to Eqn. 10.131, viz.

n̂e(q, ω) =
4πe

q2
χe(q, ω)

(
n̂i(q, ω) + n̂ext(q, ω)

)
. (10.187)

We then have
ω2

Ω2
p,i

n̂i(q, ω) =
n̂i(q, ω) + n̂ext(q, ω)

ǫe(q, ω)
. (10.188)

From this equation, we obtain n̂i(q, ω) and then ntot ≡ ni − ne + next. We thereby obtain

n̂tot(q, ω) =
n̂ext(q, ω)

ǫe(q, ω)− ω−2Ω2
p,i

. (10.189)

Finally, the dielectric function of the jellium system is given by

ǫ(q, ω) =
n̂ext(q, ω)

n̂tot(q, ω)

= ǫe(q, ω)−
ω2

Ω2
p,i

.

(10.190)

At frequencies low compared to the electron plasma frequency, we approximate ǫe(q, ω) by the
Thomas-Fermi form, ǫe(q, ω) ≈

(
q2 + q2

TF
)/q2. Then

ǫ(q, ω) ≈ 1 +
q2
TF

q2
− Ω2

p,i

ω2
. (10.191)

The zeros of this function, given by ǫ(q, ωq) = 0, occur for

ωq =
Ωp,i q√
q2 + q2

TF

. (10.192)
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This allows us to write
4πe2

q2

1

ǫ(q, ω)
=

4πe2

q2 + q2
TF

· ω2

ω2 − ω2
q

. (10.193)

This is interpreted as the effective interaction between charges in the jellium model, arising
from both electronic and ionic screening. Note that the interaction is negative, i.e. attractive,
for ω2 < ω2

q. At frequencies high compared to ωq , but low compared to the electronic plasma
frequency, the effective potential is of the Yukawa form. Only the electrons then participate in
screening, because the phonons are too slow.

10.6 Electromagnetic Response

Consider an interacting system consisting of electrons of charge −e in the presence of a time-
varying electromagnetic field. The electromagnetic field is given in terms of the 4-potential
Aµ = (A0,A):

E = −∇A0 − 1

c

∂A

∂t
, B = ∇× A . (10.194)

The Hamiltonian for an N-particle system is

Ĥ(Aµ) =

N∑

i=1

{
1

2m

(
pi +

e

c
A(xi, t)

)2
− eA0(xi, t) + vext(xi)

}
+
∑

i<j

u(xi − xj)

= Ĥ(0)− 1

c

∫
d3x jpµ(x)A

µ(x, t) +
e2

2mc2

∫
d3x n(x)A2(x, t) ,

(10.195)

where we have defined

n(x) ≡
N∑

i=1

δ(x− xi)

jp0 (x) ≡ c e n(x)

j
p(x) ≡ − e

2m

N∑

i=1

{
pi δ(x− xi) + δ(x− xi) pi

}
.

(10.196)

Throughout this discussion we invoke covariant/contravariant notation, using the metric

gµν = gµν =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , (10.197)
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so that

jµ = (j0, j1, j2, j3) ≡ (j0, j)

jµ = gµνj
ν = (−j0, j1, j2, j3)

jµA
µ = jµgµν A

ν = −j0A0 + j ·A ≡ j · A

(10.198)

The quantity jpµ(x) is known as the paramagnetic current density. The physical current density
jµ(x) also contains a diamagnetic contribution:

jµ(x) = −c
δĤ

δAµ(x)
= jpµ(x) + jdµ(x)

jd0 (x) = 0

j
d(x) = − e2

mc
n(x)A(x) = − e

mc2
jp0 (x)A(x) .

(10.199)

The electromagnetic response tensor Kµν is defined via

〈
jµ(x, t)

〉
= − c

4π

∫
dt′
∫
d3x′ Kµν(xt; x

′t′)Aν(x′, t′) , (10.200)

valid to first order in the external 4-potential Aµ. From

〈
jpµ(x, t)

〉
=

i

~c

∫
dt′
∫
d3x′

〈[
jpµ(x, t), j

p
ν (x

′, t′)
]〉

Θ(t− t′)Aν(x′, t′)
〈
jdµ(x, t)

〉
= − e

mc2
〈
jp0 (x, t)

〉
Aµ(x, t) (1− δµ0) ,

(10.201)

we conclude

Kµν(xt; x
′t′) =

4π

i~c2

〈[
jpµ(x, t), j

p
ν (x

′, t′)
]〉

Θ(t− t′)

+
4πe

mc2
〈
jp0 (x, t)

〉
δ(x− x′) δ(t− t′) δµν (1− δµ0) .

(10.202)

The first term is sometimes known as the paramagnetic response kernel,

Kp
µν(x; x

′) =
4π

i~c2
〈[
jpµ(x), j

p
ν (x

′)
]〉

Θ(t− t′) , (10.203)

is not directly calculable by perturbation theory. Rather, one obtains the time-ordered response

function Kp,T
µν (x; x

′) = (4π/i~c2)
〈
T̂ jpµ(x) jpν (x′)

〉
, where xµ ≡ (ct, x).
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Second quantized notation

In the presence of an electromagnetic field described by the 4-potentialAµ = (cφ,A), the Hamil-
tonian of an interacting electron system takes the form

Ĥ =
∑

σ

∫
d3x ψ†

σ(x)

{
1

2m

(
~

i
∇+

e

c
A

)2
− eA0(x) + vext(x)

}
ψσ(x)

+
1

2

∑

σ,σ′

∫
d3x

∫
d3x′ ψ†

σ(x)ψ
†
σ′(x

′) u(x− x′)ψσ′(x′)ψσ(x) ,

(10.204)

where v(x−x′) is a two-body interaction, e.g. e2/|x−x′|, and U(x) is the external scalar potential.
Expanding in powers of Aµ,

Ĥ(Aµ) = Ĥ(0)− 1

c

∫
d3x jpµ(x)A

µ(x) +
e2

2mc2

∑

σ

∫
d3xψ†

σ(x)ψσ(x)A
2(x) , (10.205)

where the paramagnetic current density jpµ(x) is defined by

jp0 (x) = c e
∑

σ

ψ†
σ(x)ψσ(x)

j
p(x) =

ie~

2m

∑

σ

{
ψ†
σ(x)∇ψσ(x)−

(
∇ψ†

σ(x)
)
ψσ(x)

}
.

(10.206)

10.6.1 Gauge invariance and charge conservation

In Fourier space, with qµ = (ω/c, q), we have, for homogeneous systems,

〈
jµ(q)

〉
= − c

4π
Kµν(q)A

ν(q) . (10.207)

Note our convention on Fourier transforms:

H(x) =

∫
d4k

(2π)4
Ĥ(k) e+ik·x

Ĥ(k) =

∫
d4xH(x) e−ik·x ,

(10.208)

where k · x ≡ kµx
µ = k · x− ωt. Under a gauge transformation, Aµ → Aµ + ∂µΛ, i.e.

Aµ(q)→ Aµ(q) + iΛ(q) qµ , (10.209)
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where Λ is an arbitrary scalar function. Since the physical current must be unchanged by a
gauge transformation, we conclude that Kµν(q) q

ν = 0. We also have the continuity equa-
tion, ∂µjµ = 0, the Fourier space version of which says qµ jµ(q) = 0, which in turn requires
qµKµν(q) = 0. Therefore,

∑

µ

qµKµν(q) =
∑

ν

Kµν(q) q
ν = 0 . (10.210)

In fact, the above conditions are identical owing to the reciprocity relations,

Re Kµν(q) = +Re Kνµ(−q)
Im Kµν(q) = −Im Kνµ(−q) ,

(10.211)

which follow from the spectral representation of Kµν(q). Thus,

gauge invariance⇐⇒ charge conservation . (10.212)

10.6.2 A sum rule

If we work in a gauge where A0 = 0, then E = −c−1Ȧ, hence E(q) = iq0A(q), and

〈
ji(q)

〉
= − c

4π
Kij(q)A

j(q)

= − c

4π
Kij(q)

c

iω
Ej(q) ≡ σij(q)E

j(q) .

Thus, the conductivity tensor is given by

σij(q, ω) =
ic2

4πω
Kij(q, ω) . (10.213)

If, in the ω → 0 limit, the conductivity is to remain finite, then we must have

∞∫

0

dt

∫
d3x
〈[
jpi (x, t), j

p
j (0, 0)

]〉
e+iωt =

ie2n

m
δij , (10.214)

where n is the electron number density. This relation is spontaneously violated in a supercon-
ductor, where σ(ω) ∝ ω−1 as ω → 0.

10.6.3 Longitudinal and transverse response

In an isotropic system, the spatial components of Kµν may be resolved into longitudinal and
transverse components, since the only preferred spatial vector is q itself. Thus, we may write

Kij(q, ω) = K‖(q, ω) q̂i q̂j +K⊥(q, ω)
(
δij − q̂i q̂j

)
, (10.215)
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where q̂i ≡ qi/|q|. We now invoke current conservation, which says qµKµν(q) = 0. When ν = j
is a spatial index,

q0K0j + qiKij =
ω

c
K0j +K‖ qj , (10.216)

which yields

K0j(q, ω) = −
c

ω
qjK‖(q, ω) = Kj0(q, ω) . (10.217)

In other words, the three components of K0j(q) are in fact completely determined by K‖(q) and

q itself. When ν = 0,

0 = q0K00 + qiKi0 =
ω

c
K00 −

c

ω
q
2K‖ , (10.218)

which says

K00(q, ω) =
c2

ω2
q
2K‖(q, ω) . (10.219)

Thus, of the 10 freedoms of the symmetric 4× 4 tensor Kµν(q), there are only two independent

ones – the functions K‖(q) and K⊥(q).

10.6.4 Neutral systems

In neutral systems, we define the number density and number current density as

n(x) =
N∑

i=1

δ(x− xi)

j(x) =
1

2m

N∑

i=1

{
pi δ(x− xi) + δ(x− xi) pi

}
.

(10.220)

The charge and current susceptibilities are then given by

χ(x, t) =
i

~

〈[
n(x, t), n(0, 0)

]〉
Θ(t)

χij(x, t) =
i

~

〈[
ji(x, t), jj(0, 0)

]〉
Θ(t) .

(10.221)

We define the longitudinal and transverse susceptibilities for homogeneous systems according
to

χij(q, ω) = χ‖(q, ω) q̂i q̂j + χ⊥(q, ω) (δij − q̂i q̂j) . (10.222)

From the continuity equation,

∇ · j + ∂n

∂t
= 0 (10.223)

follows the relation

χ‖(q, ω) =
n

m
+
ω2

q2
χ̂(q, ω) . (10.224)
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EXERCISE: Derive eqn. (10.224).

The relation between Kµν(q) and the neutral susceptibilities defined above is then

K00(x, t) = −4πe2 χ(x, t)

Kij(x, t) =
4πe2

c2

{
n

m
δ(x) δ(t)− χij(x, t)

}
,

(10.225)

and therefore

K‖(q, ω) =
4πe2

c2

{
n

m
− χ‖(q, ω)

}

K⊥(q, ω) =
4πe2

c2

{
n

m
− χ⊥(q, ω)

}
.

(10.226)

10.6.5 The Meissner effect and superfluid density

Suppose we apply an electromagnetic field E. We adopt a gauge in which A0 = 0, E = −c−1Ȧ,
and B = ∇ × A. To satisfy Maxwell’s equations, we have q · A(q, ω) = 0, i.e. A(q, ω) is purely
transverse. But then 〈

j(q, ω)
〉
= − c

4π
K⊥(q, ω)A(q, ω) . (10.227)

This leads directly to the Meissner effect whenever limq→0K⊥(q, 0) is finite. To see this, we
write

∇× B = ∇ (∇ · A)−∇
2
A

=
4π

c
j +

1

c

∂E

∂t

=
4π

c

(
− c

4π

)
K⊥(−i∇, i ∂t)A−

1

c2
∂2A

∂t2
,

(10.228)

which yields (
∇

2 − 1

c2
∂2

∂t2

)
A = K⊥(−i∇, i ∂t)A . (10.229)

In the static limit, ∇2
A = K⊥(i∇, 0)A, and we define

1

λ2
L

≡ lim
q→0

K⊥(q, 0) . (10.230)

λL is the London penetration depth, which is related to the superfluid density ns by

ns ≡
mc2

4πe2λ2
L

= n−m lim
q→0

χ⊥(q, 0) . (10.231)
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Ideal Bose gas

We start from

χij(q, t) =
i

~V

〈[
ji(q, t), jj(−q, 0)

]〉
Θ(t)

ji(q) =
~

2m

∑

k

(2ki + qi)ψ
†
k ψk+q .

(10.232)

For the free Bose gas, with dispersion ωk = ~k2/2m,

ji(q, t) =
~

2m

∑

k

(2ki + qi) e
i(ω

k
−ω

k+q
)t ψ†

k ψk+q

[
ji(q, t), jj(−q, 0)

]
=

~2

4m2

∑

k,k′

(2ki + qi)(2k
′
j − qj) ei(ωk−ωk+q)t

[
ψ†
k ψk+q, ψ

†
k′ ψk′−q

] (10.233)

Using

[AB,CD] = A [B,C]D + AC [B,D] + C [A,D]B + [A,C]DB , (10.234)

we obtain

[
ji(q, t), jj(−q, 0)

]
=

~2

4m2

∑

k

(2ki + qi)(2kj + qj) e
i(ω

k
−ω

k+q
)t {n0(ωk)− n0(ωk+q)

}
, (10.235)

where n0(ω) is the equilibrium Bose distribution5,

n0(ω) =
1

eβ~ω e−βµ − 1
. (10.236)

Thus,

χij(q, ω) =
~

4m2V

∑

k

(2ki + qi)(2kj + qj)
n0(ωk+q)− n0(ωk)

ω + ωk − ωk+q + iǫ
(10.237)

=
~n0

4m2

{
1

ω + ωq + iǫ
− 1

ω − ωq + iǫ

}
qi qj +

~

m2

∫
d3k

(2π)3

n0(ω
k+q/2)− n0(ω

k−q/2)

ω + ω
k−q/2 − ωk+q/2 + iǫ

ki kj ,

where n0 = N0/V is the condensate number density. Taking the ω = 0, q → 0 limit yields

χij(q → 0, 0) =
n0

m
q̂i q̂j +

n′

m
δij , (10.238)

5Recall that µ = 0 in the condensed phase.
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where n′ is the density of uncondensed bosons. From this we read off

χ‖(q → 0, 0) =
n

m
, χ⊥(q → 0, 0) =

n′

m
, (10.239)

where n = n0 + n′ is the total boson number density. The superfluid density, according to
(10.231), is ns = n0(T ).

In fact, the ideal Bose gas is not a superfluid. Its excitation spectrum is too ‘soft’ - any superflow
is unstable toward decay into single particle excitations.
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Chapter 11

Phenomenological Theories of
Superconductivity

11.1 Basic Phenomenology of Superconductors

The superconducting state is a phase of matter, as is ferromagnetism, metallicity, etc. The phe-
nomenon was discovered in the Spring of 1911 by the Dutch physicist H. Kamerlingh Onnes,
who observed an abrupt vanishing of the resistivity of solid mercury at T = 4.15K1. Under am-
bient pressure, there are 33 elemental superconductors2 , all of which have a metallic phase at
higher temperatures, and hundreds of compounds and alloys which exhibit the phenomenon.
A timeline of superconductors and their critical temperatures is provided in Fig. 11.1. The re-
lated phenomenon of superfluidity was first discovered in liquid helium below T = 2.17K, at
atmospheric pressure, independently in 1937 by P. Kapitza (Moscow) and by J. F. Allen and A.
D. Misener (Cambridge). At some level, a superconductor may be considered as a charged su-
perfluid – we will elaborate on this statement later on. Here we recite the basic phenomenology
of superconductors:

• Vanishing electrical resistance : The DC electrical resistance at zero magnetic field van-
ishes in the superconducting state. This is established in some materials to better than
one part in 1015 of the normal state resistance. Above the critical temperature Tc, the
DC resistivity at H = 0 is finite. The AC resistivity remains zero up to a critical fre-
quency, ωc = 2∆/~, where ∆ is the gap in the electronic excitation spectrum. The fre-
quency threshold is 2∆ because the superconducting condensate is made up of electron
pairs, so breaking a pair results in two quasiparticles, each with energy ∆ or greater. For
weak coupling superconductors, which are described by the famous BCS theory (1957),

1Coincidentally, this just below the temperature at which helium liquefies under atmospheric pressure.
2An additional 23 elements are superconducting under high pressure.

477



478 CHAPTER 11. PHENOMENOLOGICAL THEORIES OF SUPERCONDUCTIVITY

Figure 11.1: Timeline of superconductors and their transition temperatures (from Wikipedia).

there is a relation between the gap energy and the superconducting transition tempera-
ture, 2∆0 = 3.5 k

B
Tc, which we derive when we study the BCS model. The gap ∆(T ) is

temperature-dependent and vanishes at Tc.

• Flux expulsion : In 1933 it was descovered by Meissner and Ochsenfeld that magnetic
fields in superconducting tin and lead to not penetrate into the bulk of a superconductor,
but rather are confined to a surface layer of thickness λ, called the London penetration depth.
Typically λ in on the scale of tens to hundreds of nanometers.

It is important to appreciate the difference between a superconductor and a perfect metal.
If we set σ = ∞ then from j = σE we must have E = 0, hence Faraday’s law ∇ ×
E = −c−1∂tB yields ∂tB = 0, which says that B remains constant in a perfect metal. Yet
Meissner and Ochsenfeld found that below Tc the flux was expelled from the bulk of the
superconductor. If, however, the superconducting sample is not simply connected, i.e. if
it has holes, such as in the case of a superconducting ring, then in the Meissner phase
flux may be trapped in the holes. Such trapped flux is quantized in integer units of the
superconducting fluxoid φ

L
= hc/2e = 2.07× 10−7Gcm2 (see Fig. 11.2).

• Critical field(s) : The Meissner state exists for T < Tc only when the applied magnetic
field H is smaller than the critical field Hc(T ), with

Hc(T ) ≃ Hc(0)

(
1− T 2

T 2
c

)
. (11.1)

In so-called type-I superconductors, the system goes normal3 for H > Hc(T ). For most

3Here and henceforth, “normal” is an abbreviation for “normal metal”.
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Figure 11.2: Flux expulsion from a superconductor in the Meissner state. In the right panel,
quantized trapped flux penetrates a hole in the sample.

elemental type-I materials (e.g., Hg, Pb, Nb, Sn) one hasHc(0) 6 1 kG. In type-II materials,
there are two critical fields, Hc1(T ) and Hc2(T ). For H < Hc1, we have flux expulsion, and
the system is in the Meissner phase. For H > Hc2, we have uniform flux penetration and
the system is normal. For Hc1 < H < Hc2, the system in a mixed state in which quantized
vortices of flux φ

L
penetrate the system (see Fig. 11.3). There is a depletion of what we

shall describe as the superconducting order parameter Ψ(r) in the vortex cores over a
length scale ξ, which is the coherence length of the superconductor. The upper critical field
is set by the condition that the vortex cores start to overlap: Hc2 = φL/2πξ

2. The vortex
cores can be pinned by disorder. Vortices also interact with each other out to a distance
λ, and at low temperatures in the absence of disorder the vortices order into a (typically
triangular) Abrikosov vortex lattice (see Fig. 11.4). Typically one has Hc2 =

√
2κHc1, where

κ = λ/ξ is a ratio of the two fundamental length scales. Type-II materials exist when
Hc2 > Hc1, i.e. when κ > 1√

2
. Type-II behavior tends to occur in superconducting alloys,

such as Nb-Sn.

• Persistent currents : We have already mentioned that a metallic ring in the presence of an
external magnetic field may enclosed a quantized trapped flux nφL when cooled below its
superconducting transition temperature. If the field is now decreased to zero, the trapped
flux remains, and is generated by a persistent current which flows around the ring. In thick
rings, such currents have been demonstrated to exist undiminished for years, and may
be stable for astronomically long times.

• Specific heat jump : The heat capacity of metals behaves as cV ≡ CV /V = π2

3
k2BTg(εF),

where g(ε
F
) is the density of states at the Fermi level. In a superconductor, once one
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subtracts the low temperature phonon contribution cphononV = AT 3, one is left for T < Tc
with an electronic contribution behaving as celecV ∝ e−∆/kBT . There is also a jump in the
specific heat at T = Tc, the magnitude of which is generally about three times the normal
specific heat just above Tc. This jump is consistent with a second order transition with
critical exponent α = 0.

• Tunneling and Josephson effect : The energy gap in superconductors can be measured
by electron tunneling between a superconductor and a normal metal, or between two
superconductors separated by an insulating layer. In the case of a weak link between two
superconductors, current can flow at zero bias voltage, a situation known as the Josephson
effect.

11.2 Thermodynamics of Superconductors

The differential free energy density of a magnetic material is given by

df = −s dT +
1

4π
H · dB , (11.2)

which says that f = f(T,B). Here s is the entropy density, and B the magnetic field. The
quantity H is called the magnetizing field and is thermodynamically conjugate to B:

s = −
(
∂f

∂T

)

B

, H = 4π

(
∂f

∂B

)

T

. (11.3)

In the Ampère-Maxwell equation, ∇ × H = 4πc−1jext + c−1∂tD, the sources of H appear on
the RHS4. Usually c−1∂tD is negligible, in which case H is generated by external sources such
as magnetic solenoids. The magnetic field B is given by B = H + 4πM ≡ µH , where M is
the magnetization density. We therefore have no direct control over B, and it is necessary to
discuss the thermodynamics in terms of the Gibbs free energy density, g(T,H):

g(T,H) = f(T,B)− 1

4π
B ·H

dg = −s dT − 1

4π
B · dH .

(11.4)

Thus,

s = −
(
∂g

∂T

)

H

, B = −4π
(
∂g

∂H

)

T

. (11.5)

4Throughout these notes, RHS/LHS will be used to abbreviate “right/left hand side”.
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Figure 11.3: Phase diagrams for type I and type II superconductors in the (T,H) plane.

Assuming a bulk sample which is isotropic, we then have

g(T,H) = g(T, 0)− 1

4π

H∫

0

dH ′B(H ′) . (11.6)

In a normal metal, µ ≈ 1 (cgs units), which means B ≈ H , which yields

gn(T,H) = gn(T, 0)−
H2

8π
. (11.7)

In the Meissner phase of a superconductor, B = 0, so

gs(T,H) = gs(T, 0) . (11.8)

For a type-I material, the free energies cross at H = Hc, so

gs(T, 0) = gn(T, 0)−
H2

c

8π
, (11.9)

which says that there is a negative condensation energy density −H2
c (T )
8π

which stabilizes the su-
perconducting phase. We may now write

gs(T,H)− gn(T,H) =
1

8π

(
H2 −H2

c (T )
)

, (11.10)

so the superconductor is the equilibrium state for H < Hc. Taking the derivative with respect
to temperature, the entropy difference is given by

ss(T,H)− sn(T,H) =
1

4π
Hc(T )

dHc(T )

dT
< 0 , (11.11)
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Figure 11.4: STM image of a vortex lattice in NbSe2 at H = 1T and T = 1.8K. From H. F. Hess
et al., Phys. Rev. Lett. 62, 214 (1989).

since Hc(T ) is a decreasing function of temperature. Note that the entropy difference is inde-
pendent of the external magnetizing field H . As we see from Fig. 11.3, the derivative H ′

c(T )
changes discontinuously at T = Tc. The latent heat ℓ = T ∆s vanishes because Hc(Tc) itself
vanishes, but the specific heat is discontinuous:

cs(Tc, H = 0)− cn(Tc, H = 0) =
Tc
4π

(
dHc(T )

dT

)2

Tc

, (11.12)

and from the phenomenological relation of Eqn. 11.1, we have H ′
c(Tc) = −2Hc(0)/Tc, hence

∆c ≡ cs(Tc, H = 0)− cn(Tc, H = 0) =
H2

c (0)

πTc
. (11.13)

We can appeal to Eqn. 11.11 to compute the difference ∆c(T,H) for general T < Tc:

∆c(T,H) =
T

8π

d2

dT 2
H2

c (T ) . (11.14)

With the approximation of Eqn. 11.1, we obtain

cs(T,H)− cn(T,H) ≃ TH2
c (0)

2πT 2
c

{
3

(
T

Tc

)2
− 1

}
. (11.15)

In the limit T → 0, we expect cs(T ) to vanish exponentially as e−∆/kBT , hence we have ∆c(T →
0) = −γT , where γ is the coefficient of the linear T term in the metallic specific heat. Thus, we
expect γ ≃ H2

c (0)/2πT
2
c . Note also that this also predicts the ratio ∆c(Tc, 0)

/
cn(Tc, 0) = 2. In
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Figure 11.5: Dimensionless energy gap ∆(T )/∆0 in niobium, tantalum, and tin. The solid
curve is the prediction from BCS theory, derived in chapter 3 below.

fact, within BCS theory, as we shall later show, this ratio is approximately 1.43. BCS also yields
the low temperature form

Hc(T ) = Hc(0)

{
1− α

(
T

Tc

)2
+O

(
e−∆/kBT

)
}

(11.16)

with α ≃ 1.07. Thus, HBCS
c (0) =

(
2πγT 2

c /α
)1/2

.

11.3 London Theory

Fritz and Heinz London in 1935 proposed a two fluid model for the macroscopic behavior of
superconductors. The two fluids are: (i) the normal fluid, with electron number density nn,
which has finite resistivity, and (ii) the superfluid, with electron number density ns, and which
moves with zero resistance. The associated velocities are vn and vs, respectively. Thus, the total
number density and current density are

n = nn + ns

j = jn + js = −e
(
nnvn + nsvs

)
.

(11.17)
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The normal fluid is dissipative, hence jn = σnE, but the superfluid obeys F = ma, i.e.

m
dvs
dt

= −eE ⇒ djs
dt

=
nse

2

m
E . (11.18)

In the presence of an external magnetic field, the superflow satisfies

dvs
dt

= − e

m

(
E + c−1

vs × B
)

=
∂vs
∂t

+ (vs ·∇)vs =
∂vs
∂t

+∇
(
1
2
v
2
s

)
− vs × (∇× vs) .

(11.19)

We then have
∂vs
∂t

+
e

m
E +∇

(
1
2
v
2
s

)
= vs×

(
∇× vs −

eB

mc

)
. (11.20)

Taking the curl, and invoking Faraday’s law ∇× E = −c−1∂tB, we obtain

∂

∂t

(
∇× vs −

eB

mc

)
= ∇×

{
vs ×

(
∇× vs −

eB

mc

)}
, (11.21)

which may be written as
∂Q

∂t
= ∇× (vs × Q) , (11.22)

where

Q ≡∇× vs −
eB

mc
. (11.23)

Eqn. 11.22 says that if Q = 0, it remains zero for all time. Assumption: the equilibrium state
has Q = 0. Thus,

∇× vs =
eB

mc
⇒ ∇× js = −

nse
2

mc
B . (11.24)

This equation implies the Meissner effect, for upon taking the curl of the last of Maxwell’s
equations (and assuming a steady state so Ė = Ḋ = 0),

−∇2
B = ∇× (∇× B) = 4π

c
∇× j = −4πnse

2

mc2
B ⇒ ∇2

B = λ−2
L B , (11.25)

where λL =
√
mc2/4πnse

2 is the London penetration depth. The magnetic field can only penetrate
up to a distance on the order of λ

L
inside the superconductor.

Note that
∇× js = −

c

4πλ2L
B (11.26)

and the definition B = ∇× A licenses us to write

js = −
c

4πλ2
L

A , (11.27)
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provided an appropriate gauge choice for A is taken. Since ∇ · js = 0 in steady state, we
conclude ∇·A = 0 is the proper gauge. This is called the Coulomb gauge. Note, however, that
this still allows for the little gauge transformation A → A +∇χ , provided ∇2χ = 0. Consider
now an isolated body which is simply connected, i.e. any closed loop drawn within the body is
continuously contractable to a point. The normal component of the superfluid at the boundary,
js,⊥ must vanish, hence A⊥ = 0 as well. Therefore ∇⊥χ must also vanish everywhere on the
boundary, which says that χ is determined up to a global constant.

If the superconductor is multiply connected, though, the condition ∇⊥χ = 0 allows for non-
constant solutions for χ. The line integral of A around a closed loop surrounding a hole D in
the superconductor is, by Stokes’ theorem, the magnetic flux through the loop:

∮

∂D

dl · A =

∫

D

dS n̂ · B = ΦD . (11.28)

On the other hand, within the interior of the superconductor, sinceB = ∇×A = 0, we can write
A = ∇χ , which says that the trapped flux ΦD is given by ΦD = ∆χ, then change in the gauge
function as one proceeds counterclockwise around the loop. F. London argued that if the gauge
transformation A→ A+∇χ is associated with a quantum mechanical wavefunction associated
with a charge e object, then the flux ΦD will be quantized in units of the Dirac quantum φ0 =
hc/e = 4.137 × 10−7Gcm2. The argument is simple. The transformation of the wavefunction
Ψ → Ψ e−iα is cancelled by the replacement A → A + (~c/e)∇α. Thus, we have χ = αφ0/2π,
and single-valuedness requires ∆α = 2πn around a loop, hence ΦD = ∆χ = nφ0.

The above argument is almost correct. The final piece was put in place by Lars Onsager in 1953.
Onsager pointed out that if the particles described by the superconducting wavefunction Ψ
were of charge e∗ = 2e, then, mutatis mutandis, one would conclude the quantization condition
is ΦD = nφL, where φL = hc/2e is the London flux quantum, which is half the size of the
Dirac flux quantum. This suggestion was confirmed in subsequent experiments by Deaver and
Fairbank, and by Doll and Näbauer, both in 1961.

De Gennes’ derivation of London Theory

De Gennes writes the total free energy of the superconductor as

F =

∫
d3x f0 + Ekinetic + Efield

Ekinetic =

∫
d3x 1

2
mnsv

2
s (x) =

∫
d3x

m

2nse
2
j
2
s (x)

Efield =

∫
d3x

B2(x)

8π
.

(11.29)

Here f0 is the free energy density of the metallic state, in which no currents flow. What makes
this a model of a superconductor is the assumption that a current js flows in the presence of a
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magnetic field. Thus, under steady state conditions ∇× B = 4πc−1js , so

F =

∫
d3x

{
f0 +

B2

8π
+ λ2

L

(∇× B)2
8π

}
. (11.30)

Taking the functional variation and setting it to zero,

4π
δF

δB
= B + λ2L ∇× (∇× B) = B − λ2L∇2

B = 0 . (11.31)

Pippard’s nonlocal extension

The London equation js(x) = −cA(x)/4πλ2
L

says that the supercurrent is perfectly yoked to
the vector potential, and on arbitrarily small length scales. This is unrealistic. A. B. Pippard
undertook a phenomenological generalization of the (phenomenological) London equation,
writing5

jαs (x) = −
c

4πλ2L

∫
d3r Kαβ(r)Aβ(x+ r)

= − c

4πλ2
L

· 3

4πξ

∫
d3r

e−r/ξ

r2
r̂α r̂β Aβ(x+ r) .

(11.32)

Note that the kernel Kαβ(r) = 3 e−r/ξ r̂αr̂β/4πξr2 is normalized so that

∫
d3r Kαβ(r) =

3

4πξ

∫
d3r

e−r/ξ

r2
r̂α r̂β =

1︷ ︸︸ ︷
1

ξ

∞∫

0

dr e−r/ξ ·

δαβ︷ ︸︸ ︷

3

∫
dr̂

4π
r̂α r̂β = δαβ . (11.33)

The exponential factor means that Kαβ(r) is negligible for r ≫ ξ. If the vector potential is
constant on the scale ξ, then we may pull Aβ(x) out of the integral in Eqn. 11.33, in which case
we recover the original London equation. Invoking continuity in the steady state, ∇ · j = 0
requires

3

4πξ2

∫
d3r

e−r/ξ

r2
r̂ ·A(x+ r) = 0 , (11.34)

which is to be regarded as a gauge condition on the vector potential. One can show that this
condition is equivalent to ∇·A = 0, the original Coulomb gauge.

In disordered superconductors, Pippard took

Kαβ(r) =
3

4πξ0

e−r/ξ

r2
r̂α r̂β , (11.35)

5See A. B. Pippard, Proc. Roy. Soc. Lond. A216, 547 (1953).
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with
1

ξ
=

1

ξ0
+

1

a ℓ
, (11.36)

where ℓ is the metallic elastic mean free path, and a is a dimensionless constant on the order of
unity. Note that

∫
d3rKαβ(r) = (ξ/ξ0) δ

αβ. Thus, for λ
L
≫ ξ, one obtains an effective penetration

depth λ = (ξ0/ξ)
1/2λL , where λL =

√
mc2/4πnse

2 . In the opposite limit, where λL ≪ ξ, Pippard

found λ = (3/4π2)1/6
(
ξ0λ

2
L

)1/3
. For strongly type-I superconductors, ξ ≫ λL. Since js(x) is

averaging the vector potential over a region of size ξ ≫ λ
L
, the screening currents near the

surface of the superconductor are weaker, which means the magnetic field penetrates deeper

than λ
L
. The physical penetration depth is λ, where, according to Pippard, λ/λ

L
∝
(
ξ0/λL

)1/3 ≫
1.

11.4 Ginzburg-Landau Theory

The basic idea behind Ginzburg-Landau theory is to write the free energy as a simple functional
of the order parameter(s) of a thermodynamic system and their derivatives. In 4He, the order
parameter Ψ(x) = 〈ψ(x)〉 is the quantum and thermal average of the field operator ψ(x) which
destroys a helium atom at position x. When Ψ is nonzero, we have Bose condensation with
condensate density n0 = |Ψ|2. Above the lambda transition, one has n0(T > Tλ) = 0.

In an s-wave superconductor, the order parameter field is given by

Ψ(x) ∝
〈
ψ↑(x)ψ↓(x)

〉
, (11.37)

where ψσ(x) destroys a conduction band electron of spin σ at position x. Owing to the an-
ticommuting nature of the fermion operators, the fermion field ψσ(x) itself cannot condense,
and it is only the pair field Ψ(x) (and other products involving an even number of fermion field
operators) which can take a nonzero value.

11.4.1 Landau theory for superconductors

The superconducting order parameter Ψ(x) is thus a complex scalar, as in a superfluid. As we
shall see, the difference is that the superconductor is charged. In the absence of magnetic fields,
the Landau free energy density is approximated as

f = a |Ψ|2 + 1
2
b |Ψ|4 . (11.38)

The coefficients a and b are real and temperature-dependent but otherwise constant in a spa-
tially homogeneous system. The sign of a is negotiable, but b > 0 is necessary for thermody-
namic stability. The free energy has an O(2) symmetry, i.e. it is invariant under the substitution
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Ψ→ Ψ eiα. For a < 0 the free energy is minimized by writing

Ψ =

√
−a
b
eiφ , (11.39)

where φ, the phase of the superconductor, is a constant. The system spontaneously breaks the
O(2) symmetry and chooses a direction in Ψ space in which to point.

In our formulation here, the free energy of the normal state, i.e. when Ψ = 0, is fn = 0 at
all temperatures, and that of the superconducting state is fs = −a2/2b. From thermodynamic
considerations, therefore, we have

fs(T )− fn(T ) = −
H2

c (T )

8π
⇒ a2(T )

b(T )
=
H2

c (T )

4π
. (11.40)

Furthermore, from London theory we have that λ2L = mc2/4πnse
2, and if we normalize the

order parameter according to
∣∣Ψ
∣∣2 = ns

n
, (11.41)

where ns is the number density of superconducting electrons and n the total number density of
conduction band electrons, then

λ2
L
(0)

λ2L(T )
=
∣∣Ψ(T )

∣∣2 = −a(T )
b(T )

. (11.42)

Here we have taken ns(T = 0) = n, so |Ψ(0)|2 = 1. Putting this all together, we find

a(T ) = −H
2
c (T )

4π
· λ

2
L
(T )

λ2
L
(0)

, b(T ) =
H2

c (T )

4π
· λ

4
L
(T )

λ4
L
(0)

(11.43)

Close to the transition, Hc(T ) vanishes in proportion to λ−2
L
(T ), so a(Tc) = 0 while b(Tc) > 0

remains finite at Tc. Later on below, we shall relate the penetration depth λL to a stiffness
parameter in the Ginzburg-Landau theory.

We may now compute the specific heat discontinuity from c = −T ∂2f
∂T 2 . It is left as an exercise

to the reader to show

∆c = cs(Tc)− cn(Tc) =
Tc
[
a′(Tc)

]2

b(Tc)
, (11.44)

where a′(T ) = da/dT . Of course, cn(T ) isn’t zero! Rather, here we are accounting only for the
specific heat due to that part of the free energy associated with the condensate. The Ginzburg-
Landau description completely ignores the metal, and doesn’t describe the physics of the nor-
mal state Fermi surface, which gives rise to cn = γT . The discontinuity ∆c is a mean field result.
It works extremely well for superconductors, where, as we shall see, the Ginzburg criterion is
satisfied down to extremely small temperature variations relative to Tc. In 4He, one sees an
cusp-like behavior with an apparent weak divergence at the lambda transition. Recall that in
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the language of critical phenomena, c(T ) ∝ |T −Tc|−α. For the O(2) model in d = 3 dimensions,
the exponent α is very close to zero, which is close to the mean field value α = 0. The order
parameter exponent is β = 1

2
at the mean field level; the exact value is closer to 1

3
. One has, for

T < Tc,

∣∣Ψ(T < Tc)
∣∣ =

√
−a(T )
b(T )

=

√
a′(Tc)

b(Tc)
(Tc − T )1/2 + . . . . (11.45)

11.4.2 Ginzburg-Landau Theory

The Landau free energy is minimized by setting |Ψ|2 = −a/b for a < 0. The phase of Ψ is
therefore free to vary, and indeed free to vary independently everywhere in space. Phase fluc-
tuations should cost energy, so we posit an augmented free energy functional,

F
[
Ψ,Ψ∗] =

∫
ddx
{
a
∣∣Ψ(x)

∣∣2 + 1
2
b
∣∣Ψ(x)

∣∣4 +K
∣∣∇Ψ(x)

∣∣2 + . . .
}

. (11.46)

Here K is a stiffness with respect to spatial variation of the order parameter Ψ(x). From K and

a, we can form a length scale, ξ =
√
K/|a|, known as the coherence length. This functional in fact

is very useful in discussing properties of neutral superfluids, such as 4He, but superconductors
are charged, and we have instead

F
[
Ψ,Ψ∗,A

]
=

∫
ddx
{
a
∣∣Ψ(x)

∣∣2+ 1
2
b
∣∣Ψ(x)

∣∣4+K
∣∣∣
(
∇+ ie∗

~c
A
)
Ψ(x)

∣∣∣
2

+ 1
8π

(∇×A)2+. . .
}

. (11.47)

Here q = −e∗ = −2e is the charge of the condensate. We assume E = 0, so A is not time-
dependent.

Under a local transformation Ψ(x)→ Ψ(x) eiα(x), we have

(
∇+ ie∗

~c
A
)(
Ψ eiα

)
= eiα

(
∇+ i∇α + ie∗

~c
A
)
Ψ , (11.48)

which, upon making the gauge transformation A → A − ~c
e∗
∇α, reverts to its original form.

Thus, the free energy is unchanged upon replacing Ψ → Ψeiα and A → A − ~c
e∗
∇α. Since

gauge transformations result in no physical consequences, we conclude that the longitudinal
phase fluctuations of a charged order parameter do not really exist. More on this later when
we discuss the Anderson-Higgs mechanism.
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11.4.3 Equations of motion

Varying the free energy in Eqn. 11.47 with respect to Ψ∗ and A, respectively, yields

0 =
δF

δΨ∗ = aΨ+ b |Ψ|2Ψ−K
(
∇+ ie∗

~c
A
)2

Ψ

0 =
δF

δA
=

2Ke∗

~c

[
1

2i

(
Ψ∗

∇Ψ−Ψ∇Ψ∗)+ e∗

~c
|Ψ|2A

]
+

1

4π
∇× B .

(11.49)

The second of these equations is the Ampère-Maxwell law, ∇× B = 4πc−1j, with

j = −2Ke
∗

~2

[
~

2i

(
Ψ∗

∇Ψ−Ψ∇Ψ∗)+ e∗

c
|Ψ|2A

]
. (11.50)

If we set Ψ to be constant, we obtain ∇× (∇× B) + λ−2
L
B = 0, with

λ−2
L

= 8πK

(
e∗

~c

)2
|Ψ|2 . (11.51)

Thus we recover the relation λ−2
L ∝ |Ψ|2. Note that |Ψ|2 = |a|/b in the ordered phase, hence

λ−1
L

=

[
8πa2

b
· K|a|

]1/2
e∗

~c
=

√
2 e∗

~c
Hc ξ , (11.52)

which says

Hc =
φL√

8 π ξλL

. (11.53)

At a superconductor-vacuum interface, we should have

n̂ ·
(
~

i
∇+

e∗

c
A

)
Ψ
∣∣
∂Ω

= 0 , (11.54)

where Ω denotes the superconducting region and n̂ denotes the surface normal. This guaran-
tees n̂ · j

∣∣
∂Ω

= 0, since

j = −2Ke
∗

~2
Re
(
~

i
Ψ∗

∇Ψ+
e∗

c
|Ψ|2A

)
. (11.55)

Note that n̂ · j = 0 also holds if

n̂ ·
(
~

i
∇+

e∗

c
A

)
Ψ
∣∣
∂Ω

= irΨ , (11.56)

with r a real constant. This boundary condition is appropriate at a junction with a normal
metal.
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11.4.4 Critical current

Consider the case where Ψ = Ψ0. The free energy density is

f = a |Ψ0|2 + 1
2
b |Ψ0|4 +K

(
e∗

~c

)2
A

2 |Ψ0|2 . (11.57)

If a > 0 then f is minimized for Ψ0 = 0. What happens for a < 0, i.e. when T < Tc ? Minimizing
with respect to |Ψ0|, we find

|Ψ0|2 =
|a| −K(e∗/~c)2A2

b
. (11.58)

The current density is then

j = −2cK
(
e∗

~c

)2( |a| −K(e∗/~c)2A2

b

)
A . (11.59)

Let A = |A|. Clearly we must have 0 6 A 6 Amax, where

Amax =
~c

e∗
·
√
|a|
K

=
φ

L

2πξ
(11.60)

The maximum current density occurs at A = Ac, where j′(Ac) = 0, the solution to which is
Ac = Amax

/√
3. The value of the current jc ≡ j(Ac) is the maximum possible current, known as

the critical current density, and is given by

jc =
4

3
√
3

cK1/2 |a|3/2
b

=
2

3
√
3
· e

∗

h
·H2

c ξ . (11.61)

Physically, what is happening is this. When the kinetic energy density in the superflow exceeds
the condensation energy density H2

c /8π = a2/2b, the system goes normal. Note that the critical
current density vanishes at the critical temperature as jc(T ) ∝ (Tc − T )3/2.
Should we feel bad about using a gauge-covariant variable like A in the above analysis? Not
really, because when we write A, what we really mean is the gauge-invariant combination A +
~c
e∗
∇ϕ, where ϕ = arg(Ψ) is the phase of the order parameter.

London limit

In the so-called London limit, we write Ψ =
√
n0 e

iϕ, with n0 constant. Then

j = −2Ke
∗n0

~

(
∇ϕ+

e∗

~c
A

)
= − c

4πλ2L

(
φL

2π
∇ϕ+ A

)
. (11.62)
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Thus,

∇× j = c

4π
∇× (∇× B)

= − c

4πλ2
L

B − c

4πλ2
L

φ
L

2π
∇×∇ϕ ,

(11.63)

which says

λ2L∇2
B = B +

φ
L

2π
∇×∇ϕ . (11.64)

If we assume B = Bẑ and the phase field ϕ has singular vortex lines of topological index ni ∈ Z

located at position ρi in the (x, y) plane, we have

λ2
L
∇2B = B + φ

L

∑

i

ni δ
(
ρ− ρi

)
. (11.65)

Taking the Fourier transform, we solve for B̂(q), where k = (q, kz) :

B̂(q) = − φL

1 + q2λ2
L

∑

i

ni e
−iq·ρi , (11.66)

whence

B(ρ) = − φ
L

2πλ2
L

∑

i

niK0

( |ρ− ρi|
λ

L

)
, (11.67)

where K0(z) is the modified Bessel function, whose asymptotic behaviors are given by

K0(z) ∼
{
−C− ln(z/2) (z → 0)

(π/2z)1/2 exp(−z) (z →∞) ,
(11.68)

where C = 0.57721566 . . . is the Euler-Mascheroni constant. The logarithmic divergence as
ρ → 0 is an artifact of the London limit. Physically, the divergence should be cut off when
|ρ− ρi| ∼ ξ. The current density for a single vortex at the origin is

j(r) =
nc

4π
∇× B = − c

4πλ
L

· φ
L

2πλ2
L

K1

(
ρ/λL

)
ϕ̂ , (11.69)

where n ∈ Z is the vorticity, and K1(z) = −K ′
0(z) behaves as z−1 as z → 0 and exp(−z)/

√
2πz

as z →∞. Note the ith vortex carries magnetic flux ni φL
.

11.4.5 Ginzburg criterion

Consider fluctuations in Ψ(x) above Tc. If |Ψ| ≪ 1, we may neglect quartic terms and write

F =

∫
ddx
(
a |Ψ|2 +K |∇Ψ|2

)
=
∑

k

(
a+Kk2

)
|Ψ̂(k)|2 , (11.70)
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where we have expanded

Ψ(x) =
1√
V

∑

k

Ψ̂(k) eik·x . (11.71)

The Helmholtz free energy A(T ) is given by

e−A/kBT =

∫
D[Ψ,Ψ∗] e−F/T =

∏

k

(
πk

B
T

a +Kk2

)
, (11.72)

which is to say

A(T ) = k
B
T
∑

k

ln

(
πkBT

a+Kk2

)
. (11.73)

We write a(T ) = αt with t = (T − Tc)/Tc the reduced temperature. We now compute the
singular contribution to the specific heat CV = −TA′′(T ), which only requires we differentiate
with respect to T as it appears in a(T ). Dividing by NskB

, where Ns = V/ad is the number of
lattice sites, we obtain the dimensionless heat capacity per unit cell,

c =
α2ad

K2

Λξ∫
ddk

(2π)d
1

(ξ−2 + k2)2
, (11.74)

where Λ ∼ a−1 is an ultraviolet cutoff on the order of the inverse lattice spacing, and as before
ξ = (K/a)1/2 ∝ |t|−1/2. We define R∗ ≡ (K/α)1/2, in which case ξ = R∗ |t|−1/2, and

c = R−4
∗ ad ξ4−d

Λξ∫
ddq̄

(2π)d
1

(1 + q̄ 2)2
, (11.75)

where q̄ ≡ qξ. Thus,

c(t) ∼





const. if d > 4

− ln t if d = 4

t
d
2
−2 if d < 4 .

(11.76)

For d > 4, mean field theory is qualitatively accurate, with finite corrections. In dimensions
d 6 4, the mean field result is overwhelmed by fluctuation contributions as t→ 0+ (i.e. as T →
T+
c ). We see that the Ginzburg-Landau mean field theory is sensible provided the fluctuation

contributions are small, i.e. provided

R−4
∗ ad ξ4−d ≪ 1 , (11.77)

which entails t≫ t
G

, where

t
G
=

(
a

R∗

) 2d
4−d

(11.78)
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is the Ginzburg reduced temperature. The criterion for the sufficiency of mean field theory, namely
t≫ t

G
, is known as the Ginzburg criterion. The region |t| < t

G
is known as the critical region.

In a lattice ferromagnet, as we have seen,R∗ ∼ a is on the scale of the lattice spacing itself, hence
t
G
∼ 1 and the critical regime is very large. Mean field theory then fails quickly as T → Tc. In

a (conventional) three-dimensional superconductor, R∗ is on the order of the Cooper pair size,
and R∗/a ∼ 102 − 103, hence t

G
= (a/R∗)

6 ∼ 10−18 − 10−12 is negligibly narrow. The mean field
theory of the superconducting transition – BCS theory – is then valid essentially all the way to
T = Tc.

Another way to think about it is as follows. In dimensions d > 2, for |r| fixed and ξ → ∞, one
has6

〈
Ψ∗(r)Ψ(0)

〉
≃ Cd
kBT R

2
∗

e−r/ξ

rd−2
, (11.79)

where Cd is a dimensionless constant. If we compute the ratio of fluctuations to the mean value
over a patch of linear dimension ξ, we have

fluctuations

mean
=

ξ∫
ddr 〈Ψ∗(r) Ψ(0)〉
ξ∫
ddr 〈|Ψ(r)|2〉

∝ 1

R2
∗ ξ

d |Ψ|2

ξ∫
ddr

e−r/ξ

rd−2
∝ 1

R2
∗ ξ

d−2 |Ψ|2 .

(11.80)

Close to the critical point we have ξ ∝ R∗ |t|−ν and |Ψ| ∝ |t|β, with ν = 1
2

and β = 1
2

within
mean field theory. Setting the ratio of fluctuations to mean to be small, we recover the Ginzburg
criterion.

11.4.6 Domain wall solution

Consider first the simple case of the neutral superfluid. The additional parameter K provides

us with a new length scale, ξ =
√
K/|a| , which is called the coherence length. Varying the free

energy with respect to Ψ∗(x), one obtains

δF

δΨ∗(x)
= aΨ(x) + b

∣∣Ψ(x)
∣∣2Ψ(x)−K∇2Ψ(x) . (11.81)

Rescaling, we write Ψ ≡
(
|a|/b

)1/2
ψ, and setting the above functional variation to zero, we

obtain

− ξ2∇2ψ + sgn(T − Tc)ψ + |ψ|2ψ = 0 . (11.82)

6Exactly at T = Tc, the correlations behave as
〈
Ψ∗(r)Ψ(0)

〉
∝ r−(d−2+η), where η is a critical exponent.



11.4. GINZBURG-LANDAU THEORY 495

Consider the case of a domain wall when T < Tc. We assume all spatial variation occurs in the
x-direction, and we set ψ(x = 0) = 0 and ψ(x = ∞) = 1. Furthermore, we take ψ(x) = f(x) eiα

where α is a constant7. We then have −ξ2f ′′(x)− f + f 3 = 0, which may be recast as

ξ2
d2f

dx2
=

∂

∂f

[
1
4

(
1− f 2

)2
]

. (11.83)

This looks just like F = ma if we regard f as the coordinate, x as time, and−V (f) = 1
4

(
1−f 2

)2
.

Thus, the potential describes an inverted double well with symmetric minima at f = ±1. The
solution to the equations of motion is then that the ‘particle’ rolls starts at ‘time’ x = −∞ at
‘position’ f = +1 and ‘rolls’ down, eventually passing the position f = 0 exactly at time x = 0.
Multiplying the above equation by f ′(x) and integrating once, we have

ξ2
(
df

dx

)2
= 1

2

(
1− f 2

)2
+ C , (11.84)

where C is a constant, which is fixed by setting f(x → ∞) = +1, which says f ′(∞) = 0, hence
C = 0. Integrating once more,

f(x) = tanh

(
x− x0√

2 ξ

)
, (11.85)

where x0 is the second constant of integration. This, too, may be set to zero upon invoking
the boundary condition f(0) = 0. Thus, the width of the domain wall is ξ(T ). This solution
is valid provided that the local magnetic field averaged over scales small compared to ξ, i.e.
b =

〈
∇× A

〉
, is negligible.

The energy per unit area of the domain wall is given by σ̃, where

σ̃ =

∞∫

0

dx

{
K

∣∣∣∣
dΨ

dx

∣∣∣∣
2

+ a |Ψ|2 + 1
2
b |Ψ|4

}

=
a2

b

∞∫

0

dx

{
ξ2
(
df

dx

)2
− f 2 + 1

2
f 4

}
.

(11.86)

Now we ask: is domain wall formation energetically favorable in the superconductor? To
answer, we compute the difference in surface energy between the domain wall state and the
uniform superconducting state. We call the resulting difference σ, the true domainwall energy

7Remember that for a superconductor, phase fluctuations of the order parameter are nonphysical since they are
eliiminable by a gauge transformation.
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relative to the superconducting state:

σ = σ̃ −
∞∫

0

dx

(
−H

2
c

8π

)

=
a2

b

∞∫

0

dx

{
ξ2
(
df

dx

)2
+ 1

2

(
1− f 2

)2
}
≡ H2

c

8π
δ ,

(11.87)

where we have used H2
c = 4πa2/b. Invoking the previous result f ′ = (1− f 2)/

√
2 ξ, the param-

eter δ is given by

δ = 2

∞∫

0

dx
(
1− f 2

)2
= 2

1∫

0

df

(
1− f 2

)2

f ′ =
4
√
2

3
ξ(T ) . (11.88)

Had we permitted a field to penetrate over a distance λ
L
(T ) in the domain wall state, we’d have

obtained

δ(T ) =
4
√
2

3
ξ(T )− λ

L
(T ) . (11.89)

Detailed calculations show

δ =





4
√
2

3
ξ ≈ 1.89 ξ if ξ ≫ λ

L

0 if ξ =
√
2λ

L

−8(
√
2−1)
3

λ
L
≈ −1.10 λ

L
if λ

L
≫ ξ .

(11.90)

Accordingly, we define the Ginzburg-Landau parameter κ ≡ λL/ξ, which is temperature-
dependent near T = Tc, as we’ll soon show.

So the story is as follows. In type-I materials, the positive (δ > 0) N-S surface energy keeps the
sample spatially homogeneous for all H < Hc. In type-II materials, the negative surface energy
causes the system to break into domains, which are vortex structures, as soon as H exceeds the
lower critical field Hc1. This is known as the mixed state.

11.4.7 Scaled Ginzburg-Landau equations

For T < Tc, we write

Ψ =

√
|a|
b
ψ , x = λL r , A =

√
2λLHc a , H =

√
2Hch , (11.91)

as well ∂ ≡ λ
L
∇. Recall the GL parameter, which is dimensionless, is given by

κ =
λL

ξ
=

√
2 e∗

~c
Hc λ

2
L

, (11.92)
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where from Eqn. 11.53 we have Hc = φL/
√
8πξλL . The Gibbs free energy is then

G =
H2

cλ
3
L

4π

∫
d3r

{
− |ψ|2 + 1

2
|ψ|2 +

∣∣(κ−1∂ + ia)ψ
∣∣2 + (∂ × a)2 − 2h · ∂ × a

}
. (11.93)

Setting δG = 0, we obtain

(κ−1∂ + ia)2 ψ + ψ − |ψ|2ψ = 0

∂ × (∂ × a− h) + |ψ|2a− i

2κ

(
ψ∗∂ψ − ψ∂ψ∗) = 0 .

(11.94)

The condition that no current flow through the boundary is

n̂ ·
(
∂ + iκa

)
ψ
∣∣∣
∂Ω

= 0 . (11.95)

Note that the dimensionless difference in superconducting and normal state energy densities
is given by

gs − gn = −|ψ|2 + 1
2
|ψ|4 + ψ∗

π
2ψ + b

2 − 2b · h , (11.96)

where

π =
1

iκ
∂ + a . (11.97)

11.5 Applications of Ginzburg-Landau Theory

The applications of GL theory are numerous. Here we run through some examples.

11.5.1 Domain wall energy

Consider a domain wall interpolating between a normal metal at x→ −∞ and a superconduc-
tor at x→ +∞. The difference between the Gibbs free energies is

∆G = Gs −Gn =

∫
d3x

{
a |Ψ|2 + 1

2
b |Ψ|4 +K

∣∣(∇+ ie∗

~c
A
)
Ψ
∣∣2 + (B −H)2

8π

}

=
H2

c λ
3
L

4π

∫
d3r

[
− |ψ|2 + 1

2
|ψ|4 +

∣∣(κ−1∂ + ia)ψ
∣∣2 + (b− h)2

]
,

(11.98)

with b = B/
√
2Hc and h = H/

√
2Hc. We define

∆G(T,Hc) ≡
H2

c

8π
· Aλ

L
· δ , (11.99)
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Figure 11.6: Numerical solution to a Ginzburg-Landau domain wall interpolating between
normal metal (x → −∞) and superconducting (x → +∞) phases, for H = Hc2. Upper panel
corresponds to κ = 5, and lower panel to κ = 0.2. Condensate amplitude f(s) is shown in red,
and dimensionless magnetic field b(s) = B(s)/

√
2Hc in dashed blue.

as we did above in Eqn. 11.87, except here δ is rendered dimensionless by scaling it by λL.
Here A is the cross-sectional area, so δ is a dimensionless domain wall energy per unit area.
Integrating by parts and appealing to the Euler-Lagrange equations, we have

∫
d3r
[
−|ψ|2+ |ψ|4+

∣∣(κ−1∂+ ia)ψ
∣∣2
]
=

∫
d3r ψ∗

[
−ψ+ |ψ|2ψ− (κ−1∂+ ia)2 ψ

]
= 0 , (11.100)

and therefore

δ =

∞∫

−∞

dx
[
− |ψ|4 + 2 (b− h)2

]
. (11.101)

Deep in the metal, as x → −∞, we expect ψ → 0 and b → h. Deep in the superconductor,
as x → +∞, we expect |ψ| → 1 and b → 0. The bulk energy contribution then vanishes for
h = hc = 1√

2
, which means δ is finite, corresponding to the domain wall free energy per unit

area.
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We take ψ = f ∈ R, a = a(x) ŷ, so b = b(x) ẑ with b(x) = a′(x). Thus, ∂×b = −a′′(x) ŷ, and the
Euler-Lagrange equations are

1

κ2
d2f

dx2
=
(
a2 − 1

)
f + f 3

d2a

dx2
= af 2 .

(11.102)

These equations must be solved simultaneously to obtain the full solution. They are equivalent
to a nonlinear dynamical system of dimension N = 4, where the phase space coordinates are
(f, f ′, a, a′), i.e.

d

dx




f
f ′

a
a′


 =




f ′

κ2(a2 − 1)f + κ2f 3

a′

af 2


 . (11.103)

Four boundary conditions must be provided, which we can take to be

f(−∞) = 0 , a′(−∞) =
1√
2

, f(+∞) = 1 , a′(+∞) = 0 . (11.104)

Usually with dynamical systems, we specify N boundary conditions at some initial value
x = x0 and then integrate to the final value, using a Runge-Kutta method. Here we specify
1
2
N boundary conditions at each of the two ends, which requires we use something such as

the shooting method to solve the coupled ODEs, which effectively converts the boundary value
problem to an initial value problem. In Fig. 11.6, we present such a numerical solution to the
above system, for κ = 0.2 (type-I) and for κ = 5 (type-II).

Vortex solution

To describe a vortex line of strength n ∈ Z, we choose cylindrical coordinates (ρ, ϕ, z), and
assume no variation in the vertical (z) direction. We write ψ(r) = f(ρ) einϕ and a(r) = a(ρ) ϕ̂.
which says b(r) = b(ρ) ẑ with b(ρ) = ∂a

∂ρ
+ a

ρ
. We then obtain

1

κ2

(
d2f

dρ2
+

1

ρ

df

dρ

)
=

(
n

κρ
+ a

)2
f − f + f 3

d2a

dρ2
+

1

ρ

da

dρ
=

a

ρ2
+

(
n

κρ
+ a

)
f 2 .

(11.105)

As in the case of the domain wall, this also corresponds to an N = 4 dynamical system bound-
ary value problem, which may be solved numerically using the shooting method.
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11.5.2 Thin type-I films : critical field strength

Consider a thin extreme type-I (i.e. κ≪ 1) film. Let the finite dimension of the film be along x̂,

and write f = f(x), a = a(x) ŷ, so ∂×a = b(x) ẑ = ∂a
∂x
ẑ. We assue f(x) ∈ R. Now ∂×b = − ∂2a

∂x2
ŷ,

so we have from the second of Eqs. 11.94 that

d2f

dx2
= af 2 , (11.106)

while the first of Eqs. 11.94 yields

1

κ2
d2f

dx2
+ (1− a2)f − f 3 = 0 . (11.107)

We require f ′(x) = 0 on the boundaries, which we take to lie at x = ±1
2
d. For κ ≪ 1, we have,

to a first approximation, f ′′(x) = 0 with f ′(±1
2
d) = 0. This yields f = f0, a constant, in which

case a′′(x) = f 2
0a(x), yielding

a(x) =
h0 sinh(f0x)

f0 cosh(1
2
f0d)

, b(x) =
h0 cosh(f0x)

cosh(1
2
f0d)

, (11.108)

with h0 = H0/
√
2Hc the scaled field outside the superconductor. Note b(±1

2
d) = h0. To deter-

mine the constant f0, we set f = f0 + f1 and solve for f1:

− d2f1
dx2

= κ2
[(
1− a2(x)

)
f0 − f 3

0

]
. (11.109)

In order for a solution to exist, the RHS must be orthogonal to the zeroth order solution8, i.e.
we demand

d/2∫

−d/2

dx
[
1− a2(x)− f 2

0

]
≡ 0 , (11.110)

which requires

h20 =
2f 2

0 (1− f 2
0 ) cosh

2(1
2
f0d)[

sinh(f0d)/f0d
]
− 1

, (11.111)

which should be considered an implicit relation for f0(h0). The magnetization is

m =
1

4πd

d/2∫

−d/2

dx b(x)− h0
4π

=
h0
4π

[
tanh(1

2
f0d)

1
2
f0d

− 1

]
. (11.112)

8If L̂f1 = R, then 〈 f0 |R 〉 = 〈 f0 | L̂ | f1 〉 = 〈 L̂†f0 | f1 〉. Assuming L̂ is self-adjoint, and that L̂f0 = 0, we obtain

〈 f0 |R 〉 = 0. In our case, the operator L̂ is given by L̂ = −d2/dx2.
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Note that for f0d ≫ 1, we recover the complete Meissner effect, h0 = −4πm. In the opposite
limit f0d≪ 1, we find

m ≃ −f
2
0 d

2h0
48π

, h20 ≃
12(1− f 2

0 )

d2
⇒ m ≃ −h0d

2

8π

(
1− h20d

2

12

)
. (11.113)

Next, consider the free energy difference,

Gs −Gn =
H2

cλ
3
L

4π

d/2∫

−d/2

dx
[
− f 2 + 1

2
f 4 + (b− h0)2 +

∣∣(κ−1∂ + ia) f
∣∣2
]

=
H2

cλ
3
L
d

4π

[(
1− tanh(f0d/2)

f0d/2

)
h20 − f 2

0 + 1
2
f 4
0

]
.

(11.114)

The critical field h0 = hc occurs when Gs = Gn, hence

h2c =
f 2
0 (1− 1

2
f 2
0 )[

1− tanh(f0d/2)

f0d/2

] =
2 f 2

0 (1− f 2
0 ) cosh

2(f0d/2)[
sinh(f0d)/f0d

]
− 1

. (11.115)

We must eliminate f0 to determine hc(d).

When the film is thick we can write f0 = 1 − ε with ε ≪ 1. Then df0 = d(1 − ε) ≫ 1 and we
have h2c ≃ 2dε and ε = h2c/2d≪ 1. We also have

h2c ≈
1
2

1− 2
d

≈ 1
2

(
1 +

2

d

)
, (11.116)

which says

hc(d) =
1√
2

(
1 + d−1

)
⇒ Hc(d) = Hc(∞)

(
1 +

λ
L

d

)
, (11.117)

where in the very last equation we restore dimensionful units for d.

For a thin film, we have f0 ≈ 0, in which case

hc =
2
√
3

d

√
1− f 2

0 , (11.118)

and expanding the hyperbolic tangent, we find

h2c =
12

d2
(
1− 1

2
f 2
0

)
. (11.119)

This gives

f0 ≈ 0 , hc ≈
2
√
3

d
⇒ Hc(d) = 2

√
6Hc(∞)

λ
L

d
. (11.120)
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Figure 11.7: Difference in dimensionless free energy density ∆g between superconducting and
normal state for a thin extreme type-I film of thickness dλL. Free energy curves are shown as
a function of the amplitude f0 for several values of the applied field h0 = H/

√
2Hc(∞) (upper

curves correspond to larger h0 values). Top panel: d = 8 curves, with the critical field (in red)
at hc ≈ 0.827 and a first order transition. Lower panel: d = 1 curves, with hc =

√
12 ≈ 3.46 (in

red) and a second order transition. The critical thickness is dc =
√
5.

Note for d large we have f0 ≈ 1 at the transition (first order), while for d small we have f0 ≈ 0
at the transition (second order). We can see this crossover from first to second order by plotting

g =
4π

dλ3
L
H3

c

(
Gs −Gn) =

(
1− tanh(1

2
f0d)

1
2
f0d

)
h20 − f 2

0 + 1
2
f 4
0 (11.121)

as a function of f0 for various values of h0 and d. Setting dg/df0 = 0 and d2g/df 2
0 = 0 and f0 = 0,

we obtain dc =
√
5. See Fig. 11.7. For consistency, we must have d≪ κ−1.
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11.5.3 Critical current of a wire

Consider a wire of radius R and let the total current carried be I . The magnetizing field H is
azimuthal, and integrating around the surface of the wire, we obtain

2πRH0 =

∮

r=R

dl ·H =

∫
dS ·∇×H =

4π

c

∫
dS · j = 4πI

c
. (11.122)

Thus,

H0 = H(R) =
2I

cR
. (11.123)

We work in cylindrical coordinates (ρ, ϕ, z), taking a = a(ρ) ẑ and f = f(ρ). The scaled GL
equations give (

κ−1∂ + ia
)2
f + f − f 3 = 0 (11.124)

with9

∂ = ρ̂
∂

∂ρ
+
ϕ̂

ρ

∂

∂ϕ
+ ẑ

∂

∂z
. (11.125)

Thus,
1

κ2
∂2f

∂ρ2
+
(
1− a2

)
f − f 3 = 0 , (11.126)

with f ′(R) = 0. From ∂ × b = −
(
κ−1∂θ + a

)
|ψ|2, where arg(ψ) = θ, we have ψ = f ∈ R hence

θ = 0, and therefore
∂2a

∂ρ2
+

1

ρ

∂a

∂ρ
= af 2 . (11.127)

The magnetic field is

b = ∂ × a(ρ) ẑ = −∂a
∂ρ

ϕ̂ , (11.128)

hence b(ρ) = −∂a
∂ρ

, with

b(R) =
H(R)√
2Hc

=

√
2 I

cRHc

. (11.129)

Again, we assume κ≪ 1, hence f = f0 is the leading order solution to Eqn. 11.126. The vector
potential and magnetic field, accounting for boundary conditions, are then given by

a(ρ) = −b(R) I0(f0 ρ)
f0 I1(f0R)

, b(ρ) =
b(R) I1(f0 ρ)

I1(f0R)
, (11.130)

9Though we don’t need to invoke these results, it is good to recall ∂ρ̂
∂ϕ = ϕ̂ and ∂ϕ̂

∂ϕ = −ρ̂.
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where In(z) is a modified Bessel function. As in §11.5.2, we determine f0 by writing f = f0+ f1
and demanding that f1 be orthogonal to the uniform solution. This yields the condition

R∫

0

dρ ρ
(
1− f 2

0 − a2(ρ)
)
= 0 , (11.131)

which gives

b2(R) =
f 2
0 (1− f 2

0 ) I
2
1 (f0R)

I20 (f0R)− I21 (f0R)
. (11.132)

Thin wire : R≪ 1

When R≪ 1, we expand the Bessel functions, using

In(z) =
(
1
2
z)n

∞∑

k=0

(1
4
z2)k

k! (k + n)!
. (11.133)

Thus

I0(z) = 1 + 1
4
z2 + . . .

I1(z) =
1
2
z + 1

16
z3 + . . . ,

(11.134)

and therefore

b2(R) = 1
4
f 4
0

(
1− f 2

0

)
R2 +O(R4) . (11.135)

To determine the critical current, we demand that the maximum value of b(ρ) take place at
ρ = R, yielding

∂(b2)

∂f0
=
(
f 3
0 − 3

2
f 5
0

)
R2 ≡ 0 ⇒ f0,max =

√
2
3

. (11.136)

From f 2
0,max =

2
3
, we then obtain

b(R) =
R

3
√
3
=

√
2 Ic

cRHc

⇒ Ic =
cR2Hc

3
√
6

. (11.137)

The critical current density is then

jc =
Ic
πR2

=
cHc

3
√
6π λ

L

, (11.138)

where we have restored physical units.
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Thick wire : 1≪ R≪ κ−1

For a thick wire, we use the asymptotic behavior of In(z) for large argument:

Iν(z) ∼
ez√
2πz

∞∑

k=0

(−1)k ak(ν)
zk

, (11.139)

which is known as Hankel’s expansion. The expansion coefficients are given by10

ak(ν) =

(
4ν2 − 12

)(
4ν2 − 32

)
· · ·
(
4ν2 − (2k − 1)2

)

8k k!
, (11.140)

and we then obtain
b2(R) = f 3

0 (1− f 2
0 )R +O(R0) . (11.141)

Extremizing with respect to f0, we obtain f0,max =
√

3
5

and

bc(R) =

(
4 · 33
55

)1/4
R1/2 . (11.142)

Restoring units, the critical current of a thick wire is

Ic =
33/4

55/4
cHcR

3/2 λ
−1/2
L . (11.143)

To be consistent, we must have R≪ κ−1, which explains why our result here does not coincide
with the bulk critical current density obtained in Eqn. 11.61.

11.5.4 Magnetic properties of type-II superconductors

Consider an incipient type-II superconductor, when the order parameter is just beginning to
form. In this case we can neglect the nonlinear terms in ψ in the Ginzburg-Landau equations
11.94. The first of these equations then yields

(
−iκ−1∂ + a

)2
ψ = ψ +

≈ 0︷ ︸︸ ︷
O
(
|ψ|2ψ

)
. (11.144)

We neglect the second term on the RHS. This is an eigenvalue equation, with the eigenvalue
fixed at 1. In fact, this is to be regarded as an equation for a, or, more precisely, for the gauge-
invariant content of a, which is b = ∂ × a. The second of the GL equations says ∂ × (b − h) =
O
(
|ψ|2

)
, from which we conclude b = h + ∂ζ , but inspection of the free energy itself tells us

∂ζ = 0.

10See e.g. the NIST Handbook of Mathematical Functions, §10.40.1 and §10.17.1.
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We assume b = bẑ and choose a gauge for a:

a = −1
2
b y x̂+ 1

2
b x ŷ , (11.145)

with b = h. We define the operators

πx =
1

iκ

∂

∂x
− 1

2
b y , πy =

1

iκ

∂

∂y
+ 1

2
b x . (11.146)

Note that
[
πx, πy

]
= b/iκ , and that

(
−iκ−1∂ + a

)2
= − 1

κ2
∂2

∂z2
+ π2

x + π2
y . (11.147)

We now define the ladder operators

γ =

√
κ

2b

(
πx − iπy

)

γ† =

√
κ

2b

(
πx + iπy

)
,

(11.148)

which satisfy
[
γ, γ†

]
= 1. Then

L̂ ≡
(
−iκ−1∂ + a

)2
= − 1

κ2
∂2

∂z2
+

2b

κ

(
γ†γ + 1

2

)
. (11.149)

The eigenvalues of the operator L̂ are therefore

εn(kz) =
k2z
κ2

+
(
n+ 1

2
) · 2b

κ
. (11.150)

The lowest eigenvalue is therefore b/κ. This crosses the threshold value of 1 when b = h = κ,
i.e. when

B = H =
√
2κHc ≡ Hc2 . (11.151)

So, what have we shown? If Hc2 < Hc , and therefore κ < 1√
2

(we call Hc = φL/
√
8πξλL the

thermodynamic critical field), a complete Meissner effect occurs when H is decreased below the
critical field Hc . The order parameter ψ jumps discontinuously, and the transition across Hc

is first order. If κ > 1√
2

, then Hc2 > Hc , and for H just below Hc2 the system wants ψ 6= 0.

However, a complete Meissner effect cannot occur for H > Hc , so for Hc < H < Hc2 the system
is in the so-called mixed phase. Recall again that Hc = φL/

√
8π ξλL , hence

Hc2 =
√
2 κHc =

φ
L

2πξ2
. (11.152)

Thus, Hc2 is the field at which neighboring vortex lines, each of which carry flux φ
L
, are sepa-

rated by a distance on the order of ξ.

Materials for which κ < 1√
2

are called type-I superconductors. Materials for which κ > 1√
2

are

called type-II superconductors.
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11.5.5 Lower critical field of a type-II superconductor

We now compute the energy of a perfectly straight vortex line, and ask at what field Hc1 vortex
lines first penetrate. Let’s consider the regime ρ > ξ, where ψ ≃ eiϕ , i.e. |ψ| ≃ 1. Then the
second of the Ginzburg-Landau equations gives

∂ × b = −
(
κ−1∂ϕ+ a

)
. (11.153)

Therefore the Gibbs free energy is

G
V
=
H2

c λ
3
L

4π

∫
d3r
{
− 1

2
+ b

2 + (∂ × b)2 − 2h · b
}

. (11.154)

The first term in the brackets is the condensation energy density −H2
c /8π. The second term is

the electromagnetic field energy density B2/8π. The third term is λ2
L
(∇×B)2/8π, and accounts

for the kinetic energy density in the superflow.

The energy penalty for a vortex is proportional to its length. We have

G
V
−G0

L
=
H2

c λ
2
L

4π

∫
d2ρ
{
b
2 + (∂ × b)2 − 2 h · b

}

=
H2

c λ
2
L

4π

∫
d2ρ
{
b ·
[
b+ ∂ × (∂ × b)

]
− 2h · b

}
.

(11.155)

The total flux is ∫
d2ρ b(ρ) = −2πnκ−1

ẑ , (11.156)

in units of
√
2Hc λ

2
L

, where n is the integer winding of the angle variable ϕ about the origin.
We also have b(ρ) = −nκ−1K0(ρ) and, taking the curl of Eqn. 11.153, we have

b+ ∂ × (∂ × b) = −2πnκ−1 δ(ρ) ẑ . (11.157)

As mentioned earlier above, the logarithmic divergence of b(ρ→ 0) is an artifact of the London
limit, where the vortices have no core structure. The core can crudely be accounted for by
simply replacing B(0) by B(ξ) , i.e. replacing b(0) by b(ξ/λL) = b(κ−1). Then, for κ ≫ 1, after
invoking Eqn. 11.68,

GV −G0

L
=
H2

c λ
2
L

4π

{
2πn2κ−2 ln

(
2 e−Cκ

)
+ 4πnhκ−1

}
. (11.158)

For vortices with vorticity n = −1, this first turns negative at a field

hc1 =
1
2
κ−1 ln

(
2 e−Cκ

)
. (11.159)



508 CHAPTER 11. PHENOMENOLOGICAL THEORIES OF SUPERCONDUCTIVITY

With 2 e−C ≃ 1.123, we have, restoring units,

Hc1 =
Hc√
2κ

ln
(
2 e−Cκ

)
=

φL

4πλ2L
ln(1.123 κ) . (11.160)

So we have

Hc1 =
ln(1.123 κ)√

2κ
Hc (κ≫ 1)

Hc2 =
√
2 κHc .

(11.161)

Note in general that if Ev is the energy of a single vortex, then the lower critical field is given
by the relation Hc1 φL = 4πEv , i.e.

Hc1 =
4πEv

φL

. (11.162)

11.5.6 Abrikosov vortex lattice

Consider again the linearized GL equation
(
−iκ−1∂ + a

)2
ψ ≡ L̂ψ = ψ with b = ∂ × a = b ẑ,

with b = κ, i.e. B = Hc2. We chose the gauge a = 1
2
b (−y, x, 0). We showed that ψ(ρ) with no

z-dependence is an eigenfunction with unit eigenvalue. Recall also that γ ψ(ρ) = 0, where

γ =
1√
2

(
1

iκ

∂

∂x
− κ

2
y − 1

κ

∂

∂y
− iκ

2
x

)

=

√
2

iκ

(
∂

∂w
+ 1

4
κ2w̄

)
,

(11.163)

where w = x+ iy and w̄ = x− iy are complex. We may define another ladder operator,

β =

√
2

iκ

(
∂

∂w̄
+ 1

4
κ2w

)
, (11.164)

which commutes with γ and γ†, i.e. [γ, β] = [γ, β†] = 0. Note that γ ψ0(ρ) = β ψ0(ρ) = 0, where

ψ0(ρ) = (κ/
√
2π) exp(−κ2ρ2/2). Then we can build up the eigenspectrum of L̂ =

(
− iκ−1∂+a

)2
by writing

ψm,n,kz(r) =
eikzz√
Lz
× (β†)m (γ†)n√

m!n!
ψ0(ρ) . (11.165)

Thus L̂ ψm,n,kz(r) = εm,n(kz)ψm,n,kz(r), with

εm,n(kz) =
k2z
κ2

+
(
2n + 1) · b

κ
, (11.166)
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where here we are taking b = κ. The index n ∈ {0, 1, 2, . . .} is the Landau level index. The index
m is cyclic in the energy εm,n(kz), hence each Landau level is massively degenerate.

To find general solutions of γ ψ = 0, note that

γ =

√
2

iκ
e−κ

2w̄w/4 ∂

∂w
e+κ

2w̄w/4 . (11.167)

Thus, γ ψ(x, y) = 0 is satisfied by any function of the form

ψ(x, y) = f(w̄) e−κ
2w̄w/4 . (11.168)

where f(w̄) is analytic in the complex coordinate w̄. The most general such function11 is of the
form

f(w̄) = C

NV∏

i=1

(w̄ − w̄i) , (11.169)

where each w̄i is a zero of f(w̄). Any analytic function on the plane is, up to a constant, uniquely
specified by the positions of its zeros. Note that

∣∣ψ(x, y)
∣∣2 = |C|2 e−κ2w̄w/2

NV∏

i=1

∣∣w − wi
∣∣2 ≡ |C|2 e−Φ(ρ) , (11.170)

where

Φ(ρ) = 1
2
κ2ρ2 − 2

NV∑

i=1

ln
∣∣ρ− ρi

∣∣ . (11.171)

Φ(ρ) may be interpreted as the electrostatic potential of a set of point charges located at ρi, in
the presence of a uniform neutralizing background. To see this, recall that∇2 ln ρ = 2π δ(ρ), so

∇2Φ(ρ) = 2κ2 − 4π

NV∑

i=1

δ
(
ρ− ρi

)
. (11.172)

Therefore if we are to describe a state where the local density |ψ|2 is uniform on average, we
must impose

〈
∇2Φ

〉
= 0, which says

〈∑

i

δ(ρ− ρi)
〉
=
κ2

2π
. (11.173)

The zeroes ρi are of course the positions of (anti)vortices, hence the uniform state has vortex
density nv = κ2/2π. Recall that in these units each vortex carries 2π/κ London flux quanta,
which upon restoring units is

2π

κ
·
√
2Hc λ

2
L
= 2π ·

√
2Hc λL

ξ = φ
L
=
hc

e∗
. (11.174)

11We assume that ψ is square-integrable, which excludes poles in f(w̄).
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Multiplying the vortex density nv by the vorticity 2π/κ, we obtain the magnetic field strength,

b = h =
κ2

2π
× 2π

κ
= κ . (11.175)

In other words, H = Hc2.

Aside : The freedom to choose the zeros {w̄i} is associated with the aforementioned degeneracy
of each Landau level.

Just below the upper critical field

Next, we consider the case where H is just below the upper critical field Hc2. We write ψ =
ψ0 + δψ, and b = κ + δb, with δb < 0. We apply the method of successive approximation, and
solve for b using the second GL equation. This yields

b = h− |ψ0|2
2κ

, δb = h− κ− |ψ0|2
2κ

(11.176)

where ψ0(ρ) is our initial solution for δb = 0. To see this, note that the second GL equation may
be written

∂ × (h− b) = 1
2

(
ψ∗
π ψ + ψ π∗ ψ∗

)
= Re

(
ψ∗
π ψ
)

, (11.177)

where π = −iκ−1∂ + a . On the RHS we now replace ψ by ψ0 and b by κ, corresponding to our
lowest order solution. This means we write π = π0 + δa, with π0 = −iκ−1∂ + a0 , a0 =

1
2
κ ẑ×ρ ,

and ∂×δa = δb ẑ. Assuming h− b = |ψ0|2/2κ , we have

∂ ×
( |ψ0|2

2κ
ẑ

)
=

1

2κ

[
∂

∂y
(ψ∗

0 ψ0) x̂−
∂

∂x
(ψ∗

0 ψ0) ŷ

]

=
1

κ
Re
[
ψ∗
0 ∂y ψ0 x̂− ψ∗

0 ∂x ψ0 ŷ

]

= Re
[
ψ∗
0 iπ0y ψ0 x̂− ψ∗

0 iπ0x ψ0 ŷ

]
= Re

[
ψ∗
0 π0 ψ0

]
,

(11.178)

since iπ0y = κ−1∂y + ia0y and Re
[
iψ∗

0 ψ0 a0y
]
= 0. Note also that since γ ψ0 = 0 and γ =

1√
2

(
π0x − iπ0y

)
= 1√

2
π†
0 , we have π0yψ0 = −iπ0xψ0 and, equivalently, π0xψ0 = iπ0yψ0.

Inserting this result into the first GL equation yields an inhomogeneous equation for δψ. The
original equation is (

π
2 − 1

)
ψ = −|ψ|2ψ . (11.179)

With π = π0 + δa, we then have

(
π
2
0 − 1

)
δψ = −δa · π0 ψ0 − π0 · δaψ0 − |ψ0|2ψ0 . (11.180)
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The RHS of the above equation must be orthogonal to ψ0, since
(
π2
0 − 1

)
ψ0 = 0. That is to say,

∫
d2r ψ∗

0

[
δa · π0 + π0 · δa+ |ψ0|2

]
ψ0 = 0 . (11.181)

Note that
δa · π0 + π0 · δa = 1

2
δa π†

0 +
1
2
π†
0 δa+

1
2
δā π0 +

1
2
π0 δā , (11.182)

where

π0 = π0x + iπ0y , π†
0 = π0x − iπ0y , δa = δax + iδay , δā = δax − iδay . (11.183)

We also have, from Eqn. 11.146,

π0 = −2iκ−1
(
∂w̄ − 1

4
κ2w

)
, π†

0 = −2iκ−1
(
∂w + 1

4
κ2w̄

)
. (11.184)

Note that

π†
0 δa =

[
π†
0 , δa

]
+ δa π†

0 = −2iκ−1 ∂w δa+ δa π†
0

δā π0 =
[
δā , π0

]
+ π0 δā = +2iκ−1 ∂w̄ δā+ π0 δā

(11.185)

Therefore,
∫
d2r ψ∗

0

[
δa π†

0 + π0 δā− iκ−1 ∂w δa + iκ−1 ∂w̄ δā+ |ψ0|2
]
ψ0 = 0 . (11.186)

We now use the fact that π†
0 ψ0 = 0 and ψ∗

0 π0 = 0 (integrating by parts) to kill off the first two
terms inside the square brackets. The third and fourth term combine to give

− i ∂w δa + i ∂w̄ δā = ∂x δay − ∂y δax = δb . (11.187)

Plugging in our expression for δb, we finally have our prize:

∫
d2r

[(
h

κ
− 1

)
|ψ0|2 +

(
1− 1

2κ2

)
|ψ0|4

]
= 0 . (11.188)

We may write this as (
1− h

κ

)〈
|ψ0|2

〉
=

(
1− 1

2κ2

)〈
|ψ0|4

〉
, (11.189)

where 〈
F (ρ)

〉
=

1

A

∫
d2ρ F (ρ) (11.190)

denotes the global spatial average of F (ρ). It is customary to define the ratio

βA ≡
〈
|ψ0|4

〉
〈
|ψ0|2

〉2 , (11.191)
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which depends on the distribution of the zeros {ρi}. Note that

〈
|ψ0|2

〉
=

1

βA

·
〈
|ψ0|4

〉
〈
|ψ0|2

〉 =
2κ(κ− h)
(2κ2 − 1)βA

. (11.192)

Now let’s compute the Gibbs free energy density. We have

gs − gn = −1
2

〈
|ψ0|4

〉
+
〈
(b− h)2

〉

= −1
2

(
1− 1

2κ2

)〈
|ψ0|4

〉
= −1

2

(
1− h

κ

)〈
|ψ0|2

〉
= − (κ− h)2

(2κ2 − 1)β
A

.
(11.193)

Since gn = −h2, we have, restoring physical units

gs = −
1

8π

[
H2 +

(Hc2 −H)2

(2κ2 − 1)β
A

]
. (11.194)

The average magnetic field is then

B̄ = −4π ∂gs
∂H

= H − Hc2 −H
(2κ2 − 1)βA

, (11.195)

hence

M =
B −H
4π

=
H −Hc2

4π (2κ2 − 1) β
A

⇒ χ =
∂M

∂H
=

1

4π (2κ2 − 1) β
A

. (11.196)

Clearly gs is minimized by making β
A

as small as possible, which is achieved by a regular lattice

structure. Since βsquare
A = 1.18 and βtriangular

A = 1.16, the triangular lattice just barely wins.

Just above the lower critical field

When H is just slightly above Hc1, vortex lines penetrate the superconductor, but their density
is very low. To see this, we once again invoke the result of Eqn. 11.155, extending that result to
the case of many vortices:

G
VL
−G0

L
=
H2

c λ
2
L

4π

∫
d2ρ
{
b ·
[
b+ ∂ × (∂ × b)

]
− 2h · b

}
. (11.197)

Here we have

b− ∂2
b = −2π

κ

NV∑

i=1

ni δ(ρ− ρi)

b = −1

κ

NV∑

i=1

niK0

(
|ρ− ρi|

)
.

(11.198)
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Thus, again replacing K0(0) by K0(κ
−1) and invoking Eqn. 11.68 for κ≫ 1,

G
VL
−G0

L
=
H2

c λ
2
L

κ2

{
1
2
ln
(
2e−Cκ

) NV∑

i=1

n2
i +

NV∑

i<j

ni njK0

(
|ρi − ρj|

)
+ κh

NV∑

i=1

ni

}
. (11.199)

The first term on the RHS is the self-interaction, cut off at a length scale κ−1 (ξ in physical units).
The second term is the interaction between different vortex lines. We’ve assumed a perfectly
straight set of vortex lines – no wiggling! The third term arises from B · H in the Gibbs free
energy. If we assume a finite density of vortex lines, we may calculate the magnetization. For
H −Hc1 ≪ Hc1, the spacing between the vortices is huge, and since K0(r) ≃ (π/2r)1/2 exp(−r)
for large |r|, we may safely neglect all but nearest neighbor interaction terms. We assume
ni = −1 for all i. Let the vortex lines form a regular lattice of coordination number z and
nearest neighbor separation a. Then

G
VL
−G0

L
=
N

V
H2

c λ
2
L

κ2

{
1
2
ln
(
2e−Cκ

)
+ 1

2
zK0(a)− κh

}
, (11.200)

where N is the total number of vortex lines, given by N = A/Ω for a lattice with unit cell area

Ω. Assuming a triangular lattice, Ω =
√
3
2
a2 and z = 6. Then, dividing by the cross-sectional

area A, we have that the difference in free energy densities is (κ≫ 1 assumed)

∆G

V
=
H2

c λ
2
L√

3 κ2

{
6K0(a) a

−2 − 2κ (h− hc1) a−2
}

, (11.201)

where hc1 = ln
(
2e−Cκ

)
/2κ. To find the optimal lattice spacing a, differentiate with respect to a,

which yields the condition

K0(a) +
1
2
K1(a) = 4κ (h− hc1) . (11.202)

The LHS is a monotonically decreasing function of a, behaving as 1/a as a→ 0 and decreasing
as (π/2a)1/2 e−a as a → ∞, hence there is a unique solution for a(h) provided h > hc1. This
analysis is valid provided κ ≫ 1 and also κ(h − hc1) ≪ 1. The latter requirement pertains
because we have not done a proper accounting of the vortex core, hence we must assume a is
much larger than κ−1, which is the coherence length ξ in units of λL.
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Chapter 12

BCS Theory of Superconductivity

12.1 Binding and Dimensionality

Consider a spherically symmetric potential U(r) = −U0 Θ(a − r). Are there bound states, i.e.
states in the eigenspectrum of negative energy? What role does dimension play? It is easy
to see that if U0 > 0 is large enough, there are always bound states. A trial state completely
localized within the well has kinetic energy T0 ≃ ~2/ma2, while the potential energy is −U0 , so
if U0 > ~2/ma2, we have a variational state with energy E = T0 − U0 < 0, which is of course an
upper bound on the true ground state energy.

What happens, though, if U0 < T0? We again appeal to a variational argument. Consider a
Gaussian or exponentially localized wavefunction with characteristic size ξ ≡ λa, with λ > 1.
The variational energy is then

E ≃ ~
2

mξ2
− U0

(
a

ξ

)d
= T0 λ

−2 − U0 λ
−d . (12.1)

Extremizing with respect to λ, we obtain −2T0 λ−3 + dU0 λ
−(d+1) and λ =

(
dU0/2T0

)1/(d−2)
.

Inserting this into our expression for the energy, we find

E =

(
2

d

)2/(d−2)(
1− 2

d

)
T
d/(d−2)
0 U

−2/(d−2)
0 . (12.2)

We see that for d = 1 we have λ = 2T0/U0 and E = −U2
0 /4T0 < 0. In d = 2 dimensions,

we have E = (T0 − U0)/λ
2, which says E > 0 unless U0 > T0. For weak attractive U(r), the

minimum energy solution is E → 0+, with λ → ∞. It turns out that d = 2 is a marginal
dimension, and we shall show that we always get localized states with a ballistic dispersion
and an attractive potential well. For d > 2 we have E > 0 which suggests that we cannot have
bound states unless U0 > T0, in which case λ 6 1 and we must appeal to the analysis in the
previous paragraph.
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We can firm up this analysis a bit by considering the Schrödinger equation,

− ~2

2m
∇2ψ(x) + V (x)ψ(x) = E ψ(x) . (12.3)

Fourier transforming, we have

ε(k) ψ̂(k) +

∫
ddk′

(2π)d
V̂ (k − k′) ψ̂(k′) = E ψ̂(k) , (12.4)

where ε(k) = ~2k2/2m. We may now write V̂ (k−k′) =∑n λn αn(k)α
∗
n(k

′) , which is a decompo-

sition of the Hermitian matrix V̂k,k′ ≡ V̂ (k − k′) into its (real) eigenvalues λn and eigenvectors
αn(k). Let’s approximate Vk,k′ by its leading eigenvalue, which we call λ, and the corresponding

eigenvector α(k). That is, we write V̂k,k′ ≃ λα(k)α∗(k′) . We then have

ψ̂(k) =
λα(k)

E − ε(k)

∫
ddk′

(2π)d
α∗(k′) ψ̂(k′) . (12.5)

Multiply the above equation by α∗(k) and integrate over k, resulting in

1

λ
=

∫
ddk

(2π)d

∣∣α(k)
∣∣2

E − ε(k) =
1

λ
=

∞∫

0

dε
g(ε)

E − ε
∣∣α(ε)

∣∣2 , (12.6)

where g(ε) is the density of states g(ε) = Tr δ
(
ε − ε(k)

)
. Here, we assume that α(k) = α(k) is

isotropic. It is generally the case that if Vk,k′ is isotropic, i.e. if it is invariant under a simulta-
neous O(3) rotation k → Rk and k′ → Rk′, then so will be its lowest eigenvector. Furthermore,
since ε = ~2k2/2m is a function of the scalar k = |k|, this means α(k) can be considered a
function of ε. We then have

1

|λ| =
∞∫

0

dε
g(ε)

|E|+ ε

∣∣α(ε)
∣∣2 , (12.7)

where we have we assumed an attractive potential (λ < 0), and, as we are looking for a bound
state, E < 0.

If α(0) and g(0) are finite, then in the limit |E| → 0 we have

1

|λ| = g(0) |α(0)|2 ln
(
1/|E|

)
+ finite . (12.8)

This equation may be solved for arbitrarily small |λ| because the RHS of Eqn. 12.7 diverges as
|E| → 0. If, on the other hand, g(ε) ∼ εp where p > 0, then the RHS is finite even when E = 0.
In this case, bound states can only exist for |λ| > λc, where

λc = 1

/ ∞∫

0

dε
g(ε)

ε

∣∣α(ε)
∣∣2 . (12.9)
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Typically the integral has a finite upper limit, given by the bandwidth B. For the ballistic
dispersion, one has g(ε) ∝ ε(d−2)/2, so d = 2 is the marginal dimension. In dimensions d 6 2,
bound states form for arbitrarily weak attractive potentials.

12.2 Cooper’s Problem

In 1956, Leon Cooper considered the problem of two electrons interacting in the presence of
a quiescent Fermi sea. The background electrons comprising the Fermi sea enter the problem
only through their Pauli blocking. Since spin and total momentum are conserved, Cooper first
considered a zero momentum singlet,

|Ψ 〉 = 1√
2

∑

k

Ak
(
c†k↑c

†
−k↓ − c†k↓c†−k↑

)
|F 〉 , (12.10)

where |F 〉 is the filled Fermi sea, |F 〉 =∏|p|<k
F
c†p↑c

†
p↓ | 0 〉 . Only states with k > k

F
contribute to

the RHS of Eqn. 12.10, due to Pauli blocking. The real space wavefunction is

Ψ(r1, r2) =
1√
2

∑

k

Ak e
ik·(r1−r2)

(
|↑1↓2 〉 − |↓1↑2 〉

)
, (12.11)

with Ak = A−k to enforce symmetry of the orbital part. It should be emphasized that this is a
two-particle wavefunction, and not an (N + 2)-particle wavefunction, with N the number of
electrons in the Fermi sea. Again, the Fermi sea in this analysis has no dynamics of its own. Its
presence is reflected only in the restriction k > k

F
for the states which participate in the Cooper

pair.

The many-body Hamiltonian is written

Ĥ =
∑

kσ

εk c
†
kσckσ +

1
2

∑

k1σ1

∑

k2σ2

∑

k3σ3

∑

k4σ4

〈 k1σ1, k2σ2 | v | k3σ3, k4σ4 〉 c†k1σ1c
†
k2σ2

ck4σ4ck3σ3 . (12.12)

We treat |Ψ 〉 as a variational state, which means we set

δ

δA∗
k

〈Ψ | Ĥ |Ψ 〉
〈Ψ |Ψ 〉 = 0 , (12.13)

resulting in

(E − E0)Ak = 2εk Ak +
∑

k′

Vk,k′ Ak′ , (12.14)

where

Vk,k′ = 〈 k↑,−k↓ | v | k′↑,−k′↓ 〉 =
1

V

∫
d3r v(r) ei(k−k

′)·r . (12.15)
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Here E0 = 〈F | Ĥ |F 〉 is the energy of the Fermi sea.

We write εk = ε
F
+ ξk, and we define E ≡ E0 + 2ε

F
+W . Then

WAk = 2ξk Ak +
∑

k′

Vk,k′ Ak′ . (12.16)

If Vk,k′ is rotationally invariant, meaning it is left unchanged by k → Rk and k′ → Rk′ where
R ∈ O(3), then we may write

Vk,k′ =

∞∑

ℓ=0

ℓ∑

m=−ℓ
Vℓ(k, k

′) Yℓ,m(k̂) Y
∗
ℓ,m(k̂

′) . (12.17)

We assume that Vl(k, k
′) is separable, meaning we can write

Vℓ(k, k
′) =

1

V
λℓ αℓ(k)α

∗
ℓ(k

′) . (12.18)

This simplifies matters and affords us an exact solution, for now we take Ak = Ak Yℓ,m(k̂) to
obtain a solution in the ℓ angular momentum channel:

WℓAk = 2ξk Ak + λℓ αℓ(k) ·
1

V

∑

k′

α∗
ℓ(k

′)Ak′ , (12.19)

which may be recast as

Ak =
λℓ αℓ(k)

Wℓ − 2ξk
· 1
V

∑

k′

α∗
ℓ(k

′)Ak′ . (12.20)

Now multiply by α∗
k and sum over k to obtain

1

λℓ
=

1

V

∑

k

∣∣αℓ(k)
∣∣2

Wℓ − 2ξk
≡ Φ(Wℓ) . (12.21)

We solve this for Wℓ.

We may find a graphical solution. Recall that the sum is restricted to k such that k > k
F
, and

that ξk > 0. The denominator on the RHS of Eqn. 12.21 changes sign as a function of Wℓ every
time 1

2
Wℓ passes through one of the ξk values1. A sketch of the graphical solution is provided

in Fig. 12.1. One sees that if λℓ < 0, i.e. if the potential is attractive, then a bound state exists.
This is true for arbitrarily weak |λℓ|, a situation not usually encountered in three-dimensional
problems, where there is usually a critical strength of the attractive potential in order to form a
bound state2. This is a density of states effect – by restricting our attention to electrons near the

1We imagine quantizing in a finite volume, so the allowed k values are discrete.
2For example, the He2 molecule is unbound, despite the attractive −1/r6 van der Waals attractive tail in the
interatomic potential.
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Figure 12.1: Graphical solution to the Cooper problem. A bound state exists for arbitrarily
weak λ < 0.

Fermi level, where the DOS is roughly constant at g(εF) = m∗kF/π
2~2, rather than near k = 0,

where g(ε) vanishes as
√
ε, the pairing problem is effectively rendered two-dimensional. We

can make further progress by assuming a particular form for αℓ(k):

αℓ(k) =

{
1 if 0 < ξk < Bℓ

0 otherwise ,
(12.22)

where Bℓ is an effective bandwidth for the ℓ channel. Then

1 = 1
2
|λℓ|

Bℓ∫

0

dξ
g(ε

F
+ ξ)∣∣Wℓ

∣∣ + 2ξ
. (12.23)

The factor of 1
2

is because it is the DOS per spin here, and not the total DOS. We assume g(ε)
does not vary significantly in the vicinity of ε = ε

F
, and pull g(ε

F
) out from the integrand.

Integrating and solving for
∣∣Wℓ

∣∣,
∣∣Wℓ

∣∣ = 2Bℓ

exp
[
4/|λℓ| g(εF)

]
− 1

. (12.24)

In the weak coupling limit, where |λℓ| g(εF)≪ 1, we have

∣∣Wℓ

∣∣ ≃ 2Bℓ exp

(
− 4

|λℓ| g(εF)

)
. (12.25)

As we shall see when we study BCS theory, the factor in the exponent is twice too large. The
coefficient 2Bℓ will be shown to be the Debye energy of the phonons; we will see that it is only
over a narrow range of energies about the Fermi surface that the effective electron-electron
interaction is attractive. For strong coupling,

|Wℓ| = 1
2
|λℓ|Bℓ g(εF) . (12.26)
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Finite momentum Cooper pair

We can construct a finite momentum Cooper pair as follows:

|Ψq 〉 =
1√
2

∑

k

Ak
(
c†
k+ 1

2
q ↑c

†
−k+ 1

2
q ↓ − c

†
k+ 1

2
q ↓c

†
−k+ 1

2
q ↑
)
|F 〉 . (12.27)

This wavefunction is a momentum eigenstate, with total momentum P = ~q. The eigenvalue
equation is then

WAk =
(
ξ
k+ 1

2
q
+ ξ−k+ 1

2
q

)
Ak +

∑

k′

Vk,k′ Ak′ . (12.28)

Assuming ξk = ξ−k ,

ξ
k+ 1

2
q
+ ξ−k+ 1

2
q
= 2 ξk +

1
4
qαqβ

∂2ξk
∂kα ∂kβ

+ . . . . (12.29)

The binding energy is thus reduced by an amount proportional to q2 ; the q = 0 Cooper pair
has the greatest binding energy3.

Mean square radius of the Cooper pair

We have

〈
r
2
〉
=

∫
d3r
∣∣Ψ(r)

∣∣2 r2
∫
d3r
∣∣Ψ(r)

∣∣2 =

∫
d3k
∣∣∇kAk

∣∣2
∫
d3k
∣∣Ak
∣∣2 ≃

g(εF) ξ
′(kF)

2
∞∫
0

dξ
∣∣∂A
∂ξ

∣∣2

g(εF)
∞∫
0

dξ |A|2
(12.30)

withA(ξ) = −C/
(
|W |+2ξ

)
and thusA′(ξ) = 2C/

(
|W |+2ξ

)2
, whereC is a constant independent

of ξ. Ignoring the upper cutoff on ξ at Bℓ, we have

〈
r
2
〉
= 4 ξ′(k

F
)2 ·

∞∫
|W |
du u−4

∞∫
|W |
du u−2

= 4
3
(~v

F
)2 |W |−2 , (12.31)

where we have used ξ′(kF) = ~vF. Thus, RRMS = 2~vF

/√
3 |W | . In the weak coupling limit,

where |W | is exponentially small in 1/|λ|, the Cooper pair radius is huge. Indeed it is so large
that many other Cooper pairs have their centers of mass within the radius of any given pair.
This feature is what makes the BCS mean field theory of superconductivity so successful. Re-
call in our discussion of the Ginzburg criterion in §11.4.5, we found that mean field theory
was qualitatively correct down to the Ginzburg reduced temperature t

G
= (a/R∗)

2d/(4−d), i.e.
tG = (a/R∗)

6 for d = 3. In this expression, R∗ should be the mean Cooper pair size, and a a
microscopic length (i.e. lattice constant). Typically R∗/a ∼ 102 − 103, so t

G
is very tiny indeed.

3We assume the matrix ∂α∂β ξk is positive definite.
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12.3 Effective Attraction Due to Phonons

The solution to Cooper’s problem provided the first glimpses into the pairing nature of the
superconducting state. But why should Vk,k′ be attractive? One possible mechanism is an
induced attraction due to phonons.

12.3.1 Electron-phonon Hamiltonian

In §5.12 we derived the electron-phonon Hamiltonian,

Ĥel−ph =
1√
V

∑

k,k′σ
q,λ,G

gλ(k, k
′) (a†qλ + a−qλ) c

†
kσ ck′σ δk′,k+q+G , (12.32)

where c†kσ creates an electron in state | k σ 〉 and a†qλ creates a phonon in state | q λ 〉, where λ is
the phonon polarization state. G is a reciprocal lattice vector, and

gλ(k, k
′) = −i

(
~

2Ωωλ(q)

)1/2
4πZe2

(q + G)2 + λ−2
TF

(q + G) · ê∗λ(q) . (12.33)

is the electron-phonon coupling constant, with êλ(q) the phonon polarization vector, Ω the
Wigner-Seitz unit cell volume, and ωλ(q) the phonon frequency dispersion of the λ branch.

Recall that in an isotropic ‘jellium’ solid, the phonon polarization at wavevector q either is
parallel to q (longitudinal waves), or perpendicular to q (transverse waves). We then have that
only longitudinal waves couple to the electrons. This is because transverse waves do not result
in any local accumulation of charge density, and the Coulomb interaction couples electrons to
density fluctuations. Restricting our attention to the longitudinal phonon, we found for small

q the electron-longitudinal phonon coupling gL(k, k + q) ≡ gq satisfies

|gq|2 = λel−ph ·
~cLq

g(ε
F
)
, (12.34)

where g(ε
F
) is the electronic density of states, c

L
is the longitudinal phonon speed, and where

the dimensionless electron-phonon coupling constant is

λel−ph =
Z2

2Mc2
L
Ω g(ε

F
)
=

2Z

3

m∗

M

(
ε
F

k
B
Θs

)2
, (12.35)

with Θs ≡ ~cLkF
/k

B
.
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Figure 12.2: Feynman diagrams for electron-phonon processes.

12.3.2 Effective interaction between electrons

Consider now the problem of two particle scattering | k σ , −k −σ 〉 → | k′ σ , −k′ −σ 〉. We
assume no phonons are present in the initial state, i.e. we work at T = 0. The initial state
energy is Ei = 2ξk and the final state energy is Ef = 2ξk′ . There are two intermediate states:4

| I1 〉 = | k′ σ , −k −σ 〉 ⊗ | − q λ 〉
| I2 〉 = | k σ , −k′ −σ 〉 ⊗ |+ q λ 〉 ,

(12.36)

with k′ = k + q in each case. The energies of these intermediate states are

E1 = ξ−k + ξk′ + ~ω−q λ , E2 = ξk + ξ−k′ + ~ωq λ . (12.37)

The second order matrix element is then

〈 k′ σ , −k′ −σ | Ĥindirect | k σ , −k −σ 〉 =
∑

n

〈 k′ σ , −k′ −σ | Ĥel−ph |n 〉〈n | Ĥel−ph | k σ , −k −σ 〉

×
(

1

Ef − En
+

1

Ei − En

)

=
∣∣gk′−k

∣∣2
(

1

ξk′ − ξk − ~ωq
+

1

ξk − ξk′ − ~ωq

)
. (12.38)

Here we have assumed ξk = ξ−k and ωq = ω−q, and we have chosen λ to correspond to the

longitudinal acoustic phonon branch. We add this to the Coulomb interaction v̂
(
|k− k′|

)
to get

the net effective interaction between electrons,

〈 k′ σ , −k′ −σ | Ĥeff | k σ , −k −σ 〉 = v̂
(
|k − k′|

)
+
∣∣gq
∣∣2 × 2~ωq

(ξk − ξk′)2 − (~ωq)
2

, (12.39)

where k′ = k + q. We see that the effective interaction can be attractive, but only so long as
|ξk − ξk′| < ~ωq.

4The annihilation operator in the Hamiltonian Ĥel−ph can act on either of the two electrons.
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Another way to evoke this effective attraction is via the jellium model studied in §10.5.6. There
we found the effective interaction between unit charges was given by

V̂eff(q, ω) =
4πe2

q2 ǫ(q, ω)
(12.40)

where
1

ǫ(q, ω)
≃ q2

q2 + q2
TF

{
1 +

ω2
q

ω2 − ω2
q

}
, (12.41)

where the first term in the curly brackets is due to Thomas-Fermi screening (§10.5.2) and the
second from ionic screening (§10.5.6). Recall that the Thomas-Fermi wavevector is given by

q
TF

=
√
4πe2g(ε

F
) , where g(ε

F
) is the electronic density of states at the Fermi level, and that

ωq = Ωp,i q
/√

q2 + q2TF , where Ωp,i =
√

4πn0
iZie

2/Mi is the ionic plasma frequency.

12.4 Reduced BCS Hamiltonian

The operator which creates a Cooper pair with total momentum q is b†k,q + b†−k,q, where

b†k,q = c†
k+ 1

2
q ↑ c

†
−k+ 1

2
q ↓ (12.42)

is a composite operator which creates the state | k + 1
2
q ↑ , −k + 1

2
q ↓ 〉. We learned from the

solution to the Cooper problem that the q = 0 pairs have the greatest binding energy. This
motivates consideration of the so-called reduced BCS Hamiltonian,

Ĥred =
∑

k,σ

εk c
†
kσ ckσ +

∑

k,k′

Vk,k′ b
†
k,0 bk′,0 . (12.43)

The most general form for a momentum-conserving interaction is5

V̂ =
1

2V

∑

k,p,q

∑

σ,σ′

ûσσ′(k, p, q) c
†
k+q σ c

†
p−q σ′ cpσ′ ck σ . (12.44)

Taking p = −k, σ′ = −σ, and defining k′ ≡ k + q , we have

V̂ → 1

2V

∑

k,k′,σ

v̂(k, k′) c†k′σ c
†
−k′ −σ c−k−σ ckσ , (12.45)

where v̂(k, k′) = û↑↓(k,−k, k′ − k), which is equivalent to Ĥred .

5See the discussion in Appendix I, §12.13.
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Figure 12.3: John Bardeen, Leon Cooper, and J. Robert Schrieffer.

If Vk,k′ is attractive, then the ground state will have no pair (k ↑ , −k ↓) occupied by a single
electron; the pair states are either empty or doubly occupied. In that case, the reduced BCS
Hamiltonian may be written as6

H0
red =

∑

k

2εk b
†
k,0 bk,0 +

∑

k,k′

Vk,k′ b
†
k,0 bk′,0 . (12.46)

This has the innocent appearance of a noninteracting bosonic Hamiltonian – an exchange of
Cooper pairs restores the many-body wavefunction without a sign change because the Cooper
pair is a composite object consisting of an even number of fermions7. However, this is not

quite correct, because the operators bk,0 and bk′,0 do not satisfy canonical bosonic commutation
relations. Rather,

[
bk,0 , bk′,0

]
=
[
b†k,0 , b

†
k′,0

]
= 0

[
bk,0 , b

†
k′,0

]
=
(
1− c†k↑ck↑ − c†−k↓c−k↓

)
δkk′ .

(12.47)

Because of this, Ĥ0
red cannot naı̈vely be diagonalized. The extra terms inside the round brackets

on the RHS arise due to the Pauli blocking effects. Indeed, one has (b†k,0)
2 = 0, so b†k,0 is no

ordinary boson operator.

While the composite operators bk,q do not obey bosonic commutation relations, they are still
boson-like in the sense that they can have a nonzero expectation value, which composite fermion
operators cannot. This suggest we try a mean field Hartree-Fock approach. Accordingly, we
write

bk,0 = 〈bk,0〉+

δbk,0︷ ︸︸ ︷(
bk,0 − 〈bk,0〉

)
, (12.48)

6Spin rotation invariance and a singlet Cooper pair requires that Vk,k′
= Vk,−k′

= V
−k,k′

.
7Recall that the atom 4He, which consists of six fermions (two protons, two neutrons, and two electrons), is a
boson, while 3He, which has only one neutron and thus five fermions, is itself a fermion.
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and we neglect terms in Ĥred proportional to δb†k,0 δbk′,0. We have

Ĥred =
∑

k,σ

εk c
†
kσ ckσ +

∑

k,k′

Vk,k′
( energy shift︷ ︸︸ ︷
−〈b†k,0〉 〈bk′,0〉 +

keep this︷ ︸︸ ︷
〈bk′,0〉 b†k,0 + 〈b†k,0〉 bk′,0 +

drop this!︷ ︸︸ ︷
δb†k,0 δbk′,0

)
.

(12.49)
Dropping the last term, which is quadratic in fluctuations, we obtain

ĤMF

red =
∑

k,σ

εk c
†
kσ ckσ +

∑

k

(
∆k c

†
k↑ c

†
−k↓ +∆∗

k c−k↓ ck↑
)
−
∑

k,k′

Vk,k′ 〈c†k↑ c†−k↓〉 〈c−k′↓ ck′↑〉 , (12.50)

where

∆k =
∑

k′

Vk,k′
〈
c−k′↓ ck′↑

〉
, ∆∗

k =
∑

k′

V ∗
k,k′

〈
c†k′↑ c

†
−k′↓

〉
. (12.51)

The first thing to notice about ĤMF
red is that it does not preserve particle number, i.e. it does not

commute with N̂ =
∑

k,σ c
†
kσckσ. Accordingly, we are practically forced to work in the grand

canonical ensemble, and we define the grand canonical Hamiltonian K̂ ≡ Ĥ − µN̂ .

12.5 Solution of the Mean Field Hamiltonian

We now subtract µN̂ from Eqn. 12.50, and define K̂
BCS
≡ ĤMF

red − µN̂ . Thus,

K̂BCS =
∑

k

(
c†k↑ c−k↓

)
K
k︷ ︸︸ ︷(

ξk ∆k

∆∗
k −ξk

) (
ck↑
c†−k↓

)
+K0 , (12.52)

with ξk = εk − µ, and where

K0 =
∑

k

ξk −
∑

k,k′

Vk,k′ 〈c†k↑c†−k↓〉 〈c−k′↓ ck′↑〉 (12.53)

is a constant. This problem may be brought to diagonal form via a unitary transformation,

(
ck↑
c†−k↓

)
=

U
k︷ ︸︸ ︷(

cosϑk − sin ϑk e
iφ
k

sin ϑk e
−iφ

k cosϑk

) (
γk↑
γ†−k↓

)
. (12.54)
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In order for the γkσ operators to satisfy fermionic anticommutation relations, the matrix Uk
must be unitary8. We then have

ckσ = cosϑk γkσ − σ sin ϑk eiφk γ†−k−σ
γkσ = cosϑk ckσ + σ sinϑk e

iφ
k c†−k−σ .

(12.55)

EXERCISE: Verify that
{
γkσ , γ

†
k′σ′

}
= δkk′ δσσ′ .

We now must compute the transformed Hamiltonian. Dropping the k subscript for notational
convenience, we have

K̃ = U †K U =

(
cosϑ sinϑ eiφ

− sin ϑ e−iφ cos ϑ

)(
ξ ∆
∆∗ −ξ

)(
cosϑ − sinϑ eiφ

sinϑ e−iφ cosϑ

)
(12.56)

=

(
(cos2ϑ− sin2ϑ) ξ + sinϑ cosϑ (∆ e−iφ +∆∗eiφ) ∆ cos2ϑ−∆∗e2iφ sin2ϑ− 2ξ sin ϑ cosϑ eiφ

∆∗ cos2ϑ−∆e−2iφ sin2ϑ− 2ξ sin ϑ cosϑ e−iφ (sin2ϑ− cos2ϑ) ξ − sin ϑ cosϑ (∆ e−iφ +∆∗eiφ)

)
.

We now use our freedom to choose ϑ and φ to render K̃ diagonal. That is, we demand that
φ = arg(∆) and

2ξ sin ϑ cosϑ = |∆| (cos2ϑ− sin2ϑ) . (12.57)

This says tan(2ϑ) = |∆|/ξ, which means

cos(2ϑ) =
ξ

E
, sin(2ϑ) =

|∆|
E

, E =
√
ξ2 + |∆|2 . (12.58)

The upper left element of K̃ then becomes

(cos2ϑ− sin2ϑ) ξ + sinϑ cos ϑ (∆ e−iφ +∆∗eiφ) =
ξ2

E
+
|∆|2
E

= E , (12.59)

and thus K̃ =

(
E 0
0 −E

)
. This unitary transformation, which mixes particle and hole states, is

called a Bogoliubov transformation, because it was first discovered by Valatin.

Restoring the k subscript, we have φk = arg(∆k), and tan(2ϑk) = |∆k|/ξk, which means

cos(2ϑk) =
ξk
Ek

, sin(2ϑk) =
|∆k|
Ek

, Ek =
√
ξ2k + |∆k|2 . (12.60)

Assuming that ∆k is not strongly momentum-dependent, we see that the dispersion Ek of the
excitations has a nonzero minimum at ξk = 0, i.e. at k = k

F
. This minimum value of Ek is called

the superconducting energy gap.

8The most general 2 × 2 unitary matrix is of the above form, but with each row multiplied by an independent
phase. These phases may be absorbed into the definitions of the fermion operators themselves. After absorbing
these harmless phases, we have written the most general unitary transformation.
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We may further write

cosϑk =

√
Ek + ξk
2Ek

, sinϑk =

√
Ek − ξk
2Ek

. (12.61)

The grand canonical BCS Hamiltonian then becomes

K̂BCS =
∑

k,σ

Ek γ
†
kσ γkσ +

∑

k

(ξk − Ek)−
∑

k,k′

Vk,k′ 〈c†k↑c†−k↓〉 〈c−k′↓ ck′↑〉 . (12.62)

Finally, what of the ground state wavefunction itself? We must have γkσ|G 〉 = 0. This leads to

|G 〉 =
∏

k

(
cos ϑk − sin ϑk e

iφ
k c†k↑ c

†
−k↓
)
| 0 〉 . (12.63)

Note that 〈G |G 〉 = 1. J. R. Schrieffer conceived of this wavefunction during a subway ride in
New York City sometime during the winter of 1957. At the time he was a graduate student at
the University of Illinois.

Sanity check

It is good to make contact with something familiar, such as the case ∆k = 0. Note that ξk < 0
for k < k

F
and ξk > 0 for k > k

F
. We now have

cosϑk = Θ(k − k
F
) , sin ϑk = Θ(k

F
− k) . (12.64)

Note that the wavefunction |G 〉 in Eqn. 12.63 correctly describes a filled Fermi sphere out to
k = k

F
. Furthermore, the constant on the RHS of Eqn. 12.62 is 2

∑
k<kF

ξk, which is the Landau

free energy of the filled Fermi sphere. What of the excitations? We are free to take φk = 0. Then

k < k
F
: γ†kσ = σ c−k−σ

k > k
F
: γ†kσ = c†kσ .

(12.65)

Thus, the elementary excitations are holes below k
F

and electrons above k
F
. All we have done,

then, is to effect a particle-hole transformation on those states lying within the Fermi sea.

12.6 Self-Consistency

We now demand that the following two conditions hold:

N =
∑

k,σ

〈c†kσ ckσ〉 , ∆k =
∑

k′

Vk,k′ 〈c−k′↓ ck′↑〉 , (12.66)
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the second of which is from Eqn. 12.51. Thus, we need

〈c†kσ ckσ〉 =
〈
(cos ϑk γ

†
kσ − σ sin ϑk e−iφk γ−k−σ)(cosϑk γkσ − σ sinϑk eiφk γ†−k−σ)

〉

= cos2ϑk fk + sin2ϑk (1− fk) =
1

2
− ξk

2Ek
tanh

(
1
2
βEk

)
,

(12.67)

where

fk = 〈γ†kσ γkσ〉 =
1

eβEk + 1
= 1

2
− 1

2
tanh

(
1
2
βEk

)
(12.68)

is the Fermi function, with β = 1/kBT . We also have

〈c−k−σ ckσ〉 =
〈
(cos ϑk γ−k−σ + σ sin ϑk e

iφ
k γ†kσ)(cosϑk γkσ − σ sin ϑk eiφk γ†−k−σ)

〉

= σ sinϑk cosϑk e
iφ
k

(
2fk − 1

)
= −σ∆k

2Ek
tanh

(
1
2
βEk

)
.

(12.69)

Let’s evaluate at T = 0 :

N =
∑

k

(
1− ξk

Ek

)
, ∆k = −

∑

k′

Vk,k′
∆k′

2Ek′
. (12.70)

The second of these is known as the BCS gap equation. Note that ∆k = 0 is always a solution
of the gap equation. To proceed further, we need a model for Vk,k′ . We shall assume

Vk,k′ =

{
−v/V if |ξk| < ~ω

D
and |ξk′| < ~ω

D

0 otherwise .
(12.71)

Here v > 0, so the interaction is attractive, but only when ξk and ξk′ are within an energy ~ω
D

of
zero. For phonon-mediated superconductivity, ωD is the Debye frequency, which is the phonon
bandwidth.

12.6.1 Solution at zero temperature

We first solve the second of Eqns. 12.70, by assuming

∆k =

{
∆ eiφ if |ξk| < ~ωD

0 otherwise ,
(12.72)

with ∆ real. We then have9

∆ = +v

∫
d3k

(2π)3
∆

2Ek
Θ
(
~ω

D
− |ξk|

)
= 1

2
v g(ε

F
)

~ωD∫

0

dξ
∆√

ξ2 +∆2
. (12.73)

9We assume the density of states g(ε) is slowly varying in the vicinity of the chemical potential and approximate it
at g(εF). In fact, we should more properly call it g(µ), but as a practical matter µ ≃ ε

F
at temperatures low enough

to be in the superconducting phase. Note that g(εF) is the total DOS for both spin species. In the literature, one
often encounters the expression N(0), which is the DOS per spin at the Fermi level, i.e. N(0) = 1

2 g(εF).
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Cancelling out the common factors of ∆ on each side, we obtain

1 = 1
2
v g(ε

F
)

~ωD/∆∫

0

ds (1 + s2)−1/2 = 1
2
v g(ε

F
) sinh−1

(
~ω

D
/∆
)

. (12.74)

Thus, writing ∆0 ≡ ∆(0) for the zero temperature gap,

∆0 =
~ω

D

sinh
(
2/g(ε

F
) v
) ≃ 2~ω

D
exp

(
− 2

g(ε
F
) v

)
, (12.75)

where g(ε
F
) is the total electronic DOS (for both spin species) at the Fermi level. Notice that, as

promised, the argument of the exponent is one half as large as what we found in our solution
of the Cooper problem, in Eqn. 12.25.

12.6.2 Condensation energy

We now evaluate the zero temperature expectation of K̂BCS from Eqn. 12.62. To get the correct
answer, it is essential that we retain the term corresponding to the constant energy shift in the
mean field Hamiltonian, i.e. the last term on the RHS of Eqn. 12.62. Invoking the gap equation

∆k =
∑

k′ Vk,k′ 〈c−k′↓ ck′↑〉, we have

〈G | K̂BCS |G 〉 =
∑

k

(
ξk − Ek +

|∆k|2
2Ek

)
. (12.76)

From this we subtract the ground state energy of the metallic phase, i.e. when ∆k = 0, which is
2
∑

k ξkΘ(k
F
− k). The difference is the condensation energy. Adopting the model interaction

potential in Eqn. 12.71, we have

Es − En =
∑

k

(
ξk −Ek +

|∆k|2
2Ek

− 2ξkΘ(k
F
− k)

)

= 2
∑

k

(
ξk − Ek) Θ(ξk) Θ(~ωD − ξk) +

∑

k

∆2
0

2Ek
Θ
(
~ωD − |ξk|

)
,

(12.77)

where we have linearized about k = k
F
. We then have

Es − En = V g(ε
F
)∆2

0

~ωD/∆0∫

0

ds

(
s−
√
s2 + 1 +

1

2
√
s2 + 1

)

= 1
2
V g(ε

F
)∆2

0

(
x2 − x

√
1 + x2

)
≈ −1

4
V g(ε

F
)∆2

0 ,

(12.78)
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where x ≡ ~ωD/∆0. The condensation energy density is therefore −1
4
g(ε

F
)∆2

0, which may be
equated with −H2

c /8π, where Hc is the thermodynamic critical field. Thus, we find

Hc(0) =
√
2πg(ε

F
) ∆0 , (12.79)

which relates the thermodynamic critical field to the superconducting gap, at T = 0.

12.7 Coherence factors and quasiparticle energies

When ∆k = 0, we have Ek = |ξk|. When ~ωD ≪ ε
F
, there is a very narrow window surrounding

k = k
F

where Ek departs from |ξk|, as shown in the bottom panel of Fig. 12.4. Note the energy
gap in the quasiparticle dispersion, where the minimum excitation energy is given by10

min
k
Ek = Ek

F
= ∆0 . (12.80)

In the top panel of Fig. 12.4 we plot the coherence factors sin2ϑk and cos2ϑk. Note that sin2ϑk
approaches unity for k < k

F
and cos2ϑk approaches unity for k > k

F
, aside for the narrow

window of width δk ≃ ∆0/~vF
. Recall that

γ†kσ = cosϑk c
†
kσ + σ sin ϑk e

−iφ
k c−k−σ . (12.81)

Thus we see that the quasiparticle creation operator γ†kσ creates an electron in the state | k σ 〉
when cos2ϑk ≃ 1, and a hole in the state | −k −σ 〉 when sin2ϑk ≃ 1. In the aforementioned
narrow window |k − k

F
|<∼∆0/~vF

, the quasiparticle creates a linear combination of electron
and hole states. Typically ∆0 ∼ 10−4 ε

F
, since metallic Fermi energies are on the order of tens of

thousands of Kelvins, while ∆0 is on the order of Kelvins or tens of Kelvins. Thus, δk <∼ 10−3k
F
.

The difference between the superconducting state and the metallic state all takes place within
an onion skin at the Fermi surface!

Note that for the model interaction Vk,k′ of Eqn. 12.71, the solution ∆k in Eqn. 12.72 is actually
discontinuous when ξk = ±~ωD , i.e. when k = k∗± ≡ k

F
±ωD/vF

. Therefore, the energy dispersion
Ek is also discontinuous along these surfaces. However, the magnitude of the discontinuity is

δE =
√
(~ωD)

2 +∆2
0 − ~ωD ≈

∆2
0

2~ω
D

. (12.82)

Therefore δE/Ek∗± ≈ ∆2
0

/
2(~ω

D
)2 ∝ exp

(
−4/g(ε

F
) v
)

, which is very tiny in weak coupling,

where g(ε
F
) v ≪ 1. Note that the ground state is largely unaffected for electronic states in the

vicinity of this (unphysical) energy discontinuity. The coherence factors are distinguished from

those of a Fermi liquid only in regions where 〈c†k↑c†−k↓〉 is appreciable, which requires ξk to be
on the order of ∆k. This only happens when |k − k

F
|<∼∆0/~vF

, as discussed in the previous
paragraph. In a more physical model, the interaction Vk,k′ and the solution ∆k would not be
discontinuous functions of k.
10Here we assume, without loss of generality, that ∆ is real.
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Figure 12.4: Top panel: BCS coherence factors sin2ϑk (blue) and cos2ϑk (red). Bottom panel:
the functions ξk (black) and Ek (magenta). The minimum value of the magenta curve is the
superconducting gap ∆0.

12.8 Number and Phase

The BCS ground state wavefunction |G 〉was given in Eqn. 12.63. Consider the state

|G(α) 〉 =
∏

k

(
cosϑk − eiα eiφk sinϑk c†k↑ c†−k↓

)
| 0 〉 . (12.83)

This is the ground state when the gap function ∆k is multiplied by the uniform phase factor
eiα. We shall here abbreviate |α 〉 ≡ |G(α) 〉.
Now consider the action of the number operator on |α 〉 :

N̂ |α 〉 =
∑

k

(
c†k↑ck↑ + c†−k↓c−k↓

)
|α 〉 (12.84)

= −2
∑

k

eiα eiφk sinϑk c
†
k↑ c

†
−k↓

∏

k′ 6=k

(
cosϑk′ − eiα eiφk′ sin ϑk′ c†k′↑ c†−k′↓

)
| 0 〉 = 2

i

∂

∂α
|α 〉 .
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If we define the number of Cooper pairs as M̂ ≡ 1
2
N̂ , then we may identify M̂ = 1

i
∂
∂α

. Further-
more, we may project |G 〉 onto a state of definite particle number by defining

|M 〉 =
π∫

−π

dα

2π
e−iMα |α 〉 . (12.85)

The state |M 〉 has N = 2M particles, i.e. M Cooper pairs. One can easily compute the number
fluctuations in the state |G(α) 〉 :

〈α | N̂2 |α 〉 − 〈α | N̂ |α 〉2

〈α | N̂ |α 〉
=

2
∫
d3k sin2ϑk cos2ϑk∫
d3k sin2ϑk

=
4∆0

~ωD

tan−1

(
~ω

D

∆0

)
≃ 2π∆0

~ω
D

. (12.86)

Thus, (∆N)RMS ∝ 〈N〉1/2. Note that (∆N)RMS = 0 in the normal state, where sin ϑk cosϑk = 0.

12.9 Finite Temperature

The gap equation at finite temperature takes the form

∆k = −
∑

k′

Vk,k′
∆k′

2Ek′
tanh

(
Ek′

2k
B
T

)
. (12.87)

It is easy to see that we have no solutions other than the trivial one ∆k = 0 in the T →∞ limit,
for the gap equation then becomes

∑
k′ Vk,k′ ∆k′ = −4kBT ∆k, and if the eigenspectrum of Vk,k′

is bounded, there is no solution for k
B
T greater than the largest eigenvalue of −Vk,k′ .

To find the critical temperature where the gap collapses, again we assume the forms in Eqns.
12.71 and 12.72, in which case we have

1 = 1
2
g(ε

F
) v

~ωD∫

0

dξ√
ξ2 +∆2

tanh

(√
ξ2 +∆2

2kBT

)
. (12.88)

It is clear that ∆(T ) is a decreasing function of temperature, which vanishes at T = Tc, where
Tc is determined by the equation

Λ/2∫

0

ds s−1 tanh(s) =
2

g(ε
F
) v

, (12.89)

where Λ = ~ω
D
/k

B
Tc . One finds, for large Λ ,

I(Λ) =

Λ/2∫

0

ds s−1 tanh(s) = ln
(
1
2
Λ
)
tanh

(
1
2
Λ
)
−

Λ/2∫

0

ds
ln s

cosh2s

= lnΛ + ln
(
2 eC/π

)
+O

(
e−Λ/2

)
,

(12.90)
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Figure 12.5: Temperature dependence of the energy gap in Pb as determined by tunneling
versus prediction of BCS theory. From R. F. Gasparovic, B. N. Taylor, and R. E. Eck, Sol. State
Comm. 4, 59 (1966). Deviations from the BCS theory are accounted for by numerical calcula-
tions at strong coupling by Swihart, Scalapino, and Wada (1965).

where C = 0.57721566 . . . is the Euler-Mascheroni constant. One has 2 eC/π = 1.134, so

kBTc = 1.134 ~ωD e
−2/g(ε

F
) v . (12.91)

Comparing with Eqn. 12.75, we obtain the famous result

2∆(0) = 2πe−C k
B
Tc ≃ 3.52 k

B
Tc . (12.92)

As we shall derive presently, just below the critical temperature, one has

∆(T ) = 1.734∆(0)

(
1− T

Tc

)1/2
≃ 3.06 k

B
Tc

(
1− T

Tc

)1/2

. (12.93)

12.9.1 Isotope effect

The prefactor in Eqn. 12.91 is proportional to the Debye energy ~ω
D

. Thus,

lnTc = lnωD −
2

g(ε
F
) v

+ const. . (12.94)

If we imagine varying only the mass of the ions, via isotopic substitution, then g(ε
F
) and v do

not change, and we have
δ lnTc = δ lnω

D
= −1

2
δ lnM , (12.95)



534 CHAPTER 12. BCS THEORY OF SUPERCONDUCTIVITY

where M is the ion mass. Thus, isotopically increasing the ion mass leads to a concomitant
reduction in Tc according to BCS theory. This is fairly well confirmed in experiments on low Tc
materials.

12.9.2 Landau free energy of a superconductor

Quantum statistical mechanics of noninteracting fermions applied to K̂
BCS

in Eqn. 12.62 yields
the Landau free energy

Ωs = −2kBT
∑

k

ln
(
1 + e−Ek/kBT

)
+
∑

k

{
ξk −Ek +

|∆k|2
2Ek

tanh

(
Ek
2k

B
T

)}
. (12.96)

The corresponding result for the normal state (∆k = 0) is

Ωn = −2k
B
T
∑

k

ln
(
1 + e−|ξ

k
|/kBT

)
+
∑

k

(
ξk − |ξk|

)
. (12.97)

Thus, the difference is

Ωs −Ωn = −2k
B
T
∑

k

ln

(
1 + e−Ek/kBT

1 + e−|ξ
k
|/kBT

)
+
∑

k

{
|ξk| − Ek +

|∆k|2
2Ek

tanh

(
Ek

2k
B
T

)}
. (12.98)

We now invoke the model interaction in Eqn. 12.71. Recall that the solution to the gap equation
is of the form ∆k(T ) = ∆(T ) Θ

(
~ω

D
− |ξk|

)
. We then have

Ωs −Ωn

V
=

∆2

v
− 1

2
g(ε

F
)∆2

{
~ω

D

∆

√

1 +

(
~ω

D

∆

)2
−
(
~ω

D

∆

)2
+ sinh−1

(
~ω

D

∆

)}
(12.99)

− 2 g(ε
F
) k

B
T ∆

∞∫

0

ds ln
(
1 + e−

√
1+s2 ∆/kBT

)
+ 1

6
π2 g(ε

F
) (k

B
T )2 + . . . ,

where the terms in the ellipsis are of O(T 4), arising from the Sommerfeld expansion of the low
temperature normal state free energy. We now expand this result in the vicinity of T = 0 and
T = Tc. In the weak coupling limit, throughout this entire region we have ∆ ≪ ~ω

D
, so we

proceed to expand in the small ratio, writing

Ωs −Ωn

V
= −1

4
g(ε

F
)∆2

{
1 + 2 ln

(
∆0

∆

)
−
(

∆

2~ωD

)2

+O
(
∆4
)
}

(12.100)

− 2 g(ε
F
) k

B
T∆

∞∫

0

ds ln
(
1 + e−

√
1+s2 ∆/kBT

)
+ 1

6
π2 g(ε

F
) (k

B
T )2 + . . . ,

where ∆0 = ∆(0) = πe−C kBTc. The asymptotic analysis of this expression in the limits T → 0+

and T → T−
c is discussed in the appendix §12.14.
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T → 0
+

In the limit T → 0, we find

Ωs −Ωn

V
= −1

4
g(ε

F
)∆2

{
1 + 2 ln

(
∆0

∆

)
+O

(
∆2
)
}

(12.101)

− g(ε
F
)
√

2π(k
B
T )3∆ e−∆/kBT + 1

6
π2 g(ε

F
) (k

B
T )2 + . . . .

Differentiating the above expression with respect to ∆, we obtain a self-consistent equation for
the gap ∆(T ) at low temperatures:

ln

(
∆

∆0

)
= −

√
2πk

B
T

∆
e−∆/kBT

(
1− k

B
T

2∆
+ . . .

)
(12.102)

Thus,
∆(T ) = ∆0 −

√
2π∆ 0kB

T e−∆0/kBT + . . . . (12.103)

Substituting this expression into Eqn. 12.101, we find

Ωs −Ωn

V
= −1

4
g(ε

F
)∆2

0 − g(εF)
√
2π∆0 (kB

T )3 e−∆0/kBT + 1
6
π2 g(ε

F
) (k

B
T )2 + . . . . (12.104)

Equating this with the condensation energy density, −H2
c (T )/8π , and invoking our previous

result, ∆0 = πe−C k
B
Tc , we find

Hc(T ) = Hc(0)

{
1−

≈1.057︷ ︸︸ ︷
1
3
e2C

(
T

Tc

)2
+ . . .

}
, (12.105)

where Hc(0) =
√

2π g(ε
F
) ∆0.

T → T−

c

In this limit, one finds

Ωs −Ωn

V
= 1

2
g(ε

F
) ln

(
T

Tc

)
∆2 +

7 ζ(3)

32π2

g(ε
F
)

(k
B
T )2

∆4 +O
(
∆6
)

. (12.106)

This is of the standard Landau form,

Ωs −Ωn

V
= ã(T )∆2 + 1

2
b̃(T )∆4 , (12.107)
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Figure 12.6: Heat capacity in aluminum at low temperatures, from N. K. Phillips, Phys. Rev.
114, 3 (1959). The zero field superconducting transition occurs at Tc = 1.163K. Comparison
with normal state C below Tc is made possible by imposing a magnetic field H > Hc. This
destroys the superconducting state, but has little effect on the metal. A jump ∆C is observed
at Tc, quantitatively in agreement BCS theory.

with coefficients

ã(T ) = 1
2
g(ε

F
)

(
T

Tc
− 1

)
, b̃ =

7 ζ(3)

16π2

g(ε
F
)

(k
B
Tc)

2
, (12.108)

working here to lowest nontrivial order in T − Tc. The head capacity jump, according to Eqn.
1.44, is

cs(T
−
c )− cn(T+

c ) =
Tc
[
ã′(Tc)

]2

b̃(Tc)
=

4π2

7 ζ(3)
g(ε

F
) k2

B
Tc . (12.109)

The normal state heat capacity at T = Tc is cn = 1
3
π2g(ε

F
) k2

B
Tc , hence

cs(T
−
c )− cn(T+

c )

cn(T
+
c )

=
12

7 ζ(3)
= 1.43 . (12.110)

This universal ratio is closely reproduced in many experiments; see, for example, Fig. 12.6.
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The order parameter is given by

∆2(T ) = − ã(T )
b̃(T )

=
8π2(kBTc)

2

7 ζ(3)

(
1− T

Tc

)
=

8 e2C

7 ζ(3)

(
1− T

Tc

)
∆2(0) , (12.111)

where we have used ∆(0) = π e−C k
B
Tc. Thus,

∆(T )

∆(0)
=

≈ 1.734︷ ︸︸ ︷(
8 e2C

7 ζ(3)

)1/2 (
1− T

Tc

)1/2
. (12.112)

The thermodynamic critical field just below Tc is obtained by equating the energies−ã2/2b̃ and
−H2

c /8π. Therefore

Hc(T )

Hc(0)
=

(
8 e2C

7 ζ(3)

)1/2(
1− T

Tc

)
≃ 1.734

(
1− T

Tc

)
. (12.113)

12.10 Paramagnetic Susceptibility

Suppose we add a weak magnetic field, the effect of which is described by the perturbation
Hamiltonian

Ĥ1 = −µB
H
∑

k,σ

σ c†kσ ckσ = −µ
B
H
∑

k,σ

σ γ†kσ γkσ . (12.114)

The shift in the Landau free energy due to the field is then ∆Ωs(T, V, µ,H) = Ωs(T, V, µ,H) −
Ωs(T, V, µ, 0). We have

∆Ωs(T, V, µ,H) = −k
B
T
∑

k,σ

ln

(
1 + e−β(Ek+σµBH)

1 + e−βEk

)

= −β (µ
B
H)2

∑

k

eβEk
(
eβEk + 1

)2 +O(H4) .

(12.115)

The magnetic susceptibility is then

χs = −
1

V

∂2∆Ωs

∂H2
= g(ε

F
)µ2

B Y(T ) , (12.116)

where

Y(T ) = 2

∞∫

0

dξ

(
− ∂f

∂E

)
= 1

2
β

∞∫

0

dξ sech2
(

1
2
β
√
ξ2 +∆2

)
(12.117)
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is the Yoshida function. Note thatY(Tc) =
∞∫
0

du sech2u = 1 , andY(T → 0) ≃ (2πβ∆)1/2 exp(−β∆) ,

which is exponentially suppressed. Since χn = g(ε
F
)µ2

B
is the normal state Pauli susceptibility,

we have that the ratio of superconducting to normal state susceptibilities is χs(T )/χn(T ) =
Y(T ). This vanishes exponentially as T → 0 because it takes a finite energy ∆ to create a
Bogoliubov quasiparticle out of the spin singlet BCS ground state.

In metals, the nuclear spins experience a shift in their resonance energy in the presence of an
external magnetic field, due to their coupling to conduction electrons via the hyperfine interac-
tion. This is called the Knight shift, after Walter Knight, who first discovered this phenomenon at
Berkeley in 1949. The magnetic field polarizes the metallic conduction electrons, which in turn
impose an extra effective field, through the hyperfine coupling, on the nuclei. In superconduc-
tors, the electrons remain unpolarized in a weak magnetic field owing to the superconducting
gap. Thus there is no Knight shift.

As we have seen from the Ginzburg-Landau theory, when the field is sufficiently strong, su-
perconductivity is destroyed (type I), or there is a mixed phase at intermediate fields where
magnetic flux penetrates the superconductor in the form of vortex lines. Our analysis here is
valid only for weak fields.

12.11 Finite Momentum Condensate

The BCS reduced Hamiltonian of Eqn. 12.43 involved interactions between q = 0 Cooper pairs
only. The reduced BCS Hamiltonian was given by

Ĥred =
∑

k,σ

εk c
†
kσ ckσ +

∑

k,k′,p

Vk,k′ b
†
k,p bk′,p . (12.118)

where bk,p = c−k+ 1
2
p ↓ ck+ 1

2
p ↑ , and with zero momentum pairing, 〈 bk,p 〉 = 〈 bk,0 〉 δp,0. The gap

∆k is then given by ∆k =
∑

k′ Vk,k′〈 bk′,0 〉 . What happens, though, if we take

〈 bk,p 〉 =
〈
c−k+ 1

2
q ↓ ck+ 1

2
q ↑
〉
δp,q , ∆k,q =

∑

k′

Vk,k′
〈
c−k+ 1

2
q ↓ ck+ 1

2
q ↑
〉

, (12.119)

corresponding to a finite momentum condensate? We then obtain

K̂
BCS

=
∑

k

(
c†
k+ 1

2
q ↑ c−k+ 1

2
q ↓

)(ωk,q + νk,q ∆k,q

∆∗
k,q −ωk,q + νk,q

)( c
k+ 1

2
q ↑

c†−k+ 1
2
q ↓

)
+
∑

k

(
ξk−∆k,q 〈 b†k,q 〉

)
,

(12.120)
where

ωk,q =
1
2

(
ξ
k+ 1

2
q
+ ξ−k+ 1

2
q

)
ξ
k+ 1

2
q
= ωk,q + νk,q (12.121)

νk,q =
1
2

(
ξ
k+ 1

2
q
− ξ−k+ 1

2
q

)
ξ−k+ 1

2
q
= ωk,q − νk,q . (12.122)



12.11. FINITE MOMENTUM CONDENSATE 539

Note that ωk,q is even under reversal of either k or q, while νk,q is odd under reversal of either k
or q. That is,

ωk,q = ω−k,q = ωk,−q = ω−k,−q , νk,q = −ν−k,q = −νk,−q = ν−k,−q . (12.123)

We now make a Bogoliubov transformation,

c
k+ 1

2
q ↑ = cosϑk,q γk,q,↑ − sin ϑk,q e

iφ
k,q γ†−k,q,↓

c†−k+ 1
2
q ↓ = cosϑk,q γ

†
−k,q,↓ + sinϑk,q e

iφ
k,q γk,q,↑

(12.124)

with

cos ϑk,q =

√
Ek,q + ωk,q

2Ek,q
φk,q = arg(∆k,q) (12.125)

sin ϑk,q =

√
Ek,q − ωk,q

2Ek,q
Ek,q =

√
ω2
k,q + |∆k,q|2 . (12.126)

We then obtain

K̂
BCS

=
∑

k,σ

(Ek,q + νk,q) γ
†
k,q,σγk,q,σ +

∑

k

(
ξk − Ek,q +∆k,q 〈b†k,q〉

)
. (12.127)

Next, we compute the quantum statistical averages

〈
c†
k+ 1

2
q ↑ ck+ 1

2
q ↑
〉
= cos2ϑk,q f(Ek,q + νk,q) + sin2ϑk,q

[
1− f(Ek,q − νk,q)

]
(12.128)

=
1

2

(
1 +

ωk,q
Ek,q

)
f(Ek,q + νk,q) +

1

2

(
1−

ωk,q
Ek,q

)[
1− f(Ek,q − νk,q)

]

and
〈
c†
k+ 1

2
q ↑ c

†
−k+ 1

2
q ↓
〉
= − sinϑk,q cosϑk,q e

−iφ
k,q

[
1− f(Ek,q + νk,q)− f(Ek,q − νk,q)

]

= − ∆∗
k,q

2Ek,q

[
1− f(Ek,q + νk,q)− f(Ek,q − νk,q)

]
. (12.129)

12.11.1 Gap equation for finite momentum condensate

We may now solve the T = 0 gap equation,

1 = −
∑

k′

Vk,k′
1

2Ek′,q
= 1

2
g(ε

F
) v

~ωD∫

0

dξ√
(ξ + ηq)

2 + |∆0,q|2
. (12.130)
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Here we have assumed the interaction Vk,k′ of Eqn. 12.71, and we take

∆k,q = ∆0,q Θ
(
~ω

D
− |ξk|

)
. (12.131)

We have also written ωk,q = ξk+ηq. This form is valid for quadratic ξk =
~2k2

2m∗ −µ , in which case
ηq = ~2q2/8m∗. We take ∆0,q ∈ R . We may now compute the critical wavevector qc at which
the T = 0 gap collapses:

1 = 1
2
g(ε

F
) v ln

(
~ωD + ηqc

ηqc

)
⇒ ηqc ≃ ~ω

D
e−2/g(ε

F
) v = 1

2
∆0 , (12.132)

whence qc = 2
√
m∗∆0 /~ . Here we have assumed weak coupling, i.e. g(ε

F
) v ≪ 1

Next, we compute the gap ∆0,q . We have

sinh−1

(
~ωD + ηq
∆0,q

)
=

2

g(ε
F
) v

+ sinh−1

(
ηq
∆0,q

)
. (12.133)

Assuming ηq ≪ ∆0,q , we obtain

∆0,q = ∆0 − ηq = ∆0 −
~
2q2

8m∗ . (12.134)

12.11.2 Supercurrent

We assume a quadratic dispersion εk = ~2k2/2m∗ , so vk = ~k/m∗. The current density is then
given by

j =
2e~

m∗V

∑

k

(
k + 1

2
q
)〈
c†
k+ 1

2
q ↑ ck+ 1

2
q ↑
〉
=
ne~

2m∗ q +
2e~

m∗V

∑

k

k
〈
c†
k+ 1

2
q ↑ ck+ 1

2
q ↑
〉

, (12.135)

where n = N/V is the total electron number density. Appealing to Eqn. 12.128, we have

j =
e~

m∗V

∑

k

k

{[
1 + f(Ek,q + νk,q)− f(Ek,q − νk,q)

]
(12.136)

+
ωk,q
Ek,q

[
f(Ek,q + νk,q) + f(Ek,q − νk,q)− 1

]}
+
ne~

2m∗ q .

We now write f(Ek,q ± νk,q) = f(Ek,q)± f ′(Ek,q) νk,q + . . ., obtaining

j =
e~

m∗V

∑

k

k

[
1 + 2 νk,q f

′(Ek,q)
]
+
ne~

2m∗ q . (12.137)
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For the ballistic dispersion, νk,q = ~
2k · q/2m∗, so

j − ne~

2m∗ q =
e~

m∗V

~2

m∗

∑

k

(q · k) k f ′(Ek,q)

=
e~3

3m∗2V
q
∑

k

k
2 f ′(Ek,q) ≃

ne~

m∗ q

∞∫

0

dξ
∂f

∂E
,

(12.138)

where we have set k2 = k2F inside the sum, since it is only appreciable in the vicinity of k = k
F
,

and we have invoked g(ε
F
) = m∗k

F
/π2~2 and n = k3

F
/3π2. Thus,

j =
ne~

2m∗

(
1 + 2

∞∫

0

dξ
∂f

∂E

)
q ≡ ns(T ) e~q

2m∗ . (12.139)

This defines the superfluid density,

ns(T ) = n

(
1 + 2

∞∫

0

dξ
∂f

∂E

)
. (12.140)

Note that the second term in round brackets on the RHS is always negative. Thus, at T = 0,
we have ns = n, but at T = Tc, where the gap vanishes, we find ns(Tc) = 0, since E = |ξ| and
f(0) = 1

2
. We may write ns(T ) = n− nn(T ), where nn(T ) = nY(T ) is the normal fluid density.

Ginzburg-Landau theory

We may now expand the free energy near T = Tc at finite condensate q. We will only quote the
result. One finds

Ωs −Ωn

V
= ã(T ) |∆|2 + 1

2
b̃(T ) |∆|4 + n b̃(T )

g(ε
F
)

~2q2

2m∗ |∆|
2 , (12.141)

where the Landau coefficients ã(T ) and b̃(T ) are given in Eqn. 12.108. Identifying the last term
as K̃ |∇∆|2, where K̃ is the stiffness, we have

K̃ =
~2

2m∗
n b̃(T )

g(ε
F
)

. (12.142)

12.12 Effect of Repulsive Interactions

Let’s modify our model in Eqns. 12.71 and 12.72 and write

Vk,k′ =

{
(v

C
− vp)/V if |ξk| < ~ω

D
and |ξk′| < ~ω

D

v
C
/V otherwise

(12.143)
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and

∆k =

{
∆0 if |ξk| < ~ωD

∆1 otherwise .
(12.144)

Here −vp < 0 is the attractive interaction mediated by phonons, while v
C
> 0 is the Coulomb

repulsion. We presume vp > vC so that there is a net attraction at low energies, although below
we will show this assumption is overly pessimistic. We take ∆0,1 both to be real.

At T = 0, the gap equation then gives

∆0 =
1
2
g(ε

F
) (vp − vC

)

~ωD∫

0

dξ
∆0√
ξ2 +∆2

0

− 1
2
g(ε

F
) v

C

B∫

~ωD

dξ
∆1√
ξ2 +∆2

1

∆1 = −1
2
g(ε

F
) v

C

~ωD∫

0

dξ
∆0√
ξ2 +∆2

0

− 1
2
g(ε

F
) v

C

B∫

~ωD

dξ
∆1√
ξ2 +∆2

1

,

(12.145)

where ~ωD is once again the Debye energy, and B is the full electronic bandwidth. Performing
the integrals, and assuming ∆0,1 ≪ ~ω

D
≪ B, we obtain

∆0 =
1
2
g(ε

F
) (vp − vC

)∆0 ln

(
2~ω

D

∆0

)
− 1

2
g(ε

F
) v

C
∆1 ln

(
B

~ω
D

)

∆1 = −1
2
g(ε

F
) vC ∆0 ln

(
2~ω

D

∆0

)
− 1

2
g(ε

F
) vC ∆1 ln

(
B

~ω
D

)
.

(12.146)

The second of these equations gives

∆1 = −
1
2
g(ε

F
) v

C
ln(2~ω

D
/∆0)

1 + 1
2
g(ε

F
) v

C
ln(B/~ω

D
)
∆0 . (12.147)

Inserting this into the first equation then results in

2

g(ε
F
) vp

= ln

(
2~ω

D

∆0

)
·
{
1− v

C

vp
· 1

1 + 1
2
g(ε

F
) ln(B/~ωD)

}
. (12.148)

This has a solution only if the attractive potential vp is greater than the repulsive factor v
C

/[
1+

1
2
g(ε

F
) vC ln(B/~ωD)

]
. Note that it is a renormalized and reduced value of the bare repulsion vC

which enters here. Thus, it is possible to have

vC > vp >
v
C

1 + 1
2
g(ε

F
) vC ln(B/~ωD)

, (12.149)

so that v
C
> vp and the potential is always repulsive, yet still the system is superconducting!
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Working at finite temperature, we must include factors of tanh
(

1
2
β
√
ξ2 +∆2

0,1

)
inside the ap-

propriate integrands in Eqn. 12.145, with β = 1/k
B
T . The equation for Tc is then obtained by

examining the limit ∆0,1 → 0 , with the ratio r ≡ ∆1/∆0 finite. We then have

2

g(ε
F
)
= (vp − vC)

Ω̃∫

0

ds s−1 tanh(s)− r vC

B̃∫

Ω̃

ds s−1 tanh(s)

2

g(ε
F
)
= −r−1 v

C

Ω̃∫

0

ds s−1 tanh(s)− v
C

B̃∫

Ω̃

ds s−1 tanh(s) ,

(12.150)

where Ω̃ ≡ ~ω
D
/2k

B
Tc and B̃ ≡ B/2k

B
Tc. We now use

Λ∫

0

ds s−1 tanh(s) = lnΛ + ln
(

≈ 2.268︷ ︸︸ ︷
4eC/π

)
+O

(
e−Λ
)

(12.151)

to obtain

2

g(ε
F
) vp

= ln

(
1.134 ~ω

D

k
B
Tc

)
·
{
1− v

C

vp
· 1

1 + 1
2
g(ε

F
) vC ln(B/~ωD)

}
. (12.152)

Comparing with Eqn. 12.148, we see that once again we have 2∆0(T = 0) = 3.52 k
B
Tc. Note,

however, that

kBTc = 1.134 ~ωD exp

(
− 2

g(ε
F
) v

eff

)
, (12.153)

where

v
eff

= vp −
v
C

1 + 1
2
g(ε

F
) v

C
ln(B/~ω

D
)

. (12.154)

It is customary to define

λ ≡ 1
2
g(ε

F
) vp , µ ≡ 1

2
g(ε

F
) v

C
, µ∗ ≡ µ

1 + µ ln(B/~ωD)
, (12.155)

so that

kBTc = 1.134 ~ωD e
−1/(λ−µ∗) , ∆0 = 2~ωD e

−1/(λ−µ∗) , ∆1 = −
µ∗∆0

λ− µ∗ . (12.156)

Since µ∗ depends on ω
D
, the isotope effect is modified:

δ lnTc = δ lnω
D
·
{
1− µ2

1 + µ ln(B/~ωD)

}
. (12.157)
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12.13 Appendix I : General Variational Formulation

We consider a more general grand canonical Hamiltonian of the form

K̂ =
∑

kσ

(εk − µ) c†kσ ckσ +
1

2V

∑

k,p,q

∑

σ,σ′

ûσσ′(k, p, q) c
†
k+qσ c

†
p−q σ′ cpσ′ ck σ . (12.158)

In order that the Hamiltonian be Hermitian, we may require, without loss of generality,

û∗σσ′(k, p, q) = ûσσ′(k + q , p− q , −q) . (12.159)

In addition, spin rotation invariance says that û↑↑(k, p, q) = û↓↓(k, p, q) and û↑↓(k, p, q) = û↓↑(k, p, q).

We now take the thermal expectation of K̂ using a density matrix derived from the BCS Hamil-
tonian,

K̂BCS =
∑

k

(
c†k↑ c−k↓

)(
ξk ∆k

∆∗
k −ξk

)(
ck↑
c†−k↓

)
+K0 . (12.160)

The energy shift K0 will not be important in our subsequent analysis. From the BCS Hamilto-
nian,

〈c†kσ ck′σ′〉 = nk δk,k′ δσσ′ , 〈c†kσ c†k′σ′〉 = Ψ∗
k δk′,−k εσσ′ , (12.161)

where εσσ′ =

(
0 1
−1 0

)
. We don’t yet need the detailed forms of nk and Ψk either. Using Wick’s

theorem, we find

〈K̂〉 =
∑

k

2(εk − µ)nk +
∑

k,k′

Wk,k′ nk nk′ −
∑

k,k′

Vk,k′ Ψ
∗
kΨk′ , (12.162)

where

Wk,k′ =
1

V

{
û↑↑(k, k

′, 0) + û↑↓(k, k
′, 0)− û↑↑(k, k′, k′ − k)

}

Vk,k′ = −
1

V
û↑↓(k

′,−k′, k− k′) .

(12.163)

We may assume Wk,k′ is real and symmetric, and Vk,k′ is Hermitian.

Now let’s vary 〈K̂〉 by changing the distribution. We have

δ〈K̂〉 = 2
∑

k

(
εk − µ+

∑

k′

Wk,k′ nk′

)
δnk +

∑

k,k′

Vk,k′
(
Ψ∗
k δΨk′ + δΨ∗

kΨk′

)
. (12.164)

On the other hand,

δ〈K̂
BCS
〉 = 2

∑

k

(
ξk δnk +∆k δΨ

∗
k +∆∗

k δΨk

)
. (12.165)
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Setting these variations to be equal, we obtain

ξk = εk − µ+
∑

k′

Wk,k′ nk′

= εk − µ+
∑

k′

Wk,k′

[
1

2
− ξk′

2Ek′
tanh

(
1
2
βEk′

)
] (12.166)

and

∆k =
∑

k′

Vk,k′ Ψk′ = −
∑

k′

Vk,k′
∆k′

2Ek′
tanh

(
1
2
βEk′

)
. (12.167)

These are to be regarded as self-consistent equations for ξk and ∆k.

12.14 Appendix II : Superconducting Free Energy

We start with the Landau free energy difference from Eqn. 12.100,

Ωs −Ωn

V
= −1

4
g(ε

F
)∆2

{
1 + 2 ln

(
∆0

∆

)
−
(

∆

2~ω
D

)2
+O

(
∆4
)
}

(12.168)

− 2 g(ε
F
)∆2 I(δ) + 1

6
π2 g(ε

F
) (k

B
T )2 ,

where

I(δ) =
1

δ

∞∫

0

ds ln
(
1 + e−δ

√
1+s2

)
. (12.169)

We now proceed to examine the integral I(δ) in the limits δ →∞ (i.e. T → 0+) and δ → 0+ (i.e.
T → T−

c , where ∆→ 0).

When δ →∞, we may safely expand the logarithm in a Taylor series, and

I(δ) =

∞∑

n=1

(−1)n−1

nδ
K1(nδ) , (12.170)

where K1(δ) is the modified Bessel function, also called the MacDonald function. Asymptoti-
cally, we have11

K1(z) =

(
π

2z

)1/2
e−z ·

{
1 +O

(
z−1
)}

. (12.171)

We may then retain only the n = 1 term to leading nontrivial order. This immediately yields
the expression in Eqn. 12.101.

11See, e.g., the NIST Handbook of Mathematical Functions, §10.25.



546 CHAPTER 12. BCS THEORY OF SUPERCONDUCTIVITY

Figure 12.7: Contours for complex integration for calculating I(δ) as described in the text.

The limit δ → 0 is much more subtle. We begin by integrating once by parts, to obtain

I(δ) =

∞∫

1

dt

√
t2 − 1

eδt + 1
. (12.172)

We now appeal to the tender mercies of Mathematica. Alas, this avenue is to no avail, for
the program gags when asked to expand I(δ) for small δ. We need something better than
Mathematica. We need Professor Michael Fogler.

Fogler says12: start by writing Eqn. 12.170 in the form

I(δ) =
∞∑

n=1

(−1)n−1

nδ
K1(nδ) = +

∫

C1

dz

2πi

π

sin πz

K1(δz)

δz
. (12.173)

The initial contour C1 consists of a disjoint set of small loops circling the points z = πn, where
n ∈ Z+. Note that the sense of integration is clockwise rather than counterclockwise. This
accords with an overall minus sign in the RHS above, because the residues contain a factor of
cos(πn) = (−1)n rather than the desired (−1)n−1. Following Fig. 12.7, the contour may now be
deformed into C2, and then into C3. Contour C3 lies along the imaginary z axis, aside from a
small semicircle of radius ǫ → 0 avoiding the origin, and terminates at z = ±iA. We will later
take A→∞, but for the moment we consider 1≪ A≪ δ−1. So long asA≫ 1, the denominator
sin πz = i sinh πu, with z = iu, will be exponentially large at u = ±A, so we are safe in making
this initial truncation. We demand A≪ δ−1, however, which means |δz| ≪ 1 everywhere along
C3. This allows us to expand K1(δz) for small values of the argument. One has

K1(w)

w
=

1

w2
+ 1

2
lnw

(
1 + 1

8
w2 + 1

192
w4 + . . .

)
+
(
C− ln 2− 1

2

)
(12.174)

+ 1
16

(
C − ln 2− 5

4

)
w2 + 1

384

(
C − ln 2− 5

3

)
w4 + . . . ,

12M. Fogler, private communications.
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where C ≃ 0.577216 is the Euler-Mascheroni constant. The integral is then given by

I(δ) =

A∫

ǫ

du

2πi

π

sinh πu

[
K1(iδu)

iδu
− K1(−iδu)

−iδu

]
+

π/2∫

−π/2

dθ

2π

πǫ eiθ

sin
(
πǫ eiθ

) K1

(
δǫ eiθ

)

δǫ eiθ
. (12.175)

Using the above expression for K1(w)/w, we have

K1(iδu)

iδu
− K1(−iδu)

−iδu =
iπ

2

(
1− 1

8
δ2u2 + 1

192
δ4u4 + . . .

)
. (12.176)

At this point, we may take A → ∞. The integral along the two straight parts of the C3 contour
is then

I1(δ) =
1
4
π

∞∫

ǫ

du

sinh πu

(
1− 1

8
δ2u2 + 1

192
δ4u4 + . . .

)

= −1
4
ln tanh

(
1
2
πǫ
)
− 7 ζ(3)

64 π2
δ2 +

31 ζ(5)

512 π4
δ4 +O

(
δ6
)

.

(12.177)

The integral around the semicircle is

I2(δ) =

π/2∫

−π/2

dθ

2π

1

1− 1
6
π2ǫ2 e2iθ

{
1

δ2ǫ2 e2iθ
+ 1

2
ln
(
δǫ eiθ

)
+ 1

2
(C− ln 2− 1

2
) + . . .

}

=

π/2∫

−π/2

dθ

2π

(
1 + 1

6
π2ǫ2 e2iθ + . . .

) {e−2iθ

δ2ǫ2
+ 1

2
ln(δǫ) + i

2
θ + 1

2
(C− ln 2− 1

2
) + . . .

}

=
π2

12 δ2
+ 1

4
ln δ + 1

4
ln ǫ+ 1

4
(C− ln 2− 1

2
) +O

(
ǫ2
)

. (12.178)

We now add the results to obtain I(δ) = I1(δ)+ I2(δ). Note that there are divergent pieces, each
proportional to ln ǫ , which cancel as a result of this addition. The final result is

I(δ) =
π2

12 δ2
+ 1

4
ln

(
2δ

π

)
+ 1

4
(C− ln 2− 1

2
)− 7 ζ(3)

64 π2
δ2 +

31 ζ(5)

512 π4
δ4 +O

(
δ6
)

. (12.179)

Inserting this result in Eqn. 12.168 above, we thereby recover Eqn. 12.106.
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Chapter 13

Applications of BCS Theory

13.1 Quantum XY Model for Granular Superconductors

Consider a set of superconducting grains, each of which is large enough to be modeled by
BCS theory, but small enough that the self-capacitance (i.e. Coulomb interaction) cannot be
neglected. The Coulomb energy of the jth grain is written as

Ûj =
2e2

Cj

(
M̂j − M̄j

)2
, (13.1)

where M̂j is the operator which counts the number of Cooper pairs on grain j, and M̄j is the
mean number of pairs in equilibrium, which is given by half the total ionic charge on the grain.
The capacitance Cj is a geometrical quantity which is proportional to the radius of the grain,
assuming the grain is roughly spherical. For very large grains, the Coulomb interaction is
negligible. It should be stressed that here we are accounting for only the long wavelength part

of the Coulomb interaction, which is proportional to 4π
∣∣δρ̂(qmin)

∣∣2/q2min, where qmin ∼ 1/Rj is
the inverse grain size. The remaining part of the Coulomb interaction is included in the BCS
part of the Hamiltonian for each grain.

We assume that K̂
BCS , j describes a simple s-wave superconductor with gap ∆j = |∆j | eiφj . We

saw in chapter 3 how φj is conjugate to the Cooper pair number operator M̂j , with

M̂j =
1

i

∂

∂φj
. (13.2)

The operator which adds one Cooper pair to grain j is therefore eiφj , because

M̂j e
iφj = eiφj (M̂j + 1) . (13.3)

549



550 CHAPTER 13. APPLICATIONS OF BCS THEORY

Thus, accounting for the hopping of Cooper pairs between neighboring grains, the effective
Hamiltonian for a granular superconductor should be given by

Ĥgr = −1
2

∑

i,j

Jij
(
eiφi e−iφj + e−iφi eiφj

)
+
∑

i

2e2

Cj

(
M̂j − M̄j

)2
, (13.4)

where Jij is the hopping matrix element for the Cooper pairs, here assumed to be real.

Before we calculate Jij , note that we can eliminate the constants M̄i from the Hamiltonian

via the unitary transformation Ĥgr → Ĥ ′
gr = V †ĤgrV , where V =

∏
j e

i [M̄j ]φj , where [M̄j ] is

defined as the integer nearest to M̄j . The difference, δM̄j = M̄j− [M̄j ] , cannot be removed. This

transformation commutes with the hopping part of Ĥgr , so, after dropping the prime on Ĥ ′
gr ,

we are left with

Ĥgr =
∑

j

2e2

Cj

(
1

i

∂

∂φj
− δM̄j

)2
−
∑

i,j

Jij cos(φi − φj) . (13.5)

In the presence of an external magnetic field,

Ĥgr =
∑

j

2e2

Cj

(
1

i

∂

∂φj
− δM̄j

)2
−
∑

i,j

Jij cos(φi − φj −Aij) , (13.6)

where

Aij =
2e

~c

Rj∫

Ri

dl ·A (13.7)

is a lattice vector potential, with Ri the position of grain i.

13.1.1 No disorder

In a perfect lattice of identical grains, with Jij = J for nearest neighbors, δM̄j = 0 and 2e2/Cj =
U for all j, we have

Ĥgr = −U
∑

i

∂2

∂φ2
i

− 2J
∑

〈ij〉
cos(φi − φj) , (13.8)

where 〈ij〉 indicates a nearest neighbor pair. This model, known as the quantum rotor model,
features competing interactions. The potential energy, proportional to U , favors each grain
being in a state ψ(φi) = 1, corresponding to M = 0, which minimizes the Coulomb interaction.
However, it does a poor job with the hopping, since

〈
cos(φi − φj)

〉
= 0 in this state. The kinetic

(hopping) energy, proportional to J , favors that all grains be coherent with φi = α for all i,
where α is a constant. This state has significant local charge fluctuations which cost Coulomb
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energy – an infinite amount, in fact! Some sort of compromise must be reached. One important
issue is whether the ground state exhibits a finite order parameter 〈eiφi〉.
The model has been simulated numerically using a cluster Monte Carlo algorithm1, and is
known to exhibit a quantum phase transition between superfluid and insulating states at a
critical value of J/U . The superfluid state is that in which 〈eiφi〉 6= 0 .

13.1.2 Self-consistent harmonic approximation

The self-consistent harmonic approximation (SCHA) is a variational approach in which we
approximate the ground state wavefunction as a Gaussian function of the many phase variables
{φi}. Specifically, we write

Ψ[φ] = C exp
(
− 1

4
Aij φi φj

)
, (13.9)

where C is a normalization constant. The matrix elementsAij is assumed to be a function of the
separation Ri − Rj , where Ri is the position of lattice site i. We define the generating function

Z[J ] =
∫
Dφ

∣∣Ψ[φ]
∣∣2 e−Ji φi = Z[0] exp

(
1
2
JiA−1

ij Jj
)

. (13.10)

Here Ji is a source field with respect to which we differentiate in order to compute correlation
functions, as we shall see. Here Dφ =

∏
i dφi, and all the phase variables are integrated over

the φi ∈ (−∞,+∞). Right away we see something is fishy, since in the original model there is
a periodicity under φi → φi + 2π at each site. The individual basis functions are ψn(φ) = einφ,
corresponding to M = n Cooper pairs. Taking linear combinations of these basis states pre-
serves the 2π periodicity, but this is not present in our variational wavefunction. Nevertheless,
we can extract some useful physics using the SCHA.

The first order of business is to compute the correlator

〈Ψ | φi φj |Ψ 〉 =
1

Z[0]

∂2Z[J ]
∂Ji ∂Jj

∣∣∣∣∣
J=0

= A−1
ij . (13.11)

This means that
〈Ψ | ei(φi−φj) |Ψ 〉 = e−〈(φi−φj)2〉/2 = e−(A−1

ii −A−1
ij ) . (13.12)

Here we have used that 〈eQ〉 = e〈Q
2〉/2 where Q is a sum of Gaussian-distributed variables.

Next, we need

〈Ψ | ∂
2

∂φ2
i

|Ψ 〉 = −〈Ψ | ∂
∂φi

1
2
Aik φk |Ψ 〉

= −1
2
Aii +

1
4
Aik Ali 〈Ψ | φk φl |Ψ 〉 = −1

4
Aii .

(13.13)

1See F. Alet and E. Sørensen, Phys. Rev. E 67, 015701(R) (2003) and references therein.
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Figure 13.1: Graphical solution to the SCHA equationW = r exp
(
1
2
W
)

for three representative
values of r. The critical value is rc = 2/e = 0.73576.

Thus, the variational energy per site is

1

N
〈Ψ | Ĥgr |Ψ 〉 = 1

4
UAii − zJ e−(A−1

ii −A−1
ij )

= 1
4
U

∫
ddk

(2π)d
Â(k)− zJ exp

{
−
∫

ddk

(2π)d
1− γk
Â(k)

}
,

(13.14)

where z is the lattice coordination number (Nlinks =
1
2
zN),

γk =
1

z

∑

δ

eik·δ (13.15)

is a sum over the z nearest neighbor vectors δ, and Â(k) is the Fourier transform of Aij ,

Aij =

∫
ddk

(2π)d
Â(k) ei(Ri−Rj) . (13.16)

Note that Â∗(k) = Â(−k) since Â(k) is the (discrete) Fourier transform of a real quantity.

We are now in a position to vary the energy in Eqn. 13.14 with respect to the variational pa-

rameters {Â(k)}. Taking the functional derivative with respect to Â(k) , we find

(2π)d
δ(Egr/N)

δÂ(k)
= 1

4
U − 1− γk

Â2(k)
· zJ e−W , (13.17)
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where

W =

∫
ddk

(2π)d
1− γk
Â(k)

. (13.18)

We now have

Â(k) = 2

(
zJ

U

)1/2
e−W/2

√
1− γk . (13.19)

Inserting this into our expression for W , we obtain the self-consistent equation

W = r eW/2 ; r = Cd

(
U

4zJ

)1/2
, Cd ≡

∫
ddk

(2π)d
√

1− γk . (13.20)

One finds Cd=1 = 0.900316 for the linear chain, Cd=2 = 0.958091 for the square lattice, and
Cd=3 = 0.974735 on the cubic lattice.

The graphical solution to W = r exp
(
1
2
W
)

is shown in Fig. 13.1. One sees that for r > rc =
2/e ≃ 0.73576, there is no solution. In this case, the variational wavefunction should be taken to
be Ψ = 1, which is a product of ψn=0 states on each grain, corresponding to fixed charge Mi = 0
and maximally fluctuating phase. In this case we must restrict each φi ∈ [0, 2π]. When r < rc ,
though, there are two solutions for W . The larger of the two is spurious, and the smaller one

is the physical one. As J/U increases, i.e. r decreases, the size of Â(k) increases, which means
that A−1

ij decreases in magnitude. This means that the correlation in Eqn. 13.12 is growing, and
the phase variables are localized. The SCHA predicts a spurious first order phase transition;
the real superfluid-insulator transition is continuous (second-order)2.

13.1.3 Calculation of the Cooper pair hopping amplitude

Finally, let us compute Jij . We do so by working to second order in perturbation theory in the
electron hopping Hamiltonian

Ĥhop = − 1

(Vi Vj)
1/2

∑

〈ij〉

∑

k,k′,σ

(
tij(k, k

′) c†i,k,σ cj,k′,σ + t∗ij(k, k
′) c†j,k′,σ ci,k,σ

)
. (13.21)

Here tij(k, k
′) is the amplitude for an electron of wavevector k′ in grain j to hop to a state of

wavevector k in grain i. To simplify matters we will assume the grains are identical in all
respects other than their overall phases. We’ll write the fermion destruction operators on grain
i as ckσ and those on grain j as c̃kσ. We furthermore assume tij(k, k

′) = t is real and independent
of k and k′. Only spin polarization, and not momentum, is preserved in the hopping process.
Then

Ĥhop = − t

V

∑

k,k′

(
c†kσ c̃k′σ + c̃†k′σ ckσ

)
. (13.22)

2That the SCHA gives a spurious first order transition was recognized by E. Pytte, Phys. Rev. Lett. 28, 895 (1971).
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Each grain is described by a BCS model. The respective Bogoliubov transformations are

ckσ = cosϑk γkσ − σ sinϑk eiφ γ†−k−σ
c̃kσ = cos ϑ̃k γ̃kσ − σ sin ϑ̃k eiφ̃ γ̃†−k−σ .

(13.23)

Second order perturbation says that the ground state energy E is

E = E0 −
∑

n

∣∣〈n | Ĥhop |G 〉
∣∣2

En − E0
, (13.24)

where |G 〉 = |Gi 〉⊗ |Gj 〉 is a product of BCS ground states on the two grains. Clearly the only

intermediate states |n 〉which can couple to |G 〉 through a single application of Ĥhop are states
of the form

| k, k′, σ 〉 = γ†kσ γ̃
†
−k′ −σ |G 〉 , (13.25)

and for this state

〈 k, k′, σ | Ĥhop |G 〉 = −σ
(
cosϑk sin ϑ̃k′ e

iφ̃ + sin ϑk cos ϑ̃k′ e
iφ
)

(13.26)

The energy of this intermediate state is

Ek,k′,σ = Ek + Ek′ +
e2

C
, (13.27)

where we have included the contribution from the charging energy of each grain. Then we
find3

E (2) = E ′0 − J cos(φ− φ̃ ) , (13.28)

where

J =
|t|2
V 2

∑

k,k′

∆k

Ek
· ∆k′

Ek′
· 1

Ek + Ek′ + (e2/C)
. (13.29)

For a general set of dissimilar grains,

Jij =
|tij|2
ViVj

∑

k,k′

∆i,k

Ei,k
·
∆j,k′

Ej,k′
· 1

Ei,k + Ej,k′ + (e2/2Cij)
, (13.30)

where C−1
ij = C−1

i + C−1
j .

3There is no factor of two arising from a spin sum since we are summing over all k and k′, and therefore summing
over spin would overcount the intermediate states |n〉 by a factor of two.
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13.2 Tunneling

We follow the very clear discussion in §9.3 of G. Mahan’s Many Particle Physics. Consider two
bulk samples, which we label left (L) and right (R). The Hamiltonian is taken to be

Ĥ = Ĥ
L
+ Ĥ

R
+ Ĥ

T
, (13.31)

where ĤL,R are the bulk Hamiltonians, and

Ĥ
T
= −

∑

i,j,σ

(
Tij c

†
L i σ cR j σ + T ∗

ij c
†
R j σ cL i σ

)
. (13.32)

The indices i and j label single particle electron states (not Bogoliubov quasiparticles) in the two
banks. As we shall discuss below, we can take them to correspond to Bloch wavevectors in a
particular energy band. In a nonequilibrium setting we work in the grand canonical ensemble,
with

K̂ = Ĥ
L
− µ

L
N̂

L
+ Ĥ

R
− µ

R
N̂

R
+ Ĥ

T
. (13.33)

The difference between the chemical potentials is µR − µL = eV , where V is the voltage bias.
The current flowing from left to right is

I(t) = e
〈 dN̂

L

dt

〉
. (13.34)

Note that if N
L

is increasing in time, this means an electron number current flows from right
to left, and hence an electrical current (of fictitious positive charges) flows from left to right.

We use perturbation theory in Ĥ
T

to compute I(t). Note that expectations such as 〈Ψ
L
|c

Li|ΨL
〉

vanish, while 〈ΨL| cLi cLj |ΨL〉may not if |ΨL〉 is a BCS state.

A few words on the labels i and j: We will assume the left and right samples can be described
as perfect crystals, so i and j will represent crystal momentum eigenstates. The only exception
to this characterization will be that we assume their respective surfaces are sufficiently rough
to destroy conservation of momentum in the plane of the surface. Momentum perpendicular to
the surface is also not conserved, since the presence of the surface breaks translation invariance
in this direction. The matrix element Tij will be dominated by the behavior of the respective
single particle electron wavefunctions in the vicinity of their respective surfaces. As there is no
reason for the respective wavefunctions to be coherent, they will in general disagree in sign in
random fashion. We then expect the overlap to be proportional to A1/2 , where A is the junction
area, on the basis of the Central Limit Theorem. Adding in the plane wave normalization
factors, we therefore approximate

Tij = Tq,k ≈
(

A

VLVR

)1/2
t
(
ξL q , ξRk

)
, (13.35)

where q and k are the wavevectors of the Bloch electrons on the left and right banks, respec-
tively. Note that we presume spin is preserved in the tunneling process, although wavevector
is not.
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13.2.1 Perturbation theory

We begin by noting

dN̂
L

dt
=
i

~

[
Ĥ, N̂

L

]
=
i

~

[
Ĥ

T
, N̂

L

]

= − i
~

∑

i,j,σ

(
Tij c

†
L i σ cR j σ − T ∗

ij c
†
R j σ cL i σ

)
.

(13.36)

First order perturbation theory then gives

|Ψ(t) 〉 = e−iĤ0(t−t0)/~ |Ψ(t0) 〉 −
i

~
e−iĤ0t/~

t∫

t0

dt1 ĤT
(t1) e

iĤ0t0/~ |Ψ(t0) 〉+O
(
Ĥ2

T

)
, (13.37)

where Ĥ0 = Ĥ
L
+ Ĥ

R
and

Ĥ
T
(t) = eiĤ0t/~ Ĥ

T
e−iĤ0t/~ (13.38)

is the perturbation (hopping) Hamiltonian in the interaction representation. To lowest order in

ĤT, then,

〈Ψ(t) | Î |Ψ(t) 〉 = − i
~

t∫

t0

dt1 〈 Ψ̃(t0) |
[
Î(t) , Ĥ

T
(t1)
]
| Ψ̃(t0) 〉 , (13.39)

where | Ψ̃(t0) 〉 = eiĤ0t0/~ |Ψ(t0) 〉. Setting t0 = −∞, and averaging over a thermal ensemble of
initial states, we have

I(t) = − i
~

t∫

−∞

dt′
〈[
Î(t) , Ĥ

T
(t′)
]〉

, (13.40)

where Î(t) = e
˙̂
NL(t) = (+e) eiĤ0t/~

˙̂
NL e

−iĤ0t/~ is the charge current flowing from right to left.

Note that it is the electron charge −e that enters here and not the Cooper pair charge, since Ĥ
T

describes electron hopping.

There remains a caveat which we have already mentioned. The chemical potentials µL and µR

differ according to

µ
R
− µ

L
= eV , (13.41)

where V is the bias voltage, i.e. the voltage drop from left to right. If V > 0, then µ
R
> µ

L
, which

means an electron current flows from right to left, and an electrical current (i.e. the direction of

positive charge flow) from left to right. We must work in an ensemble described by K̂0 , where

K̂0 = Ĥ
L
− µ

L
N̂

L
+ Ĥ

R
− µ

R
N̂

R
. (13.42)
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We now separate ĤT into its component processes, writing ĤT = Ĥ+
T + Ĥ−

T , with

Ĥ+
T
= −

∑

i,j,σ

Tij c
†
L i σ cR j σ , Ĥ−

T
= −

∑

i,j,σ

T ∗
ij c

†
R j σ cL i σ . (13.43)

Thus, Ĥ+
T

describes hops from R to L, and Ĥ−
T

from L to R. Note that Ĥ−
T

= (Ĥ+
T
)†. Therefore

ĤT(t) = Ĥ+
T (t) + Ĥ−

T (t), where4

Ĥ±
T
(t) = ei(K̂0+µLN̂L+µRN̂R)t/~ Ĥ±

T
e−i(K̂0+µLN̂L+µRN̂R)t/~

= e∓ieV t/~ eiK̂0t/~ Ĥ±
T e

−iK̂0t/~ .
(13.44)

Note that the current operator is

Î =
ie

~

[
ĤT , NL] =

ie

~

(
Ĥ−

T − Ĥ+
T

)
. (13.45)

We then have

I(t) =
e

~2

t∫

−∞

dt′
〈[
eieV t/~ Ĥ−

T
(t)− e−ieV t/~ Ĥ+

T
(t) , eieV t

′/~ Ĥ−
T
(t′) + e−ieV t

′/~ Ĥ+
T
(t′)
]〉

= I
N
(t) + I

J
(t) , (13.46)

where

I
N
(t) =

e

~2

∞∫

−∞

dt′ Θ(t− t′)
{
e+iΩ(t−t′)

〈[
Ĥ−

T
(t) , Ĥ+

T
(t′)
]〉
− e−iΩ(t−t′)

〈[
Ĥ+

T
(t) , Ĥ−

T
(t′)
]〉}

(13.47)

and

IJ(t) =
e

~2

∞∫

−∞

dt′Θ(t− t′)
{
e+iΩ(t+t′)

〈[
Ĥ−

T (t) , Ĥ
−
T (t

′)
]〉
− e−iΩ(t+t′)

〈[
Ĥ+

T (t) , Ĥ
+
T (t

′)
]〉}

, (13.48)

with Ω ≡ eV/~. IN(t) is the usual single particle tunneling current, which is present both in
normal metals as well as in superconductors. I

J
(t) is the Josephson pair tunneling current, which

is only present when the ensemble average is over states of indefinite particle number.

13.2.2 The single particle tunneling current IN

We now proceed to evaluate the so-called single-particle current I
N

in Eqn. 13.47. This current
is present, under voltage bias, between normal metal and normal metal, between normal metal

4We make use of the fact that N̂
L
+ N̂

R
commutes with Ĥ±

T
.
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and superconductor, and between superconductor and superconductor. It is convenient to
define the quantities

Xr(t− t′) ≡ −iΘ(t− t′)
〈[
Ĥ−

T
(t) , Ĥ+

T
(t′)
]〉

Xa(t− t′) ≡ −iΘ(t− t′)
〈[
Ĥ−

T (t
′) , Ĥ+

T (t)
]〉

,
(13.49)

which differ by the order of the time values of the operators inside the commutator. We then
have

IN =
ie

~2

∞∫

−∞

dt
{
e+iΩt Xr(t) + e−iΩt Xa(t)

}

=
ie

~2

(
X̃r(Ω) + X̃a(−Ω)

)
,

(13.50)

where X̃a(Ω) is the Fourier transform of Xa(t) into the frequency domain. As we shall show

presently, X̃a(−Ω) = −X̃ ∗
r (Ω), so we have

I
N
(V ) = −2e

~2
Im X̃r(eV/~) . (13.51)

Proof that X̃a(Ω) = −X̃ ∗
r (−Ω)

Consider the general case

Xr(t) = −iΘ(t)
〈[
Â(t) , Â†(0)

]〉

Xa(t) = −iΘ(t)
〈[
Â(0) , Â†(t)

]〉
.

(13.52)

We now spectrally decompose these expressions, inserting complete sets of states in between
products of operators. One finds

X̃r(ω) = −i
∞∫

−∞

dtΘ(t)
∑

m,n

Pm

{∣∣〈m | Â |n 〉
∣∣2ei(ωm−ωn)t −

∣∣〈m | Â† |n 〉
∣∣2e−i(ωm−ωn)t

}
eiωt

=
∑

m,n

Pm

{ ∣∣〈m | Â |n 〉
∣∣2

ω + ωm − ωn + iǫ
−

∣∣〈m | Â† |n 〉
∣∣2

ω − ωm + ωn + iǫ

}
, (13.53)

where the eigenvalues of K̂ are ~ωm , and Pm = e−~ωm/kBT
/
Ξ is the thermal probability for state

|m 〉, where Ξ is the grand partition function. The corresponding expression for X̃a(ω) is

X̃a(ω) =
∑

m,n

Pm

{ ∣∣〈m | Â |n 〉
∣∣2

ω − ωm + ωn + iǫ
−

∣∣〈m | Â† |n 〉
∣∣2

ω + ωm − ωn + iǫ

}
, (13.54)
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whence follows X̃a(−ω) = −X̃ ∗
r (ω). QED. Note that in general

Z(t) = −iΘ(t)
〈
Â(t) B̂(0)

〉
= −iΘ(t)

∑

m,n

Pm 〈m | eiK̂t/~ Â e−iK̂t/~ |n 〉〈n | B̂ |m 〉

= −iΘ(t)
∑

m,n

Pm 〈m | Â |n 〉〈n | B̂ |m 〉 ei(ωm−ωn)t ,

(13.55)

the Fourier transform of which is

Z̃(ω) =
∞∫

−∞

dt eiωtZ(t) =
∑

m,n

Pm
〈m | Â |n 〉〈n | B̂ |m 〉
ω + ωm − ωn + iǫ

. (13.56)

If we define the spectral density ρ(ω) as

ρ(ω) = 2π
∑

m,n

Pm〈m | Â |n 〉〈n | B̂ |m 〉 δ(ω + ωm − ωn) , (13.57)

then we have

Z̃(ω) =
∞∫

−∞

dν

2π

ρ(ν)

ω − ν + iǫ
. (13.58)

Note that ρ(ω) is real if B = A†.

Evaluation of X̃r(ω)

We must compute

Xr(t) = −iΘ(t)
∑

i,j,σ

∑

k,l,σ′

T ∗
kl Tij

〈[
c†
R j σ(t) cL i σ(t) , c

†
L k σ′(0) cR l σ′(0)

]〉

= −iΘ(t)
∑

q,k,σ

|Tq,k|2
{〈
c†
Rk σ(t) cRk σ(0)

〉 〈
c
L q σ(t) c

†
L q σ(0)

〉
(13.59)

−
〈
c†
L q σ(0) cLq σ(t)

〉 〈
c
Rk σ(0) c

†
Rk σ(t)

〉}

Note how we have taken j = l → k and i = k → q, since in each bank wavevector is assumed to
be a good quantum number. We now invoke the Bogoliubov transformation,

ckσ = uk γkσ − σ vk eiφ γ†−k−σ , (13.60)
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where we write uk = cos ϑk and vk = sinϑk. We then have

〈
c†
Rk σ(t) cRk σ(0)

〉
= u2k e

iE
k
t/~ f(Ek) + v2k e

−iE
k
t/~
[
1− f(Ek)

]

〈
cL q σ(t) c

†
L q σ(0)

〉
= u2q e

−iEqt/~
[
1− f(Eq)

]
+ v2q e

iEqt/~ f(Eq)

〈
c†L q σ(0) cL q σ(t)

〉
= u2q e

−iEqt/~ f(Eq) + v2q e
iEqt/~

[
1− f(Eq)

]

〈
c
Rk σ(0) c

†
Rk σ(t)

〉
= u2k e

iE
k
t/~
[
1− f(Ek)

]
+ v2k e

−iE
k
t/~ f(Ek) .

(13.61)

We now appeal to Eqn. 13.35 and convert the q and k sums to integrals over ξ
L q and ξ

Rk.
Pulling out the DOS factors g

L
≡ g

L
(µ

L
) and g

R
≡ g

R
(µ

R
), as well as the hopping integral

t ≡ t
(
ξ
L q = 0 , ξ

Rk = 0
)

from the integrand, we have

Xr(t) = −iΘ(t)× 1
2
gL gR |t|2A

∞∫

−∞

dξ

∞∫

−∞

dξ′ × (13.62)

{[
u2 e−iEt/~ (1− f) + v2 eiEt/~ f

]
×
[
u′

2
eiE

′t/~ f ′ + v′
2
e−iE

′t/~ (1− f ′)
]

−
[
u2 e−iEt/~ f + v2 eiEt/~ (1− f)

]
×
[
u′

2
eiE

′t/~ (1− f ′) + v′
2
e−iE

′t/~ f ′
]}

,

where unprimed quantities correspond to the left bank (L) and primed quantities to the right
bank (R). The ξ and ξ′ integrals are simplified by the fact that in u2 = (E + ξ)/2E and v2 =
(E − ξ)/2E, etc. The terms proportional to ξ and ξ′ and to ξξ′ drop out because everything else
in the integrand is even in ξ and ξ′ separately. Thus, we may replace u2, v2, u′2, and v′2 all by
1
2
. We now compute the Fourier transform, and we can read off the results keeping in mind the

integral,
∞∫

0

dt eiωt eiΩt e−ǫt =
i

ω +Ω + iǫ
. (13.63)

We then obtain

X̃r(ω) =
1
8
~ g

L
g
R
|t|2A

∞∫

−∞

dξ

∞∫

−∞

dξ′

{
2 (f ′ − f)

~ω + E ′ −E + iǫ
+

1− f − f ′

~ω − E − E ′ + iǫ
(13.64)

− 1− f − f ′

~ω + E + E ′ + iǫ

}
.
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Therefore,

IN(V, T ) = −
2e

~2
Im X̃r(eV/~) (13.65)

=
πe

~
g
L
g
R
|t|2A

∞∫

0

dξ

∞∫

0

dξ′
{
(1− f − f ′)

[
δ(E + E ′ − eV )− δ(E + E ′ + eV )

]

+ 2 (f ′ − f) δ(E ′ − E + eV )

}
.

Single particle tunneling current in NIN junctions

We now evaluate I
N

from Eqn. 13.65 for the case where both banks are normal metals. In this
case, E = ξ and E ′ = ξ′. (No absolute value symbol is needed since the ξ and ξ′ integrals run
over the positive real numbers.) At zero temperature, we have f = 0 and thus

I
N
(V, T = 0) =

πe

~
g
L
g
R
|t|2A

∞∫

0

dξ

∞∫

0

dξ′
[
δ(ξ + ξ′ − eV )− δ(ξ + ξ′ + eV )

]

=
πe

~
g
L
g
R
|t|2A

eV∫

0

dξ =
πe2

~
g
L
g
R
|t|2AV .

(13.66)

We thus identify the normal state conductance of the junction as

G
N
≡ πe2

~
g
L
g
R
|t|2A . (13.67)

Single particle tunneling current in NIS junctions

Consider the case where one of the banks is a superconductor and the other a normal metal.
We will assume V > 0 and work at T = 0. From Eqn. 13.65, we then have

I
N
(V, T = 0) =

GN

e

∞∫

0

dξ

∞∫

0

dξ′ δ(ξ + E ′ − eV ) =
GN

e

∞∫

0

dξΘ(eV −E)

=
G

N

e

eV∫

∆

dE
E√

E2 −∆2
= Gn

√
V 2 − (∆/e)2 .

(13.68)

The zero temperature conductance of the NIS junction is therefore

G
NIS

(V ) =
dI

dV
=

GN eV√
(eV )2 −∆2

. (13.69)



562 CHAPTER 13. APPLICATIONS OF BCS THEORY

Figure 13.2: NIS tunneling for positive bias (left), zero bias (center), and negative bias (right).
The left bank is maintained at an electrical potential V with respect to the right, hence µR =
µL + eV . Blue regions indicate occupied fermionic states in the metal. Green regions indicate
occupied electronic states in the superconductor. Light red regions indicate unoccupied states.
Tunneling from or into the metal can only take place when its Fermi level lies outside the
superconductor’s gap region, meaning |eV | > ∆, where V is the bias voltage. The arrow
indicates the direction of electron number current. Black arrows indicate direction of electron
current. Thick red arrows indicate direction of electrical current.

Hence the ratio GNIS/GNIN is
GNIS(V )

GNIN(V )
=

eV√
(eV )2 −∆2

. (13.70)

It is to be understood that these expressions are to be multiplied by sgn(V ) Θ
(
e|V |−∆

)
to obtain

the full result valid at all voltages.

Superconducting density of states

We define

n
S
(E) = 2

∫
d3k

(2π)3
δ(E − Ek) ≃ g(µ)

∞∫

−∞

dξ δ
(
E −

√
ξ2 +∆2

)

= g(µ)
2E√

E2 −∆2
Θ(E −∆) .

(13.71)

This is the density of energy states per unit volume for elementary excitations in the supercon-
ducting state. Note that there is an energy gap of size ∆, and that the missing states from this
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Figure 13.3: Tunneling data by Giaever et al. from Phys. Rev. 126, 941 (1962). Left: normalized
NIS tunneling conductance in a Pb/MgO/Mg sandwich junction. Pb is a superconductor for
T < TPb

c = 7.19K, and Mg is a metal. A thin MgO layer provides a tunnel barrier. Right: I-V
characteristic for a SIS junction Sn/SnOx/Sn. Sn is a superconductor for T < T Sn

c = 2.32K.

region pile up for E >∼∆, resulting in a (integrable) divergence of n
S
(E). In the limit ∆→ 0, we

have n
S
(E) = 2 g(µ) Θ(E). The factor of two arises because n

S
(E) is the total density of states,

which includes particle excitations above k
F

as well as hole excitations below k
F
, both of which

contribute g(µ). If ∆(ξ) is energy-dependent in the vicinity of ξ = 0, then we have

n(E) = g(µ) · E
ξ
·
(
1 +

∆

ξ

d∆

dξ

)−1
∣∣∣∣∣
ξ=
√
E2−∆2(ξ)

. (13.72)

Here, ξ =
√
E2 −∆2(ξ) is an implicit relation for ξ(E).

The function n
S
(E) vanishes for E < 0. We can, however, make a particle-hole transformation

on the Bogoliubov operators, so that

γkσ = ψkσ Θ(ξk) + ψ†
−k−σΘ(−ξk) . (13.73)

We then have, up to constants,

K̂
BCS

=
∑

kσ

Ekσ ψ†
kσ ψkσ , (13.74)
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where

Ekσ =

{
+Ekσ if ξk > 0

−Ekσ if ξk < 0 .
(13.75)

The density of states for the ψ particles is then

ñ
S
(E) = g

S
|E|√

E2 −∆2
Θ
(
|E| −∆

)
, (13.76)

were g
S

is the metallic DOS at the Fermi level in the superconducting bank, i.e. above Tc. Note
that ñ

S
(−E) = ñ

S
(E) is now an even function of E , and that half of the weight from n

S
(E) has

now been assigned to negative E states. The interpretation of Fig. 13.2 follows by writing

IN(V, T = 0) =
G

N

eg
S

eV∫

0

dE n
S
(E) . (13.77)

Note that this is properly odd under V → −V . If V > 0, the tunneling current is proportional
to the integral of the superconducting density of states from E = ∆ to E = eV . Since ñ

S
(E)

vanishes for |E| < ∆, the tunnel current vanishes if |eV | < ∆.

Single particle tunneling current in SIS junctions

We now come to the SIS case, where both banks are superconducting. From Eqn. 13.65, we
have (T = 0)

I
N
(V, T = 0) =

GN

e

∞∫

0

dξ

∞∫

0

dξ′ δ(E + E ′ − eV ) (13.78)

=
G

N

e

∞∫

0

dE

∞∫

0

dE ′ E√
E2 −∆2

L

E ′
√
E ′ 2 −∆2

R

{
δ(E + E ′ − eV )− δ(E + E ′ + eV )

}
.

While this integral has no general analytic form, we see that I
N
(V ) = −I

N
(−V ), and that the

threshold voltage V ∗ below which I
N
(V ) vanishes is given by eV ∗ = ∆

L
+ ∆

R
. For the special

case ∆L = ∆R ≡ ∆, one has

IN(V ) =
G

N

e

{
(eV )2

eV + 2∆
K(x)− (eV + 2∆)

(
K(x)− E(x)

)}
, (13.79)

where x = (eV − 2∆)/(eV + 2∆) and K(x) and E(x) are complete elliptic integrals of the first
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Figure 13.4: SIS tunneling for positive bias (left), zero bias (center), and negative bias (right).
Green regions indicate occupied electronic states in each superconductor, where ñS(E) > 0.

and second kinds, respectively:

K(x) =

π/2∫

0

dθ√
1− x2 sin2θ

E(x) =

π/2∫

0

dθ
√

1− x2 sin2θ .

(13.80)

We may also make progress by setting eV = ∆
L
+∆

R
+ e δV . One then has

IN(V
∗ + δV ) =

G
N

e

∞∫

0

dξL

∞∫

0

dξR δ

(
e δV − ξ2

L

2∆
L

− ξ2
R

2∆
R

)
=
πG

N

2e

√
∆L ∆R . (13.81)

Thus, the SIS tunnel current jumps discontinuously at V = V ∗. At finite temperature, there is a
smaller local maximum in I

N
for V = |∆

L
−∆

R
|
/
e.
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13.2.3 The Josephson pair tunneling current IJ

Earlier we obtained the expression

IJ(t) =
e

~2

∞∫

−∞

dt′ Θ(t− t′)
{
e+iΩ(t+t′)

〈[
Ĥ−

T (t) , Ĥ
−
T (t

′)
]〉

(13.82)

− e−iΩ(t+t′)
〈[
Ĥ+

T
(t) , Ĥ+

T
(t′)
]〉}

.

Proceeding in analogy to the case for IN, define now the anomalous response functions,

Yr(t− t′) = −iΘ(t− t′)
〈[
Ĥ+

T
(t) , Ĥ+

T
(t′)
]〉

Ya(t− t′) = −iΘ(t− t′)
〈[
Ĥ−

T (t
′) , Ĥ−

T (t)
]〉

.
(13.83)

The spectral representations of these response functions are

Ỹr(ω) =
∑

m,n

Pm

{
〈m | Ĥ+

T
|n 〉〈n | Ĥ+

T
|m 〉

ω + ωm − ωn + iǫ
− 〈m | Ĥ

+
T
|n 〉〈n | Ĥ+

T
|m 〉

ω − ωm + ωn + iǫ

}

Ỹa(ω) =
∑

m,n

Pm

{
〈m | Ĥ−

T
|n 〉〈n | Ĥ−

T
|m 〉

ω − ωm + ωn + iǫ
− 〈m | Ĥ

−
T
|n 〉〈n | Ĥ−

T
|m 〉

ω + ωm − ωn + iǫ

}
,

(13.84)

from which we see Ỹa(ω) = −Ỹ∗
r (−ω). The Josephson current is then given by

I
J
(t) = − ie

~2

∞∫

−∞

dt′
{
e−2iΩt Yr(t− t′) e+iΩ(t−t′) + e+2iΩt Ya(t− t′) e−iΩ(t−t′)

}

=
2e

~2
Im
[
e−2iΩt Ỹr(Ω)

]
,

(13.85)

where Ω = eV/~.

Plugging in our expressions for Ĥ±
T

, we have

Yr(t) = −iΘ(t)
∑

k,q,σ

Tk,q T−k,−q

〈[
c†
L q σ(t) cRk σ(t) , c

†
L−q−σ(0) cR−k−σ(0)

]〉

= 2iΘ(t)
∑

q,k

Tk,q T−k,−q

{〈
c†
L q ↑(t) c

†
L−q ↓(0)

〉 〈
c
Rk ↑(t) cR−k ↓(0)

〉
(13.86)

−
〈
c†
L−q ↓(0) c

†
L q ↑(t)

〉 〈
c
R−k ↓(0) cRk ↑(t)

〉}
.
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Again we invoke Bogoliubov,

ck↑ = uk γk↑ − vk eiφ γ†−k ↓ c†k↑ = uk γ
†
k↑ − vk e−iφ γ−k ↓ (13.87)

c−k ↓ = uk γ−k ↓ + vk e
iφ γ†k ↑ c†−k ↓ = uk γ

†
−k ↓ + vk e

−iφ γk ↑ (13.88)

to obtain
〈
c†
L q ↑(t) c

†
L−q ↓(0)

〉
= uq vq e

−iφL
{
eiEqt/~ f(Eq)− e−iEqt/~

[
1− f(Eq)

]}

〈
c
Rk ↑(t) cR−k ↓(0)

〉
= uk vk e

+iφR

{
e−iEkt/~

[
1− f(Ek)

]
− eiEkt/~ f(Ek)

}

〈
c†
L−q ↓(0) c

†
L q ↑(t)

〉
= uq vq e

−iφL
{
eiEqt/~

[
1− f(Eq)

]
− e−iEqt/~ f(Eq)

}

〈
c
R−k ↓(0) cRk ↑(t)

〉
= uk vk e

+iφR

{
e−iEkt/~ f(Ek)− eiEkt/~

[
1− f(Ek)

]}

(13.89)

We then have

Yr(t) = iΘ(t)× 1
2
g
L
g
R
|t|2Aei(φR−φL)

∞∫

−∞

dξ

∞∫

−∞

dξ′ u v u′ v′× (13.90)

{[
eiEt/~ f − e−iEt/~ (1− f)

]
×
[
e−iE

′t/~ (1− f ′)− eiE′t/~ f ′
]

−
[
eiEt/~ (1− f)− e−iEt/~ f

]
×
[
e−iE

′t/~ f ′ − eiE′t/~ (1− f ′)
]}

,

where once again primed and unprimed symbols refer respectively to left (L) and right (R)
banks. Recall that the BCS coherence factors give uv = 1

2
sin(2ϑ) = ∆/2E. Taking the Fourier

transform, we have

Ỹr(ω) =
1
2
~ g

L
g
R
|t|2 ei(φR−φL)A

∞∫

0

dξ

∞∫

0

dξ′
∆

E

∆′

E ′

{
f − f ′

~ω + E − E ′ + iǫ
− f − f ′

~ω − E + E ′ + iǫ

+
1− f − f ′

~ω + E + E ′ + iǫ
− 1− f − f ′

~ω − E − E ′ + iǫ

}
. (13.91)

Setting T = 0, we have

Ỹr(ω) =
~
2GN

2πe2
ei(φR−φL)

∞∫

0

dξ

∞∫

0

dξ′
∆∆′

EE ′

{
1

~ω + E + E ′ + iǫ
− 1

~ω − E −E ′ + iǫ

}

=
~2G

N

2πe2
ei(φR−φL)

∞∫

∆

dE
∆√

E2 −∆2

∞∫

∆′

dE ′ ∆′
√
E ′ 2 −∆′ 2

× 2 (E + E ′)

(~ω)2 − (E + E ′)2
.

(13.92)
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Figure 13.5: Current-voltage characteristics for a current-biased Josephson junction. Increasing
current at zero bias voltage is possible up to |I| = Ic, beyond which the voltage jumps along
the dotted line. Subsequent reduction in current leads to hysteresis.

There is no general analytic form for this integral. However, for the special case ∆ = ∆′, we
have

Ỹr(ω) =
GN~

2

2e2
∆K

(
~|ω|
4∆

)
ei(φR−φL) , (13.93)

where K(x) is the complete elliptic integral of the first kind. Thus,

IJ(t) = GN ·
∆

e
K

(
e|V |
4∆

)
sin

(
φR − φL −

2eV t

~

)
. (13.94)

With V = 0, one finds (at finite T ),

I
J
= G

N
· π∆
2e

tanh

(
∆

2kBT

)
sin(φ

R
− φ

L
) . (13.95)

Thus, there is a spontaneous current flow in the absence of any voltage bias, provided the
phases remain fixed. The maximum current which flows under these conditions is called the
critical current of the junction, Ic . Writing RN = 1/GN for the normal state junction resistance,
one has

IcRN
=
π∆

2e
tanh

(
∆

2kBT

)
, (13.96)
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which is known as the Ambegaokar-Baratoff relation. Note that Ic agrees with what we found in
Eqn. 13.81 for V just above V ∗ = 2∆. Ic is also the current flowing in a normal junction at bias
voltage V = π∆/2e. Setting Ic = 2eJ/~ where J is the Josephson coupling, we find our V = 0
results here in complete agreement with those of Eqn. 13.29 when Coulomb charging energies
of the grains are neglected.

Experimentally, one generally draws a current I across the junction and then measures the
voltage difference. In other words, the junction is current-biased. Varying I then leads to a
hysteretic voltage response, as shown in Fig. 13.5. The functional form of the oscillating current
is then I(t) = Ic sin(φR

−φ
L
−Ωt), which gives no DC average. WithR

N
≈ 1.5Ω and ∆ = 1meV,

one obtains a critical current Ic = 1mA. For a junction of area A ∼ 1mm2, the critical current
density is then jc = Ic/A ∼ 103A/m2. Current densities in bulk type I and type II materials can
approach j ∼ 1011A/m2 and 109A/m2, respectively.

13.3 The Josephson Effect

13.3.1 Two grain junction

In §13.1 we discussed a model for superconducting grains. Consider now only a single pair of
grains, and write

K̂ = −J cos(φ
L
− φ

R
) +

2e2

CL

M2
L
+

2e2

CR

M2
R
− 2µ

L
M

L
− 2µ

R
M

R
, (13.97)

where ML,R is the number of Cooper pairs on each grain in excess of the background charge,
which we assume here to be a multiple of 2e. From the Heisenberg equations of motion, we
have that

Ṁ
L
=
i

~

[
K̂,M

L

]
=
J

~
sin(φ

R
− φ

L
) , (13.98)

which follows from the fact that M
L
= −i ∂/∂φ

L
. Similarly, we find Ṁ

R
= −J

~
sin(φ

R
− φ

L
). An

electrical current I = 2eṀ
L
= −2eṀ

R
then flows from left to right. The equations of motion for

the phases are

φ̇
L
=
i

~

[
K̂ , φ

L

]
=

4e2M
L

~CL

− 2µ
L

~

φ̇R =
i

~

[
K̂ , φR

]
=

4e2M
R

~C
R

− 2µ
R

~
.

(13.99)

Let’s assume the grains are large, so their self-capacitances are large too. In that case, we can
neglect the Coulomb energy of each grain, and we obtain the Josephson equations

dφ

dt
= −2eV

~
, I(t) = Ic sinφ(t) , (13.100)
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where eV = µR − µL , Ic = 2eJ/~ , and φ ≡ φR − φL. When quasiparticle tunneling is accounted
for, the second of the Josephson equations is modified to

I = Ic sinφ+
(
G0 +G1 cos φ

)
V , (13.101)

where G0 ≡ GN is the quasiparticle contribution to the current, and G1 accounts for higher
order effects.

13.3.2 Effect of in-plane magnetic field

Thus far we have assumed that the effective hopping amplitude t between the L and R banks
is real. This is valid in the absence of an external magnetic field, which breaks time-reversal. In

the presence of an external magnetic field, t is replaced by t → t eiγ , where γ = e
~c

R∫
L

A · dl is the

Aharonov-Bohm phase. Without loss of generality, we consider the junction interface to lie in
the (x, y) plane, and we take H = H ŷ. We are then free to choose the gauge A = −Hxẑ. Then

γ(x) =
e

~c

R∫

L

A · dl = − e

~c
H (λL + λR + d) x , (13.102)

where λL,R are the penetration depths for the two superconducting banks, and d is the junction

separation. Typically λ
L,R ∼ 100 Å − 1000 Å, while d ∼ 10 Å, so usually we may neglect the

junction separation in comparison with the penetration depth.

In the case of the single particle current I
N
, we needed the commutators

[
Ĥ+

T
(t), Ĥ−

T
(0)
]

and[
Ĥ−

T (t), Ĥ
+
T (0)

]
. Since Ĥ+

T ∝ t while Ĥ−
T ∝ t∗, the result depends on the product |t|2, which has

no phase. Thus, I
N

is unaffected by an in-plane magnetic field. For the Josephson pair tunneling

current IJ, however, we need
[
Ĥ+

T (t), Ĥ
+
T (0)

]
and

[
Ĥ−

T (t), Ĥ
−
T (0)

]
. The former is proportional

to t2 and the latter to t∗2. Therefore the Josephson current density is

j
J
(x) =

Ic(T )

A
sin

(
φ− 2e

~c
Hdeffx−

2eV t

~

)
, (13.103)

where deff ≡ λ
L
+ λ

R
+ d and φ = φ

R
− φ

L
. Note that it is 2eHdeff/~c = arg(t2) which appears

in the argument of the sine. This may be interpreted as the Aharonov-Bohm phase accrued
by a tunneling Cooper pair. We now assume our junction interface is a square of dimensions
Lx × Ly. At V = 0, the total Josephson current is then5

I
J
=

Lx∫

0

dx

Ly∫

0

dy j(x) =
IcφL

πΦ
sin(πΦ/φ

L
) sin(φ− πΦ/φ

L
) , (13.104)

5Take care not to confuse φ
L

, the phase of the left superconducting bank, with φ
L

, the London flux quantum hc/2e.
To the untrained eye, these symbols look identical.
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Figure 13.6: (a) Fraunhofer pattern of Josephson current versus flux due to in-plane magnetic
field. (b) Sketch of Josephson junction experiment yielding (a). (c) Two-point superconducting
quantum interferometer.

where Φ ≡ HLxdeff is the total magnetic flux through the junction. The maximum current
occurs when φ− πΦ/φ

L
= ±1

2
π, where its magnitude is

Imax(Φ) = Ic

∣∣∣∣∣
sin(πΦ/φL)

πΦ/φ
L

∣∣∣∣∣ . (13.105)

The shape Imax(Φ) is precisely that of the single slit Fraunhofer pattern from geometrical optics!
(See Fig. 13.6.)

13.3.3 Two-point quantum interferometer

Consider next the device depicted in Fig. 13.6(c) consisting of two weak links between super-
conducting banks. The current flowing from L to R is

I = Ic,1 sinφ1 + Ic,2 sin φ2 . (13.106)

where φ1 ≡ φ
L,1 − φR,1 and φ2 ≡ φ

L,2 − φR,2 are the phase differences across the two Josephson
junctions. The total flux Φ inside the enclosed loop is

φ2 − φ1 =
2πΦ

φL

≡ 2γ . (13.107)

Writing φ2 = φ1 + 2γ, we extremize I(φ1, γ) with respect to φ1, and obtain

Imax(γ) =
√

(Ic,1 + Ic,2)
2 cos2γ + (Ic,1 − Ic,2)2 sin2γ . (13.108)
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If Ic,1 = Ic,2 , we have Imax(γ) = 2Ic | cos γ |. This provides for an extremely sensitive measure-
ment of magnetic fields, since γ = πΦ/φ

L
and φ

L
= 2.07× 10−7Gcm2. Thus, a ring of area 1 cm2

allows for the detection of fields on the order of 10−7G. This device is known as a Supercon-
ducting QUantum Interference Device, or SQUID. The limits of the SQUID’s sensitivity are set
by the noise in the SQUID or in the circuit amplifier.

13.3.4 RCSJ Model

In circuits, a Josephson junction, from a practical point of view, is always transporting current
in parallel to some resistive channel. Josephson junctions also have electrostatic capacitance
as well. Accordingly, consider the resistively and capacitively shunted Josephson junction (RCSJ), a
sketch of which is provided in Fig. 13.8(c). The equations governing the RCSJ model are

I = C V̇ +
V

R
+ Ic sinφ

V =
~

2e
φ̇ ,

(13.109)

where we again take I to run from left to right. If the junction is voltage-biased, then integrating
the second of these equations yields φ(t) = φ0+ωJ

t , where ω
J
= 2eV/~ is the Josephson frequency.

The current is then

I =
V

R
+ Ic sin(φ0 + ω

J
t) . (13.110)

If the junction is current-biased, then we substitute the second equation into the first, to obtain

~C

2e
φ̈+

~

2eR
φ̇+ Ic sin φ = I . (13.111)

We adimensionalize by writing s ≡ ωpt, with ωp = (2eIc/~C)
1/2 is the Josephson plasma frequency

(at zero current). We then have

d2φ

ds2
+

1

Q

dφ

ds
= j − sinφ ≡ −du

dφ
, (13.112)

where Q = ωpτ with τ = RC, and j = I/Ic. The quantity Q2 is called the McCumber-Stewart
parameter. The resistance is R(T ≈ Tc) = RN, while R(T ≪ Tc) ≈ RN exp(∆/kBT ). The dimen-
sionless potential energy u(φ) is given by

u(φ) = −jφ − cosφ (13.113)

and resembles a ‘tilted washboard’; see Fig. 13.8(a,b). This is an N = 2 dynamical system on a

cylinder. Writing ω ≡ φ̇, we have

d

ds

(
φ
ω

)
=

(
ω

j − sinφ−Q−1ω

)
. (13.114)



13.3. THE JOSEPHSON EFFECT 573

Figure 13.7: Phase flows for the equation φ̈ + Q−1φ̇ + sinφ = j. Left panel: 0 < j < 1; note the
separatrix (in black), which flows into the stable and unstable fixed points. Right panel: j > 1.
The red curve overlying the thick black dot-dash curve is a limit cycle.

Note that φ ∈ [0, 2π] while ω ∈ (−∞,∞). Fixed points satisfy ω = 0 and j = sinφ. Thus, for
|j| > 1, there are no fixed points.

Strong damping

The RCSJ model dynamics are given by the second order ODE,

∂2sφ+Q−1∂sφ = −u′(φ) = j − sinφ . (13.115)

The parameter Q = ωpτ determines the damping, with large Q corresponding to small damp-

ing. Consider the large damping limit Q ≪ 1. In this case the inertial term proportional to φ̈
may be ignored, and what remains is a first order ODE. Restoring dimensions,

dφ

dt
= Ω (j − sinφ) , (13.116)

where Ω = ω2
pRC = 2eIcR/~. We are effectively setting C ≡ 0, hence this is known as the RSJ

model. The above equation describes a N = 1 dynamical system on the circle. When |j| < 1,
i.e. |I| < Ic, there are two fixed points, which are solutions to sin φ∗ = j. The fixed point where
cosφ∗ > 0 is stable, while that with cosφ∗ < 0 is unstable. The flow is toward the stable fixed
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Figure 13.8: (a) Dimensionless washboard potential u(φ) for I/Ic = 0.5. (b) u(φ) for I/Ic = 2.0.
(c) The resistively and capacitively shunted Josephson junction (RCSJ). (d) 〈V 〉 versus I for the
RSJ model.

point. At the fixed point, φ is constant, which means the voltage V = ~φ̇/2e vanishes. There is
current flow with no potential drop.

Consider the case j > 1. In this case there is a bottleneck in the φ evolution in the vicinity of

φ = 1
2
π, where φ̇ is smallest, but φ̇ > 0 always. We compute the average voltage

〈V 〉 = ~

2e
〈φ̇〉 = ~

2e
· 2π
T

, (13.117)

where T is the rotational period for φ(t). We compute this using the equation of motion:

ΩT =

2π∫

0

dφ

j − sin φ
=

2π√
j2 − 1

. (13.118)

Thus,

〈V 〉 = ~

2e

√
j2 − 1 · 2eIcR

~
= R

√
I2 − I2c . (13.119)

This behavior is sketched in Fig. 13.8(d).
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Josephson plasma oscillations

When I < Ic, the phase undergoes damped oscillations in the washboard minima. Expanding
about the fixed point, we write φ = sin−1j + δφ, and obtain

d2δφ

ds2
+

1

Q

d δφ

ds
= −

√
1− j2 δφ . (13.120)

This is the equation of a damped harmonic oscillator. With no damping (Q =∞), the oscillation
frequency is

Ω(I) = ωp

(
1− I2

I2c

)1/4
. (13.121)

When Q is finite, the frequency of the oscillations has an imaginary component, with solutions

ω±(I) = −
i ωp

2Q
± ωp

√(
1− I2

I2c

)1/2
− 1

4Q2
. (13.122)

Retrapping current in underdamped junctions

The energy of the junction is given by

E = 1
2
CV 2 +

~Ic
2e

(1− cosφ) . (13.123)

The first term may be thought of as a kinetic energy and the second as potential energy. Because
the system is dissipative, energy is not conserved. Rather,

Ė = CV V̇ +
~Ic
2e

φ̇ sin φ = V
(
CV̇ + Ic sinφ

)
= V

(
I − V

R

)
. (13.124)

Suppose the junction were completely undamped, i.e. R = 0. Then as the phase slides down
the tilted washboard for |I| < Ic, it moves from peak to peak, picking up speed as it moves
along. When R > 0, there is energy loss, and φ(t) might not make it from one peak to the next.
Suppose we start at a local maximum φ = π with V = 0. What is the energy when φ reaches
3π? To answer that, we assume that energy is almost conserved, so

E = 1
2
CV 2 +

~Ic
2e

(1− cosφ) ≈ ~Ic
e

⇒ V =

(
e~Ic
eC

)1/2∣∣cos(1
2
φ)
∣∣ . (13.125)

then

(∆E)cycle =

∞∫

−∞

dt V

(
I − V

R

)
=

~

2e

π∫

−π

dφ

{
I − 1

R

(
e~Ic
eC

)1/2
cos(1

2
φ)

}

=
~

2e

{
2πI − 4

R

(
e~Ic
eC

)1/2}
=

h

2e

{
I − 4Ic

πQ

}
.

(13.126)
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Thus, we identify Ir ≡ 4Ic/πQ ≪ Ic as the retrapping current. The idea here is to focus on the
case where the phase evolution is on the cusp between trapped and free. If the system loses
energy over the cycle, then subsequent motion will be attenuated, and the phase dynamics will
flow to the zero voltage fixed point. Note that if the current I is reduced below Ic and then
held fixed, eventually the junction will dissipate energy and enter the zero voltage state for any
|I| < Ic. But if the current is swept and İ/I is faster than the rate of energy dissipation, the
retrapping occurs at I = Ir.

Thermal fluctuations

Restoring the proper units, the potential energy is U(φ) = (~Ic/2e) u(φ). Thus, thermal fluctua-
tions may be ignored provided

k
B
T ≪ ~Ic

2e
=

~

2eRN

· π∆
2e

tanh

(
∆

2kBT

)
, (13.127)

where we have invoked the Ambegaokar-Baratoff formula, Eqn. 13.96. BCS theory gives ∆ =
1.764 kBTc , so we require

kBT ≪
h

8R
N
e2
· (1.764 kBTc) · tanh

(
0.882 Tc

T

)
. (13.128)

In other words,
R

N

RK

≪ 0.22 Tc
T

tanh

(
0.882 Tc

T

)
, (13.129)

where RK = h/e2 = 25812.8Ω is the quantum unit of resistance6.

We can model the effect of thermal fluctuations by adding a noise term to the RCSJ model,
writing

CV̇ +
V

R
+ Ic sin φ = I +

Vf
R

, (13.130)

where Vf(t) is a stochastic term satisfying
〈
Vf(t) Vf(t

′)
〉
= 2kBTR δ(t− t′) . (13.131)

Adimensionalizing, we now have

d2φ

ds2
+ γ

dφ

ds
= −∂u

∂φ
+ η(s) , (13.132)

where s = ωpt , γ = 1/ωpRC , u(φ) = −jφ− cosφ , j = I/Ic(T ) , and

〈
η(s) η(s′)

〉
=

2ωpkBT

I2cR
δ(s− s′) ≡ 2Θ δ(s− s′) . (13.133)

6RK is called the Klitzing for Klaus von Klitzing, the discoverer of the integer quantum Hall effect.
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Thus, Θ ≡ ωpkBT/I
2
cR is a dimensionless measure of the temperature. Our problem is now that

of a damped massive particle moving in the washboard potential and subjected to stochastic
forcing due to thermal noise.

Writing ω = ∂sφ, we have

∂sφ = ω

∂sω = −u′(φ)− γω +
√
2Θ η(s) .

(13.134)

In this case, W (s) =
s∫
0

ds′ η(s′) describes a Wiener process:
〈
W (s)W (s′)

〉
= min(s, s′). The

probability distribution P (φ, ω, s) then satisfies the Fokker-Planck equation7,

∂P

∂s
= − ∂

∂φ

(
ωP
)
+

∂

∂ω

{[
u′(φ) + γω

]
P
}
+Θ

∂2P

∂ω2
. (13.135)

We cannot make much progress beyond numerical work starting from this equation. However,
if the mean drift velocity of the ‘particle’ is everywhere small compared with the thermal ve-

locity vth ∝
√
Θ, and the mean free path ℓ ∝ vth/γ is small compared with the scale of variation

of φ in the potential u(φ), then, following the classic treatment by Kramers, we can convert
the Fokker-Planck equation for the distribution P (φ, ω, t) to the Smoluchowski equation for the
distribution P (φ, t)8. These conditions are satisfied when the damping γ is large. To proceed
along these lines, simply assume that ω relaxes quickly, so that ∂sω ≈ 0 at all times. This says

ω = −γ−1u′(φ) + γ−1
√
2Θ η(s). Plugging this into ∂sφ = ω, we have

∂sφ = −γ−1u′(φ) + γ−1
√
2Θ η(s) , (13.136)

the Fokker-Planck equation for which is9

∂P (φ, s)

∂s
=

∂

∂φ

[
γ−1u′(φ)P (φ, s)

]
+ γ−2Θ

∂2P (φ, s)

∂φ2
, (13.137)

which is called the Smoluchowski equation. Note that −γ−1u′(φ) plays the role of a local drift
velocity, and γ−2Θ that of a diffusion constant. This may be recast as

∂P

∂s
= −∂W

∂φ
, W (φ, s) = −γ−1

(
∂φu
)
P − γ−2Θ ∂φP . (13.138)

7For the stochastic coupled ODEs dua = Aa dt+Bab dWb where each Wa(t) is an independent Wiener process, i.e.
dWa dWb = δab dt, then, using the Stratonovich stochastic calculus, one has the Fokker-Planck equation ∂tP =
−∂a(AaP ) +

1
2∂a
[
Bac ∂b(BbcP )

]
.

8See M. Ivanchenko and L. A. Zil’berman, Sov. Phys. JETP 28, 1272 (1969) and, especially, V. Ambegaokar and B.
I. Halperin, Phys. Rev. Lett. 22, 1364 (1969).

9For the stochastic differential equation dx = vd dt +
√
2DdW (t), where W (t) is a Wiener process, the Fokker-

Planck equation is ∂tP = −vd ∂xP +D∂2xP .
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In steady state, we have that ∂sP = 0 , hence W must be a constant. We also demand P (φ, s) =
P (φ+ 2π, s). To solve, define F (φ) ≡ e−γ u(φ)/Θ . In steady state, we then have

∂

∂φ

(
P

F

)
= −γ

2W

Θ
· 1
F

. (13.139)

Integrating,

P (φ)

F (φ)
− P (0)

F (0)
= −γ

2W

Θ

φ∫

0

dφ′

F (φ′)

P (2π)

F (2π)
− P (φ)

F (φ)
= −γ

2W

Θ

2π∫

φ

dφ′

F (φ′)
.

(13.140)

Multiply the first of these by F (0) and the second by F (2π), and then add, remembering that
P (2π) = P (0). One then obtains

P (φ) =
γ2W

Θ
· F (φ)

F (2π)− F (0) ·





φ∫

0

dφ′ F (0)

F (φ′)
+

2π∫

φ

dφ′ F (2π)

F (φ′)



 . (13.141)

We now are in a position to demand that P (φ) be normalized. Integrating over the circle, we
obtain

W =
G(j, γ)

γ
(13.142)

where

1

G(j, γ/Θ)
=

γ/Θ

exp(πγ/Θ)− 1




2π∫

0

dφ f(φ)






2π∫

0

dφ′

f(φ′)


+

γ

Θ

2π∫

0

dφ f(φ)

2π∫

φ

dφ′

f(φ′)
, (13.143)

where f(φ) ≡ F (φ)/F (0) = e−γ u(φ)/Θ eγ u(0)/Θ is normalized such that f(0) = 1.

It remains to relate the constant W to the voltage. For any function g(φ), we have

d

dt

〈
g
(
φ(s)

)〉
=

2π∫

0

dφ
∂P

∂s
g(φ) = −

2π∫

0

dφ
∂W

∂φ
g(φ) =

2π∫

0

dφ W (φ) g′(φ) . (13.144)

Technically we should restrict g(φ) to be periodic, but we can still make sense of this for g(φ) =
φ, with

〈
∂sφ
〉
=

2π∫

0

dφW (φ) = 2πW , (13.145)
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Figure 13.9: Left: scaled current bias j = I/Ic versus scaled voltage v = 〈V 〉/IcR for different
values of the parameter γ/Θ, which is the ratio of damping to temperature. Right: detail of j(v)
plots. From Ambegaokar and Halperin (1969).

where the last expression on the RHS holds in steady state, where W is a constant. We could
have chosen g(φ) to be a sawtooth type function, rising linearly on φ ∈ [0, 2π) then discontin-
uously dropping to zero, and only considered the parts where the integrands were smooth.
Thus, after restoring physical units,

v ≡ 〈V 〉
IcR

=
~ωp

2eIcR
〈∂sφ〉 = 2π G(j, γ/Θ) . . (13.146)

AC Josephson effect

Suppose we add an AC bias to V , writing

V (t) = V0 + V1 sin(ω1t) . (13.147)

Integrating the Josephson relation φ̇ = 2eV/~, we have

φ(t) = ωJ t+
V1
V0

ω
J

ω1

cos(ω1t) + φ0 . (13.148)

where ω
J
= 2eV0/~ . Thus,

I
J
(t) = Ic sin

(
ω

J
t+

V1 ωJ

V0 ω1

cos(ω1t) + φ0

)
. (13.149)
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Figure 13.10: (a) Shapiro spikes in the voltage-biased AC Josephson effect. The Josephson
current has a nonzero average only when V0 = n~ω1/2e, where ω1 is the AC frequency. From
http://cmt.nbi.ku.dk/student projects/bsc/heiselberg.pdf. (b) Shapiro steps in the current-
biased AC Josephson effect.

We now invoke the Bessel function generating relation,

eiz cos θ =

∞∑

n=−∞
Jn(z) e

−inθ (13.150)

to write

IJ(t) = Ic

∞∑

n=−∞
Jn

(
V1 ωJ

V0 ω1

)
sin
[
(ωJ − nω1) t+ φ0

]
. (13.151)

Thus, I
J
(t) oscillates in time, except for terms for which

ωJ = nω1 ⇒ V0 = n
~ω1

2e
, (13.152)

in which case

I
J
(t) = Ic Jn

(
2eV1
~ω1

)
sinφ0 . (13.153)

We now add back in the current through the resistor, to obtain

〈
I(t)

〉
=
V0
R

+ Ic Jn

(
2eV1
~ω1

)
sin φ0

∈
[
V0
R
− Ic Jn

(
2eV1
~ω1

)
,
V0
R

+ Ic Jn

(
2eV1
~ω1

)]
.

(13.154)

This feature, depicted in Fig. 13.10(a), is known as Shapiro spikes.
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Current-biased AC Josephson effect

When the junction is current-biased, we must solve

~C

2e
φ̈+

~

2eR
φ̇+ Ic sinφ = I(t) , (13.155)

with I(t) = I0 + I1 cos(ω1t). This results in the Shapiro steps shown in Fig. 13.10(b). To analyze
this equation, we write our phase space coordinates on the cylinder as (x1, x2) = (φ, ω), and
add the forcing term to Eqn. 13.114, viz.

d

dt

(
φ
ω

)
=

(
ω

j − sin φ−Q−1ω

)
+ ε

(
0

cos(νs)

)

dx

ds
= V (x) + εf(x, s) ,

(13.156)

where s = ωpt , ν = ω1/ωp , and ε = I1/Ic . As before, we have j = I0/Ic . When ε = 0, we have
the RCSJ model, which for |j| > 1 has a stable limit cycle and no fixed points. The phase curves
for the RCSJ model and the limit cycle for |j| > 1 are depicted in Fig. 13.7. In our case, the
forcing term f(x, s) has the simple form f1 = 0 , f2 = cos(νs), but it could be more complicated
and nonlinear in x.

The phenomenon we are studying is called synchronization10. Linear oscillators perturbed by
a harmonic force will oscillate with the forcing frequency once transients have damped out.
Consider, for example, the equation ẍ + 2βẋ + ω2

0x = f0 cos(Ωt), where β > 0 is a damping
coefficient. The solution is x(t) = A(Ω) cos

(
Ωt + δ(Ω)

)
+ xh(t), where xh(t) solves the homo-

geneous equation (i.e. with f0 = 0) and decays to zero exponentially at large times. Nonlinear
oscillators, such as the RCSJ model under study here, also can be synchronized to the external
forcing, but not necessarily always. In the case of the Duffing oscillator, ẍ+2βẋ+ x+ ηx3, with
β > 0 and η > 0, the origin (x = 0, ẋ = 0) is still a stable fixed point. In the presence of an
external forcing ε f0 cos(Ωt), with β, η, and ε all small, varying the detuning δΩ = Ω − 1 (also
assumed small) can lead to hysteresis in the amplitude of the oscillations, but the oscillator is
always entrained, i.e. synchronized with the external forcing.

The situation changes considerably if the nonlinear oscillator has no stable fixed point but
rather a stable limit cycle. This is the case, for example, for the van der Pol equation ẍ+2β(x2−
1)ẋ+ x = 0, and it is also the case for the RCSJ model. The limit cycle x0(s) has a period, which
we call T0, so x(s+T0) = x(s). All points on the limit cycle (LC) are fixed under the T0-advance
map gT0 , where gτx(s) = x(s + τ). We may parameterize points along the LC by an angle θ

which increases uniformly in s, so that θ̇ = ν0 = 2π/T0. Furthermore, since each point x0(θ) is a
fixed point under gT0 , and the LC is presumed to be attractive, we may define the θ-isochrone as

the set of points {x} in phase space which flow to x0(θ) under repeated application of gT0 . For

an N-dimensional phase space, the isochrones are (N − 1)-dimensional hypersurfaces. For the

10See A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization (Cambridge, 2001).
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RCSJ model, which has N = 2, the isochrones are curves θ = θ(φ, ω) on the (φ, ω) cylinder. In
particular, the θ-isochrone is a curve which intersects the LC at the point x0(θ). We then have

dθ

ds
=

N∑

j=1

∂θ

∂xj

dxj
ds

= ν0 + ε
N∑

j=1

∂θ

∂xj
fj
(
x(s), s

)
.

(13.157)

If we are close to the LC, we may replace x(s) on the RHS above with x0(θ), yielding

dθ

ds
= ν0 + εF (θ, s) , (13.158)

where

F (θ, s) =

N∑

j=1

∂θ

∂xj

∣∣∣∣∣
x0(θ)

fj
(
x0(θ), s

)
. (13.159)

OK, so now here’s the thing. The function F (θ, s) is separately periodic in both its arguments,
so we may write

F (θ, s) =
∑

k,l

Fk,l e
i(kθ+lνs) , (13.160)

where f
(
x, s+ 2π

ν

)
= f(x, s), i.e. ν is the forcing frequency. The unperturbed solution has θ̇ = ν0,

hence the forcing term in Eqn. 13.158 is resonant when kν0+ lν ≈ 0. This occurs when ν ≈ p
q
ν0 ,

where p and q are relatively prime integers. The resonance condition is satisfied when k = rp
and l = −rq for any integer r

.

We now separate the resonant from nonresonant terms in the (k, l) sum, writing

θ̇ = ν0 + ε
∞∑

r=−∞
Frp,−rq e

ir(pθ−qνs) +NRT , (13.161)

where NRT stands for “non-resonant terms”. We next average over short time scales to elim-
inate these nonresonant terms, and focus on the dynamics of the average phase 〈θ〉. Defining
ψ ≡ p 〈θ〉 − q νs, we have

ψ̇ = p 〈θ̇〉 − qν

= (pν0 − qν) + εp

∞∑

r=−∞
Frp,−rq e

irψ

= −δ + εG(ψ) ,

(13.162)
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Figure 13.11: Left: graphical solution of ψ̇ = −δ + εG(ψ). Fixed points are only possible if
−εGmin 6 δ 6 Gmax. Right: synchronization region, shown in grey, in the (δ, ε) plane.

where δ ≡ qν−pν0 is the detuning, andG(ψ) ≡ p
∑

r Frp,−rq e
irψ is the sum over resonant terms.

This last equation is that of a simple N = 1 dynamical system on the circle! If the detuning δ
falls within the range

[
εGmin , εGmax

]
, then ψ flows to a stable fixed point where δ = εG(ψ∗).

The oscillator is then synchronized with the forcing, because 〈θ̇〉 → q
p
ν. If the detuning is

too large and lies outside this range, then there is no synchronization. Rather, ψ(s) increases
linearly with the time s, and 〈θ(t)〉 = θ0 +

q
p
νs + 1

p
ψ(s) , where

dt =
dψ

εG(ψ)− δ =⇒ Tψ =

2π∫

0

dψ

εG(ψ)− δ . (13.163)

For weakly forced, weakly nonlinear oscillators, resonance occurs only for ν = ±ν0 , but in
the case of weakly forced, strongly nonlinear oscillators, the general resonance condition is
ν = p

q
ν0. The reason is that in the case of weakly nonlinear oscillators, the limit cycle is itself

harmonic to zeroth order. There are then only two frequencies in its Fourier decomposition, i.e.
±ν0. In the strongly nonlinear case, the limit cycle is decomposed into a fundamental frequency
ν0 plus all its harmonics. In addition, the forcing f(x, s) can itself can be a general periodic
function of s, involving multiples of the fundamental forcing frequency ν. For the case of the
RCSJ, the forcing function is harmonic and independent of x. This means that only the l = ±1
terms enter in the above analysis.
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13.4 Ultrasonic Attenuation

Recall the electron-phonon Hamiltonian,

Ĥel−ph =
1√
V

∑

k,k′

σ,λ

gkk′λ
(
a†k′−k,λ + ak−k′,λ

)
c†kσ ck′σ (13.164)

=
1√
V

∑

k,k
σ,λ

gkk′λ
(
a†k′−k,λ + ak−k′,λ

)(
ukγ

†
kσ − σ e−iφ vk γ−k−σ

)(
uk′γk′σ − σ eiφ vk′ γ†−k′ −σ

)
.

Let’s now compute the phonon lifetime using Fermi’s Golden Rule11. In the phonon absorption
process, a phonon of wavevector q is absorbed by an electron of wavevector k, converting it into
an electron of wavevector k′ = k + q. The net absorption rate of (q, λ) phonons is then is given
by the rate of

Γ abs
qλ =

2πnq,λ
V

∑

k,k′,σ

∣∣gkk′λ
∣∣2 (ukuk′−vkvk′

)2
fkσ
(
1−fk′σ

)
δ(Ek′−Ek−~ωqλ

)
δk′,k+qmodG . (13.165)

Here nqλ is the Bose function and fkσ the Fermi function, and we have assumed that the phonon
frequencies are all smaller than 2∆, so we may ignore quasiparticle pair creation and pair anni-
hilation processes. Note that the electron Fermi factors yield the probability that the state |kσ〉
is occupied while |k′σ〉 is vacant. Mutatis mutandis, the emission rate of these phonons is12

Γ em
qλ =

2π(nq,λ + 1)

V

∑

k,k′,σ

∣∣gkk′λ
∣∣2 (ukuk′ − vkvk′

)2
fk′σ

(
1− fkσ

)
δ(Ek′ − Ek − ~ωqλ

)
δk′,k+qmodG .

(13.166)
We then have

dnqλ
dt

= −αqλ nqλ + sqλ , (13.167)

where

αqλ =
4π

V

∑

k,k′

∣∣gkk′λ
∣∣2 (ukuk′ − vkvk′

)2 (
fk − fk′

)
δ(Ek′ − Ek − ~ωqλ

)
δk′,k+qmodG (13.168)

is the attenuation rate, and sqλ is due to spontaneous emission,

sqλ =
4π

V

∑

k,k′

∣∣gkk′λ
∣∣2 (ukuk′ − vkvk′

)2
fk′
(
1− fk

)
δ(Ek′ − Ek − ~ωqλ

)
δk′,k+qmodG . (13.169)

11Here we follow §3.4 of J. R. Schrieffer, Theory of Superconductivity (Benjamin-Cummings, 1964).
12Note the factor of n + 1 in the emission rate, where the additional 1 is due to spontaneous emission. The

absorption rate includes only a factor of n.
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Figure 13.12: Phonon absorption and emission processes.

We now expand about the Fermi surface, writing

1

V

∑

k,k′

F (ξk, ξk′) δk′,k+q =
1
4
g2(µ)

∞∫

−∞

dξ

∞∫

−∞

dξ′ F (ξ, ξ′)

∫
dk̂

4π

∫
dk̂′

4π
δ(k

F
k̂
′ − k

F
k̂ − q) . (13.170)

for any function F (ξ, ξ′). The integrals over k̂ and k̂′ give
∫
dk̂

4π

∫
dk̂′

4π
δ(k

F
k̂
′ − k

F
k̂ − q) = 1

4πk3F
· kF

2q
·Θ(2k

F
− q) . (13.171)

The step function appears naturally because the constraint k
F
k̂′ = k

F
k̂+q requires that q connect

two points which lie on the metallic Fermi surface, so the largest |q| can be is 2k
F
. We will drop

the step function in the following expressions, assuming q < 2k
F
, but it is good to remember

that it is implicitly present. Thus, ignoring Umklapp processes, we have

αqλ =
g2(µ) |gqλ|2

8 k2F q

∞∫

−∞

dξ

∞∫

−∞

dξ′ (uu′ − vv′)2 (f − f ′) δ(E ′ − E − ~ωqλ
)

. (13.172)

We now use

(uu′ ± vv′)2 =
(√

E + ξ

2E

√
E ′ + ξ′

2E ′ ±
√
E − ξ
2E

√
E ′ − ξ′
2E ′

)2
=
EE ′ + ξξ′ ±∆2

EE ′ (13.173)

and change variables
(
ξ = E dE/

√
E2 −∆2

)
to write

αqλ =
g2(µ) |gqλ|2

2 k2
F
q

∞∫

∆

dE

∞∫

∆

dE ′ (EE ′ −∆2)(f − f ′)√
E2 −∆2

√
E ′ 2 −∆2

δ(E ′ − E − ~ωqλ
)

. (13.174)

We now satisfy the Dirac delta function, which means we eliminate the E ′ integral and set
E ′ = E + ~ωqλ everywhere else in the integrand. Clearly the f − f ′ term will be first order in
the smallness of ~ωq, so in all other places we may set E ′ = E to lowest order. This simplifies
the above expression considerably, and we are left with

αqλ =
g2(µ) |gqλ|2 ~ωqλ

2 k2
F
q

∞∫

∆

dE

(
− ∂f

∂E

)
=
g2(µ) |gqλ|2 ~ωqλ

2 k2
F
q

f(∆) , (13.175)
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Figure 13.13: Ultrasonic attenuation in tin, compared with predictions of the BCS theory. From
R. W. Morse, IBM Jour. Res. Dev. 6, 58 (1963).

where q < 2k
F

is assumed. For q → 0, we have ωqλ/q → cλ(q̂), the phonon velocity.

We may now write the ratio of the phonon attenuation rate in the superconducting and normal
states as

α
S
(T )

α
N
(T )

=
f(∆)

f(0)
=

2

exp
(

∆(T )
kBT

)
+ 1

. (13.176)

The ratio naturally goes to unity at T = Tc , where ∆ vanishes. Results from early experiments
on superconducting Sn are shown in Fig. 13.13.

13.5 Nuclear Magnetic Relaxation

We start with the hyperfine Hamiltonian,

ĤHF = A
∑

k,k′

∑

R

ϕ∗
k(R)ϕk′(R)

[
J+
R c

†
k↓ ck′↑ + J−

R c
†
k↑ ck′↓ + JzR

(
c†k↑ ck′↑ − c†k↓ ck′↓

)]
(13.177)

where JR is the nuclear spin operator on nuclear site R, satisfying
[
JµR , J

ν
R′

]
= i ǫµνλ J

λ
R δR,R′ , (13.178)

and where ϕk(R) is the amplitude of the electronic Bloch wavefunction (with band index sup-
pressed) on the nuclear site R. Using

ckσ = uk γkσ − σ vk eiφ γ†−k−σ (13.179)
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we have for Skk′ =
1
2
c†kµ σµν ck′ν ,

S+
kk′ = ukuk′γ

†
k↑γk′↓ − vkvk′ γ−k↓γ†−k′↑ + ukvk′ e

iφ γ†k↑γ
†
−k′↑ − ukvk′ e−iφ γ−k↓γk′↓

S−
kk′ = ukuk′γ

†
k↓γk′↑ − vkvk′ γ−k↑γ†−k′↓ − ukvk′ eiφ γ†k↓γ†−k′↓ + ukvk′ e

−iφ γ−k↑γk′↑ (13.180)

Szkk′ =
1
2

∑

σ

(
ukuk′ γ

†
kσγk′σ + vkvk′ γ−k−σγ

†
−k′ −σ − σ ukvk′ eiφ γ†kσγ†−k′ −σ − σ vkuk′ e−iφ γ−k−σγk′σ

)
.

Let’s assume our nuclei are initially spin polarized, and let us calculate the rate 1/T1 at which
the Jz component of the nuclear spin relaxes. Again appealing to the Golden Rule,

1

T1
= 2π |A|2

∑

k,k′

|ϕk(0)|2 |ϕk′(0)|2
(
ukuk′ + vkvk′

)2
fk
(
1− fk′

)
δ(Ek′ − Ek − ~ω) (13.181)

where ω is the nuclear spin precession frequency in the presence of internal or external mag-

netic fields. Assuming ϕk(R) = C/
√
V , we write V −1

∑
k → 1

2
g(µ)

∫
dξ and we appeal to Eqn.

13.173. Note that the coherence factors in this case give (uu′ + vv′)2, as opposed to (uu′ − vv′)2
as we found in the case of ultrasonic attenuation (more on this below). What we then obtain is

1

T1
= 2π |A|2 |C|4 g2(µ)

∞∫

∆

dE
E(E + ~ω) + ∆2

√
E2 −∆2

√
(E + ~ω)2 −∆2

f(E)
[
1− f(E + ~ω)

]
. (13.182)

Let’s first evaluate this expression for normal metals, where ∆ = 0. We have

1

T1,N
= 2π |A|2 |C|4 g2(µ)

∞∫

0

dξ f(ξ)
[
1− f(ξ + ~ω)

]
= π |A|2 |C|4 g2(µ) k

B
T , (13.183)

where we have assumed ~ω ≪ k
B
T , and used f(ξ)

[
1 − f(ξ)

]
= −k

B
T f ′(ξ). The assumption

ω → 0 is appropriate because the nuclear magneton is so tiny: µ
N
/k

B
= 3.66 × 10−4K/T, so the

nuclear splitting is on the order of mK even at fields as high as 10 T. The NMR relaxation rate
is thus proportional to temperature, a result known as the Korringa law.

Now let’s evaluate the ratio of NMR relaxation rates in the superconducting and normal states.
Assuming ~ω ≪ ∆, we have

T−1
1,S

T−1
1,N

= 2

∞∫

∆

dE
E(E + ~ω) + ∆2

√
E2 −∆2

√
(E + ~ω)2 −∆2

(
− ∂f

∂E

)
. (13.184)

We dare not send ω → 0 in the integrand, because this would lead to a logarithmic divergence.
Numerical integration shows that for ~ω<∼ 1

2
kBTc , the above expression has a peak just below

T = Tc . This is the famous Hebel-Slichter peak.
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Figure 13.14: Left: Sketch of NMR relaxation rate 1/T1 versus temperature as predicted by
BCS theory, with ~ω ≈ 0.01 kBTc , showing the Hebel-Slichter peak. Right: T1 versus Tc/T in a
powdered aluminum sample, from Y. Masuda and A. G. Redfield, Phys. Rev. 125, 159 (1962).
The Hebel-Slichter peak is seen here as a dip.

These results for acoustic attenuation and spin relaxation exemplify so-called case I and case
II responses of the superconductor, respectively. In case I, the transition matrix element is
proportional to uu′ − vv′, which vanishes at ξ = 0. In case II, the transition matrix element is
proportional to uu′ + vv′.

13.6 General Theory of BCS Linear Response

Consider a general probe of the superconducting state described by the perturbation Hamilto-
nian

V̂ (t) =
∑

k,σ

∑

k′,σ′

[
B
(
kσ | k′σ′) e−iωt +B∗(

k
′σ′ | kσ

)
e+iωt

]
c†kσ ck′σ′ . (13.185)

An example would be ultrasonic attenuation, where

V̂ultra(t) = U
∑

k,k′,σ

φk′−k(t) c
†
kσ ck′σ′ . (13.186)

Here φ(r) = ∇ · u is the deformation of the lattice and U is the deformation potential, with the
interaction of the local deformation with the electrons given by Uφ(r)n(r), where n(r) is the
total electron number density at r. Another example is interaction with microwaves. In this
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case, the bare dispersion is corrected by p→ p+ e
c
A, hence

V̂µwave(t) =
e~

2m∗c

∑

k,k′,σ

(k + k
′) · Ak′−k(t) c†kσ ck′σ′ , (13.187)

where m∗ is the band mass.

Consider now a general perturbation Hamiltonian of the form

V̂ = −
∑

i

(
φi(t)C

†
i + φ∗

i (t)Ci
)

(13.188)

where Ci are operators labeled by i. We write

φi(t) =

∞∫

−∞

dω

2π
φ̂i(ω) e

−iωt . (13.189)

According to the general theory of linear response formulated in chapter 9, the power dissipa-
tion due to this perturbation is given by

P (ω) = −iω φ̂∗
i (ω) φ̂j(ω) χ̂CiC

†
j

(ω) + iω φ̂i(ω) φ̂
∗
j(ω) χ̂C†

iCj
(−ω)

− iω φ̂∗
i (ω) φ̂

∗
j(−ω) χ̂CiCj (ω) + iω φ̂i(ω) φ̂j(−ω) χ̂C†

iC
†
j

(−ω) .
(13.190)

where Ĥ = Ĥ0 + V̂ and Ci(t) = eiĤ0t/~ Ci e
−iĤ0t/~ is the operator Ci in the interaction represen-

tation.

χ̂AB(ω) =
i

~

∞∫

0

dt e−iωt
〈[
A(t) , B(0)

]〉
(13.191)

For our application, we have i ≡ (kσ | k′σ′) and j ≡ (pµ | p′µ′), with C†
i = c†kσ ck′σ′ and Cj =

c†p′µ′cpµ , etc. So we need to compute the response function,

χ̂
CiC

†
j

(ω) =
i

~

∞∫

0

dt
〈[
c†k′σ′(t) ckσ(t) , c

†
pµ(0) cp′µ′(0)

]〉
eiωt . (13.192)

OK, so strap in, because this is going to be a bit of a bumpy ride.

We evaluate the commutator in real time and then Fourier transform to the frequency domain.
Using Wick’s theorem for fermions13,

〈c†1 c2 c†3 c4〉 = 〈c†1 c2〉 〈c†3 c4〉 − 〈c†1 c†3〉 〈c2 c4〉+ 〈c†1 c4〉 〈c2 c†3〉 , (13.193)

13Wick’s theorem is valid when taking expectation values in Slater determinant states.
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we have

χ
CiC

†
j

(t) =
i

~

〈[
c†k′σ′(t) ckσ(t) , c

†
pµ(0) cp′µ′(0)

]〉
Θ(t) (13.194)

= − i
~

[
F a
k′σ′(t)F

b
kσ(t)− F c

kσ(t)F
d
k′σ′(t)

]
δp,k δp′,k′ δµ,σ δµ′,σ′

+
i

~

[
Ga
k′σ′(t)G

b
kσ(t)−Gc

kσ(t)G
d
k′σ′(t)

]
σσ′ δp,−k′ δp′,−k δµ,−σ′ δµ′,−σ ,

where, using the Bogoliubov transformation,

ckσ = uk γkσ − σ vk e+iφ γ†−k−σ
c†−k−σ = uk γ

†
−k−σ + σ vk e

−iφ γkσ ,
(13.195)

we find

F a
qν(t) = −iΘ(t)

〈
c†qν(t) cqν(0)

〉
= −iΘ(t)

{
u2q e

iEqt/~ f(Eq) + v2q e
−iEqt/~

[
1− f(Eq)

]}

F b
qν(t) = −iΘ(t)

〈
cqν(t) c

†
qν(0)

〉
= −iΘ(t)

{
u2q e

−iEqt/~
[
1− f(Eq)

]
+ v2q e

iEqt/~ f(Eq)
}

F c
qν(t) = −iΘ(t)

〈
c†qν(0) cqν(t)

〉
= −iΘ(t)

{
u2q e

−iEqt/~ f(Eq) + v2q e
iEqt/~

[
1− f(Eq)

]}

F d
qν(t) = −iΘ(t)

〈
cqν(0) c

†
qν(t)

〉
= −iΘ(t)

{
u2q e

iEqt/~
[
1− f(Eq)

]
+ v2q e

−iEqt/~ f(Eq)
}

(13.196)

and

Ga
qν(t) = −iΘ(t)

〈
c†qν(t) c

†
−q−ν(0)

〉
= −iΘ(t) uq vq e

−iφ
{
eiEqt/~ f(Eq)− e−iEqt/~

[
1− f(Eq)

]}

Gb
qν(t) = −iΘ(t)

〈
cqν(t) c−q−ν(0)

〉
= −iΘ(t) uq vq e

+iφ
{
e−Eqt/~

[
1− f(Eq)

]
− e−iEqt/~ f(Eq)

}

Gc
qν(t) = −iΘ(t)

〈
c†qν(0) c

†
−q−ν(t)

〉
= −iΘ(t) uq vq e

−iφ
{
eiEqt/~

[
1− f(Eq)

]
− e−iEqt/~ f(Eq)

}

Gd
qν(t) = −iΘ(t)

〈
c†qν(0) c

†
−q−ν(t)

〉
= −iΘ(t) uq vq e

+iφ
{
e−iEqt/~ f(Eq)− eiEqt/~

[
1− f(Eq)

]}
.

(13.197)

Taking the Fourier transforms, we have14

F̂ a(ω) =
u2f

ω + E + iǫ
+

v2 (1− f)
ω − E + iǫ

, F̂ c(ω) =
u2f

ω − E + iǫ
+

v2 (1− f)
ω + E + iǫ

(13.198)

F̂ b(ω) =
u2 (1− f)
ω −E + iǫ

+
v2f

ω + E + iǫ
, F̂ d(ω) =

u2 (1− f)
ω + E + iǫ

+
v2f

ω −E + iǫ
(13.199)

14Here we are being somewhat loose and have set ~ = 1 to avoid needless notational complication. We shall
restore the proper units at the end of our calculation.
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and

Ĝa(ω) = u v e−iφ
(

f

ω + E + iǫ
− 1− f
ω − E + iǫ

)
, Ĝc(ω) = u v e+iφ

(
1− f

ω −E + iǫ
− f

ω + E + iǫ

)

(13.200)

Ĝb(ω) = u v e+iφ
(

1− f
ω + E + iǫ

− f

ω − E + iǫ

)
, Ĝd(ω) = u v e+iφ

(
f

ω + E + iǫ
− 1− f
ω −E + iǫ

)
.

(13.201)

Using the result that the Fourier transform of a product is a convolution of Fourier transforms,
we have from Eqn. 13.194,

χ̂
CiC

†
j

(ω) =
i

~
δp,k δp′,k′ δµ,σ δµ′,σ′

∞∫

−∞

dν

2π

[
F̂ c
kσ(ν) F̂

d
k′σ′(ω − ν)− F̂ a

k′σ′(ν) F̂
b
kσ(ω − ν)

]
(13.202)

+
i

~
δp,−k′ δp′,−k δµ,−σ′ δµ′,−σ

∞∫

−∞

dν

2π

[
Ĝa
kσ(ν) Ĝ

b
k′σ′(ω − ν)− Ĝc

k′σ′(ν) Ĝ
d
kσ(ω − ν)

]
.

The integrals are easily done via the contour method. For example, one has

i

∞∫

−∞

dν

2π
F̂ c
kσ(ν) F̂

d
k′σ′(ω − ν) = −

∞∫

−∞

dν

2πi

(
u2 f

ν − E + iǫ
+
v2 (1− f)
ν + E + iǫ

)(
u′ 2 (1− f ′)

ω − ν + E ′ + iǫ
+

v′ 2 f ′

ω − ν − E ′ + iǫ

)

=
u2 u′ 2 (1− f) f ′

ω + E − E ′ + iǫ
+

v2 u′ 2 ff ′

ω − E − E ′ + iǫ
+
u2 v′ 2 (1− f)(1− f ′)

ω + E + E ′ + iǫ
+

v2 v′ 2 f(1− f ′)

ω − E + E ′ + iǫ
. (13.203)

One then finds (with proper units restored),

χ̂
CiC

†
j

(ω) = δp,k δp′,k′ δµ,σ δµ′,σ′

(
u2u′ 2 (f − f ′)

~ω − E + E ′ + iǫ
− v2v′ 2 (f − f ′)

~ω + E − E ′ + iǫ
(13.204)

+
u2v′ 2 (1− f − f ′)

~ω + E + E ′ + iǫ
− v2u′ 2 (1− f − f ′)

~ω − E − E ′ + iǫ

)

+ δp,−k′ δp′,−k δµ,−σ′ δµ′,−σ

(
f ′ − f

~ω −E + E ′ + iǫ
− f ′ − f

~ω + E −E ′ + iǫ

+
1− f − f ′

~ω + E + E ′ + iǫ
− 1− f − f ′

~ω −E − E ′ + iǫ

)
uvu′v′σσ′ .

We are almost done. Note that Ci = c†k′σ′ckσ means C†
i = c†kσck′σ′ , hence once we have χ̂

CiC
†
j

(ω)

we can easily obtain from it χ̂
C†
i C

†
j

(ω) and the other response functions in Eqn. 13.190, simply

by permuting the wavevector and spin labels.
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13.6.1 Case I and case II probes

The last remaining piece in the derivation is to note that, for virtually all cases of interest,

σσ′B(−k′ − σ′ | − k − σ) = η B(kσ | k′σ′) , (13.205)

whereB(kσ | k′σ′) is the transition matrix element in the original fermionic (i.e. ‘pre-Bogoliubov’)
representation, from Eqn. 13.185, and where η = +1 (case I) or η = −1 (case II). The eigenvalue
η tells us how the perturbation Hamiltonian transforms under the combined operations of time
reversal and particle-hole transformation. The action of time reversal is

T | k σ 〉 = σ | − k − σ 〉 ⇒ c†kσ → σ c†−k−σ (13.206)

The particle-hole transformation sends c†kσ → ckσ . Thus, under the combined operation,

∑

k,σ

∑

k′,σ′

B(kσ | k′σ′) c†kσ ck′σ′ → −
∑

k,σ

∑

k′,σ′

σσ′B(−k′ − σ′ | − k − σ) c†kσ ck′σ′ + const.

→ −η
∑

k,σ

∑

k′,σ′

B(kσ | k′σ′) c†kσ ck′σ′ + const. .
(13.207)

If we can write B(kσ | k′σ′) = Bσσ′(ξk, ξk′), then, further assuming that our perturbation corre-
sponds to a definite η , we have that the power dissipated is

P = 1
2
g2(µ)

∑

σ,σ′

∞∫

−∞

dω ω

∞∫

−∞

dξ

∞∫

−∞

dξ′
∣∣Bσσ′(ξ, ξ

′;ω)
∣∣2× (13.208)

{(
uu′ − ηvv′

)2
(f − f ′)

[
δ(~ω + E − E ′) + δ(~ω + E ′ − E)

]

+ 1
2
(uv′ + ηvu′)2 (1− f − f ′)

[
δ(~ω − E − E ′)− δ(~ω + E + E ′)

]}
.

The coherence factors entering the above expression are

1
2
(uu′ − ηvv′)2 = 1

2

(√
E + ξ

2E

√
E ′ + ξ′

2E ′ − η
√
E − ξ
2E

√
E ′ − ξ′
2E ′

)2
=
EE ′ + ξξ′ − η∆2

2EE ′

1
2
(uv′ + ηvu′)2 =

1

2

(√
E + ξ

2E

√
E ′ − ξ′
2E ′ + η

√
E − ξ
2E

√
E ′ + ξ′

2E ′

)2
=
EE ′ − ξξ′ + η∆2

2EE ′ .

(13.209)

Integrating over ξ and ξ′ kills the ξξ′ terms, and we define the coherence factors

F (E,E ′,∆) ≡ EE ′ − η∆2

2EE ′ , F̃ (E,E ′,∆) ≡ EE ′ + η∆2

2EE ′ = 1− F . (13.210)
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case ~ω ≪ 2∆ ~ω ≫ 2∆ ~ω ≈ 2∆ ~ω ≫ 2∆

I (η = +1) F ≈ 0 F ≈ 1
2

F̃ ≈ 1 F̃ ≈ 1
2

II (η = −1) F ≈ 1 F ≈ 1
2

F̃ ≈ 0 F̃ ≈ 1
2

Table 13.1: Frequency dependence of the BCS coherence factors F (E,E+~ω,∆) and F̃ (E, ~ω−
E,∆) for E ≈ ∆.

The behavior of F (E,E ′,∆) is summarized in Tab. 13.1. If we approximate Bσσ′(ξ, ξ
′;ω) ≈

Bσσ′(0, 0 ;ω), and we define |B(ω)|2 =∑σ,σ′

∣∣Bσσ′(0, 0 ;ω)
∣∣2, then we have

P =

∞∫

−∞

dω |B(ω)|2 P(ω) , (13.211)

where

P(ω) ≡ ω

∞∫

∆

dE

∞∫

∆

dE ′ ñ
S
(E) ñ

S
(E ′)

{
F (E,E ′,∆) (f − f ′)

[
δ(~ω + E − E ′) + δ(~ω + E ′ − E)

]

+ F̃ (E,E ′,∆) (1− f − f ′)
[
δ(~ω − E −E ′)− δ(~ω + E + E ′)

]}
, (13.212)

with

ñ
S
(E) =

g(µ) |E|√
E2 −∆2

Θ(E2 −∆2) , (13.213)

which is the superconducting density of states from Eqn. 13.76. Note that the coherence factor
for quasiparticle scattering is F , while that for quasiparticle pair creation or annihilation is

F̃ = 1− F .

13.6.2 Electromagnetic absorption

The interaction of light and matter is given in Eqn. 13.187. We have

B(kσ | k′σ′) =
e~

2mc
(k + k

′) · Ak−k′ δσσ′ , (13.214)

from which we see

σσ′B(−k′ − σ′ | − k − σ) = −B(kσ | k′σ′) , (13.215)
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Figure 13.15: Left: real (σ1) and imaginary (σ2) parts of the conductivity of a superconductor,
normalized by the metallic value of σ1 just above Tc. From J. R. Schrieffer, Theory of Supercon-
ductivity. Right: ratio of PS(ω)/PN(ω) for case I (blue) and case II (red) probes.

hence we have η = −1 , i.e. case II. Let’s set T = 0, so f = f ′ = 0. We see from Eqn. 13.212 that
P(ω) = 0 for ω < 2∆. We then have

P(ω) = 1
2
g2(µ)

~ω−∆∫

∆

dE
E(~ω −E)−∆2

√
(E2 −∆2)

(
(~ω − E)2 −∆2

) . (13.216)

If we set ∆ = 0, we obtain P
N
(ω) = 1

2
ω2. The ratio between superconducting and normal values

is

σ1,S(ω)

σ1,N(ω)
=
P

S
(ω)

P
N
(ω)

=
1

ω

~ω−∆∫

∆

dE
E(~ω − E)−∆2

√
(E2 −∆2)

(
(~ω −E)2 −∆2

) , (13.217)

where σ1(ω) is the real (dissipative) part of the conductivity. The result can be obtained in
closed form in terms of elliptic integrals15, and is

σ1,S(ω)

σ1,N(ω)
=

(
1 +

1

x

)
E

(
1− x
1 + x

)
− 2

x
K

(
1− x
1 + x

)
, (13.218)

where x = ~ω/2∆. The imaginary part σ2,S(ω) may then be obtained by Kramers-Kronig trans-
form, and is

σ2,S(ω)

σ1,N(ω)
=

1

2

(
1 +

1

x

)
E

(
2
√
x

1 + x

)
− 1

2

(
1− 1

x

)
K

(
2
√
x

1 + x

)
. (13.219)

15See D. C. Mattis and J. Bardeen, Phys. Rev. 111, 412 (1958).
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The conductivity sum rule,
∞∫

0

dω σ1(ω) =
πne2

2m
, (13.220)

is satisfied in translation-invariant systems16. In a superconductor, when the gap opens, the
spectral weight in the region ω ∈ (0, 2∆) for case I probes shifts to the ω > 2∆ region. One
finds limω→2∆+ P

S
(ω)/P

N
(ω) = 1

2
π. Case II probes, however, lose spectral weight in the ω > 2∆

region in addition to developing a spectral gap. The missing spectral weight emerges as a delta
function peak at zero frequency. The London equation j = −(c/4πλL)A gives

− iω σ(ω)E(ω) = −iω j(ω) = − c2

4πλ2L
E(ω) , (13.221)

which says

σ(ω) =
c2

4πλ2
L

i

ω
+Qδ(ω) , (13.222)

where Q is as yet unknown17. We can determine the value of Q via Kramers-Kronig, viz.

σ2(ω) = −P

∞∫

−∞

dν

π

σ1(ν)

ν − ω , (13.223)

where P denotes principal part. Thus,

c2

4πλ2
L
ω

= −Q
∞∫

−∞

dν

π

δ(ν)

ν − ω =
Q

π
⇒ Q =

c2

4λ
L

. (13.224)

Thus, the full London σ(ω) = σ1(ω) + iσ2(ω) may be written as

σ(ω) = lim
ǫ→0+

c2

4λ
L

1

ǫ− iπω =
c2

4λ
L

{
δ(ω) +

i

πω

}
. (13.225)

Note that the London form for σ1(ω) includes only the delta-function and none of the structure
due to thermally excited quasiparticles (ω < 2∆) or pair-breaking (ω > 2∆). Nota bene: while
the real part of the conductivity σ1(ω) includes a δ(ω) piece which is finite below 2∆, because
it lies at zero frequency, it does not result in any energy dissipation. It is also important to note
that the electrodynamic response in London theory is purely local. The actual electromagnetic
response kernel Kµν(q, ω) computed using BCS theory is q-dependent, even at ω = 0. This
says that a magnetic field B(x) will induce screening currents at positions x′ which are not too

16Neglecting interband transitions, the conductivity sum rule is satisfied under replacement of the electron mass
m by the band mass m∗.

17Note that ω δ(ω) = 0 when multiplied by any nonsingular function in an integrand.
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distant from x. The relevant length scale here turns out to be the coherence length ξ0 = ~vF/π∆0

(at zero temperature).

At finite temperature, σ1(ω, T ) exhibits a Hebel-Slichter peak, also known as the coherence peak.
Examples from two presumably non-s-wave superconductors are shown in Fig. 13.16.

Impurities and translational invariance

Observant students may notice that our derivation of σ(ω) makes no sense. The reason is that
B(kσ | k′σ′) ∝ (k+ k′) ·Ak−k′ , which is not of the form Bσσ′(ξk, ξk′). For an electromagnetic field
of frequency ω, the wavevector q = ω/cmay be taken to be q → 0, since the wavelength of light
in the relevant range (optical frequencies and below) is enormous on the scale of the Fermi
wavelength of electrons in the metallic phase. We then have that k = k′ + q, in which case the
coherence factor ukvk′ − vkuk′ vanishes as q → 0 and σ1(ω) vanishes as well! This is because
in the absence of translational symmetry breaking due to impurities, the current operator j
commutes with the Hamiltonian, hence matrix elements of the perturbation j · A cannot cause
any electronic transitions, and therefore there can be no dissipation. But this is not quite right,
because the crystalline potential itself breaks translational invariance. What is true is this: with
no disorder, the dissipative conductivity σ1(ω) vanishes on frequency scales below those corresponding
to interband transitions. Of course, this is also true in the metallic phase as well.

As shown by Mattis and Bardeen, if we relax the condition of momentum conservation, which
is appropriate in the presence of impurities which break translational invariance, then we ba-
sically arrive back at the condition B(kσ | k′σ′) ≈ Bσσ′(ξk, ξk′). One might well wonder whether
we should be classifying perturbation operators by the η parity in the presence of impurities,
but provided ∆τ ≪ ~, the Mattis-Bardeen result, which we have derived above, is correct.

13.7 Electromagnetic Response of Superconductors

Here we follow chapter 8 of Schrieffer, Theory of Superconductivity. In chapter 2 the lecture
notes, we derived the linear response result,

〈
jµ(x, t)

〉
= − c

4π

∫
d3x′
∫
dt′ Kµν(x, t x

′, t′)Aν(x′, t′) , (13.226)

where j(x, t) is the electrical current density, which is a sum of paramagnetic and diamagnetic
contributions, viz.

〈
jpµ(x, t)

〉
=

i

~c

∫
d3x′
∫
dt′
〈[
jpµ(x, t), j

p
ν (x

′, t′)
]〉

Θ(t− t′)Aν(x′, t′)
〈
jdµ(x, t)

〉
= − e

mc2
〈
jp0 (x, t)

〉
Aµ(x, t) (1− δµ0) ,

(13.227)



13.7. ELECTROMAGNETIC RESPONSE OF SUPERCONDUCTORS 597

Figure 13.16: Real part of the conductivity σ1(ω, T ) in CeCoIn5 (left; Tc = 2.25K) and in
YBa2Cu3O6.993 (right; Tc = 89K), each showing a coherence peak versus temperature over a
range of low frequencies. Inset at right shows predictions for s-wave BCS superconductors.
Both these materials are believed to involve a more exotic pairing structure. From C. J. S. Trun-
cik et al., Nature Comm. 4, 2477 (2013).

with jp0 (x) = ce n(x). We then conclude18

Kµν(xt; x
′t′) =

4π

i~c2

〈[
jpµ(x, t), j

p
ν (x

′, t′)
]〉

Θ(t− t′)

+
4πe

mc3
〈
jp0 (x, t)

〉
δ(x− x′) δ(t− t′) δµν (1− δµ0) .

(13.228)

In Fourier space, we may write

Kµν(q, t) =

Kp
µν(q,t)︷ ︸︸ ︷

4π

i~c2

〈[
jpµ(q, t), j

p
ν (−q, 0)

]〉
Θ(t) +

Kd
µν(q,t)︷ ︸︸ ︷

4πne2

mc2
δ(t) δµν (1− δµ0) , (13.229)

where the paramagnetic current operator is

j
p(q) = −e~

m

∑

k,σ

(
k + 1

2
q
)
c†kσ ck+q σ . (13.230)

The calculation of the electromagnetic response kernel Kµν(q, ω) is tedious, but it yields all we
need to know about the electromagnetic response of superconductors. For example, if we work
in a gauge where A0 = 0, we have E(ω) = iωA(ω)/c and hence the conductivity tensor is

σij(q, ω) =
ic2

4πω
Kij(q, ω) , (13.231)

18We use a Minkowski metric gµν = gµν = diag(−,+,+,+) to raise and lower indices.
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where i and j are spatial indices. Using the results of §13.6, the diamagnetic response kernel at
ω = 0 is

Kp
ij(q, ω = 0) = −8π~e

2

mc2

∫
d3k

(2π)3
(
ki +

1
2
qi
)(
kj +

1
2
qj
)
L(k, q) , (13.232)

where

L(k, q) =

(
EkEk+q − ξkξk+q −∆k∆k+q

2EkEk+q

)(
1− f(Ek)− f(Ek+q)
Ek + Ek+q + iǫ

)

+

(
EkEk+q + ξkξk+q +∆k∆k+q

2EkEk+q

)(
f(Ek+q)− f(Ek)
Ek − Ek+q + iǫ

)
.

(13.233)

At T = 0, we have f(Ek) = f(Ek+q) = 0, and only the first term contributes. As q → 0, we have
L(k, q → 0) = 0 because the coherence factor vanishes while the energy denominator remains
finite. Thus, only the diamagnetic response remains, and at T = 0 we therefore have

lim
q→0

Kij(q, 0) =
δij
λ2

L

. (13.234)

This should be purely transverse, but it is not – a defect of our mean field calculation. This can
be repaired, but for our purposes it suffices to take the transverse part, i.e.

lim
q→0

Kij(q, 0) =
δij − q̂i q̂j

λ2L
. (13.235)

Thus, as long as λL is finite, the ω → 0 conductivity diverges.

At finite temperature, we have

lim
q→0

L(k, q) = − ∂f
∂E

∣∣∣∣
E=E

k

=
1

kBT
f(Ek)

[
1− f(Ek)

]
, (13.236)

hence

lim
q→0

Kp
ij(q, ω = 0) = − 8π~e2

mc2k
B
T

∫
d3k

(2π)3
ki kj

eEk/kBT
(
eEk/kBT + 1

)2

= −4πne
2

mc2~

[
1− ns(T )

n

]
δij ,

(13.237)

where n = k3
F
/3π2 is the total electron number density, and

ns(T )

n
= 1− ~2β

mk3F

∞∫

0

dk k4
eβEk

(
eβEk + 1

)2 ≡ 1− nn(t)

n
, (13.238)
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where

nn(T ) =
~2

3π2m

∞∫

0

dk k4
(
− ∂f

∂E

)

E=E
k

(13.239)

is the normal fluid density. Expanding about k = k
F
, where − ∂f

∂E
is sharply peaked at low

temperatures, we find

nn(T ) =
~2

3m
· 2
∫

d3k

(2π)3
k2
(
− ∂f

∂E

)

=
~2k2F
3m

g(ε
F
) · 2

∞∫

0

dξ

(
− ∂f

∂E

)
= 2n

∞∫

0

dξ

(
− ∂f

∂E

)
,

(13.240)

which agrees precisely with what we found in Eqn. 3.136. Note that when the gap vanishes at
Tc, the integral yields 1

2
, and thus nn(Tc) = n, as expected.

There is a slick argument, due to Landau, which yields this result. Suppose a superflow is
established at some velocity v. In steady state, any normal current will be damped out, and
the electrical current will be j = −ensv. Now hop on a frame moving with the supercurrent.
The superflow in the moving frame is stationary, so the current is due to normal electrons
(quasiparticles), and j′ = −enn(−v) = +ennv. That is, the normal particles which were at rest
in the lab frame move with velocity −v in the frame of the superflow, which we denote with a
prime. The quasiparticle distribution in this primed frame is

f ′
kσ =

1

eβ(Ek+~v·k) + 1
, (13.241)

since, for a Galilean-invariant system, which we are assuming, the energy is

E ′ = E + v · P + 1
2
Mv

2

=
∑

k,σ

(
Ek + ~k · v

)
nkσ +

1
2
Mv

2 . (13.242)

Expanding now in v ,

j
′ = − e~

mV

∑

k,σ

f ′
kσ k = − e~

mV

∑

k,σ

k

{
f(Ek) + ~k · v ∂f(E)

∂E

∣∣∣∣
E=E

k

+ . . .

}

=
2~2ev

3m

∫
d3k

(2π)3
k2
(
− ∂f

∂E

)

E=E
k

=
~
2ev

3π2m

∞∫

0

dk k4
(
− ∂f

∂E

)

E=E
k

= ennv ,

(13.243)

yielding the exact same expression for nn(T ). So we conclude that λ2
L
= mc2/4πns(T )e

2 , with
ns(T = 0) = n and ns(T > Tc) = 0. The difference ns(0)−ns(T ) is exponentially small in ∆0/kBT
for small T .
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Microwave absorption measurements usually focus on the quantity λL(T ) − λL(0). A piece of
superconductor effectively changes the volume – and hence the resonant frequency – of the
cavity in which it is placed. Measuring the cavity resonance frequency shift ∆ωres as a function
of temperature allows for a determination of the difference ∆λL(T ) ∝ ∆ωres(T ).

Note that anything but an exponential dependence of ∆ lnλL on 1/T indicates that there are
low-lying quasiparticle excitations. The superconducting density of states is then replaced by

gs(E) = gn

∫
dk̂

4π

E√
E2 −∆2(k̂)

Θ
(
E2 −∆2(k̂)

)
, (13.244)

where the gap ∆(k̂) depends on direction in k-space. If g(E) ∝ Eα as E → 0, then

nn(T ) ∝
∞∫

0

dE gs(E)

(
− ∂f

∂E

)
∝ T α , (13.245)

in contrast to the exponential exp(−∆0/kB
T ) dependence for the s-wave (full gap) case. For

example, if
∆(k̂) = ∆0 sinnθ einϕ ∝ ∆0 Ynn(θ, ϕ) , (13.246)

then we find gs(E) ∝ E2/n. For n = 2 we would then predict a linear dependence of ∆ lnλ
L
(T )

on T at low temperatures. Of course it is also possible to have line nodes of the gap function,
e.g. ∆(k̂) = ∆0 (3 cos

2 θ − 1) ∝ ∆0 Y20(θ, ϕ).

EXERCISE: Compute the energy dependence of gs(E) when the gap function has line nodes.



Chapter 14

Magnetism

14.1 Introduction

Magnetism arises from two sources. One is the classical magnetic moment due to a current
density j:

m =
1

2c

∫
d3r r × j . (14.1)

The other is the intrinsic spin S of a quantum-mechanical particle (typically the electron):

m = gµ0S/~ ; µ0 =
q~

2mc
= magneton, (14.2)

where g is the g-factor (duh!). For the electron, q = −e and µ0 = −µB, where µB = e~/2mc is the
Bohr magneton.

The Hamiltonian for a single electron is

Ĥ =
π2

2m
+ V (r) +

e~

2mc
σ ·H +

~

4m2c2
σ ·∇V × π +

~
2

8m2c2
∇

2V +
(π2)2

8m3c2
+ . . . , (14.3)

where π = p+ e
c
A. Where did this come from? From the Dirac equation,

i~
∂Ψ

∂t
=

(
mc2 + V cσ · π
cσ · π −mc2 + V

)
Ψ = EΨ . (14.4)

The wavefunction Ψ is a four-component Dirac spinor. Since mc2 is the largest term for our
applications, the upper two components of Ψ are essentially the positive energy components.
However, the Dirac Hamiltonian mixes the upper two and lower two components of Ψ. One
can ‘unmix’ them by making a canonical transformation,

Ĥ −→ Ĥ ′ ≡ eiS Ĥ e−iS , (14.5)

601



602 CHAPTER 14. MAGNETISM

where S is Hermitian, to render Ĥ ′ block diagonal. WithE = mc2+ε, the effective Hamiltonian
is given by (14.3). This is known as the Foldy-Wouthuysen transformation, the details of which
may be found in many standard books on relativistic quantum mechanics and quantum field
theory (e.g. Bjorken and Drell, Itzykson and Zuber, etc.) and are recited in §14.11 below. Note
that the Dirac equation leads to g = 2. If we go beyond “tree level” and allow for radiative
corrections within QED, we obtain a perturbative expansion,

g = 2

{
1 +

α

2π
+O(α2)

}
, (14.6)

where α = e2/~c ≈ 1/137 is the fine structure constant.1

There are two terms in (14.3) which involve the electron’s spin:

Zeeman interaction : Ĥ
Z
=

e~

2mc
σ ·H

Spin-orbit interaction : Ĥso =
~

4m2c2
σ ·∇V ×

(
p+ e

c
A
)

.
(14.7)

The numerical value for µB is

µ
B
=

e~

2mc
= 5.788× 10−9 eV/G

µB/kB = 6.717× 10−5K/G .

(14.8)

So on the scale of electron volts, laboratory scale fields (H <∼ 106G) are rather small. (And∼2000
times smaller for nucleons!).

The thermodynamic magnetization density is defined through

M = − 1

V

∂F

∂H
, (14.9)

where F (T, V,H, N) is the Helmholtz free energy. The susceptibility is then

χ
αβ(r | r′) = −

1

V

∂2F

∂Hα(r) ∂Hβ(r′)
. (14.10)

When the field H(r, t) is time-dependent, we must use time-dependent perturbation theory to
compute the time-dependent susceptibility function,

χαβ(r, t | r′, t′) =
δ
〈
Mα(r, t)

〉

δHβ(r′, t′)
, (14.11)

where F is replaced by a suitable generating function in the nonequilibrium case. Note that M
has the dimensions of H .
1Note that with µn = e~/2mpc for the nuclear magneton, gp = 2.793 and gn = −1.913. These results immediately
suggest that there is composite structure to the nucleons, i.e. quarks.
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14.1.1 Absence of orbital magnetism within classical physics

It is amusing to note that classical statistical mechanics cannot account for orbital magnetism.
This is because the partition function is independent of the vector potential, which may be seen
by simply shifting the origin of integration for the momentum p:

Z(A) = Tr e−βĤ =

∫
dNr dNp

(2π~)dN
e−βĤ({pi−

q
c
A(ri),ri})

=

∫
dNr dNp

(2π~)dN
e−βĤ({pi,ri}) = Z(A = 0) .

(14.12)

Thus, the free energy must be independent of A and hence independent of H = ∇ × A, and
M = −∂F/∂H = 0. This inescapable result is known as the Bohr-von Leeuwen theorem. Of
course, classical statistical mechanics can describe magnetism due to intrinsic spin, e.g.

ZHeisenberg(H) =
∏

i

∫
dΩ̂i
4π

eβJ
∑

〈ij〉 Ω̂i·Ω̂j eβgµ0H·
∑
i Ω̂i

ZIsing(H) =
∑

{σi}
eβJ

∑
〈ij〉 σi σj eβgµ0H

∑
i σi .

(14.13)

Theories of magnetism generally fall into two broad classes: localized and itinerant. In the
localized picture, we imagine a set of individual local moments mi localized at different points
in space (typically, though not exclusively, on lattice sites). In the itinerant picture, we focus on
delocalized Bloch states which also carry electron spin.

14.2 Basic Atomic Physics

14.2.1 Single electron Hamiltonian

We start with the single-electron Hamiltonian,

Ĥ =
1

2m

(
p+

e

c
A

)2
+ V (r) + gµBH · s/~+

1

2m2c2
s ·∇V ×

(
p+ e

c
A
)

, (14.14)

where the single electron spin operator is s = 1
2
~σ. For a single atom or ion in a crystal, let us

initially neglect effects due to its neighbors. In that case the potential V (r) may be taken to be
spherically symmetric, so with l = r× p, the first term in the spin-orbit part of the Hamiltonian
becomes

Ĥso =
1

2m2c2
s ·∇V × p = 1

2m2c2
1

r

∂V

∂r
s · l , (14.15)
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with ∇V = r̂(∂V/∂r). We adopt the gauge A = 1
2
H × r so that

1

2m

(
p+

e

c
A

)2
=

p2

2m
+

e

2mc
H · l + e2

8mc2
(H × r)2 . (14.16)

Finally, restoring the full SO term, we have

Ĥ =
p2

2m
+ V (r) +

1

~
µ

B
(l+ 2s) ·H +

1

2m2c2
1

r

∂V

∂r
l · s

+
e2

8mc2
(H × r)2 + µ

B

~

rV ′(r)

4mc2
2s ·

[
H − r̂(H · r̂)

]
.

(14.17)

The last term is usually negligible because rV ′(r) is on the scale of electron volts, while mc2 =
511 keV is the electron mass2. The (H × r)2 breaks the rotational symmetry of an isolated ion,
so in principal we cannot describe states by total angular momentum J . However, this effect is
of order H2, so if we only desire energies to order H2, we needn’t perturb the wavefunctions
themselves with this term, i.e. we can simply treat it within first order perturbation theory,

leading to an energy shift e2

8mc2
〈n | (H × r)2 |n 〉 in state |n 〉.

14.2.2 The Darwin term

If V (r) = −Ze2/r, then from ∇
2(1/r) = −4πδ(r) we have

~2

8m2c2
∇

2V =
Zπe2~2

2m2c2
δ(r) , (14.18)

which is centered at the nucleus. This leads to an energy shift for s-wave states,

∆Es−wave =
Zπe2~2

2m2c2

∣∣ψ(0)
∣∣2 = π

2
Z α2a3

B

∣∣ψ(0)
∣∣2 · e

2

aB

, (14.19)

where α = e2

~c
≈ 1

137
is the fine structure constant and a

B
= ~2

me2
≈ 0.529 Å is the Bohr radius.

For large Z atoms and ions, the Darwin term contributes a significant contribution to the total
energy.

14.2.3 Many electron Hamiltonian

The full N-electron atomic Hamiltonian, for nuclear charge Ze, is then

Ĥ =

N∑

i=1

[
p2i

2m
− Ze2

ri

]
+

N∑

i<j

e2

|ri − rj|
+

N∑

i=1

ζ(ri) li · si

+
N∑

i=1

{
µB

~
(li + 2si) ·H +

e2

8mc2
(H × ri)2

}
,

(14.20)

2Exercise: what happens in the case of high Z atoms?
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where li = ri × pi and

ζ(r) =
Ze2

2m2c2
1

r3
=
Z

~2

(
e2

~c

)2
e2

2aB

(a
B

r

)3
. (14.21)

The total orbital and spin angular momentum are L =
∑

i li and S =
∑

i si, respectively.

The full many-electron atom is too difficult a problem to solve exactly. Generally progress
is made by using the Hartree-Fock method to reduce the many-body problem to an effective
one-body problem. One starts with the interacting Hamiltonian

Ĥ =
N∑

i=1

[
p2i

2m
− Ze2

ri

]
+

N∑

i<j

e2

|ri − rj|
, (14.22)

and treats Ĥso as a perturbation, and writes the best possible single Slater determinant state:

Ψσ1···σN
(r1, . . . , rN) = A

[
ϕ
1σ1

(r1) · · ·ϕNσN (rN)
]

, (14.23)

whereA is the antisymmetrizer, andϕiσ(r) is a single particle wavefunction. In second-quantized
notation, the Hamiltonian is

Ĥ =
∑

ijσ

T σij ψ
†
iσ ψjσ +

∑

ijkl
σσ′

V σσ′

ijkl ψ
†
iσ ψ

†
jσ′ ψkσ′ ψlσ , (14.24)

where

T σij =

∫
d3r ϕ∗

iσ(r)

{
− ~2

2m
∇2 − Ze2

|r|

}
ϕjσ(r)

V σσ′

ijkl =
1
2

∫
d3r

∫
d3r′ ϕ∗

iσ(r)ϕ
∗
jσ′(r

′)
e2

|r − r′| ϕkσ′(r
′)ϕlσ(r) .

(14.25)

The Hartree-Fock energy is given by a sum over occupied orbitals:

EHF =
∑

iσ

T σii +
∑

ijσσ′

(
V σσ′

ijji − V σσ′

ijij δσσ′
)

. (14.26)

The term V σσ′

ijji is called the direct Coulomb, or “Hartree” term, and V σσ′

ijij δσσ′ is the exchange
term. Introducing Lagrange multipliers εiσ to enforce normalization of the {ϕiσ(r)} and subse-
quently varying with respect to the wavefunctions yields the Hartree-Fock equations:

0 =
δE

HF

δϕiσ(r)

∣∣∣∣∣
〈Ψ |Ψ〉=1

=⇒ (14.27)

εiσ ϕiσ(r) =

{
− ~2

2m
∇2 − Ze2

r

}
ϕiσ(r) +

OCC∑

j 6=i,σ′

∫
d3r′

∣∣ϕjσ′(r′)
∣∣2

|r − r′| ϕiσ(r)−
OCC∑

j 6=i

∫
d3r′

ϕ∗
jσ(r

′)ϕiσ(r
′)

|r − r′| ϕjσ(r) ,
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which is a set ofN coupled integro-differential equations. Multiplying byϕ∗
i (r) and integrating,

we find

εiσ = T σii + 2

OCC∑

jσ′

(
V σσ′

ijji − V σσ′

ijij δσσ′
)

. (14.28)

It is a good approximation to assume that the Hartree-Fock wavefunctions ϕi(r) are spherically
symmetric, i.e.

ϕiσ(r) = Rnl(r) Ylm(θ, φ) , (14.29)

independent of σ. We can then classify the single particle states by the quantum numbers
n ∈ {1, 2, . . .}, l ∈ {0, 1, . . . , n − 1}, ml ∈ {−l, . . . ,+l}, and ms = ±1

2
. The essential physics

introduced by the Hartree-Fock method is that of screening. Close to the origin, a given electron
senses a potential −Ze2/r due to the unscreened nucleus. Farther away, though, the nuclear
charge is screened by the core electrons, and the potential decays faster than 1/r. (Within
the Thomas-Fermi approximation, the potential at long distances decays as −Ce2a3

B
/r4, where

C ≃ 100 is a numerical factor, independent of Z.) Whereas states of different l and identical n
are degenerate for the noninteracting hydrogenic atom, when the nuclear potential is screened,
states of different l are no longer degenerate. Smaller l means smaller energy, since these states
are localized closer to the nucleus, where the potential is large and negative and relatively
unscreened. Hence, for a given n, the smaller l states fill up first. For a given l and n there are
(2s + 1) × (2l + 1) = 4l + 2 states, labeled by the angular momentum and spin polarization
quantum numbers ml and ms.

14.3 The Periodic Table

An excellent discussion is to be found in chapter 20 of G. Baym’s Lectures on Quantum Me-
chanics. The eigenspectrum of single electron hydrogenic atoms is specified by quantum num-
bers n ∈ {1, 2, . . .}, l ∈ {0, 1, . . . , n − 1}, ml ∈ {−l, . . . ,+l}, and ms = ±1

2
. The bound state

energy eigenvalues Enl = −e2/2naB
, where a

B
= ~2/me2 = 0.529 Å is the Bohr radius, depend

only on the principal quantum number n. Accounting for electron-electron interactions using
the Hartree-Fock method3, the essential physics of screening is introduced, a result of which is
that states of different l for a given n are no longer degenerate. Smaller l means lower energy
since those states are localized closer to the nucleus, where the potential is less screened. Thus,
for a given n, the smaller l states fill up first. For a given n and l, there are (2s+1)×(2l+1) = 4l+2
states, labeled by ml and ms. This group of orbitals is called a shell.

3Hartree-Fock theory tends to overestimate ground state atomic energies by on the order of 1 eV per pair of
electrons. The reason is that electron-electron correlations are not adequately represented in the Hartree-Fock
many-body wavefunctions, which are single Slater determinants.
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Figure 14.1: The Aufbau principle and the diagonal rule. Image credit: Wikipedia.

14.3.1 Aufbau principle

Based on the HF energy levels, the order in which the electron shells are filled throughout the
periodic table is roughly given by that in Fig. 14.1. This is known as the Aufbau principle from
the German Aufbau = ”building up”. The order in which the orbitals are filled follows the diag-
onal rule, which says that orbitals with lower values of n + l are filled before those with higher
values, and that in the case of equal n + l values, the orbital with the lower n is filled first.
There are hiccups here and there. For example, in filling the 3d shell of the transition metal
series (row four of the PT) , 21Sc, 22Ti, and 23V, are configured as [Ar] 4s2 3d1, [Ar] 4s2 3d2, and
[Ar] 4s2 3d3, respectively, but chromium’s (dominant) configuration is [Ar] 4s1 3d5. Similarly,
copper is [Ar] 4s1 3d10 rather than the expected [Ar] 4s2 3d9. For palladium, the diagonal rule
predicts an electronic configuration [Kr] 5s2 4d8 whereas experiments say it is [Kr] 5s0 4d10 Go
figure. Again, don’t take this shell configuration stuff too seriously, because the atomic ground
states are really linear combinations of different shell configurations, so we should really think
of these various configurations as being the dominant ones among a more general linear com-
bination of states. Row five pretty much repeats row four, with the filling of the 5s, 4d, and 5p
shells. In row six, the lanthanide (4f) series interpolates between the 6s and 5d shells, as the 5f
actinide series interpolates in row seven between 7s and 6d.

Shell: 1s 2s 2p 3s 3p 4s 3d 4p 5s

Termination: 2He 4Be 10Ne 12Mg 18Ar 20Ca 30Zn 36Kr 38Sr

Shell: 4d 5p 6s 4f 5d 6p 7s 5f/6d

Termination: 48Cd 54Xe 56Ba 70Yb 80Hg 86Rn 88Ra 102No

Table 14.1: Rough order in which shells of the Periodic Table are filled.
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As we see from table 14.2, there are two anomalies in the otherwise orderly filling of the 3d
shell. Chromium’s configuration is [Ar] 4s1 3d5 rather than the expected [Ar] 4s2 3d4, and cop-
per’s is [Ar] 4s1 3d10 and not [Ar] 4s2 3d9. In reality, the ground state is not a single Slater deter-
minant and involves linear combinations of different configurations. But the largest weights
are for Cr and Cu configurations with only one 4s electron. Zinc terminates the 3d series, after
which we get orderly filling of the 4p orbitals.

The 3d transition metal series ([Ar] core additions)

Element (AZ) Sc21 Ti22 V23 Cr24 Mn25

Configuration 4s2 3d1 4s2 3d2 4s2 3d3 4s1 3d5 4s2 3d5

Element (AZ) Fe26 Co27 Ni28 Cu29 Zn30

Configuration 4s2 3d6 4s2 3d7 4s2 3d8 4s1 3d10 4s2 3d10

Table 14.2: Electronic configuration of 3d-series metals.

14.3.2 Splitting of configurations: Hund’s rules

The electronic configuration does not uniquely specify a ground state. Consider, for example,
carbon, whose configuration is 1s2 2s2 2p2. The filled 1s and 2s shells are inert. However, there
are

(
6
2

)
= 15 possible ways to put two electrons in the 2p shell. It is convenient to label these

states by total L, S, and J quantum numbers, where J = L+ S is the total angular momentum.
It is standard to abbreviate each such multiplet with the label 2S+1LJ , called a term, where
L = S, P, D, F, G, H, etc.. For carbon, the largest L value we can get is L = 2, which requires

S = 0 and hence J = L = 2. This 5-fold degenerate multiplet is then abbreviated 1D2. But
we can also add together two l = 1 states to get total angular momentum L = 1 as well.
The corresponding spatial wavefunction is antisymmetric, hence S = 1 in order to achieve a
symmetric spin wavefunction. Since |L − S| 6 J 6 |L + S| we have J = 0, J = 1, or J = 2

corresponding to multiplets 3P0, 3P1, and 3P2, with degeneracy 1, 3, and 5, respectively. The

final state has J = L = S = 0: 1S0. The Hilbert space is then spanned by two J = 0 singlets,
one J = 1 triplet, and two J = 2 quintuplets: 0⊕ 0⊕ 1⊕ 2⊕ 2. That makes 15 states. Which of
these is the ground state?

The ordering of the multiplets is determined by the famous Hund’s rules:

1. The LS multiplet with the largest S has the lowest energy.

2. If the largest value of S is associated with several multiplets, the multiplet with the largest
L has the lowest energy.
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Figure 14.2: Variation of L, S, and J among the 3d and 4f series.

3. If an incomplete shell is not more than half-filled, then the lowest energy state has J =
|L− S|. If the shell is more than half-filled, then J = L+ S.

Hund’s rules are largely empirical, but are supported by detailed atomic quantum many-body
calculations. Basically, rule #1 prefers large S because this makes the spin part of the wave-
function maximally symmetric, which means that the spatial part is maximally antisymmetric.
Electrons, which repel each other, prefer to exist in a spatially antisymmetric state. As for rule
#2, large L expands the electron cloud somewhat, which also keeps the electrons away from
each other. For neutral carbon, the ground state has S = 1, L = 1, and J = |L − S| = 0, hence
the ground state term is 3P0.

Let’s practice Hund’s rules on a couple of ions:

• P: The electronic configuration for elemental phosphorus is [Ne] 3s2 3p3. The unfilled 3d
shell has three electrons. First maximize S by polarizing all spins parallel (up, say), yield-
ing S = 3

2
. Next maximize L consistent with Pauli exclusion, which says L = −1+0+1 =

0. Finally, since the shell is exactly half-filled, and not more, J = |L − S| = 3
2
, and the

ground state term is 4S3/2.

• Mn4+: The electronic configuration [Ar] 4s0 3d3 has an unfilled 3d shell with three elec-
trons. First maximize S by polarizing all spins parallel, yielding S = 3

2
. Next maximize L

consistent with Pauli exclusion, which says L = 2 + 1 + 0 = 3. Finally, since the shell is
less than half-filled, J = |L− S| = 3

2
. The ground state term is 4F3/2.

• Fe2+: The electronic configuration [Ar] 4s0 3d6 has an unfilled 3d shell with six electrons,
or four holes. First maximize S by making the spins of the holes parallel, yielding S = 2.
Next, maximize L consistent with Pauli exclusion, which says L = 2 + 1 + 0 + (−1) = 2
(adding Lz for the four holes). Finally, the shell is more than half-filled, which means
J = L+ S = 4. The ground state term is 5D4.



610 CHAPTER 14. MAGNETISM

np 0 1 2 3 4 5 6

L 0 1 1 0 1 1 0

S 0 1
2

1 3
2

1 1
2

0

J 0 1
2

0 3
2

2 3
2

0

nd 0 1 2 3 4 5 6 7 8 9 10

L 0 2 3 3 2 0 2 3 3 2 0

S 0 1
2

1 3
2

2 5
2

2 3
2

1 1
2

0

J 0 3
2

2 3
2

0 5
2

4 9
2

4 5
2

0

nf 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

L 0 3 5 6 6 5 3 0 3 5 6 6 5 3 0

S 0 1
2

1 3
2

2 5
2

3 7
2

3 5
2

2 3
2

1 1
2

0

J 0 5
2

4 9
2

4 5
2

0 7
2

6 15
2

8 15
2

6 7
2

0

Table 14.3: Hund’s rules applied to p, d, and f shells.

• Nd3+: The electronic configuration [Xe] 6s0 4f3 has an unfilled 4f shell with three electrons.
First maximize S by making the electron spins parallel, yielding S = 3

2
. Next, maximize L

consistent with Pauli exclusion: L = 3+2+1 = 6. Finally, the shell is less than half-filled,
we have J = |L− S| = 9

2
. The ground state term is 4I9/2.

14.3.3 Spin-orbit interaction

Hund’s third rule derives from an analysis of the spin-orbit Hamiltonian,

Ĥso =
N∑

i=1

ζ(ri) li · si . (14.30)

This commutes with J2, L2, and S2, so we can still classify eigenstates according to total J , L,
and S. The Wigner-Eckart theorem then guarantees that within a given J multiplet, we can
replace any tensor operator transforming as

RTJM R† =
∑

M ′

DJMM ′(α, β, γ) TJM ′ , (14.31)
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whereR corresponds to a rotation through Euler angles α, β, and γ, by a product of a reduced
matrix element and a Clebsch-Gordon coefficient:

〈
JM

∣∣TJ ′′M ′′

∣∣ J ′M ′ 〉 = C

(
J

M

J ′

M ′
J ′′

M ′′

)〈
J
∣∣∣∣TJ ′′

∣∣∣∣J ′〉 . (14.32)

In other words, if two tensor operators have the same rank, their matrix elements are propor-

tional. Both Ĥso and L · S are products of rank L = 1, S = 1 tensor operators, hence we may
replace

Ĥso −→ ˆ̃Hso = ΛL · S , (14.33)

where Λ = Λ(N,L, S) must be computed from, say, the expectation value of Ĥso in the state∣∣ JLSJ
〉
. This requires detailed knowledge of the atomic many-body wavefunctions. However,

once Λ is known, the multiplet splittings are easily obtained:

ˆ̃Hso =
1
2
Λ
(
J
2 − L2 − S2)

= 1
2
~
2 Λ
(
J(J + 1)− L(L+ 1)− S(S + 1)

)
.

Thus,
E(N,L, S, J)− E(N,L, S, J − 1) = ΛJ ~

2 . (14.34)

If we replace ζ(ri) by its average, then we can find Λ by the following argument. If the last
shell is not more than half filled, then by Hund’s first rule, the spins are all parallel. Thus
we have S = 1

2
N and si = S/N , whence Λ = 〈ζ〉/2S. Finding 〈ζ〉 is somewhat tricky. For

Z−1 ≪ r/a
B
≪ 1, one can use the WKB method to obtain ψ(r = a

B
/Z) ∼

√
Z, whence

〈ζ〉 ∼
(
Ze2

~c

)2
me4

~4
(14.35)

and Λ ∼ Z2 α2 ~−2Ry , where α = e2/~c ≃ 1/137. For heavy atoms, Zα ∼ 1 and the energy is
on the order of that for the outer electrons in the atom.

For shells which are more than half filled, we treat the problem in terms of the holes relative to
the filled shell case. Since filled shells are inert,

Ĥso = −
Nh∑

j=1

ζ(ri) l̃j · s̃j , (14.36)

where Nh = 4l + 2 − N . l̃j and s̃j are the orbital and spin angular momenta of the holes;

L = −∑j l̃j and S = −∑j s̃j . We then conclude Λ = −〈ζ〉/2S. Thus, we arrive at Hund’s third
rule, which says

N 6 2l + 1 (6 half-filled) ⇒ Λ > 0 ⇒ J = |L− S|
N > 2l + 1 (> half-filled) ⇒ Λ < 0 ⇒ J = |L+ S| .

(14.37)
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14.3.4 Crystal field splittings

Consider an ion with a single d electron (e.g. Cr3+) or a single d hole (e.g. Cu2+) in a cubic or
octahedral environment. The 5-fold degeneracy of the d levels is lifted by the crystal electric
field. Suppose the atomic environment is octahedral, with anions at the vertices of the octahe-
dron (typically O2− ions). In order to minimize the Coulomb repulsion between the d electron

and the neighboring anions, the dx2−y2 and d3x2−r2 orbitals are energetically disfavored, and this

doublet lies at higher energy than the {dxy, dxz, dyz} triplet.

The crystal field potential is crudely estimated as

V
CF

=

(nbrs)∑

R

V (r − R) , (14.38)

where the sum is over neighboring ions, and V is the atomic potential.

Figure 14.3: Effect on s, p, and d levels of a cubic crystal field.
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Figure 14.4: The splitting of one-electron states in different crystal field environments.

The angular dependence of the cubic crystal field states may be written as follows:

dx2−y2(r̂) =
1√
2
Y2,2(r̂) +

1√
2
Y2,−2(r̂)

d3z2−r2(r̂) = Y2,0(r̂)

dxy(r̂) =
i√
2
Y2,−2(r̂)− i√

2
Y2,2(r̂)

dxz(r̂) =
1√
2
Y2,1(r̂) +

1√
2
Y2,−1(r̂)

dyz(r̂) =
i√
2
Y2,−1(r̂)− i√

2
Y2,1(r̂) .

(14.39)

Note that all of these wavefunctions are real. This means that the expectation value of Lz, and
hence of general Lα, must vanish in any of these states. This is related to the phenomenon of
orbital quenching, discussed below.

If the internal Hund’s rule exchange energy JH which enforces maximizing S is large compared
with the ground state crystal field splitting ∆, then Hund’s first rule is unaffected. However,
there are examples of ions such as Co4+ for which JH < VCF. In such cases, the crystal field
splitting wins and the ionic ground state is a low spin state. For Co4+ in an octahedral crystal
field, the five 3d electrons all pile into the lower 3-fold degenerate t2g manifold, and the spin
is S = 1

2
. When the Hund’s rule energy wins, the electrons all have parallel spin and S = 5

2
,

which is the usual high spin state.
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14.4 Magnetic Susceptibility of Atomic and Ionic Systems

To compute the susceptibility, we will need to know magnetic energies to order H2. This can

be computed via perturbation theory. Treating the H = 0 Hamiltonian as Ĥ0, we have

En(H) = En(0) +
1

~
µBH ·

〈
n
∣∣L+ 2S

∣∣n
〉
+

e2

8mc2
〈
n
∣∣

Zion∑

i=1

(H × ri)2
∣∣n
〉

+
1

~2
µ2

BH
αHβ

∑

n′ 6=n

〈
n
∣∣Lα + 2Sα

∣∣n′ 〉 〈n′ ∣∣Lβ + 2Sβ
∣∣n
〉

En − En′

+O(H3) ,

(14.40)

where Zion is the number of electrons on the ion or atom in question. Since the (H × ri)
2

Larmor term is already second order in the field, its contribution can be evaluated in first order
perturbation theory, i.e. by taking its expectation value in the state

∣∣n
〉
. The (L+ 2S) ·H term,

which is linear in the field, is treated in second order perturbation theory.

14.4.1 Filled shells: Larmor diamagnetism

If the ground state
∣∣G
〉

is a singlet with J
∣∣G
〉
= L

∣∣G
〉
= S

∣∣G
〉
= 0, corresponding to a

filled shell configuration, then the only contribution to the ground state energy shift is from the
Larmor term,

∆E0(H) =
e2H2

12mc2
〈
G
∣∣
Zion∑

i=1

r
2
i

∣∣G
〉

, (14.41)

and the susceptibility is

χ = −N
V

∂2∆E0

∂H2
= − ne2

6mc2
〈
G
∣∣

Zion∑

i=1

r
2
i

∣∣G
〉

, (14.42)

where n = N/V is the density of ions or atoms in question. The sum is over all the electrons in
the ion or atom. Defining the mean square ionic radius as

〈r2〉 ≡ 1

Zion

〈
G
∣∣

Zion∑

i=1

r
2
i

∣∣G
〉

, (14.43)

we obtain

χ = − ne2

6mc2
Zion〈r2〉 = −1

6
Zion na

3
B

(
e2

~c

)2 〈r2〉
a2B

. (14.44)
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Molar Susceptibilities of Noble Gas Atoms and Alkali and Halide Ions

Atom or Molar Atom or Molar Atom or Molar

Ion Susceptibility Atom or Ion Susceptibility Atom or Ion Susceptibility

He -1.9 Li+ -0.7

F− -9.4 Ne -7.2 Na+ -6.1

Cl− -24.2 Ar -19.4 K+ -14.6

Br− -34.5 Kr -28 Rb+ -22.0

I− -50.6 Xe -43 Cs+ -35.1

Table 14.4: Molar susceptibilities, in units of 10−6 cm3/mol, of noble gas atoms and alkali and
halide ions. (See R. Kubo and R. Nagamiya, eds., Solid State Physics, McGrow-Hill, 1969, p.
439.)

Note that χ is dimensionless. One defines the molar susceptibility as

χmolar ≡ NAχ/n = −1
6
ZionNAa

3
B

(
e2

~c

)2 〈
(r/aB)

2
〉

= −7.91× 10−7 Zion

〈
(r/a

B
)2
〉
cm3/mol .

(14.45)

Typically, 〈(r/aB)
2〉 ∼ 1. Note that with na3B ≃ 0.1, we have |χ|<∼ 10−5 and M = χH is much

smaller than H itself.

14.4.2 Partially filled shells: van Vleck paramagnetism

There are two cases to consider here. The first is when J = 0, which occurs whenever the last
shell is one electron short of being half-fille. Examples include Eu3+ (4f6), Cr2+ (3d4), Mn3+

(3d4), etc. In this case, the first order term vanishes in ∆E0, and we have

χ = − ne2

6mc2
〈G |

Zion∑

i=1

r
2
i |G 〉+ 2nµ2

B

∑

n 6=0

∣∣〈n |Lz + 2Sz |G 〉
∣∣2

En − E0

. (14.46)

The second term is positive, favoring alignment of M with H . This is called van Vleck paramag-
netism, and competes with the Larmor diamagnetism.

The second possibility is J > 0, which occurs in all cases except filled shells and shells which
are one electron short of being half-filled. In this case, the first order term is usually dominant.
We label the states by the eigenvalues of the commuting observables {J2, Jz,L2,S2}. From the
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Figure 14.5: Reduced magnetization curves for three paramagnetic salts and comparison with
Brillouin theory predictions. L(x) = BJ→∞(x) = ctnh (x)− x−1 is the Langevin function.

Wigner-Eckart theorem, we know that
〈
JLSJz

∣∣L+ 2S
∣∣JLSJ ′

z

〉
= gL(J, L, S)

〈
JLSJz

∣∣ J
∣∣ JLSJ ′

z

〉
, (14.47)

where

gL(J, L, S) =
3
2
+
S(S + 1)− L(L+ 1)

2J(J + 1)
(14.48)

is known as the Landé g-factor. Thus, the effective Hamiltonian is

Ĥeff = g
L
µ

B
J ·H/~ . (14.49)

The eigenvalues of Ĥeff are Ej = j γ H , where j ∈ {−J, . . . ,+J} and γ = g
L
µ

B
. The problem is

reduced to an elementary one in statistical mechanics. The partition function is

Z = e−F/kBT =
J∑

j=−J
e−jγH/kBT =

sinh
(
(J + 1

2
)γH/kBT

)

sinh
(
γH/2k

B
T
) . (14.50)

The magnetization density is

M = −N
V

∂F

∂H
= nγJ BJ(JγH/kBT ) , (14.51)

where BJ(x) is the Brillouin function,

BJ(x) =
(
1 + 1

2J

)
ctnh

[(
1 + 1

2J

)
x
]
− 1

2J
ctnh (x/2J) . (14.52)

The magnetic susceptibility is thus

χ(H, T ) =
∂M

∂H
=
nJ2γ2

k
B
T

B′
J(JγH/kBT )

= (Jg
L
)2 (na3

B
) (e2/~c)2

(
e2/aB

kBT

)
B′
J (gµB

JH/k
B
T ) .

(14.53)
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Calculated and Measured Magneton Numbers of Rare Earth Ions

Electronic Ground State magneton magneton

Ion Configuration Term (2S+1)LJ ptheory pexpt

La3+ [Xe] 4f0 1S0 0.00 < 0

Ce3+ [Xe] 4f1 2F5/2 2.54 2.4

Pr3+ [Xe] 4f2 3H4 3.58 3.5

Nd3+ [Xe] 4f3 4I9/2 3.62 3.5

Pm3+ [Xe] 4f4 5I4 2.68 –

Sm3+ [Xe] 4f5 6H5/2 0.84 1.5

Eu3+ [Xe] 4f6 7F0 0.00 3.4

Gd3+ [Xe] 4f7 8S7/2 7.94 8.0

Tb3+ [Xe] 4f8 7F6 9.72 9.5

Dy3+ [Xe] 4f9 6H15/2 10.63 10.6

Ho3+ [Xe] 4f10 5I8 10.60 10.4

Er3+ [Xe] 4f11 4I15/2 9.59 9.5

Tm3+ [Xe] 4f12 3H6 7.57 7.3

Yb3+ [Xe] 4f13 2F7/2 4.54 4.5

Lu3+ [Xe] 4f14 1S0 0.00 < 0

Table 14.5: Calculated and measured effective magneton numbers p for rare earth ions. (From
N. W. Ashcroft and N. D. Mermin, Solid State Physics.) The discrepancy in the cases of Sm and
Eu is due to the existence of low-lying multiplets above the ground state.

At H = 0,

χ(H = 0, T ) = 1
3
(gLµB)

2 n
J(J + 1)

k
B
T

. (14.54)

The inverse temperature dependence is known as Curie’s law.

Does Curie’s law work in solids? The 1/T dependence is very accurately reflected in insulating
crystals containing transition metal and rare earth ions. We can fit the coefficient of the 1/T
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Calculated and Measured Magneton Numbers of Transition Metal Ions

Electronic Ground State magneton magneton magneton

Ion Configuration Term (2S+1)LJ p
J=|L±S|
theory p

J=S
theory pexpt

Ti3+ [Ar] 3d1 2D3/2 1.55 1.73 –

V4+ [Ar] 3d1 2D3/2 1.55 1.73 1.8

V3+ [Ar] 3d2 3F2 1.63 2.83 2.8

V2+ [Ar] 3d3 4F3/2 0.77 3.87 3.8

Cr3+ [Ar] 3d3 4F3/2 0.77 3.87 3.7

Mn4+ [Ar] 3d3 4F3/2 0.77 3.87 4.0

Cr2+ [Ar] 3d4 5D0 0.00 4.90 4.8

Mn3+ [Ar] 3d4 5D0 0.00 4.90 5.0

Mn2+ [Ar] 3d5 6S5/2 5.92 5.92 5.9

Fe3+ [Ar] 3d5 6S5/2 5.92 5.92 5.9

Fe2+ [Ar] 3d6 5D4 6.70 4.90 5.4

Co2+ [Ar] 3d7 4F9/2 6.54 3.87 4.8

Ni2+ [Ar] 3d8 3F4 5.59 2.83 3.2

Cu2+ [Ar] 3d9 2D5/2 3.55 1.73 1.9

Table 14.6: Calculated and measured effective magneton numbers p for transition metal ions.
(From N. W. Ashcroft and N. D. Mermin, Solid State Physics.) Due to the orbital quenching,
the angular momentum is effectively L = 0.

behavior by defining the ‘magneton number’ p according to

χ(T ) = nµ2
B

p2

3k
B
T

. (14.55)

The theory above predicts

p = g
L

√
J(J + 1) . (14.56)

One finds that the theory works well in the case of rare earth ions in solids. There, the 4f
electrons of the rare earths are localized in the vicinity of the nucleus, and do not hybridize
significantly with orbitals from neighboring ions.
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In transition metal compounds, however, one finds poor agreement except in the case of S states
(L = 0). This is because crystal field effects quench the orbital angular momentum, effectively
rendering L = 0. Indeed, as shown in Table 14.6, the theory can be rescued if one ignores the
ground state terms obtained by Hund’s rules, and instead takes L = 0 and J = S, yielding
g
L
= 2.

14.5 Moment Formation in Interacting Itinerant Systems

14.5.1 The Hubbard model

A noninteracting electron gas exhibits paramagnetism or diamagnetism, depending on the sign
of χ, but never develops a spontaneous magnetic moment: M(H = 0) = 0. What gives rise to
magnetism in solids? Overwhelmingly, the answer is that Coulomb repulsion between elec-
trons is responsible for magnetism, in those instances in which magnetism arises. At first
thought this might seem odd, since the Coulomb interaction is spin-independent. How then
can it lead to a spontaneous magnetic moment?

To understand how Coulomb repulsion leads to magnetism, it is useful to consider a model
interacting system, described by the Hamiltonian

Ĥ = −t
∑

〈ij〉,σ

(
c†iσcjσ + c†jσciσ

)
+ U

∑

i

ni↑ ni↓ + µBH ·
∑

i,α,β

c†iα σαβ ciβ . (14.57)

This is none other than the famous Hubbard model, which has served as a kind of Rosetta stone
for interacting electron systems. The first term describes hopping of electrons along the links of
some regular lattice (the symbol 〈ij〉 denotes a link between sites i and j). The second term de-
scribes the local (on-site) repulsion of electrons. This is a single orbital model, so the repulsion
exists when one tries to put two electrons in the orbital, with opposite spin polarization. Typ-
ically the Hubbard U parameter is on the order of electron volts. The last term is the Zeeman
interaction of the electron spins with an external magnetic field. Orbital effects can be modeled

by associating a phase exp(iAij) to the hopping matrix element t between sites i and j, where

the directed sum of Aij around a plaquette yields the total magnetic flux through the plaque-
tte in units of φ0 = hc/e. We will ignore orbital effects here. Note that the interaction term is
short-ranged, whereas the Coulomb interaction falls off as 1/|Ri − Rj |. The Hubbard model is
thus unrealistic, although screening effects in metals do effectively render the interaction to be
short-ranged.

Within the Hubbard model, the interaction term is local and written as Un↑n↓ on any given site.
This term favors a local moment. This is because the chemical potential will fix the mean value

of the total occupancy n↑+n↓, in which case it always pays to maximize the difference |n↑−n↓|.
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14.5.2 Stoner mean field theory

There are no general methods available to solve for even the ground state of an interacting
many-body Hamiltonian. We’ll solve this problem using a mean field theory due to Stoner. The
idea is to write the occupancy niσ as a sum of average and fluctuating terms:

niσ = 〈niσ〉+ δniσ . (14.58)

Here, 〈niσ〉 is the thermodynamic average; the above equation may then be taken as a definition
of the fluctuating piece, δniσ. We assume that the average is site-independent. This is a signif-
icant assumption, for while we understand why each site should favor developing a moment,
it is not clear that all these local moments should want to line up parallel to each other. Indeed,
on a bipartite lattice, it is possible that the individual local moments on neighboring sites will
be antiparallel, corresponding to an antiferromagnetic order of the pins. Our mean field theory
will be one for ferromagnetic states.

We now write the interaction term as

ni↑ni↓ = 〈n↑〉 〈n↓〉+ 〈n↑〉 δni↓ + 〈n↓〉 δni↑+
(flucts)2︷ ︸︸ ︷
δni↑ δni↓

= −〈n↑〉 〈n↓〉+ 〈n↑〉ni↓ + 〈n↓〉ni↑ +O
(
(δn)2

)

= 1
4
(m2 − n2) + 1

2
n (ni↑ + ni↓) +

1
2
m (ni↑ − ni↓) +O

(
(δn)2

)
,

(14.59)

where n and m are the average occupancy per spin and average spin polarization, each per
unit cell:

n = 〈n↓〉+ 〈n↑〉
m = 〈n↓〉 − 〈n↑〉 ,

(14.60)

i.e. 〈nσ〉 = 1
2
(n− σm). The mean field grand canonical Hamiltonian K = Ĥ − µN , may then be

written as

KMF = −1
2

∑

i,j,σ

tij

(
c†iσcjσ + c†jσciσ

)
−
(
µ− 1

2
Un
)∑

i,σ

c†iσciσ

+
(
µ

B
H + 1

2
Um

)∑

i,σ

σ c†iσciσ +
1
4
Nsites U(m

2 − n2) ,
(14.61)

where we’ve quantized spins along the direction of H , defined as ẑ. You should take note
of two things here. First, the chemical potential is shifted downward (or the electron energies
shifted upward) by an amount 1

2
Un, corresponding to the average energy of repulsion with the

background. Second, the effective magnetic field has been shifted by an amount 1
2
Um/µ

B
, so

the effective field is

Heff = H +
Um

2µ
B

. (14.62)
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The bare single particle dispersions are given by εσ(k) = −t̂(k) + σµBH , where

t̂(k) =
∑

R

t(R) e−ik·R , (14.63)

and tij = t(Ri − Rj). For nearest neighbor hopping on a d-dimensional cubic lattice, we have

t̂(k) = t
∑d

µ=1 cos(kµa), where a is the lattice constant. Including the mean field effects, the
effective single particle dispersions become

ε̃σ(k) = −t̂(k) + 1
2
Un +

(
µ

B
H + 1

2
Um

)
σ . (14.64)

We now solve the mean field theory, by obtaining the Gibbs free energy per site, ϕ(n, T,H).
First, note that ϕ = ω + µn, where ω = Ω/Nsites is the Landau, or grand canonical, free energy
per site. This follows from the general relation Ω = F −µN ; note that the total electron number
is N = nNsites, since n is the electron number per unit cell (including both spin species). If g(ε)
is the density of states per unit cell (rather than per unit volume), then we have4

ϕ = 1
4
U(m2+n2)+ µ̄n− 1

2
kBT

∞∫

−∞

dε g(ε)

{
ln
(
1+ e(µ̄−ε−∆)/kBT

)
+ln

(
1+ e(µ̄−ε+∆)/kBT

)}
(14.65)

where µ̄ ≡ µ− 1
2
Un and ∆ ≡ µBH + 1

2
Um. From this free energy we derive two self-consistent

equations for µ and m. The first comes from demanding that ϕ be a function of n and not of µ,
i.e. ∂ϕ/∂µ = 0, which leads to

n =
1

2

∞∫

−∞

dε g(ε)
{
f(ε−∆− µ̄) + f(ε+∆− µ̄)

}
, (14.66)

where f(y) =
[
exp(y/k

B
T ) + 1

]−1
is the Fermi function. The second equation comes from

minimizing f with respect to average moment m:

m =
1

2

∞∫

−∞

dε g(ε)
{
f(ε−∆− µ̄)− f(ε+∆− µ̄)

}
. (14.67)

Here, we will solve the first equation, eq. 14.66, and use the results to generate a Landau
expansion of the free energy ϕ in powers of m2. We assume that ∆ is small, in which case we
may write

n =

∞∫

−∞

dε g(ε)
{
f(ε− µ̄) + 1

2
∆2 f ′′(ε− µ̄) + 1

24
∆4 f ′′′′(ε− µ̄) + . . .

}
. (14.68)

4Note that we have written µn = µ̄n+ 1
2Un

2, which explains the sign of the coefficient of n2.
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We write µ̄(∆) = µ̄0 + δµ̄ and expand in δµ̄. Since n is fixed in our (canonical) ensemble,

n =

∞∫

−∞

dε g(ε) f
(
ε− µ̄0

)
, (14.69)

which defines µ̄0(n, T ).
5 The remaining terms in the δµ̄ expansion of eqn. 14.68 must sum to

zero. This yields

D(µ̄0) δµ̄+
1
2
∆2D′(µ̄0) +

1
2
(δµ̄)2D′(µ̄0) +

1
2
D′′(µ̄0)∆

2 δµ̄+ 1
24
D′′′(µ̄0)∆

4 +O(∆6) = 0 , (14.70)

where

D(µ) = −
∞∫

−∞

dε g(ε) f ′(ε− µ) (14.71)

is the thermally averaged bare density of states at energy µ. Note that the kth derivative is

D(k)(µ) = −
∞∫

−∞

dε g(k)(ε) f ′(ε− µ) . (14.72)

Solving for δµ̄, we obtain

δµ̄ = −1
2
a1∆

2 − 1
24

(
3a31 − 6a1a2 + a3

)
∆4 +O(∆6) , (14.73)

where ak ≡ D(k)(µ̄0)/D(µ̄0). After integrating by parts and inserting this result for δµ̄ into our
expression for the free energy ϕ, we obtain the expansion

ϕ(n, T,m) = ϕ0(n, T ) +
1
4
Um2 − 1

2
D(µ̄0)∆

2 +
1

24

(
3
[
D′(µ̄0)

]2

D(µ̄0)
−D′′(µ̄0)

)
∆4 + . . . , (14.74)

where prime denotes differentiation with respect to argument, at m = 0, and

ϕ0(n, T ) =
1
4
Un2 + nµ̄0 −

∞∫

−∞

dεN (ε) f
(
ε− µ̄0

)
, (14.75)

where g(ε) = N ′(ε), so N (ε) is the integrated bare density of states per unit cell in the absence
of any magnetic field (including both spin species).

We assume that H and m are small, in which case

ϕ = ϕ0 +
1
2
am2 + 1

4
bm4 − 1

2
χ0H

2 − Uχ0

2µB

Hm+ . . . , (14.76)

5The Gibbs-Duhem relation guarantees that such an equation of state exists, relating any three intensive thermo-
dynamic quantities.
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where χ0 = µ2
BD(µ̄0) is the Pauli susceptibility, and

a = 1
2
U
(
1− 1

2
UD) , b =

1

96

(
3(D′)2

D
−D′′

)
U4 , (14.77)

where the argument of each D(k) above is µ̄0(n, T ). The magnetization density (per unit cell,
rather than per unit volume) is given by

M = − ∂ϕ
∂H

= χ0H +
Uχ0

2µ
B

m . (14.78)

Minimizing with respect to m yields

am+ bm3 − Uχ0

2µ
B

H = 0 , (14.79)

which gives, for small m,

m =
χ0

µ
B

H

1− 1
2
UD

. (14.80)

We therefore obtain M = χH with

χ =
χ0

1− (U/Uc)
, (14.81)

where Uc = 2/D(µ̄0). The denominator of χ increases the susceptibility above the bare Pauli
value χ0, and is referred to as – I kid you not – the Stoner enhancement (see Fig. 14.6).

It is worth emphasizing that the magnetization per unit cell is given by

M = − 1

Nsites

δĤ

δH
= µBm . (14.82)

Figure 14.6: A graduate student experiences the Stoner enhancement.
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This is an operator identity and is valid for any value of m, and not only small m.

When H = 0 we can still get a magnetic moment, provided U > Uc. This is a consequence
of the simple Landau theory we have derived. Solving for m when H = 0 gives m = 0 when
U < Uc and

m(U) = ±
(

U

2b Uc

)1/2√
U − Uc , (14.83)

when U > Uc, and assuming b > 0. Thus we have the usual mean field order parameter
exponent of β = 1

2
.

14.5.3 Antiferromagnetic solution

In addition to ferromagnetism, there may be other ordered states which solve the mean field
theory. One such example is antiferromagnetism. On a bipartite lattice, the antiferromagnetic
mean field theory is obtained from

〈niσ〉 = 1
2
n+ 1

2
σ eiQ·Rim , (14.84)

where Q = (π/a, π/a, . . . , π/a) is the antiferromagnetic ordering wavevector. The grand canon-
ical Hamiltonian is then

KMF = −1
2

∑

i,j,σ

tij

(
c†iσcjσ + c†jσciσ

)
−
(
µ− 1

2
Un
)∑

i,σ

c†iσciσ

+ 1
2
Um

∑

i,σ

eiQ·Ri σ c†iσciσ +
1
4
Nsites U(m

2 − n2) (14.85)

= 1
2

∑

k,σ

(
c†k,σ c†k+Q,σ

)(
ε(k)− µ+ 1

2
Un 1

2
σ Um

1
2
σ Um ε(k + Q)− µ+ 1

2
Un

)(
ck,σ
ck+Q,σ

)
+ 1

4
Nsites U(m

2 − n2)

where ε(k) = −t̂(k), as before. On a bipartite lattice, with nearest neighbor hopping only, we
have ε(k+Q) = −ε(k). The above matrix is diagonalized by a unitary transformation, yielding
the eigenvalues

λ± = ±
√
ε2(k) +∆2 − µ̄ (14.86)

with ∆ = 1
2
Um and µ̄ = µ− 1

2
Un as before. The free energy per site is then

ϕ = 1
4
U(m2 + n2) + µ̄n− 1

2
k

B
T

∞∫

−∞

dε g(ε)

{
ln
(
1 + e(µ̄−

√
ε2+∆2)/kBT

)

+ ln
(
1 + e(µ̄+

√
ε2+∆2)/kBT

)}
.

(14.87)
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The mean field equations are then

n =
1

2

∞∫

−∞

dε g(ε)
{
f
(
−
√
ε2 +∆2 − µ̄

)
+ f
(√

ε2 +∆2 − µ̄
)}

1

U
=

1

2

∞∫

−∞

dε
g(ε)√
ε2 +∆2

{
f
(
−
√
ε2 +∆2 − µ̄

)
− f

(√
ε2 +∆2 − µ̄

)}
.

(14.88)

As in the case of the ferromagnet, a paramagnetic solution with m = 0 always exists, in which
case the second of the above equations is no longer valid.

14.5.4 Mean field phase diagram of the Hubbard model

Let us compare the mean field theories for the ferromagnetic and antiferromagnetic states at
T = 0 and H = 0. Due to particle-hole symmetry, we may assume 0 6 n 6 1 without loss of
generality. (The solutions repeat themselves under n→ 2− n.) For the paramagnet, we have

n =

µ̄∫

−∞

dε g(ε)

ϕ = 1
4
Un2 +

µ̄∫

−∞

dε g(ε) ε ,

(14.89)

with µ̄ = µ − 1
2
Un is the ‘renormalized’ Fermi energy and g(ε) is the density of states per unit

cell in the absence of any explicit (H) or implicit (m) symmetry breaking, including both spin
polarizations.

For the ferromagnet,

n = 1
2

µ̄−∆∫

−∞

dε g(ε) + 1
2

µ̄+∆∫

−∞

dε g(ε)

4∆

U
=

µ̄+∆∫

µ̄−∆

dε g(ε)

ϕ = 1
4
Un2 − ∆2

U
+

µ̄−∆∫

−∞

dε g(ε) ε +

µ̄+∆∫

−∞

dε g(ε) ε .

(14.90)

Here, ∆ = 1
2
Um is nonzero in the ordered phase.
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Finally, the antiferromagnetic mean field equations are

nµ̄<0 =

∞∫

ε0

dε g(ε) ; nµ̄>0 = 2−
∞∫

ε0

dε g(ε)

2

U
=

∞∫

ε0

dε
g(ε)√
ε2 +∆2

ϕ = 1
4
Un2 +

∆2

U
−

∞∫

ε0

dε g(ε)
√
ε2 +∆2 ,

(14.91)

where ε0 =
√
µ̄2 −∆2 and ∆ = 1

2
Um as before. Note that |µ̄| > ∆ for these solutions. Exactly

at half-filling, we have n = 1 and µ̄ = 0. We then set ε0 = 0.

The paramagnet to ferromagnet transition may be first or second order, depending on the de-
tails of g(ε). If second order, it occurs atUF

c = 1
/
g(µ̄P), where µ̄P(n) is the paramagnetic solution

for µ̄. The paramagnet to antiferromagnet transition is always second order in this mean field
theory, since the RHS of eqn. (14.91) is a monotonic function of ∆. This transition occurs at

UA
c = 2

/∞∫
µ̄P

dε g(ε) ε−1. Note that UA
c → 0 logarithmically for n→ 1, since µ̄

P
= 0 at half-filling.

For large U , the ferromagnetic solution always has the lowest energy, and therefore if UA
c < UF

c ,
there will be a first-order antiferromagnet to ferromagnet transition at some value U∗ > UF

c . In
fig. 14.7, I plot the phase diagram obtained by solving the mean field equations assuming a
semicircular density of states g(ε) = 2

π
W−2

√
W 2 − ε2. Also shown is the phase diagram for the

d = 2 square lattice Hubbard model obtained by J. Hirsch (1985).

How well does Stoner theory describe the physics of the Hubbard model? Quantum Monte
Carlo calculations by J. Hirsch (1985) found that the actual phase diagram of the d = 2 square
lattice Hubbard Model exhibits no ferromagnetism for any n up to U = 10. Furthermore, he
found the antiferromagnetic phase to be entirely confined to the vertical line n = 1. For n 6= 1
and 0 6 U 6 10, the system is a paramagnet6. These results were state-of-the art at the time, but
both computing power as well as numerical algorithms for interacting quantum systems have
advanced considerably since 1985. Yet as of 2018, we still don’t have a clear understanding of
the d = 2 Hubbard model’s T = 0 phase diagram! There is an emerging body of numerical
evidence7 that in the underdoped (n < 1) regime, there are portions of the phase diagram
which exhibit a stripe ordering, in which antiferromagnetic order is interrupted by a parallel
array of line defects containing excess holes (i.e. the absence of an electron)8. This problem

6A theorem due to Nagaoka establishes that the ground state is ferromagnetic for the case of a single hole in the
U =∞ system on bipartite lattices.

7See J. P. F. LeBlanc et al., Phys. Rev. X 5, 041041 (2015) and B. Zheng et al., Science 358, 1155 (2017).
8The best case for stripe order has been made at T = 0, U/t = 8, and hold doping x = 1

8 (i.e. n = 7
8 ).
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Figure 14.7: Mean field phase diagram of the Hubbard model, including paramagnetic (P),
ferromagnetic (F), and antiferromagnetic (A) phases. Left panel: results using a semicircular
density of states function of half-bandwidth W . Right panel: results using a two-dimensional
square lattice density of states with nearest neighbor hopping t, from J. E. Hirsch, Phys. Rev. B
31, 4403 (1985). The phase boundary between F and A phases is first order.

has turned out to be unexpectedly rich, complex, and numerically difficult to resolve due to
the presence of competing ordered states, such as d-wave superconductivity and spiral magnetic
phases, which lie nearby in energy with respect to the putative stripe ground state.

In order to achieve a ferromagnetic solution, it appears necessary to introduce geometric frus-
tration, either by including a next-nearest-neighbor hopping amplitude t′ or by defining the
model on non-bipartite lattices. Numerical work by M. Ulmke (1997) showed the existence of a
ferromagnetic phase at T = 0 on the FCC lattice Hubbard model for U = 6 and n ∈ [0.15, 0.87]
(approximately).

14.6 Interaction of Local Moments: the Heisenberg Model

While it is true that electrons have magnetic dipole moments, the corresponding dipole-dipole
interactions in solids are usually negligible. This is easily seen by estimating the energy scale
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of the dipole-dipole interaction:

Ed−d =
m1 ·m2 − 3(m1 · n̂)(m2 · n̂)

|r1 − r2|3
, (14.92)

where n̂ = (r2 − r1)/|r2 − r1| is the direction vector pointing from r1 to r2. Substituting m =
−µ

B
σ, we estimate Ed−d as

|Ed−d| ≃
µ2

B

R3
=

e2

2a
B

(
e2

~c

)2(
aB

R

)3
, (14.93)

and with R ≃ 2.5Å we obtain Ed−d ≃ 1µeV, which is tiny on the scale of electronic energies in
solids. The dominant magnetic coupling comes from the Coulomb interaction.

14.6.1 Ferromagnetic exchange of orthogonal orbitals

In the Wannier basis, we may write the Coulomb interaction as

V̂ = 1
2

∑

R1,R2
R3,R4

∑

σ,σ′

〈
R1R2

∣∣ e2

|r − r′|
∣∣R4 R3

〉
c†R1σ

c†R2 σ′
cR3 σ′

cR4 σ
, (14.94)

where we have assumed a single energy band. The Coulomb matrix element is

〈
R1 R2

∣∣ e2

|r − r′|
∣∣R4 R3

〉
=

∫
d3r

∫
d3r′ ϕ∗(r−R1)ϕ

∗(r′−R2)
e2

|r − r′| ϕ(r
′−R3)ϕ(r−R4) . (14.95)

Due to overlap factors, the matrix element will be small unless R2 = R3 and R1 = R4, in which
case we obtain the direct Coulomb interaction,

V (R−R′) =
〈
RR

′ ∣∣ e2

|r − r′|
∣∣RR′ 〉

=

∫
d3r

∫
d3r′

∣∣ϕ(r − R)
∣∣2 e2

|r − r′|
∣∣ϕ(r′ −R′)

∣∣2 .

(14.96)

The direct interaction decays as |R − R′|−1 at large separations. Were we to include only these
matrix elements, the second quantized form of the Coulomb interaction would be

V̂direct =
1
2

∑

RR′

σσ′

V (R− R′)
(
nRσ nR′σ′ − δRR′ δσσ′ nRσ

)

=
∑

R

V (0)nR↑ nR↓ +
1
2

∑

R 6=R′

V (R− R′)nR nR′ ,
(14.97)
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where nR ≡ nR↑ + nR↓. The first term is the on-site Hubbard repulsion; one abbreviates U ≡
V (0).

A second class of matrix elements can be identified: those with R1 = R3 ≡ R and R2 = R4 ≡ R′,
with R 6= R′. These are the so-called exchange integrals:

J(R− R′) =
〈
RR

′ ∣∣ e2

|r − r′|
∣∣R′

R
〉

=

∫
d3r

∫
d3r′ ϕ∗(r −R)ϕ∗(r′ −R′)

e2

|r − r′| ϕ(r
′ −R)ϕ(r − R′)

=

∫
d3r

∫
d3r′ ϕ∗(r)ϕ(r + R− R′)

e2

|r − r′| ϕ
∗(r′ + R−R′)ϕ(r′) .

(14.98)

Note that J(R− R′) is real. The exchange part of V̂ is then

V̂exchange = −1
2

∑

R6=R′

σσ′

J(R−R′) c†Rσ cRσ′ c
†
R′σ′ cR′σ

= −1
4

∑

R 6=R′

J(R− R′)
(
nR nR′ + σR · σR′

)
.

(14.99)

The nR nR′ piece can be lumped with the direct density-density interaction. What is new is the
Heisenberg interaction,

V̂Heis = −
∑

R 6=R′

J(R−R′)SR · SR′ . (14.100)

J(R − R′) is usually positive, and this gives us an explanation of Hund’s first rule, which says
to maximize S. This raises an interesting point, because we know that the ground state spatial
wavefunction for the general two-body Hamiltonian

Ĥ = − ~
2

2m

(
∇2

1 +∇2
2

)
+ V

(
|r1 − r2|

)
(14.101)

is nodeless. Thus, for fermions, the ground state spin wavefunction is an antisymmetric singlet
state, corresponding to S = 0. Yet the V3+ ion, with electronic configuration [Ar] 3d2, has a
triplet S = 1 ground state, according to Hund’s first rule. Why don’t the two 3d electrons
have a singlet ground state, as the ‘no nodes theorem’ would seem to imply? The answer must
have to do with the presence of the core electrons. Two electrons in the 1s shell do have a
singlet ground state – indeed that is the only possibility. But the two 3d electrons in V3+ are not
independent, but must be orthogonalized to the core states. This in effect projects out certain
parts of the wavefunction, rendering the no nodes theorem inapplicable.
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14.6.2 Heitler-London theory of the H2 molecule

The Hamiltonian for the H2 molecule is

Ĥ =
p21

2m
− e2

|r1 − Ra|
+

p22

2m
− e2

|r2 − Rb|

+
e2

|Ra − Rb|
− e2

|r1 − Rb|
− e2

|r2 −Ra|
+

e2

|r1 − r2|
.

(14.102)

The total wavefunction is antisymmetric: Ψ(r1 σ1 , r2σ 2) = −Ψ(r2σ2 , r1σ1). The N = 2 electron
case is special because the wavefunction factorizes into a product:

Ψ(r1 σ1, r2 σ2) = Φ(r1, r2)χ(σ1, σ2) . (14.103)

The spin wavefunction may either be symmetric (triplet, S = 1), or antisymmetric (singlet,
S = 0):

∣∣χ
〉
=





∣∣ ↑↑
〉

S = 1

1√
2

(∣∣ ↑↓
〉
+
∣∣ ↓↑

〉)
S = 1

∣∣ ↓↓
〉

S = 1

1√
2

(∣∣ ↑↓
〉
−
∣∣ ↓↑

〉)
S = 0 .

(14.104)

A symmetric spin wavefunction requires an antisymmetric spatial one, and vice versa.

Despite the fact that Ĥ does not explicitly depend on spin, the effective low-energy Hamilto-
nian for this system is

Ĥeff = K + JS1 · S2 . (14.105)

The singlet-triplet splitting is ∆E = ES=0 − ES=1 = −J , so if J > 0 the ground state is the
singlet, and if J < 0 the ground state is the three-fold degenerate triplet.

The one-electron 1s eigenfunction ψ(r) satisfies the following eigenvalue equation:
{
− ~2

2m
∇2 − e2

r

}
ψ(r) = ε0(r)ψ(r) . (14.106)

In the Heitler-London approach, we write the two-electron wavefunction as a linear combina-
tion

Φ(r1, r2) = αΦI(r1, r2) + β ΦII(r1, r2) , (14.107)

with

Φ
I
(r1, r2) = ψ(r1 − Ra)ψ(r2 −Rb) ≡ ψa(r1)ψb(r2)

ΦII(r1, r2) = ψ(r1 − Rb)ψ(r2 − Ra) ≡ ψb(r1)ψa(r2) .
(14.108)
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Assuming the atomic orbital ψ(r) to be normalized, we define the following integrals:

∆ =

∫
d3r ψ∗

a(r)ψb(r) (14.109)

X =

∫
d3r1

∫
d3r2

∣∣Φ
I
(r1, r2)

∣∣2
(
e2

Rab

+
e2

r12
− e2

r1b
− e2

r2a

)
(14.110)

=

∫
d3r1

∫
d3r2

∣∣ΦII(r1, r2)
∣∣2
(
e2

Rab

+
e2

r12
− e2

r1a
− e2

r2b

)

Y =

∫
d3r1

∫
d3r2Φ

∗
I
(r1, r2) ΦII

(r1, r2)

(
e2

Rab

+
e2

r12
− e2

r1b
− e2

r2a

)
, (14.111)

with r1a = r1 −Ra, etc. The expectation value of Ĥ in the state Φ is
〈
Φ
∣∣ Ĥ
∣∣Φ
〉
= (|α|2 + |β|2) (2ε0 +X) + (α∗β + β∗α) (2ε|∆|2 + Y ) , (14.112)

and the self-overlap is
〈
Φ
∣∣Φ
〉
= |α|2 + |β|2 + |∆|2 (α∗β + β∗α) . (14.113)

We now minimize 〈Ĥ〉 subject to the condition that Φ be normalized, using a Lagrange multi-
plier E to impose the normalization. Extremizing with respect to α∗ and β∗ yields

(
2ε0 +X 2ε0|∆|2 + Y

2ε0|∆|2 + Y 2ε0 +X

)(
α
β

)
= E

(
1 |∆|2
|∆|2 1

)(
α
β

)
, (14.114)

and extremizing with respect to E yields the normalization condition

|α|2 + |β|2 + |∆|2 (α∗β + β∗α) = 1 . (14.115)

The solutions are symmetric and antisymmetric states, with β/α = ±1, corresponding to the
energies

E± = 2ε0 +
X ± Y
1± |∆|2 . (14.116)

Note that E+ is the energy of the spatially symmetric state, which means a spin singlet while
E− corresponds to the spatially antisymmetric spin triplet.

The singlet-triplet splitting is

J = E− −E+ = 2
Y −X|∆|2
1− |∆|4 . (14.117)

If J > 0, the triplet lies higher than the singlet, which says the ground state is antiferromagnetic.
If J < 0, the triplet lies lower, and the ground state is ferromagnetic. The energy difference is
largely determined by the Y integral:

Y =

∫
d3r1

∫
d3r2Υ

∗(r1) Υ(r2)

(
e2

Rab

+
e2

r12

)
− 2∆∗

∫
d3r ψ∗

a(r)
e2

|r− Rb|
ψb(r) , (14.118)
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with Υ(r) = ψ∗
a(r)ψb(r). The first term is positive definite for the Coulomb interaction. The

second term competes with the first if the overlap is considerable. The moral of the story now
emerges:

weak overlap =⇒ ferromagnetism (J < 0)

strong overlap =⇒ antiferromagnetism (J > 0) .
(14.119)

One finds that the H2 molecule is indeed bound in the singlet state – the total energy has a

minimum as a function of the separation |Ra−Rb|. In the triplet state, the molecule is unbound.

14.6.3 Failure of Heitler-London theory

At large separationsR ≡ |Ra−Rb| the Heitler-London method describes two H atoms with tiny
overlap of the electronic wavefunctions. But this tiny overlap is what determines whether the
ground state is a total spin singlet or triplet (we ignore coupling to the nuclear spin). Sugiura
obtained the following expression for the singlet-triplet splitting in the R→∞ limit:

J(R) ≃
{

56
45
− 4

15
γ − 4

15
ln

(
R

a
H

)}(
R

a
H

)3(
e2

aH

)
e−2R/aH , (14.120)

where γ = 0.577 . . . is the Euler constant and where ψ(r) = (πa3H)
−1/2 exp(−r/aH) is the hydro-

genic wavefunction. This is negative for sufficiently large separations (R > 50 a
H
). But this is a

problem, since the eigenvalue problem is a Sturm-Liouville problem, hence the lowest energy
eigenfunction must be spatially symmetric – the singlet state must always lie at lower energy than
the triplet. The problem here is that Heitler-London theory does a good job on the wavefunction
where it is large, i.e. in the vicinity of the protons, but a lousy job in the overlap region.

14.6.4 Herring’s approach

Conyers Herring was the first to elucidate the failure of Heitler-London theory at large separa-
tions. He also showed how to properly derive a Heisenberg model for a lattice of hydrogenic
orbitals. Herring started with the symmetric spatial wavefunction

Ψ (r1 , . . . , rN) =

N∏

i=1

ψ(ri −Ri) . (14.121)

This wavefunction would be appropriate were the electrons distinguishable. If we permute the
electron coordinates using a spatial permutation Pr ∈ SN , we obtain another wavefunction of
the same energy, E0. However, there will be an overlap between these states:

JP ≡
〈
Ψ
∣∣ Ĥ − E0

∣∣Pr Ψ
〉

. (14.122)
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The effective Hamiltonian is then

Ĥeff = E0 +
∑

P∈SN

JP Pr . (14.123)

A complete permutation P is a product of spatial and spin permutations: P = Pr Pσ, and the
product when acting on an electronic wavefunction is (−1)P , which is +1 for an even permu-
tation and (−1) for an odd one9. Thus,

Ĥeff = E0 +
∑

P∈SN

(−1)P JP Pσ . (14.124)

The spin permutation operators Pσ may be written in terms of the Pauli spin matrices, once we
note that the two-cycle (ij) may be written

P(ij) =
1
2
+ 1

2
σi · σj . (14.125)

Thus, accounting for only two-cycles, we have

Ĥeff = E0 − 1
4

∑

i 6=j
Jij
(
1 + σi · σj

)
. (14.126)

For three-cycles, we have

P(ijk) = P(ik) P(jk)

= 1
4

(
1 + σi · σk

)(
1 + σj · σk

)

= 1
4

[
1 + σi · σj + σj · σk + σi · σk + iσi × σj · σk

]
.

(14.127)

14.7 Mean Field Theory

We begin with the Heisenberg Hamiltonian

Ĥ = −1
2

∑

i,j

Jij Si · Sj − γ
∑

i

Hi · Si , (14.128)

and write
Si = mi + δSi , (14.129)

where mi = 〈Si〉 is the thermodynamic average of Si. We therefore have

Si · Sj = mi ·mj +mi · δSj +mj · δSi + δSi · δSj
= −mi ·mj +mi · Sj +mj · Si + δSi · δSj .

(14.130)

9Here, ‘even’ and ‘odd’ refer to the number of 2-cycles into which a given permutation is decomposed.
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The last term is quadratic in the fluctuations, and as an approximation we ignore it. This results
in the following mean field Hamiltonian,

ĤMF = +1
2

∑

i,j

Jijmi ·mj −
∑

i

(
γHi +

∑

j

Jijmj

)
· Si

= E0 − γ
∑

i

H
eff
i · Si ,

(14.131)

where

E0 =
1
2

∑

i,j

Jijmi ·mj

H
eff
i = Hi + γ−1

∑

j

Jijmj .
(14.132)

Note how the effective field Heff
i is a sum of the external field Hi and the internal field H int

i =

γ−1
∑

j Jijmj . Self-consistency now requires that

mi =
TrSi exp

(
γHeff

i · Si/kB
T
)

Tr exp
(
γHeff

i · Si/kB
T
) , (14.133)

where Tr means to sum or integrate over all local degrees of freedom (for site i). The free energy
is then

F
(
{mi}

)
= 1

2

∑

i,j

Jijmi ·mj − kBT
∑

i

lnTr exp
(
γHeff

i · Si/kBT
)

. (14.134)

For classical systems, there are several common models:

• Ising Model with S = ±1:

mi = tanh(γHeff
i /kBT )

= tanh
(
βγHi + β

∑

j

Jijmj

)
. (14.135)

The free energy is

F = 1
2

∑

i,j

Jijmimj − kBT
∑

i

ln 2 cosh
(
βγHi + β

∑

j

Jijmj

)
. (14.136)

• Ising Model with S = −1, 0,+1:

mi =
2 sinh

(
βγHi + β

∑
j Jijmj

)

1 + 2cosh
(
βγHi + β

∑
j Jijmj

) (14.137)
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and

F = 1
2

∑

i,j

Jijmimj − kBT
∑

i

ln

{
1 + 2 cosh

(
βγHi + β

∑

j

Jijmj

)}
. (14.138)

• XY model with Si = (cos θi, sin θi), H = H x̂

mi =
〈
cos θi

〉
=

2π∫
0

dθi cos θi exp
(
γHeff

i cos θi/kB
T
)

2π∫
0

dθi exp
(
γHeff

i cos θi/kB
T
)

=
I1

(
βγHi + β

∑
j Jijmj

)

I0

(
βγHi + β

∑
j Jijmj

) ,

(14.139)

where In(z) is a modified Bessel function. The free energy is

F = 1
2

∑

i,j

Jijmimj − kBT
∑

i

ln 2πI0

(
βγHi + β

∑

j

Jijmj

)
. (14.140)

• O(3) model with Si = (sin θi cos φi, sin θi sinφi, cos θi). Suppose that mi points in the direc-
tion of Heff

i . Then

mi =
〈
cos θi

〉
=

2π
2π∫
0

dθi sin θi cos θi exp
(
γHeff

i cos θi/kB
T
)

2π
2π∫
0

dθi sin θi exp
(
γHeff

i cos θi/kB
T
)

= ctnh
(
γHeff

i /kB
T
)
− kBT

γHeff
i

= ctnh
(
βγHi + β

∑

j

Jijmj

)
− kBT

γHi +
∑

j Jijmj
.

(14.141)

The free energy is

F = 1
2

∑

i,j

Jijmimj − kB
T
∑

i

ln

{
4π sinh

(
βγHi + β

∑
j Jijmj

)

βγHi + β
∑

j Jijmj

}
. (14.142)

EXERCISE: Show that the self-consistency is equivalent to ∂F/∂mi = 0.
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14.7.1 Ferromagnets

Ising model – Let us assume that the system orders ferromagnetically, with mi = m on all sites.
Then, defining

Ĵ(q) =
∑

R

J(R) e−iq·R , (14.143)

we have that the free energy per site, f = F/N , is

f(m) = 1
2
Ĵ(0)m2 − k

B
T lnTr exp

{(
γH + Ĵ(0)m

)
· S/k

B
T
}

. (14.144)

For the Z2 (Ising) model, we have

m = tanh
(
βγH + βĴ(0)m

)
, (14.145)

a transcendental equation for m. For H = 0, we find m = tanh(Ĵ(0)m/kBT ), which yields the

Curie temperature TC = Ĵ(0)/k
B
.

O(3) model – We havem = mĤ lies alongH . In theH → 0 limit, there is no preferred direction.
The amplitude, however, satisfies

∂f

∂m
= 0 ⇒ m = ctnh

(
Ĵ(0)m/k

B
T
)
− kBT

Ĵ(0)m
. (14.146)

With x ≡ Ĵ(0)m/kBT , then,

k
B
T

Ĵ(0)
x = ctnh x− 1

x
=
x

3
− x3

45
+ . . . , (14.147)

hence Tc = Ĵ(0)/3k
B
.

14.7.2 Antiferromagnets

If the lattice is bipartite, then we have two order parameters: mA and mB. Suppose Jij = −J <
0 if i and j are nearest neighbors, and zero otherwise. The effective fields on the A and B
sublattices are given by

H
eff
A,B ≡ H − γ−1zJmB,A , (14.148)

Note that the internal field on the A sublattice is −γ−1zJmB, while the internal field on the B
sublattice is−γ−1zJmA. For the spin-S quantum Heisenberg model, where Sz ∈ {−S, . . . ,+S},
we have

Tr exp(ξ · S) = sinh
(
S + 1

2

)
ξ

sinh 1
2
ξ

, (14.149)
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hence, with ξ = γHeff
A,B/kBT , we have

〈
S
〉
= ξ̂ S BS(Sξ) (14.150)

where BS(x) is the Brillouin function,

BS(x) =
(
1 +

1

2S

)
ctnh

((
1 +

1

2S

)
x
)
− 1

2S
ctnh

( x

2S

)
. (14.151)

In order to best take advantage of the antiferromagnetic interaction and the external magnetic

field, the ordered state is characterized by a spin flop in which mA and mB are, for weak fields,
oriented in opposite directions in a plane perpendicular to H , but each with a small component
along H .

When H = 0, the mean field equations take the form

mA = SBS

(
zJSmB/kBT

)

m
B
= SBS

(
zJSm

A
/k

B
T
)

,
(14.152)

where we have assumed mA and mB are antiparallel, with mA = mA n̂ and mB = −mB n̂, where
n̂ is a unit vector. From the expansion of the Brillouin function, we obtain the Néel temperature

TN = S(S + 1)zJ/3k
B
.

14.7.3 Susceptibility

For T > Tc the system is paramagnetic, and there is a linear response to an external field,

χµνij =
∂Mµ

i

∂Hν
j

= γ
∂mµ

i

∂Hν
j

= − ∂2F

∂Hµ
i ∂H

ν
j

=
γ2

kBT

{〈
Sµi S

ν
j

〉
−
〈
Sµi
〉 〈
Sνj
〉} (14.153)

where {i, j} are site indices and {µ, ν} are internal spin indices. The mean field Hamiltonian is,
up to a constant,

ĤMF = −γ
∑

i

H
eff
i · Si , (14.154)

which is a sum of single site terms. Hence, the response within ĤMF must be purely local as
well as isotropic. That is, for weak effective fields, using Mi = γmi,

Mi = χ0H
eff
i = χ0Hi + γ−2 χ0 JijMj , (14.155)

which is equivalent to (
δij − γ−2χ0 Jij

)
Mj = χ0Hi , (14.156)
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and the mean field susceptibility is

χµνij =
[
χ−1
0 − γ−2J

]−1

ij
δµν . (14.157)

It is convenient to work in Fourier space, in which case the matrix structure is avoided and one
has

χ̂(q) =
χ0

1− γ−2χ0 Ĵ(q)
. (14.158)

The local susceptibility χ0 is readily determined:

Mµ = γ
〈
Sµ
〉
= γ

TrS exp(γH · S/k
B
T )

Tr exp(γH · S/kBT )

= γSBS(SγH/kB
T ) Ĥµ ,

(14.159)

where BS(x) is the Brillouin function from eqn. 14.151. As H → 0 we have M = χ0H , with

χµν0 =
γ2

kBT
· Tr(S

µSν)

Tr 1
≡ χ0 δ

µν , (14.160)

where χ0 = 1
N
Tr(S2)/Tr 1, where N is the number of components of Sµ. Thus, for the Ising

model (N = 1) we have χIsing
0 = γ2/kBT , while for the spin-S quantum Heisenberg model we

have χHeis
0 = S(S+1)γ2/3k

B
T . Note that χ0 ∝ T−1; the splitting of the degenerate energy levels

by the magnetic field is of little consequence at high temperatures.

In many cases one deals with ‘single ion anisotropy’ terms. For example, one can add to the
Heisenberg Hamiltonian a term such as

Ĥa = D
∑

i

(
Szi
)2

, (14.161)

which for D < 0 results in an easy axis anisotropy (i.e. the spins prefer to align along the ẑ-axis),
and for D > 0 results in an easy plane anisotropy (i.e. the spins prefer to lie in the (x, y) plane).
Since this term is already the sum of single site Hamiltonians, there is no need to subject it to a
mean field treatment. One then obtains the mean field Hamiltonian

ĤMF = D
∑

i

(
Szi
)2 − γ

∑

i

H
eff
i · Si . (14.162)

In this case, χ0 is now anisotropic in spin space. The general formula for χ0 is

χµν0 =
γ2

k
B
T

〈
SµSν

〉
(14.163)

where the thermodynamic average is taken with respect to the single site Hamiltonian.10 One
then has

χ̂µν(q) = χµλ0
[
I− γ−2Ĵ(q)

↔
χ
0

]−1

λν
, (14.164)

where the matrix inverse is now in internal spin space.

10Note that in (14.160) the single site Hamiltonian is simply Ĥ0 = 0.
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14.7.4 Variational probability distribution

Here’s another way to derive mean field theory. Let Ω represent a configuration and let PΩ
be a probability distribution, normalized such that

∑
Ω PΩ = 1. We define the entropy of the

distribution as

S[P ] = −kB

∑

Ω

PΩ lnPΩ . (14.165)

We now ask what distribution PΩ minimizes the free energy F = 〈Ĥ〉 − TS. Working in an

eigenbasis of Ĥ, we have

F =
∑

Ω

PΩ EΩ + k
B
T
∑

Ω

PΩ lnPΩ . (14.166)

We extremize F subject to the normalization constraint, which is implemented with a Lagrange
multiplier λ. This means we form the extended function

F ∗({PΩ}, λ
)
=
∑

Ω

PΩ EΩ + k
B
T
∑

Ω

PΩ lnPΩ − λ
(∑

Ω

PΩ − 1
)

, (14.167)

and demand dF ∗/dPΩ = 0 for all Ω as well as dF ∗/dλ = 0. This results in the Boltzmann
distribution,

P eq
Ω =

1

Z
e−EΩ/kBT , Z =

∑

l

e−El/kBT . (14.168)

Thus, any distribution other than P eq
Ω results in a larger free energy.

Mean field theory may be formulated in terms of a variational probability distribution. Thus,
rather than working with the Boltzmann distribution P eq

Ω , which is usually intractable, we in-

voke a trial distribution PΩ(x1, x2, . . .), parameterized by {x1, x2, . . .}, and minimize the resul-

tant F = 〈Ĥ〉 − TS with respect to those parameters.

As an example, consider the Ising model with spins σi = ±1. Each configuration is given by

the set of spin polarizations: Ω = {σ1, . . . , σN}. The full equilibrium probability distribution,

P eq
Ω = Z−1 exp

(
βJ
∑

〈ij〉
σiσj

)
, (14.169)

with β = 1/k
B
T , is too cumbersome to work with. We replace this with a variational single-site

distribution,

PΩ =
N∏

j=1

Pi(σi)

Pi(σi) =
1
2
(1 +mi) δσi,+1 +

1
2
(1−mi) δσi,−1 .

(14.170)
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The variational parameters are {m1, . . . , mN}. Note that PΩ is properly normalized, by con-
struction.

The entropy of our trial distribution is decomposed into a sum over single site terms:

S[P ] =
∑

i

s(mi)

s(m) = −kB

{
1 +m

2
ln
(1 +m

2

)
+

1−m
2

ln
(1−m

2

)} (14.171)

The thermodynamic average 〈σi〉 is simply

〈σi〉 = TrPi(σi) σi = mi , (14.172)

hence from
Ĥ = −1

2

∑

i,j

Jij σi σj − γ
∑

i

Hi σi , (14.173)

we derive the free energy

F
(
{mi}

)
= −1

2

∑

i,j

Jijmimj − γ
∑

i

Himi

+ kBT
∑

i

{
1 +mi

2
ln
(1 +mi

2

)
+

1−mi

2
ln
(1−mi

2

)} (14.174)

Varying with respect to each mi, we obtain the coupled nonlinear mean field equations,

mi = tanh
[(∑

j

Jijmj + γHi

)
/k

B
T
]

. (14.175)

For uniform magnetization (mi = m ∀ i), the free energy per site is

F

N
= −1

2
Ĵ(0)m2 − γHm+ kBT

{
1 +m

2
ln
(1 +m

2

)
+

1−m
2

ln
(1−m

2

)}

= 1
2

(
kBT − Ĵ(0)

)
m2 − γHm+ 1

12
kBT m

4 + 1
30
kBTm

6 + . . .

(14.176)

To compute the correlations, we may use the expression

χij(T ) =
γ2

kBT

{
〈σi σj〉 − 〈σi〉 〈σj〉

}
(14.177)

=
∂Mi

∂Hj
= γ

∂mi

∂Hj
= − ∂2F

∂Hi ∂Hj
. (14.178)
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Thus, there are two ways to compute the susceptibility. One is to evaluate the spin-spin correla-
tion function, as in (14.177). The other is to differentiate the magnetization to obtain the response
function, as in (14.178). The equality between the two – called the “fluctuation-dissipation the-
orem” – is in fact only valid for the equilibrium Boltzmann distribution P eq

Ω . Which side of the
equation should we use in our variational mean field theory? It is more accurate to use the
response function. To roughly see this, let us write P = P eq + δP , with δP small in some sense.
The free energy is given by

F [P ] = F [P eq] + δP · δF
δP

∣∣∣∣
P=P eq

+O
(
(δP )2

)
. (14.179)

Our variational treatment guarantees that the second term vanishes, since we extremize F with
respect to P . Thus, in some sense, the error in F is only of order (δP )2. If we compute the
correlation function using 〈A〉 = Tr (P A), where A is any operator, then the error will be linear
in δP . So it is better to use the response function than the correlation function.

EXERCISE: Articulate the correspondence between this variational version of mean field the-
ory and the ‘neglect of fluctuations’ approach we derived earlier.

14.8 Magnetic Ordering

The q-dependent susceptibility in (14.158) diverges when γ−2χ0Ĵ(q) = 1. As we know, such a
divergence heralds the onset of a phase transition where there is a spontaneous magnetization in
the ordered (i.e. low temperature) phase. Typically this happens at a particular wavevector Q,
or a set of symmetry related wavevectors {Q1,Q2, . . .}. The ordering wavevector is that value

of q which results in a maximum of Ĵ(q): maxq
{
Ĵ(q)

}
= Ĵ(Q). The susceptibility, for isotropic

systems, can be written

χ̂(q) =
χ0[

1− γ−2χ0 Ĵ(Q)
]
+ γ−2χ0

[
Ĵ(Q)− Ĵ(q)

] . (14.180)

The critical temperature Tc is determined by the relation

γ−2χ0(Tc) Ĵ(Q) = 1. (14.181)

Expanding about T = Tc, and about q = Q, where

Ĵ(q) = Ĵ(Q)
{
1− (q − Q)2R2

∗ + . . .
}

, (14.182)

we have

χ̂(q) ≈ χ0/R
2
∗

ξ−2(T ) + (q − Q)2 , (14.183)
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where

ξ−2(T ) = −χ
′
0(Tc)

χ0(Tc)
·R−2

∗ · (T − Tc) . (14.184)

Thus, ξ(T ) ∝ (T − Tc)−1/2. The real space susceptibility χ(Ri − Rj) oscillates with wavevector
Q and decays on the scale of the correlation length ξ(T ).

• Ferromagnet: Jij = +J > 0 if i and j are nearest neighbors; otherwise Jij = 0. On a
hypercubic lattice (d dimensions, 2d nearest neighbors), we then have

Ĵ(q) = J
∑

δ

e−iq·δ = 2J
{
cos(q1a) + cos(q2a) + . . .+ cos(qda)

}
. (14.185)

The ordering wavevector is Q = 0, and Ĵ(Q) = 2dJ . For the spin-S Heisenberg model,

then, TC = 2
3
d S(S + 1) J/k

B
, and the susceptibility is

χ̂(q) =
1
3
γ2S(S + 1)/k

B

(T − TC) + TC d
−1
∑d

ν=1

[
1− cos(qνa)

] . (14.186)

The uniform susceptibility χ = χ̂(q = 0) is then

χ(T ) =
γ2S(S + 1)

3kB(T − TC)
. (14.187)

Ferromagnetic insulators: ferrites, EuO, TDAE-C60.

• Antiferromagnet: Jij = −J < 0 if i and j are nearest neighbors; otherwise Jij = 0. On a
hypercubic lattice (d dimensions, 2d nearest neighbors), we then have

Ĵ(q) = −J
∑

δ

e−iq·δ = −2J
{
cos(q1a) + cos(q2a) + . . .+ cos(qda)

}
. (14.188)

The ordering wavevector is Q = (π/a, . . . , π/a), at the zone corner, where Ĵ(Q) = 2dJ .

For the spin-S Heisenberg model, then, TN = 2
3
d S(S + 1) J/k

B
, and the susceptibility is

χ̂(q) =
γ2S(S + 1)/3k

B

(T − TN) + TN d
−1
∑d

ν=1

[
1 + cos(qνa)

] . (14.189)

The uniform susceptibility χ = χ̂(q = 0) is then

χ(T ) =
γ2S(S + 1)

3k
B
(T + TN)

, (14.190)

which does not diverge. Indeed, plotting χ−1(T ) versus T , one obtains an intercept along the

T -axis at T = −TN. This is one crude way of estimating the Néel temperature. What does
diverge is the staggered susceptibility χstag ≡ χ̂(Q, T ), i.e. the susceptibility at the ordering
wavevector:

χstag(T ) =
γ2S(S + 1)

3kB(T − TN)
. (14.191)
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• Frustrated Antiferromagnet: On the triangular lattice, the antiferromagnetic state is frus-
trated. What does mean field theory predict? We begin by writing primitive direct lattice

vectors {a1, a2} and primitive reciprocal lattice vectors {b1, b2}:

a1 = a
(
1, 0
)

b1 =
4π

a
√
3

(√
3
2
,−1

2

)
(14.192)

a2 = a
(
1
2
,
√
3
2

)
b2 =

4π

a
√
3

(
0, 1
)

,

where a is the lattice constant. The six nearest neighbor vectors are then

δ ∈
{
a1, a2, a2 − a1,−a1,−a2, a1 − a2

}
, (14.193)

and writing q ≡ x1b1 + x2b2, we find

Ĵ(q) = −2J
{
cos(2πx1) + cos(2πx2) + cos(2πx1 − 2πx2)

}
. (14.194)

We suspect that this should be maximized somewhere along the perimeter of the Brillouin

zone. The face center lies at (x1, x2) = (1
2
, 1
2
), where Ĵ(q) = +2J . However, an even

greater value is obtained either of the two inequivalent zone corners, (x1, x2) = (2
3
, 1
3
) and

(x1, x2) = (1
3
, 2
3
), where Ĵ(q) = +3J . Each of these corresponds to a tripartite division of

the triangular lattice in to three
√
3 ×

√
3 triangular sublattices.

Antiferromagnetic insulators: MnO, CoO, FeO, NiO, La2CuO4.

• Helimagnet: Consider a cubic lattice system with mixed ferromagnetic and antiferromag-
netic interactions:

Jij =





+J1 > 0 6 nearest neighbors

−J2 < 0 12 next-nearest neighbors

0 otherwise .

(14.195)

Then

Ĵ(q) = 2J1
[
cos(qxa) + cos(qya) + cos(qza)

]

− 4J2
[
cos(qxa) cos(qya) + cos(qxa) cos(qza) + cos(qya) cos(qza)

]
.

(14.196)

The ordering wavevector is then

Q =

{
a−1 cos−1

(
J1
4J2

)
(x̂+ ŷ + ẑ) if J1 < 4J2

0 if J1 > 4J2 .
(14.197)

Thus, for J1 < 4J2 the order is incommensurate with the lattice. The maximum value of
Ĵ(q) is

Ĵ(Q) =

{
3J2

1

4J2
if J1 < 4J2

6(J1 − 2J2) if J1 > 4J2 ,
(14.198)
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hence incommensurate order sets in at TI = S(S+1)J2
1/4kBJ2. The uniform susceptibility

is

χ̂(0) =
γ2S(S + 1)/3k

B

T − 8 TI
J2
J1

(
1− 2J2

J1

) . (14.199)

Thus,

χ(T ) ≃





C
T+T ∗ 0 < J1 < 2J2 (like AFM)

C
T−T ∗ 2J2 < J1 < 4J2 (like FM) .

(14.200)

14.8.1 Mean field theory of anisotropic magnetic systems

Consider the anisotropic Heisenberg model,

Ĥ = −
intra︷ ︸︸ ︷∑

i<j

J
‖
ij Si · Sj −

inter︷ ︸︸ ︷∑

i<j

J⊥
ij Si · Sj −γ

∑

i

Hi · Si . (14.201)

Here, J
‖
ij only connects sites within the same plane (quasi-2d) or chain (quasi-1d), while J⊥

ij

only connects sites in different planes/chains. We assume that we have an adequate theory for
isolated plains/chains, and we effect a mean field decomposition on the interplane/interchain
term:

Si · Sj = −〈Si〉 · 〈Sj〉+ 〈Si〉 · Sj + 〈Sj〉 · Si+
(fluct)2︷ ︸︸ ︷

δSi · δSj , (14.202)

resulting in the effective field

H
eff(q, ω) = H(q, ω) + γ−2Ĵ⊥(q⊥)M(q, ω) , (14.203)

where M(q, ω) = γ〈S(q, ω)〉. Thus,

χ̂(q, ω) =
χ̂
‖
(q‖, ω)

1− γ−2Ĵ⊥(q⊥) χ̂
‖
(q‖, ω)

, (14.204)

where χ̂
‖
(q‖, ω) is assumed known.

14.8.2 Quasi-1D chains

Consider a ferromagnet on a cubic lattice where the exchange interaction along the ẑ-direction
(‖) is much larger than that in the (x, y) plane (⊥). Treating the in-plane interactions via mean
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field theory, we have

χ̂(q⊥, qz) =
χ̂1D(qz)

1− γ−2Ĵ⊥(q⊥) χ̂1D(qz)
, (14.205)

with
Ĵ⊥(q⊥) = 2J⊥

{
cos(qxa) + cos(qya)

}
. (14.206)

For the Ising model we can compute χ̂1D(qz) exactly using the high temperature expansion:

〈σn σn′〉 =
Tr
{
σn σn′

∏
j

(
1 + tanh(J‖/kB

T ) σj σj+1

)}

Tr
∏

j

(
1 + tanh(J‖/kB

T ) σj σj+1

)

= tanh|n−n′|(J‖/kB
T ) .

(14.207)

Thus,

χ̂1D(qz) =
γ2

kBT

∞∑

n=−∞
tanh|n|(J‖/kB

T ) einqzc

=
γ2

kBT

1

cosh(2J‖/kBT )− sinh(2J‖/kBT ) cos(qzc)

≈ 2πγ2

ckBT
· 1
π

ξ−1

ξ−2 + q2z
,

(14.208)

where c is the lattice spacing along the chains, and where the last approximation is valid for
q → 0 and ξ →∞. The correlation length in this limit is given by

ξ(T ) ≃ c

2
exp(2J‖/kBT ) . (14.209)

Note that ξ(T ) diverges only at T = 0. This is consistent with the well-known fact that the lower
critical dimension for systems with discrete global symmetries and short-ranged interactions is d = 1.
That is to say that there is no spontaneous breaking of any discrete symmetry in one-dimension
(with the proviso of sufficiently short-ranged interactions). For continuous symmetries the lower
critical dimension is d = 2, which is the content of the Hohenberg-Mermin-Wagner (HMW)
theorem.

Accounting for the residual interchain interactions via mean field theory, we obtain the anisotropic
(in space) susceptibility

χ̂(q⊥, qz) =
χ̂1D(qz)

1− γ−2 · 2J⊥
{
cos(qxa) + cos(qya)

}
· χ̂1D(qz)

. (14.210)

Three-dimensional ordering at Q = 0 sets in at T = Tc, which occurs when χ̂(Q) has a pole. The
equation for this pole is

4γ−2J⊥ χ1D = 1 ⇒ 4J⊥
k

B
Tc

= exp(−2J‖/kBTc) . (14.211)
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This transcendental equation is equivalent to

x ex =
1

ǫ
(14.212)

where x = 2J‖/kB
Tc and ǫ = 2J⊥/J‖. The solution, for small ǫ, is

k
B
Tc =

2J‖

ln
(
J‖/2J⊥

) + . . . . (14.213)

Thus, Tc > 0 for all finite J⊥, with Tc going to zero rather slowly as J⊥ → 0.

Similar physics is present in the antiferromagnetic insulator phase of the cuprate supercon-
ductors. The antiferromagnetic (staggered) susceptibility of the two-dimensional Heisenberg
model diverges as T → 0 as χstag

2D ∼ J−1 exp(ρJ/k
B
T ), where ρ is a dimensionless measure

of quantum fluctuations. As in the d = 1 Ising case, there is no phase transition at any fi-
nite temperature, in this case owing to the HMW theorem. However, when the quasi-2D
layers are weakly coupled with antiferromagnetic coupling J ′ (the base structure is a cubic
perovskite), three-dimensional Néel ordering sets in at the antiferromagnetic wavevector Q =

(π/a, π/a, π/c) at a critical temperature TN ≈ J/kB ln(J/J
′).

14.9 Spin Wave Theory

Recall the SU(2) algebra of quantum spin: [Sα, Sβ] = iǫαβγS
γ (set ~ = 1 for convenience).

Defining S± = Sx ± iSy, we have, equivalently,

[Sz, S±] = ±S± , [S+, S−] = 2Sz . (14.214)

The Holstein-Primakoff transformation (1940) maps the spin algebra onto that of a single bosonic
oscillator:

S+ = a† (2S − a†a)1/2

S− = (2S − a†a)1/2 a
Sz = a†a− S .

(14.215)

The state |Sz = −S 〉 is the vacuum | 0 〉 in the boson picture. The highest weight state, |Sz = +S 〉
corresponds to the state | 2S 〉 in the boson picture, i.e. an occupancy of n = 2S bosons.

EXERCISE: Verify that the bosonic representation of the spin operators in (15.36) satisfies the
SU(2) commutation relations of quantum spin.

What does it mean to take the square root of an operator like 2S − a†a? Simple! Just evaluate it
in a basis diagonal in a†a, i.e. the number basis:

a†a |n 〉 = n |n 〉 ⇒ (2S − a†a)1/2 |n 〉 = (2S − n)1/2 |n 〉 . (14.216)



14.9. SPIN WAVE THEORY 647

Note that physical boson states are restricted to n ∈ {0, 1, . . . , 2S}. What about states with
n > 2S? The nice thing here is that we needn’t worry about them at all, because S+, S−, and Sz

do not connect states with 0 6 n 6 2S to states with n > 2S. For example, when applying the
spin raising operator S+ to the highest weight state |Sz = +S 〉, in boson language we have

S+
∣∣Sz = +S

〉
= a† (2S − a†a)1/2

∣∣n = 2S
〉
= 0 , (14.217)

as required.

While the HP transformation is exact, it really doesn’t buy us anything unless we start making
some approximations and derive a systematic expansion in ‘spin wave’ interactions.

14.9.1 Ferromagnetic spin waves

Consider the classical ground state |F 〉 = |↓↓ · · · ↓ 〉 in which all spins are pointing ‘down’,
with Sz = −S. In the boson language, the occupancy at each site is zero. This is in fact an
eigenstate of the Heisenberg Hamiltonian

H = −
∑

i<j

Jij Si · Sj (14.218)

with eigenvalue E0 = −S2
∑

i<j Jij . If all the interactions are ferromagnetic, i.e. Jij > 0 ∀ (i, j),
then this state clearly is the ground state. We now express the Heisenberg interaction Si · Sj
in terms of the boson creation and annihilation operators. To this end, we perform a Taylor
expansion of the radical,

(2S − a†a)1/2 =
√
2S

{
1− 1

2

(
a†a

2S

)
− 1

8

(
a†a

2S

)2
+ . . .

}
, (14.219)

so that

Si · Sj = 1
2
S+
i S

−
j + 1

2
S−
i S

+
j + Szi S

z
j (14.220)

= S a†i

(
1− a†iai

4S
+ . . .

)(
1−

a†jaj
4S

+ . . .

)
aj

+ S

(
1− a†iai

4S
+ . . .

)
ai a

†
j

(
1− a†jaj

4S
+ . . .

)
+ (a†iai − S) (a†jaj − S)

= S2 + S
(
a†iaj + a†jai − a†iai − a†jaj

)
+
{
a†iaia

†
jaj − 1

4
a†ia

†
iaiaj (14.221)

− 1
4
a†ia

†
jajaj − 1

4
a†ja

†
iaiai − 1

4
a†ja

†
jajai

}
+O(1/S) .
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Note that a systematic expansion in powers of 1/S can be performed. The Heisenberg Hamil-
tonian now becomes

H =

classical ground

state energy O(S2)︷ ︸︸ ︷
−S2

∑

i<j

Jij +

spin-wave Hamiltonian Hsw︷ ︸︸ ︷
S
∑

i<j

Jij
(
a†iai + a†jaj − a†iaj − a†jai

)
+

spin-wave
interactions︷ ︸︸ ︷
O(S0) . (14.222)

We assume our sites are elements of a Bravais lattice, and we Fourier transform:

ai =
1√
N

∑

q

e+iq·Ri aq a†i =
1√
N

∑

q

e−iq·Ri a†q (14.223)

aq =
1√
N

∑

i

e−iq·Ri ai a†q =
1√
N

∑

i

e+iq·Ri a†i . (14.224)

Note that the canonical commutation relations are preserved by this transformation:

[ai, a
†
j] = δij ⇐⇒ [aq, a

†
q′ ] = δqq′ . (14.225)

Using the result
1

N

∑

i

ei(q−q
′)·Ri = δqq′ , (14.226)

we obtain the spin-wave Hamiltonian

Hsw = S
∑

q

[
Ĵ(0)− Ĵ(q)

]
a†qaq , (14.227)

from which we read off the spin-wave dispersion

~ωq = S
[
Ĵ(0)− Ĵ(q)

]

= 1
6
S
[∑

R

J(R)R2
]
q
2 +O(q4) .

(14.228)

The above sum on R converges if J(R→∞) ∼ R−(d+2+ǫ) with ǫ > 0.

14.9.2 Static correlations in the ferromagnet

The transverse spin-spin correlation function is

〈S+
i S

−
j 〉 =

〈
a†i
(
2S − a†iai

)1/2 (
2S − a†jaj

)1/2
aj
〉

= 2S 〈a†iaj〉+O(S0)

= 2SΩ

∫

Ω̂

ddk

(2π)d
eik·(Rj−Ri)

e~ωk/kBT − 1
.

(14.229)
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The longitudinal spin-spin correlation function is

〈Szi Szj 〉 − 〈Szi 〉 〈Szj 〉 = 〈a†iaia†jaj〉 − 〈a†iai〉 〈a†jaj〉 = O(S0) . (14.230)

Note that the average spin polarization per site is

〈Szi 〉 = −S + 〈a†iai〉

= −S + Ω

∫

Ω̂

ddk

(2π)d
1

e~ωk/kBT − 1
. (14.231)

Now as k → 0 the denominator above vanishes as k2, hence the average spin polarization per
site diverges when d 6 2. This establishes a “poor man’s version” of the HMW theorem: as
infinite spin polarization is clearly absurd, there must have been something wrong with our
implicit assumption that long-ranged order persists to finite T . In d = 3 dimensions, one finds
〈Szi 〉 = −S +O(T 3/2).

14.9.3 Antiferromagnetic spin waves

The case of the ferromagnet is special because the classical ground state |F 〉 is in fact a quan-
tum eigenstate – indeed the ground state – of the ferromagnetic Heisenberg Hamiltonian.11 In
the case of the Heisenberg antiferromagnet, this is no longer the case. The ground state itself is
a linear combination of classical states. What is the classical ground state? For an antiferromag-
net on a bipartite lattice,12 the classical ground state has each sublattice maximally polarized,
with the magnetization on the two sublattices oppositely oriented. Choosing the axis of polar-
ization as ẑ, this means Szi = −S is i ∈ A and Szi = +S if i ∈ B. We’ll call this state |N 〉, since it
is a classical Néel state.

Let is assume that the lattice is a Bravais lattice with a two-element basis described by basis
vectors 0 and δ. Thus, if R is any direct lattice vector, an A sublattice site lies at R and a B site
at R+ δ. The Heisenberg Hamiltonian is written

H = −
∑

R,R′

{
1
2
JAA(R− R′)SA(R) · SA(R

′) + 1
2
JBB(R− R′)SB(R) · SB(R

′)

+ J
AB
(R− R′ − δ)S

A
(R) · S

B
(R′)

}
.

(14.232)

11Of course, |F〉 is also an eigenstate – the highest lying excited state – of the antiferromagnetic Heisenberg Hamil-
tonian.

12A bipartite lattice is one which may be decomposed into two sublattices A and B, such that all the neighbors of
any site in A lie in B, and all the neighbors of any site in B lie in A. Examples of bipartite lattices: square, hon-
eycomb, simple cubic, body-centered cubic, hexagonal. Examples of lattices which are not bipartite: triangular,
Kagomé, face-centered cubic.
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Here SA(R) represents the spin on the A sublattice located at position R, while SB(R) represents
the B sublattice spin located at R+ δ. The factor of 1

2
multiplying the J

AA
and J

BB
terms avoids

double-counting the AA and BB interactions. The Néel state will be the classical ground state
if JAA > 0 and JBB > 0 and JAB < 0. It may remain the ground state even if some of the
interactions are frustrating, i.e. J

AA
< 0, J

BB
< 0, and/or J

AB
> 0 between certain sites.

We’d like the Néel state |N 〉 = |↑↓↑↓↑ . . . 〉 to be the vacuum for the Holstein-Primakoff bosons.
To accomplish this, we rotate the spin operators on the B sublattice by π about the ŷ-axis in the
internal SU(2) space, sending Sx → −Sx, Sy → Sy, and Sz → −Sz. In the language of HP
bosons, we have the following:

A Sublattice B Sublattice

S+ = a†(2S − a†a)1/2 S+ = −(2S − b†b)1/2b
S− = (2S − a†a)1/2a S− = −b†(2S − b†b)1/2 (14.233)

Sz = a†a− S Sz = S − b†b

We may now write the Heisenberg interaction as an expansion in powers of 1/S:

S
A
(R) · S

A
(R′) = S2 + S

(
a†R aR′ + a†R′ aR − a†R aR − a†R′ aR′

)
+O(S0)

SB(R) · SB(R
′) = S2 + S

(
b†R bR′ + b†R′ bR − b†R bR − b†R′ bR′

)
+O(S0)

S
A
(R) · S

B
(R′) = −S2 + S

(
a†R aR + b†R′ bR′ − a†R b†R′ − aR bR′

)
+O(S0) .

(14.234)

Thus, the classical ground state energy is the O(S2) term,

Ecl = S2
∑

R,R′

{
− 1

2
J

AA
(R−R′)− 1

2
J

BB
(R−R′) + J

AB
(R− R′ − δ)

}
. (14.235)

The spin-wave Hamiltonian is the O(S1) piece,

Hsw = −S
∑

R,R′

{
JAA(R−R′)

(
a†R aR′ − a†R aR

)
+ JBB(R−R′)

(
b†R bR′ − b†R bR

)

+ J
AB
(R−R′ − δ)

(
a†R aR + b†R bR − a†R b†R′ − aR bR′

)}
.

(14.236)

We now Fourier transform:

aR =
1√
N

∑

k

e+ik·R ak a†R =
1√
N

∑

k

e−ik·R a†k (14.237)

bR =
1√
N

∑

k

e+ik·(R+δ) bk b†R =
1√
N

∑

k

e−ik·(R+δ) b†k , (14.238)
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which leads to

∑

R,R′

J
AA
(R− R′) a†R aR′ =

1

N

∑

k,k′

∑

R,R′

J
AA
(R−R′)ei(k

′·R′−k·R) a†kak′

=
∑

k

Ĵ
AA
(k) a†k ak (14.239)

∑

R,R′

J
AB
(R−R′ − δ) a†R b†R′ =

1

N

∑

k,k′

∑

R,R′

J
AB
(R− R′ − δ)ei

(
k′·(R′+δ)−k·R

)
a†kb

†
−k′

=
∑

k

Ĵ
AB
(k) a†k b

†
−k , (14.240)

where, assuming J
AA

, J
BB

and J
AB

are functions only of the magnitude of their arguments,

ĴAA(k) ≡
∑

R

JAA

(
|R|
)
eik·R

Ĵ
BB
(k) ≡

∑

R

J
BB

(
|R|
)
eik·R

Ĵ
AB
(k) ≡

∑

R

J
AB

(
|R+ δ|

)
eik·(R+δ) .

(14.241)

Note that ĴAA(k) = ĴAA(−k) =
[
ĴAA(k)

]∗
(similarly for JBB), and ĴAB(k) =

[
ĴAB(−k)

]∗
.

The spin-wave Hamiltonian may now be written as

Hsw = S
∑

k

{(
Ĵ

AA
(0)− Ĵ

AA
(k)− Ĵ

AB
(0)
)
a†k ak +

(
Ĵ

BB
(0)− Ĵ

BB
(k)− Ĵ

AB
(0)
)
b†k bk

+ ĴAB(k) a
†
k b

†
−k + J∗

AB(k) ak b−k

}
. (14.242)

In other words,

Hsw =
∑

k

{
ΩAA

k a†k ak + ΩBB

k b†k bk +∆k a
†
k b

†
−k +∆∗

k ak b−k

}
(14.243)

with

ΩAA

k = S
(
Ĵ

AA
(0)− Ĵ

AA
(k)− Ĵ

AB
(0)
)

ΩBB

k = S
(
ĴBB(0)− ĴBB(k)− ĴAB(0)

) (14.244)

and
∆k = S Ĵ

AB
(k) . (14.245)
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Henceforth we shall assume JAA(R) = JBB(R), so ΩAA

k = ΩBB

k ≡ Ωk.

Note that the vacuum
∣∣ 0
〉

for the a and b bosons is not an eigenstate ofHsw, owing to the spin-

wave pair creation term ∆∗
k ak b−k. This can be traced back to the effect on the Néel state of the

Heisenberg interaction,
Si · Sj = 1

2
S+
i S

−
j + 1

2
S−
i S

+
j + Szi S

z
j . (14.246)

If i ∈ A and j ∈ B, then the term S+
i S

−
j acts on the configuration | − S , +S 〉 and converts

it to 2S | − S + 1 , S − 1 〉. Nevertheless, we can diagonalize Hsw by means of a canonical (but

not unitary!) transformation, known as the Bogoliubov transformation. Note that for each k ∈ Ω̂,

the spin-wave Hamiltonian couples only four operators: a†k, ak, b†−k, and b−k. We write the
Bogoliubov transformation as

ak = uk αk − v∗k β†
−k b−k = uk β−k − v∗k α†

k (14.247)

a†k = u∗k α
†
k − vk β−k b†−k = u∗k β

†
−k − vk αk (14.248)

One can readily verify that this transformation preserves the canonical bosonic commutation
relations, [

ak, a
†
k′

]
=
[
bk, b

†
k′

]
=
[
αk, α

†
k′

]
=
[
βk, β

†
k′

]
= δkk′ (14.249)

provided that

u∗k uk − v∗k vk = 1 . (14.250)

The inverse transformation is

αk = u∗k ak + v∗k b
†
−k β−k = u∗k b−k + v∗k a

†
k (14.251)

α†
k = uk a

†
k + vk b−k β†

−k = uk b
†
−k + vk ak . (14.252)

We’ll write
uk = exp(iηk) cosh(θk) , vk = exp(−iηk) sinh(θk) . (14.253)

We may then write

ak = exp(iηk) cosh(θk)αk − exp(iηk) sinh(θk) β
†
−k

b−k = exp(iηk) cosh(θk) β−k − exp(iηk) sinh(θk)α
†
k

(14.254)

as well as the inverse

αk = exp(−iηk) cosh(θk) ak + exp(iηk) sinh(θk) b
†
−k

β−k = exp(−iηk) cosh(θk) b−k + exp(iηk) sinh(θk) a
†
k .

(14.255)

Substituting into the expressions from Hsw, we find

Ωk
(
a†k ak + b†k bk

)
= Ωk cosh(2θk)

(
α†
k αk + β†

−k β−k + 1
)
− Ωk

− Ωk sinh(2θk)
(
α†
k β

†
−k + αk β−k

) (14.256)
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and

∆k a
†
k a

†
−k +∆∗

k ak b−k = −
∣∣∆k

∣∣ sinh(2θk)
(
α†
k αk + β†

−k β−k + 1
)

+
∣∣∆k

∣∣ cosh(2θk)
(
α†
k β

†
−k + αk β−k

)
,

(14.257)

where we have taken ηk = 1
2
arg(∆k). Up until now, θk has been arbitrary. We now use this

freedom to specify θk such that the
(
α†
k β

†
−k + αk β−k

)
terms vanish from Hsw. This requires

∣∣∆k

∣∣ cosh(2θk)− Ωk sinh(2θk) = 0 =⇒ tanh(2θk) =

∣∣∆k

∣∣
Ωk

, (14.258)

which means

cosh(2θk) =
Ωk
Ek

, sinh(2θk) =

∣∣∆k

∣∣
Ek

(14.259)

along with the dispersion relation

Ek =

√
Ω2
k −

∣∣∆k

∣∣2 . (14.260)

Finally, we may write the diagonalized spin-wave Hamiltonian as

Hsw =
∑

k

Ek
(
α†
k αk + β†

k βk
)
+
∑

k

(
Ek − Ωk

)
. (14.261)

Note that Ek = E−k since ĴAB(k) = Ĵ∗
AB(−k). The two terms above represent, respectively,

the spin-wave excitation Hamiltonian, and the O(S1) quantum correction to the ground state
energy. Since Ek < Ωk, this correction is always negative.

As k→ 0, we have, assuming cubic or higher symmetry,

Ωk = −S
∑

R

J
AB

(
|R+ δ|

)
+ 1

6
S k2

∑

R

J
AA

(
|R|
)
R

2 + . . .

≡ SW + SXk2 + . . .

(14.262)

and

∆k = +S
∑

R

J
AB

(
|R+ δ|

)
− 1

6
S k2

∑

R

J
AB

(
|R+ δ|

) ∣∣R+ δ
∣∣2 + . . .

≡ −SW + SY k2 + . . . .

(14.263)

The energy dispersion is linear: Ek = ~c|k|, where c = S
√

2W (X + Y ). Antiferromagnetic spin
waves are Goldstone bosons corresponding to the broken continuous symmetry of global spin
rotation. The dispersion vanishes linearly as k → 0, in contrast to the case of ferromagnetic
spin waves, where Ek vanishes quadratically.
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Reduction in Sublattice Magnetization

Let’s compute the average of Sz for a spin on the A sublattice:

〈Sz(R)〉 = −S + 〈a†R aR〉

= −S +
1

N

∑

k

〈a†k ak〉

= −S +
1

N

∑

k

〈
(u∗k α

†
k − vk β−k) (uk αk − v∗k β†

−k)
〉

= −S + v0

∫

BZ

ddk

(2π)d

{
Ωk
Ek

1

exp(Ek/kB
T )− 1

+
1

2

(
Ωk
Ek
− 1

)}
,

(14.264)

where v0 is the Wigner-Seitz cell volume, and the integral is over the first Brillouin zone. The
deviation δSz = 〈a† a〉 from the classical value 〈Sz〉 = −S is due to thermal and quantum
fluctuations. Note that even at T = 0, when the thermal fluctuations vanish, there is still a
reduction in sublattice magnetization due to quantum fluctuations. The Néel state satisfies the
Szi S

z
j part of the Heisenberg interaction, but the full interaction prefers neighboring spins to be

arranged in singlets, which involves fluctuations about local Néel order.

We’ve seen that Ωk ≃ SW and Ek ≃ ~c |k| as k → 0. Thus, the integrand behaves as T/k2 for
the first term and as 1/|k| for the second term. The integral therefore diverges in d 6 2 at finite
T and in d = 1 even at T = 0. Thermal and quantum fluctuations melt the classical ordered
state.

14.9.4 Specific heat due to spin waves

The long wavelength dispersion ωq = Aq2 has thermodynamic consequences. Consider a gen-
eral case of a bosonic dispersion ωq = A|q|σ. The internal energy for a system in d space dimen-
sions is then

E(T ) = V

∫
ddk

(2π)d
Akσ

eβAqσ − 1

=
AV Ωd
(2π)d

(k
B
T

A

)1+ d
σ

∞∫

0

du
ud/σ

eu − 1

(14.265)

where Ωd = 2πd/2/Γ(d/2) is the area of the unit sphere in d dimensions. Thus, E(T ) ∝ T 1+ d
σ ,

leading to a low-temperature heat capacity of

CV = Γ(2 + 1
2
d) ζ(1 + 1

2
d)
kBV Ωd
(2π)d

(
kBT

A

)d/σ
. (14.266)
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At high T , one must impose a cutoff at the edge of the Brillouin zone, where k ∼ π/a, in order
not to overcount the modes. One finds

E(T ) = kBT V

∫

Ω̂

ddk

(2π)d
= NkBT , (14.267)

where N is the number of unit cells. This simply is the Dulong-Petit result of k
B
T per mode.

For ferromagnetic spin waves, we found σ = 2, hence CV ∝ T d/2 at low temperatures. As we
shall see, for antiferromagnetic spin waves, one has σ = 1, as in the case of acoustic phonons,

hence CV ∝ T d.

Suppose we write the long-wavelength ferromagnetic spin-wave dispersion as ~ωq = CJ(qa)2,
where a is the lattice spacing, J is the nearest neighbor exchange, and C is a dimensionless
constant. The ferromagnetic low-temperature specific heat is then

CF
V = Γ(2 + 1

2
d) ζ(1 + 1

2
d)
kBV Ωd
(2πa)d

(
kBT

CJ

)d/2
, (14.268)

hence CF
V ∝ (T/ΘJ)

d/2, with ΘJ ≡ CJ/kB. Acoustic phonons with a ωk = ~c|k| dispersion lead
to a Debye heat capacity

CD
V = Γ(2 + d) ζ(1 + d)

k
B
V Ωd

(2πa)d

(
k

B
T

~c/a

)d
, (14.269)

hence CD ∝ (T/ΘD)
d, with ΘD ≡ ~c/ak

B
. Thus, at the lowest temperatures, the specific heat

due to spin waves dominates, but at intermediate temperatures it is the phonon specific heat
which dominates. The temperature scale T ∗ at which the two contributions are roughly equal
is given by

(T ∗/ΘJ)
d/2 ≃ (T ∗/ΘD)

d =⇒ T ∗ ≃ Θ2
D

/
ΘJ . (14.270)

14.10 Appendix : Generalized Spin Wave Theory for Isotropic

Systems

14.10.1 General form of Heisenberg Hamiltonian

Consider an isotropic Heisenberg Hamiltonian,

H =
∑

i<j

JijSi · Sj , (14.271)
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defined on an arbitrary lattice structure. On each site i, we may rotate the spin operators,
writing

Sµ = eαµ S
α , (14.272)

where the unit vectors
{
ê1, ê2, ê3

}
satisfy

êα × êβ = ǫαβγ êγ . (14.273)

I.e. they form an orthonormal triad. The Heisenberg interaction between spins on sites i and j
may then be written

Si · Sj = êαi · êβj Sαi Sβj . (14.274)

We now represent the spin operators Sα in terms of Holstein-Primakoff bosons:

S+ = ψ† (2S − ψ†ψ
)1/2

, S− =
(
2S − ψ†ψ

)1/2
ψ , Sz = ψ†ψ − S . (14.275)

We now expand the Heisenberg interaction in powers of S. Including terms of orders S2, S3/2,
and S, and neglecting terms of O(S1/2), we have

Sαi S
β
j =




1
2
S
(
ψi + ψ†

i

)(
ψj + ψ†

j

)
i
2
S
(
ψi + ψ†

i

)(
ψj − ψ†

j

)
− 1√

2
S3/2

(
ψi + ψ†

i

)
i
2
S
(
ψi − ψ†

i

)(
ψj + ψ†

j

)
−1

2
S
(
ψi − ψ†

i

)(
ψj − ψ†

j

)
− i√

2
S3/2

(
ψi − ψ†

i

)

− 1√
2
S3/2

(
ψj + ψ†

j

)
− i√

2
S3/2

(
ψj − ψ†

j

)
S2 − S

(
ψ†
iψi + ψ†

jψj
)




= S2 δα3 δβ3 + S3/2 Cαβ
ij + S Qαβ

ij +O
(
S1/2

)
, (14.276)

where

Cαβ
ij =




0 0 − 1√
2

(
ψi + ψ†

i

)

0 0 − i√
2

(
ψi − ψ†

i

)

− 1√
2

(
ψj + ψ†

j

)
− i√

2

(
ψj − ψ†

j

)
0


 (14.277)

and

Qαβ
ij =




1
2

(
ψi + ψ†

i

)(
ψj + ψ†

j

)
i
2

(
ψi + ψ†

i

)(
ψj − ψ†

j

)
0

i
2

(
ψi − ψ†

i

)(
ψj + ψ†

j

)
−1

2

(
ψi − ψ†

i

)(
ψj − ψ†

j

)
0

0 0 −ψ†
iψi − ψ†

jψj


 . (14.278)

The classical energy is

ECL

0 = S2
∑

i<j

Jij ê
3
i · ê3j . (14.279)

The O
(
S3/2

)
term is

H1 ≡ S3/2
∑

i<j

Jij ê
α
i · êβj Cαβ

ij (14.280)

= − 1√
2
S3/2

∑

i

(
ê+i ·

∑

j

Jij ê
3
j

)
ψi − 1√

2
S3/2

∑

i

(
ê−i ·
∑

j

Jij ê
3
j

)
ψ†
i (14.281)
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where
ê±i ≡ ê1i ± i ê2i . (14.282)

Therefore, if for each i we have
∑

j

Jij ê
3
j ∝ ê3i or

∑

j

Jij ê
3
j = 0 , (14.283)

then
ê±i ·
∑

j

Jij ê
3
j = 0 , (14.284)

and H1 vanishes. This is the condition that the classical ground state configuration lie at a local
extremum of the energy. If the condition in eqn. (14.283) did not hold, then there would be a
finite mean field from the neighbors of site i whose direction was not completely aligned with
the moment on that site. The spin on site i would then be able to lower its energy by canting to
antialign with this mean field.

The O(S) piece of the Hamiltonian is the spin-wave contribution:

H
SW

= S
∑

i<j

Jij

{
1
2
ê−i · ê+j ψ†

i ψj +
1
2
ê+i · ê−j ψi ψ†

j (14.285)

+ 1
2
ê−i · ê−j ψ†

i ψ
†
j +

1
2
ê+i · ê+j ψi ψj − ê3i · ê3j

(
ψ†
iψi + ψ†

jψj
)}

.

Note that rotation of the basis on site i by an angle θi about ê3i entails ê±i → e±iθi ê±i , which is

then cancelled by the unitary transformation ψi → eiθi ψi and ψ†
i → e−iθi ψ†

i .

14.10.2 Planar spiral phases

As a general parameterization of the classical state, take

ê1i = cos θi cosφi x̂+ cos θi sinφi ŷ − sin θi ẑ (14.286)

ê2i = − sin φi x̂+ cosφi ŷ (14.287)

ê3i = sin θi cosφi x̂+ sin θi sinφi ŷ + cos θi ẑ . (14.288)

Now consider a planar spiral on a Bravais lattice, where

θi = Q · Ri , φi = 0 . (14.289)

We then have

ê−i · ê+j = 1 + cos(θi − θj) = 1 + cos(Q · Rij) (14.290)

ê+i · ê−j = −1 + cos(θi − θj) = −1 + cos(Q ·Rij) (14.291)

ê3i · ê3j = cos(θi − θj) = cos(Q · Rij) , (14.292)
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where Rij = Ri − Rj . Fourier transforming, we arrive at the spin wave Hamiltonian

H = 1
2

∑

k

{
ωk
(
ψ†
kψk + ψ−kψ

†
−k
)
+∆k

(
ψ†
kψ

†
−k + ψkψ−k

)}
+ 1

2
NSĴ(Q) . (14.293)

where

ωk =
1
2
S
[
Ĵ(k)− 2Ĵ(Q) + 1

2
Ĵ(k + Q) + 1

2
Ĵ(k − Q)

]
(14.294)

∆k =
1
2
S
[
− Ĵ(k) + 1

2
Ĵ(k + Q) + 1

2
Ĵ(k − Q)

]
, (14.295)

where
Ĵ(k) =

∑

R

J(R) eik·R . (14.296)

The Bogoliubov dispersion is then

Ek =
√
ω2
k −∆2

k (14.297)

= S

√[
Ĵ(k)− Ĵ(Q)

][
1
2
Ĵ(k + Q) + 1

2
Ĵ(k − Q)− Ĵ(Q)

]
. (14.298)

This result agrees with that of P. Locher, Phys. Rev. B 41, 2537 (1990). There are then two
possible conditions for zero modes at wavevector k = κ:

Ĵ(κ) = Ĵ(Q) or Ĵ(κ+ Q) + Ĵ(κ−Q) = 2Ĵ(Q) . (14.299)

If one condition is met, then the spin wave dispersion vanishes linearly in k− κ. If both condi-
tions are met, the spin wave dispersion has a quadratic minimum.

14.10.3 Sublattices

We presume that there is an underlying Bravais lattice, and that the classical ground state is
periodic, with a q sublattice structure. The site index i can then be partitioned into a Bravais
lattice site R plus a sublattice index a ∈ {1, . . . , q}. We assume that

Jij −→ JRa,R′b = Jab(R−R′) = Jba(R
′ − R) (14.300)

depends only on the difference R − R′, for each (ab) pair. The lattice Fourier transforms are
defined as

ψa(R) =
1√
N

∑

k

eik·R ψa,k , ψ†
a(R) =

1√
N

∑

k

e−ik·R ψ†
a,k (14.301)

and
Ĵab(k) =

∑

R

e−ik·R Jab(R) . (14.302)
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Note that
Ĵab(k) = Ĵ∗

ab(−k) = Ĵba(−k) . (14.303)

The spin wave Hamiltonian is then given by

HSW = 1
4
S
∑

k

q∑

a,b=1

{
Ĵab(k)

[
ê−a · ê+b ψ†

a,k ψb,k + ê+a · ê−b ψa,−k ψ†
b,−k (14.304)

+ ê−a · ê−b ψ†
a,k ψ

†
b,−k + ê+a · ê+b ψa,−k ψb,k

]

− 2 ê3a · ê3b Ĵab(0)
[
ψ†
a,k ψa,k + ψb,−k ψ

†
b,−k − 1

]}

= 1
4
S
∑

k,a,b

(
ψ†
a,k ψa,−k

)
H(k)︷ ︸︸ ︷(

Ωab(k) ∆ab(k)

∆∗
ab(−k) Ωba(−k)

) (
ψb,k
ψ†
b,−k

)
(14.305)

+ 1
2
S
∑

k,a,b

Ĵab(0) ê
3
a · ê3b .

Here, the matrices Ω(k) and ∆(k) are given by

Ωab(k) = ê−a · ê+b Ĵab(k)− 2 δab
∑

c

Ĵac(0) ê
3
a · ê3c (14.306)

∆ab(k) = ê−a · ê−b Ĵab(k) . (14.307)

Note that

Ωba(−k) = ê+a · ê−b Ĵab(k)− 2 δab
∑

c

Ĵac(0) ê
3
a · ê3c (14.308)

∆∗
ab(−k) = ê+a · ê+b Ĵab(k) . (14.309)

We will find it notationally convenient to define separately the dimensionless matrices

Mab ≡ ê−a · ê+b , Nab ≡ ê−a · ê−b (14.310)

and the vector
Λa ≡ −2

∑

c

Ĵac(0) ê
3
a · ê3c , (14.311)

which has dimensions of energy. Then

H(k) =



Mab Ĵab(k) + Λa δab Nab Ĵab(k)

N∗
ab Ĵab(k) M∗

ab Ĵab(k) + Λa δab


 . (14.312)
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14.10.4 Diagonalization

We diagonalize via a generalized Bogoliubov transformation, writing

ψa,k =
∑

l

[
Ua,l(k) βl,k + Ṽ ∗

a,l(k) β
†
l,−k

]
(14.313)

ψ†
a,−k =

∑

l

[
Va,l(k) βl,k + Ũ∗

a,l(k) β
†
l,−k

]
(14.314)

Thus, we may write

Ψ(k)︷ ︸︸ ︷(
ψa,k
ψ†
a,−k

)
=

S(k)︷ ︸︸ ︷(
U Ṽ ∗

V Ũ∗

) B(k)︷ ︸︸ ︷(
βl,k
β†
l,−k

)
. (14.315)

The Hamiltonian is

H = 1
2
S
∑

k

′
Ψ †
i (k)Hij(k)Ψj(k)− 1

4
NS

q∑

a=1

Λa , (14.316)

where the prime on the sum indicates that only one of (k,−k) is included, i.e. the sum is over
precisely one half of the Brillouin zone.

In order to preserve the commutation relations, we must have

Σij =
[
Ψi , Ψ

†
k

]
= Sik

[
Bk , B

†
l

]
S†
lj =

(
S Σ S†)

ij
, (14.317)

where

Σ =

(
1q×q 0

0 −1q×q

)
, (14.318)

and where we have suppressed the k labels. Thus,

S† = Σ S−1Σ . (14.319)

This pseudounitarity condition on S requires

U †U − V †V = 1 UU † − Ṽ ∗Ṽ t = 1 (14.320)

Ũ tŨ∗ − Ṽ tṼ ∗ = 1 Ũ∗Ũ t − V V † = 1 (14.321)

and

U †Ṽ ∗ − V †Ũ∗ = 0 UV † − Ṽ ∗Ũ t = 0 (14.322)

Ṽ tU − Ũ tV = 0 V U † − Ũ∗Ṽ t = 0 . (14.323)
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The matrix S is chosen so as to diagonalize H :

S†
kHk Sk = Σ S−1

k ΣHk Sk =
(
E(k) 0

0 Ẽ(k)

)
, (14.324)

where both E and Ẽ are diagonal q × q matrices. Suppressing the k label, we then have the
eigenvalue equations

q∑

b=1

[
Mab Ĵab Ubl +Nab Ĵab Vbl

]
+ Λa Ual = +Ual El (14.325)

q∑

b=1

[
N∗
ab Ĵab Ubl +M∗

ab Ĵab Vbl

]
+ Λa Val = −Val El (14.326)

q∑

b=1

[
Mab Ĵab Ṽ

∗
bl +Nab Ĵab Ũ

∗
bl

]
+ Λa Ṽ

∗
al = −Ṽ ∗

al Ẽl (14.327)

q∑

b=1

[
N∗
ab Ĵab Ṽ

∗
bl +M∗

ab Ĵab Ũ
∗
bl

]
+ Λa Ũ

∗
al = +Ũ∗

al Ẽl (14.328)

We next multiply eqn. (14.325) by U∗
al′ and eqn. (14.326) by V ∗

al′ and sum over a. Then take the
complex conjugate of this equation and exchange the indices l and l′. The result is

(
El − E∗

l′

) (
U †U − V †V

)
l′l
= 0 . (14.329)

Corresponding manipulations with eqns. (14.327) and (14.328) yield

(
Ẽl − Ẽ∗

l′

) (
Ũ tŨ∗ − Ṽ tṼ ∗)

l′l
= 0 . (14.330)

Thus, provided the norm
(
U †U − V †V

)
ll

is finite, the corresponding eigenvalue El is real (and

similarly for Ẽl). Also, eigenvectors corresponding to different eigenvalues are orthogonal.

Multiplying eqn. (14.325) by Ṽal′ , eqn. (14.326) by Ũal′ , eqn. (14.327) by U∗
al′ , and eqn. (14.328)

by V ∗
al′ , conjugating, and exchanging l and l′ where necessary, we obtain

(
El + Ẽ∗

l′

) (
Ṽ tU − Ũ tV

)
l′l
= 0 , (14.331)

which is consistent with eqn. (14.322).

Finally, sending k → −k in eqns. (14.327) and (14.328), followed by conjugation, establishes

Ũbl(k) = Ubl(−k) , Ṽbl(k) = Vbl(−k) , Ẽl(k) = El(−k) . (14.332)

The spin wave Hamiltonian is then

H
SW

= 1
2
S
∑

k

q∑

l=1

[
El(k)

(
β†
l,k βl,k +

1
2

)
− 1

2
Λl

]
. (14.333)
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The ground state energy is then

E0
SW

= 1
4
S
∑

k

q∑

l=1

[
El(k)− Λl

]
. (14.334)

14.11 Appendix: The Foldy-Wouthuysen Transformation

Let us write
Ĥ = mc2 γ0 + cγ0 γ · π + V , (14.335)

where
π = p+ e

c
A (14.336)

is the dynamical momentum and where the γµ are the Dirac matrices,

γ0 =

(
12×2 02×2

02×2 −12×2

)
, γ =

(
02×2 σ2×2

−σ2×2 02×2

)
. (14.337)

Here σ is the vector of Pauli matrices.

The idea behind the FW transformation is to unitarily transform to a different Hilbert space

basis such that the coupling in Ĥ between the upper and lower components of the Dirac spinor
vanishes. This may be done systematically as an expansion in inverse powers of the electron

mass m. We begin by defining K ≡ cγ0γ ·π+V so that Ĥ = mc2 γ0+K. Note that K is of order
m0. We then write

ˆ̃H = eiS Ĥ e−iS

= Ĥ + i
[
S, Ĥ

]
+

(i)2

2!

[
S, [S, Ĥ ]

]
+ . . . ,

(14.338)

where S itself is written as a power series in (mc2)−1:

S =
S0

mc2
+

S1

(mc2)2
+ . . . . (14.339)

The job now is to write
˜̂
H as a power series in m−1. The first few terms are easy to find:

ˆ̃H = mc2 γ0 +K + i
[
S0, γ

0
]
+

1

mc2

(
i
[
S0, K

]
+ i
[
S1, γ

0
]
− 1

2

[
S0, [S0, γ

0]
])

+ . . . (14.340)

We choose the operators Sn so as to cancel, at each order in m−1, the off-diagonal terms in ˆ̃H
that couple the upper two components of Ψ to the lower two components of Ψ. To order m0,
we then demand

cγ0γ · π + i
[
S0, γ

0
]
= 0 . (14.341)
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Note that we do not demand that i
[
S0, γ

0
]

completely cancel K – indeed it is impossible to find
such an S0, and one way to see this is to take the trace. The trace of any commutator must
vanish, but TrK = 4V , which is in general nonzero. But this is of no concern to us, since we
only need cancel the (traceless) off-diagonal part of K, which is to say cγ0γ · π.

To solve for S0, one can write it in terms of its four 2 × 2 subblocks, compute the commutator
with γ0, and then impose eqn. 14.341. One then finds S0 = − i

2
c γ · π.

STUDENT EXERCISE: Derive the result S0 = − i
2
c γ · π.

At the next level, we have to deal with the term in the round brackets in eqn. 14.340. Since we
know S0, we can compute the first and the third terms therein. In general, this will leave us
with an off-diagonal term coupling upper and lower components of Ψ. We then choose S1 so
as to cancel this term. This calculation already is tedious, and we haven’t even gotten to the
spin-orbit interaction term yet, since it is of order m−2 – yecch!

14.11.1 Derivation of the spin-orbit interaction

Here’s a simpler way to proceed to orderm−2. Let a, b be block indices and i, j be indices within
each block. Thus, the component Ψai is the ith component of the ath block; Ψa=1,i=2 is the lower
component of the upper block, i.e. the second component of the four-vector Ψ.

Write the Hamiltonian as

Ĥ = mc2 τ z + cσ · π τx + V (r) , (14.342)

where τµ are Pauli matrices with indices a, b and σν are Pauli matrices with indices i, j. The σ
and τ matrices commute because they act on different indices.

A very important result regarding Pauli matrices:

eiθ n̂·τ/2 τα e−iθ n̂·τ/2 = nαnβ τβ + cos θ (δαβ − nαnβ) τβ + sin θ ǫαβγ nβ τγ . (14.343)

STUDENT EXERCISE: Verify and interpret the above result.

Using this result, we can write

Aτ z +B τx =
√
A2 +B2 · e−i tan−1(B/A) τy/2 τ z ei tan

−1(B/A) τy/2 , (14.344)

and, for our specific purposes,

mc2 τ z + cσ · π τx =
√

(mc2)2 + (cσ · π)2 · U τ z U † , (14.345)

where

U = e−i tan
−1(σ·π

mc
) τy/2 . (14.346)
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The fact that σ · π is an operator is no obstacle here, since it commutes with the τµ matrices. We
can give meaning to expressions like tan−1(σ · π/mc) in terms of their Taylor series expansions.

We therefore have the result,

U † Ĥ U =
√

(mc2)2 + (cσ · π)2 · τ z + U † V (r)U . (14.347)

The first term is diagonal in the block indices. Expanding the square root, we have

mc2
√

1 +
(
σ · π
mc

)2
= mc2 +

(σ · π)2
2m

+O(m−3)

= mc2 +
π2

2m
+

e~

2mc
B · σ +O(m−3) ,

(14.348)

since

(σ · π)2 = σµσν πµπν

= (δµν + iǫµνλσλ) πµπν

= π
2 + i

2
ǫµνλ

[
pµ + e

c
Aµ, pν + e

c
Aν
]

= π
2 +

e~

c
B · σ .

(14.349)

We next need to compute U † V (r)U to order m−2. To do this, first note that

U = 1− i

2

σ · π
mc

τ y − 1

8

(
σ · π
mc

)2
+ . . . , (14.350)

Thus,

U † V U = V +
i

2mc

[
σ · π, V

]
τ y − 1

8m2c2
[
σ · π, [σ · π, V ]

]
+ . . . . (14.351)

Upon reflection, one realizes that, to this order, it suffices to take the first term in the Taylor
expansion of tan−1(σ · π/mc) in eqn. 14.346, in which case one can then invoke eqn. 14.338 to
obtain the above result. The second term on the RHS of eqn. 14.351 is simply ~

2mc
σ ·∇V τ y.

The third term is

i~

8m2c2
[
σµπµ, σν∂νV

]
=

i~

8m2c2

{
σµ
[
πµ, σν∂νV

]
+
[
σµ, σν∂νV

]
πµ
}

=
i~

8m2c2

{
~

i
∂µ∂νV σµσν + 2iǫµνλσλ∂νV πµ

}

=
~2

8m2c2
∇

2V +
~

4m2c2
σ ·∇V × π .

(14.352)

Therefore,

U † Ĥ U =

(
mc2 +

π2

2m
+

e~

2mc
B · σ

)
τ z + V +

~

2mc
σ ·∇V τ y

+
~2

8m2c2
∇

2V +
~

4m2c2
σ ·∇V × π +O(m−3) .

(14.353)
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This is not block-diagonal, owing to the last term on the RHS of the top line. We can elimi-
nate this term by effecting yet another unitary transformation. However, this will result in a
contribution to the energy of order m−3, so we can neglect it. To substantiate this last claim,
drop all the block-diagonal terms except for the leading order one, mc2 τ z, and consider the
Hamiltonian

K = mc2 τ z +
~

2mc
σ ·∇V τ y . (14.354)

We now know how to bring this to block-diagonal form. The result is

K̃ = mc2

√

1 +

(
~ σ ·∇V

2m2c3

)2
τ z

=

(
mc2 +

~2(∇V )2

8m3c4
+ . . .

)
τ z ,

(14.355)

and the correction is of order m−3, as promised.

We now assume all the negative energy (τ z = −1) states are filled. The Hamiltonian for the
electrons, valid to O(m−3), is then

˜̂
H = mc2 + V +

π2

2m
+

e~

2mc
B · σ +

~2

8m2c2
∇

2V +
~

4m2c2
σ ·∇V × π . (14.356)
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Chapter 15

Spins, Coherent States, Path Integrals, and
Applications

15.1 The Coherent State Path Integral

15.1.1 Feynman path integral

The path integral formulation of quantum mechanics is both beautiful and powerful. It is use-
ful in elucidating the quantum-classical correspondence and the semiclassical approximation,
in accounting for interference effects, in treatments of tunneling problems via the method of
instantons, etc. Our goal is to derive and to apply a path integral method for quantum spin. We
begin by briefly reviewing the derivation of the usual Feynman path integral.

Consider the propagator K(xi, xf , T ), which is the probability amplitude that a particle located

at x = xi at time t = 0 will be located at x = xf at time t = T . We may write

K(xi, xf , T ) =
〈
xf
∣∣ e−iHT/~

∣∣ xi
〉

=
〈
xN
∣∣ e−iǫH/~ 1 e−iǫH/~ 1 · · · 1 e−iǫH/~

∣∣ x0
〉 (15.1)

where ǫ = T/N , and where we have defined x0 ≡ xi and xN ≡ xf . We are interested in the limit
N →∞. Inserting (N − 1) resolutions of the identity of the form

1 =

∞∫

−∞

dxj
∣∣ xj

〉〈
xj
∣∣ , (15.2)

667
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we find that we must evaluate matrix elements of the form

〈
xj+1

∣∣ e−iHǫ/~
∣∣ xj

〉
≈

∞∫

−∞

dpj
〈
xj+1

∣∣ pj
〉 〈

pj
∣∣ e−iT ǫ/~ e−iV ǫ/~

∣∣ xj
〉

=

∞∫

−∞

dpj e
ipj(xj+1−xj) e−iǫp

2
j/2m~ e−iǫV (xj)/~ .

(15.3)

The propagator may now be written as

〈
xN
∣∣ e−iHT/~

∣∣ x0
〉
≈

∞∫

−∞

>
N−1∏

j=1

dxj

∞∫

−∞

N−1∏

k=0

dpk exp

{
i
N−1∑

k=0

[
pk(xk+1 − xk)−

ǫ

2m~
p2k −

ǫ

~
V (xk)

]}

=

(
2π~m

iǫ

)N ∞∫

−∞

N−1∏

j=1

dxj exp

{
iǫ

~

N−1∑

k=1

[
1
2
m
(xj+1 − xj

ǫ

)2
− V (xj)

]}

≡
∫

x(0)=x
i

x(T )=x
f

Dx(t) exp
{
i

~

T∫

0

dt

[
1
2
mẋ2 − V (x)

]}
, (15.4)

where we absorb the prefactor into the measure Dx(t). Note the boundary conditions on the
path integral at t = 0 and t = T . In the semiclassical approximation, we assume that the path
integral is dominated by trajectories x(t) which extremize the argument of the exponential in
the last term above. This quantity is (somewhat incorrectly) identified as the classical action,
S, and the action-extremizing equations are of course the Euler-Lagrange equations. Setting
δS = 0 yields Newton’s second law, mẍ = −∂V/∂x, which is to be solved subject to the two
boundary conditions.

The ‘imaginary time’ version, which yields the ‘thermal propagator’, is obtained by writing
T = −i~β and t = −iτ , in which case

〈
xf
∣∣ e−βH

∣∣xi
〉
=

∫

x(0)=x
i

x(~β)=x
f

Dx(τ) exp
{
− 1

~

‘Euclidean action’ SE︷ ︸︸ ︷
~β∫

0

dτ

[
1
2
mẋ2 + V (x)

] }
. (15.5)

The partition function is the trace of the thermal propagator, viz.

Z = Tr e−βH =

∞∫

−∞

dx
〈
x
∣∣ e−βH

∣∣ x
〉
=

∫

x(0)=x(~β)

Dx(τ) exp
(
− SE[x(τ)]/~

)
(15.6)
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The equations of motion derived from SE are mẍ = +∂V/∂x, corresponding to motion in the
‘inverted potential’.

15.1.2 Coherent state path integral for the ‘Heisenberg-Weyl’ hroup

We now turn to the method of coherent state path integration. In order to discuss this, we
must first introduce the notion of coherent states. This is most simply done by appealing to the
one-dimensional simple harmonic oscillator,

H =
p2

2m
+ 1

2
mω2

0x
2 = ~ω0 (a

†a + 1
2
) , (15.7)

where a and a† are ladder operators,

a = ℓ ∂x +
x

2ℓ
, a† = −ℓ ∂x +

x

2ℓ
(15.8)

with ℓ ≡
√

~/2mω0. Exercise: Check that [a, a†] = 1.

The ground state satisfies aψ0(x) = 0, which yields

ψ0(x) = (2πℓ2)−1/4 exp(−x2/4ℓ2) . (15.9)

The normalized coherent state
∣∣ z
〉

is defined as

∣∣ z
〉
= e−

1
2
|z|2 eza

†∣∣ 0
〉
= e−

1
2
|z|2

∞∑

n=0

zn√
n!

∣∣n
〉

. (15.10)

The coherent state is an eigenstate of the annihilation operator a:

a
∣∣ z
〉
= z

∣∣ z
〉

⇐⇒
〈
z
∣∣ a† =

〈
z
∣∣ z̄ . (15.11)

The overlap of coherent states is given by

〈
z1
∣∣ z2
〉
= e−

1
2
|z1|2 e−

1
2
|z2|2 ez̄1z2 , (15.12)

hence different coherent states are not orthogonal. Despite this nonorthogonality, the coherent
states allow a simple resolution of the identity,

1 =

∫
d2z

2πi

∣∣ z
〉〈
z
∣∣ ,

d2z

2πi
≡ dRe z d Im z

π
(15.13)

which is straightforward to establish.
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To gain some physical intuition about the coherent states, define

z ≡ Q

2ℓ
+
iℓP

~
. (15.14)

One finds (exercise!)

ψP,Q(x) =
〈
x
∣∣ z
〉
= (2πℓ2)−1/4 e−iPQ/2~ eiPx/~ e−(x−Q)2/4ℓ2 , (15.15)

hence the coherent state ψP,Q(x) is a wavepacket Gaussianly localized about x = Q, but oscil-
lating with momentum P . Exercise: Compute 〈(q −Q)2〉 and 〈(p− P )2〉.
Now we derive the imaginary time path integral. We write

〈
zf
∣∣ e−βH

∣∣ zi
〉
=
〈
zN
∣∣ e−ǫH/~ 1 e−ǫH/~ · · · 1 e−ǫH/~

∣∣ z0
〉

, (15.16)

inserting resolutions of the identity at N − 1 points, as before. We next evaluate the matrix
element

〈
zj
∣∣ e−ǫH/~

∣∣ zj−1

〉
=
〈
zj
∣∣ zj−1

〉
·
{
1− ǫ

~

〈
zj
∣∣H
∣∣ zj−1

〉
〈
zj
∣∣ zj−1

〉 + . . .

}

≃
〈
zj
∣∣ zj−1

〉
exp

{
− ǫ

~
H(z̄j|zj−1)

} (15.17)

where

H(z̄|w) ≡
〈
z
∣∣H
∣∣w
〉

〈
z
∣∣w
〉 = e−z̄w

〈
0
∣∣ ez̄aH(a†, a) ewa

† ∣∣ 0
〉

. (15.18)

This last equation is extremely handy. It says, upon invoking eqn. 15.11, that if H(a, a†) is
normal ordered such that all creation operators a† appear to the left of all destruction operators
a, then H(z̄|w) is obtained from H(a†, a) simply by sending a† → z̄ and a→ w. This is because
a acting to the right on

∣∣w
〉

yields its eigenvalue w, while a† acting to the left on
〈
z
∣∣ generates

z̄. Note that the function H(z̄|w) is holomorphic in w and in z̄, but is completely independent
of their complex conjugates w̄ and z.

The overlap between coherent states at consecutive time slices may be written

〈
zj
∣∣ zj−1

〉
= exp

{
− 1

2

[
z̄j(zj − zj−1)− zj−1(z̄j − z̄j−1)

]}
, (15.19)

hence

〈
zN
∣∣ zN−1

〉
· · ·
〈
z1
∣∣ z0
〉
= exp

{
1
2

N−1∑

j=1

[
zj(z̄j+1 − z̄j)− z̄j(zj − zj−1)

]}

× exp

{
1
2
z0(z̄1 − z̄0)− 1

2
z̄N(zN − zN−1)

}
,

(15.20)
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which allows us to write down the path integral expression for the propagator,

〈
zf
∣∣ e−βH

∣∣ zi
〉
=

∫ N−1∏

j=1

d2zj
2πi

exp
(
− SE[{zj , z̄j}]/~

)

SE[{zj , z̄j}]/~ =

N−1∑

j=1

[
1
2
z̄j(zj − zj−1)− 1

2
zj(z̄j+1 − z̄j)

]
+
ǫ

~

N∑

j=1

H(z̄j |zj−1)

+ 1
2
z̄f
(
zf − zN−1

)
− 1

2
zi
(
z̄1 − z̄i

)
.

(15.21)

In the limit N →∞, we identify the continuum Euclidean action

SE[{z(τ), z̄(τ)}]/~ =

~β∫

0

dτ

{
1

2

(
z̄
∂z

∂τ
− z ∂z̄

∂τ

)
+

1

~
H(z̄|z)

}

+ 1
2
z̄f
[
zf − z(~β)

]
− 1

2
zi
[
z̄(0)− z̄i

]
,

(15.22)

and write the continuum expression for the path integral,

〈
zf
∣∣ e−βH

∣∣ zi
〉
=

∫
D[z(τ), z̄(τ)] e−SE[{z(τ),z̄(τ)}]/~ . (15.23)

The continuum limit is in a sense justified by examining the discrete equations of motion,

1

~

∂SE
∂zk

= z̄k − z̄k+1 +
ǫ

~

∂H(z̄k+1|zk)
∂zk

1

~

∂SE
∂z̄k

= zk − zk−1 +
ǫ

~

∂H(z̄k|zk−1)

∂z̄k
,

(15.24)

which have the sensible continuum limit

~
∂z̄

∂τ
=
∂H(z̄|z)
∂z

, ~
∂z

∂τ
= −∂H(z̄|z)

∂z̄
(15.25)

with boundary conditions z̄(~β) = z̄f and z(0) = zi. Note that there are only two boundary
conditions – one on z(0) and the other on z̄(~β). The function z(τ) (or its discrete version zj)

is evolved forward from initial data zi, while z̄(τ) (or z̄j) is evolved backward from final data

z̄f . This is the proper number of boundary conditions to place on two first order differential (or
finite difference) equations. It is noteworthy that the action of eqn. 15.21 or eqn. 15.22 imposes
only a finite penalty on discontinuous paths.1 Nevertheless, the paths which extremize the action

are continuous throughout the interval τ ∈ (0, ~β). As z(τ) is integrated forward from zi, its

1In the Feynman path integral, discontinuous paths contribute an infinite amount to the action, and are therefore
suppressed.
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final value z(~β) will in general be different from zf . Similarly, z̄(τ) integrated backward from z̄f
will in general yield an endpoint value z̄(0) which differs from z̄i. The differences z(~β)−zf and

z̄(0)− z̄i are often identified as path discontinuities, but the fact is that the equations of motion

know nothing about either zf or z̄i. These difference terms do enter in a careful accounting of
the action formulae of eqns. 15.21 and 15.22, however.

The importance of the boundary terms is nicely illustrated in a computation of the semiclas-
sical imaginary time propagator for the harmonic oscillator. With H = ~ω0 a

†a (dropping the
constant term for convenience), we have

〈
zf
∣∣ exp(−β~ω0 a

†a)
∣∣ zi
〉
= e−

1
2
|zf |2−

1
2
|zi|2

∞∑

m,n=0

z̄mf zni√
m!n!

〈
m
∣∣ exp(−β~ω0 a

†a)
∣∣n
〉

= exp

{
− 1

2
|zf |2 − 1

2
|zi|2 + z̄fzi e

−β~ω0

}
.

(15.26)

The Euclidean action is LE = 1
2
~(z̄ż − z ˙̄z) + ~ω0 z̄z, so the equations of motion are

~ ˙̄z =
∂H

∂z
= ~ω0 z̄ , ~ż = −∂H

∂z̄
= −~ω0 z (15.27)

subject to boundary conditions z(0) = zi, z̄(~β) = z̄f . The solution is

z(τ) = zi e
−ω0τ , z̄(τ) = z̄f e

ω0(τ−~β) . (15.28)

Along the ‘classical path’ the Euclidean Lagrangian vanishes: LE = 0. The entire contribution
to the action therefore comes from the boundary terms:

Scl
E/~ = 0 + 1

2
z̄f(zf − zi e−β~ω0)− 1

2
zi(z̄f e

−β~ω0 − z̄i)

= 1
2
|zf |2 + 1

2
|zi|2 − z̄fzi e−β~ω0 ,

(15.29)

What remains is to compute the fluctuation determinant. We write

zj = zclj + ηj , z̄j = z̄clj + η̄j , (15.30)

and expand the action as

SE[{zj , z̄j}] = SE[{zclj , z̄clj }] +
∂2SE
∂z̄i∂zj

η̄iηj +
1

2

∂2SE
∂zi∂zj

ηiηj +
1

2

∂2SE
∂z̄i∂z̄j

η̄iη̄j + . . .

≡ Scl
E +

~

2

(
z̄i zi

)(Aij Bij

Cij At
ij

)(
zj
z̄j

)
+ . . . .

(15.31)
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For general H , we obtain

Aij = δij − δi,j+1 +
ǫ

~

∂2H(z̄i|zj)
∂z̄i ∂zj

δi,j+1

Bij =
ǫ

~

∂2H(z̄i|zi−1)

∂z̄2i
δi,j

Cij =
ǫ

~

∂2H(z̄i+1|zi)
∂z2i

δi,j .

(15.32)

with i and j running from 1 to N − 1. The contribution of the fluctuation determinant to the
matrix element is then

∫ N−1∏

j=1

d2ηi
2πi

exp

{
−1
2

(
Re ηk Im ηk

)( 1 1
−i i

)(
Akl Bkl

Ckl Alk

)(
1 i
1 −i

)(
Re ηl
Im ηl

)}
= det−1/2

(
A B
C At

)
.

(15.33)
In the case of the harmonic oscillator discussed above, we have Bij = Cij = 0, and since Aij
has no elements above its diagonal and Aii = 1 for all i, we simply have that the determinant
contribution is unity.

15.2 Coherent States for Spin

For the pros: A. Perelomov, Generalized Coherent States and their Applications (Springer-
Verlag, NY, 1986).

A spin-coherent state
∣∣ Ω̂
〉

is simply a rotation of the ‘highest weight’ state
∣∣m = +S

〉
, such

that the spin is maximally polarized along Ω̂, i.e.

Ω̂ · S
∣∣ Ω̂
〉
= +S

∣∣ Ω̂
〉

. (15.34)

Note that
∣∣m = +S

〉
is itself a coherent state with Ω̂ = ẑ. We can effect this rotation by means

of an elementR of the group SU(2):

R ≡ exp(iψSz) exp(iθSy) exp(iφSz)∣∣ Ω̂
〉
= R† ∣∣ ẑ

〉
.

(15.35)

To define and manipulate the spin coherent states, it is useful to introduce the Schwinger rep-
resentation of quantum spin. You are probably already familiar with the Holstein-Primakoff
transformation,

S+ = h† (2S − h†h)1/2 , S− = (2S − h†h)1/2 h , Sz = h†h− S , (15.36)
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with 0 6 h†h 6 2S. by which a quantum spin can be represented by a single boson. Note that

the eigenvalues of the boson number operator nh = h†h range over the nonnegative integers.
There are thus an infinite number of allowed states, but only a finite number (2S+1) of states in
the Hilbert space for spin. But the factor

√
2S − h†h in S+ annihilates the state of maximal po-

larization,
∣∣m = +S

〉
, and thus for any Hamiltonian which can be written in terms of the spin

algebra operators, the infinite-dimensional boson Hilbert space is effectively divided into two

parts. The ‘physical’ states all have 0 6 nh 6 2S, and there are no matrix elements connecting

this subspace to the ‘unphysical’ one where nh > 2S.

The square roots are unwieldy, however, and in practice one expands them in powers of (nh/2S),
viz.

(2S − h†h)1/2 =
√
2S ·

{
1− 1

2

(h†h
2S

)
+

1

8

(h†h
2S

)2
+ . . .

}
. (15.37)

This expansion forms the basis of spin wave theory. Hence, within spin wave theory, unphys-
ical states are allowed. For example, an interaction like S+

i S
−
j between spins on sites i and j

takes the form 2S h†i hj within the spin wave expansion. But such a term knows nothing of the

border lying at nh = 2S separating physical from unphysical states.

In the Schwinger representation, two bosons are used, and the constraint is a holonomic one
(i.e. one which can be written as an equality):

S+ = a† b , S− = a b† , Sz = 1
2
(a†a− b†b) , (15.38)

and subject to the constraint a†a + b†b = 2S. The constraint simply says na + nb = 2S, i.e. there
are a total of 2S bosons present. Note that the operators S± change the number of a and b

bosons, but preserve the total na + nb, hence they commute with the constraint.

Exercise: Verify that [S+, S−] = 2Sz and [Sz, S±] = ±S± for both the Holstein-Primakoff and
Schwinger representations.

A shorthand way of rendering the spin operators in the Schwinger representation is

S = 1
2

(
a† b†

)
σ

(
a
b

)
. (15.39)

We now investigate the action of the SU(2) rotation R on the Schwinger bosons. We wish to
evaluate the expression

R†
(
a
b

)
R = e−iφS

z

e−iθS
y

e−iψS
z

(
a
b

)
eiψS

z

eiθS
y

eiφS
z

. (15.40)

Let’s work this out:

• Rotation about the ẑ-axis:

e−iψS
z

(
a
b

)
eiψS

z

= e−i
ψ
2
a†aei

ψ
2
b†b

(
a
b

)
e−i

ψ
2
b†bei

ψ
2
a†a =

(
e+i

ψ
2 a

e−i
ψ
2 b

)
. (15.41)
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• Rotation about the ŷ axis:

e−iθS
y

(
a
b

)
eiθS

y

= e
θ
2
(ab†−a†b)

(
a
b

)
e−

θ
2
(ab†−a†b) =

(
cos(θ/2) a+ sin(θ/2) b
− sin(θ/2) a+ cos(θ/2) b

)
. (15.42)

We are also licensed to make an additional rotation U = exp(iξS), where S = 1
2
(a†a + b†b). The

final result of the combined transformation RU is
(
ã

b̃

)
≡ U †R†

(
a
b

)
RU = eiξ/2

(
ū v
−v̄ u

)(
a
b

)
(15.43)

where u and v are spinor coordinates,

u = e−iψ/2 e−iφ/2 cos
(
1
2
θ
)

v = e−iψ/2 e+iφ/2 sin
(
1
2
θ
)

.
(15.44)

The phase ξ is unphysical, and without loss of generality we are free to define ξ ≡ −(φ+ ψ), in
which case (

ã

b̃

)
=

(
cos(1

2
θ) sin(1

2
θ) eiψ

− sin(1
2
θ) eiφ cos(1

2
θ) e−i(φ+ψ)

)(
a
b

)
. (15.45)

Now that we know how the Schwinger bosons themselves transform under SU(2), we investi-
gate the transformation properties of the spin operators Sα, which are bilinear in the Schwinger
bosons. We find

R† SzR =
(
a† b†

)(u −v̄
v ū

)(
1 0
0 −1

)(
ū v̄
−v u

)(
a
b

)

= 1
2

(
a† b†

)( cos θ sin θ e−iφ

sin θ eiφ − cos θ

)(
a
b

)

= sin θ cos φSx + sin θ sinφSz + cos θ Sz ,

henceR†SzR = Ω̂ · S, and

S
∣∣ Ω̂
〉
= R†Sz

∣∣ ẑ
〉
= (R†SzR)R†∣∣ ẑ

〉
= Ω̂ · S

∣∣ Ω̂
〉

. (15.46)

Explicitly, then,

∣∣ Ω̂
〉
=
[
(2S)!

]−1/2
(ua† + vb†)2S

∣∣ 0
〉
=

2S∑

k=0

(
2S

k

)1/2
uk v2S−k

∣∣ k − S
〉

. (15.47)

Example: S = 1
2
, θ = 1

2
π, φ = 1

2
π gives

∣∣ Ω̂
〉
= 1√

2
|↑〉+ i√

2
|↓〉 =

∣∣ ŷ
〉
.

A useful property of the coherent states: if

∣∣ψ
〉
= f(a†, b†)

∣∣ 0
〉
≡

2S∑

k=0

fk (a
†)k (b†)2S−k

∣∣ 0
〉

, (15.48)
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then 〈
Ω̂
∣∣ψ
〉
=
√

(2S)! f(ū, v̄) , (15.49)

i.e. replace a† → ū and b† → v̄ as arguments of f . The overlap of the coherent states is

〈
Ω̂
∣∣ Ω̂′ 〉 = (ūu′ + v̄v′)2S

=
[
1
2
(1 + Ω̂ · Ω̂′)

]S
eiSγ(Ω̂,Ω̂

′)
(15.50)

where

γ(Ω̂, Ω̂′) ≡ 2 arg (ūu′ + v̄v′) (15.51)

= 2 tan−1

[
sin 1

2
θ sin 1

2
θ′ sin(φ′ − φ)

cos 1
2
θ cos 1

2
θ′ + sin 1

2
θ sin 1

2
θ′ cos(φ′ − φ)

]

Perhaps the most important result, for our purposes, is the resolution of the identity:

1 =
2S + 1

4π

∫
dΩ
∣∣ Ω̂
〉〈
Ω̂
∣∣ . (15.52)

As with the case of coherent states for the harmonic oscillator, the spin coherent states permit
a simple resolution of the identity despite their nonorthogonality.

The last step, before we tackle the derivation of the spin path integral, is to compute matrix
elements in the coherent state basis. We assume that the Hamiltonian commutes with the con-
straint, i.e. it preserves total spin. The most general such Hamiltonian may be written

H =
∑

m,n,j

Cmnj (a†)m (b†)n (a)m+j (b)n−j , (15.53)

and its matrix elements may be evaluated using

〈
Ω̂1

∣∣
preserves total S︷ ︸︸ ︷

(a†)m (b†)n (a)m+j (b)n−j
∣∣ Ω̂2

〉
=

(2S)!

(2S −m− n)! (ū1u2 + v̄1v2)
2S−m−n ūm1 v̄

n
1 u

m+j
2 vn−j2 .

(15.54)
Note that the above operator product must be normal-ordered, with annihilation operators a, b
appearing to the right of creation operators a†, b†.

Exercise: Verify eqn. 15.54 by finding the O
(
z̄2S1 z2S2

)
term of the matrix element in the (unnor-

malized) generalized coherent state

∣∣ z, Ω̂
〉
≡ ezua

†

ezvb
†∣∣ 0
〉

, (15.55)

where z is a complex number. Show that a | z, Ω̂ 〉 = zu
∣∣ z, Ω̂

〉
, b
∣∣ z, Ω̂

〉
= zv | z, Ω̂ 〉, and

〈
z, Ω̂

∣∣ z′, Ω̂′ 〉 = exp
[
z̄z′(ūu′ + v̄v′)

]
. (15.56)
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Use these results to verify eqn. 15.54.

As with the case of the coherent state path integral for the Heisenberg-Weyl group, only diag-
onal matrix elements are needed. In this case the expression eqn. 15.54 simplifies to

〈
Ω̂
∣∣ (a†)m(b†)n(a)m+j(b)n−j

∣∣ Ω̂
〉
=

(2S)!

(2S −m− n)! ū
m v̄n um+j vn−j . (15.57)

Two examples of matrix element computation:

• O = S+ = a†b. Here, (m,n, j) = (1, 0,−1), so

〈
Ω̂
∣∣ a†b

∣∣ Ω̂
〉
= 2S ūv = S sin θ eiφ . (15.58)

• O = (Sx)
2. First we normal order:

S2
x =

(
a†b+ ab†

2

)2

= 1
4

(
a†b a†b+ a b†a b† + a†b b†a + a b†a†b

)

= 1
4

( (2,0,−2)︷ ︸︸ ︷
a†a† b b +

(0,2,2)︷ ︸︸ ︷
b†b†a a +

(1,1,0)︷ ︸︸ ︷
2 a†b†a b +

(1,0,0)︷︸︸︷
a†a +

(0,1,0)︷︸︸︷
b†b
)

,

(15.59)

which, following the rules in Eqn. 15.57, yields

〈 Ω̂ |S2
z | Ω̂ 〉 = 1

4
(2S)(2S − 1)(ū2v2 + v̄2u2 + 2ūv̄uv) + 1

4
(2S)(ūu+ v̄v)

= S(S − 1
2
)(sin θ cos φ)2 + 1

2
S .

(15.60)

Exercise: Prove that

〈
Ω̂
∣∣SαSβ

∣∣ Ω̂
〉
= S(S − 1

2
)ΩαΩβ + 1

2
S δαβ +

i

2
S ǫαβγ Ω

γ . (15.61)

15.2.1 Coherent state wavefunctions

Consider a state ∣∣Ψ
〉
= 1√

2S !
Ψ(a†, b†)

∣∣ 0
〉

, (15.62)

where Ψ (a†, b†) is homogeneous of degree 2S. Then

〈
Ω̂
∣∣Ψ
〉
= Ψ(ū, v̄) , (15.63)
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where Ψ(ū, v̄) is obtained from Ψ(a†, b†) simply by substituting a† → ū and b† → v̄.

Now suppose we wish to calculate the matrix element of some operator Â between states
∣∣Ψ
〉

and
∣∣Φ
〉
. We assume that Â preserves total spin, in which case it may be written

Â =
∑

k,l,j

Aklj T̂klj

T̂klj = (a)k (b)l (a†)k+j (b†)l−j .

(15.64)

Note here that we have written Â in normal-ordered form, but this time with the creation
operators appearing to the right. One then has

〈
Ψ
∣∣ Â
∣∣Φ
〉
=

2S + 1

4π

∫
dΩ
〈
Ψ
∣∣ Ω̂
〉〈
Ω̂
∣∣ Â
∣∣Φ
〉

. (15.65)

It can further be shown that

〈
Ω̂
∣∣ T̂klj

∣∣Φ
〉
=

(
∂

∂ū

)k (
∂

∂v̄

)l
ūk+j v̄l−j Φ(ū, v̄) (15.66)

and that

〈
Ψ
∣∣ T̂klj

∣∣Φ
〉
=

(2S + k + l + 1)!

(2S)!
·
∫
dΩ

4π
Ψ∗(u, v) uk vl ūk+j v̄l−j Φ(ū, v̄) . (15.67)

15.2.2 Valence bond states

The operator A†
ij ≡ a†ib

†
j − b†ia†j creates a singlet ‘valence bond’ between sites i and j.

Exercise: Show that A†
ij transforms as an SU(2) singlet, i.e.R†A†

ijR = A†
ij .

Now consider the valence bond solid (VBS) state

∣∣Ψ(L, m)
〉
≡
∏

〈ij〉∈L
(a†ib

†
j − b†ia†j)m

∣∣ 0
〉

, (15.68)

where
∣∣ 0
〉

is the Schwinger boson vacuum. Here, the product is over all links 〈ij〉 of some
regular lattice L. The state

∣∣Ψ(L, m)
〉

possesses the following properties:

•
∣∣Ψ(L, m)

〉
is a singlet, i.e. it has total spin zero.

• For every site i, we have (a†i ai + b†i bi)
∣∣Ψ(L, m)

〉
= mz

∣∣Ψ(L, m)
〉
, where z is the coordi-

nation number of L. I.e. there is a quantum spin S = 1
2
mz at every site.



15.2. COHERENT STATES FOR SPIN 679

• The maximum eigenvalue of the total link spin Jij ≡ Si + Sj is Jmax
ij = 2S − m. This

is significant because with two spin-S objects the total spin will in general range from 0
to 2S. What is special about the VBS states is that they have zero weight in the sector
Jij > 2S −m for every link.

Consequently,
∣∣Ψ(L, m)

〉
is annihilated by any link spin projection operator PJS (ij), so long as

J > 2S −m. The projector PJS (ij) may be written as an order 2S polynomial in Si · Sj , viz.

PJS (ij) =
2S∏

k=0
(k 6=J)

Si · Sj + S(S + 1)− 1
2
k(k + 1)

1
2
J(J + 1)− 1

2
k(k + 1)

. (15.69)

Therefore, if one writes a Hamiltonian of the form

H =
∑

〈ij〉

2S∑

J=2S−m+1

λJ PJS (ij) (15.70)

with each λJ > 0, then H
∣∣Ψ(L, m)

〉
= 0 and

∣∣Ψ(L, m)
〉

is an exact, zero energy ground state
for H .2

The simplest example is for the S = 1 linear chain, where

PJ=1

S=
1
2

(ij) = 1
6
(Si · Sj)2 + 1

2
Si · Sj + 1

3
. (15.71)

We conclude that the bilinear-biquadratic S = 1 chain with Hamiltonian

H = J
∑

n

[
Sn · Sn+1 +

1
3
(Sn · Sn+1)

2
]

(15.72)

has as its exact ground state
∣∣Ψ(L, m = 1)

〉
, where L is the linear chain. The energy per site is

−2
3
J .

The states
∣∣Ψ (L, m)

〉
are easily generalized to ones of broken translational or lattice point group

symmetry, even while maintaining the constraint that zm link operatorsA†
ij are associated with

each site i (with different values of j). 3

For example, on the honeycomb lattice, where we have links oriented along 0◦, 120◦, and 240◦,
we can define the state

∣∣Ψ(m,m′, m′′)
〉
≡
∏

〈ij〉∈0◦
(A†

ij)
m
∏

〈kl〉∈120◦
(A†

kl)
m′
∏

〈rs〉∈240◦
(A†

rs)
m′′ ∣∣ 0

〉
. (15.73)

2If every λJ is nonnegative, then it is simple to prove that H itself can have no negative eigenvalues.
3Were this not the case, then some sites would have different total spin than others. It is perfectly sensible from
a mathematical point of view to consider models where the total spin varies from site to site. Most (but by no
means all) models of physical interest, however, have one value of S for each magnetic site.
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This state therefore has S = 1
2
(m+m′+m′′) on each site, but it breaks the point group symmetry

of the underlying triangular Bravais lattice. Similarly, one can define ‘columnar’ states on the
square lattice which break both translational and point group symmetry, e.g.

∣∣ΨA

〉
=
∏

m,n

(a†m,nb
†
m+1,n − b†m,na†m+1,n)

∣∣ 0
〉

∣∣ΨB

〉
=
∏

j,n

(a†2j,nb
†
2j+1,n − b†2j,na†2j+1,n)

2
∣∣ 0
〉

.
(15.74)

Exercise: Compare and contrast the states
∣∣ΨA

〉
and

∣∣ΨB

〉
.

15.2.3 Derivation of spin path integral

Let us compute the real time propagator in the coherent state basis. We begin, as usual, by
writing 〈

Ω̂N

∣∣ e−iHT/~
∣∣ Ω̂0

〉
=
〈
Ω̂N

∣∣ e−iǫH/~ 1 e−iǫH/~ 1 · · · 1 e−iǫH/~
∣∣ Ω̂0

〉
, (15.75)

where each symbol 1 stands for an insertion of the resolution of the identity, eqn. 15.52. We
next compute

〈
Ω̂j

∣∣ e−iǫH/~
∣∣ Ω̂j−1

〉
=
〈
Ω̂j

∣∣ Ω̂j−1

〉
·
{
1− iǫ

~

〈
Ω̂j

∣∣H
∣∣ Ω̂j−1

〉
〈
Ω̂j

∣∣ Ω̂j−1

〉 +O(ǫ2)
}

≃
〈
Ω̂j

∣∣ Ω̂j−1

〉
exp

(
− iǫH(Ω̂j | Ω̂j−1)/~

)
,

(15.76)

where the Hamiltonian is replaced by its coherent state matrix element,

H(Ω̂j | Ω̂j−1) =

〈
Ω̂j

∣∣H
∣∣ Ω̂j−1

〉
〈
Ω̂j

∣∣ Ω̂j−1

〉 . (15.77)

Exercise: Show that H(Ω̂j | Ω̂j−1) = H(ūj, v̄j | uj−1, vj−1) is a holomorphic function of its argu-
ments.

We therefore have

〈
Ω̂N

∣∣ e−iHT/~
∣∣ Ω̂0

〉
=
(2S + 1

4π

)N−1
∫
dΩ1 · · ·

∫
dΩN−1 e

iA[{Ω̂j}] , (15.78)

where A ≡ S/~ is given by

A = −i
N∑

j=1

ln
〈
Ω̂j

∣∣ Ω̂j−1

〉
− ǫ

~

N∑

j=1

H(Ω̂j | Ω̂j−1) . (15.79)
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Expanding in the difference between Ω̂j and Ω̂j−1, we may write

ln
〈
Ω̂j

∣∣ Ω̂j−1

〉
= 2S ln

{
1− ūj(uj − uj−1)− v̄j(vj − vj−1)

}

= −2S ǫ
{
ūj

(uj − uj−1

ǫ

)
− v̄j

(vj − vj−1

ǫ

)
+ . . .

}

≃ −2S ǫ (ūju̇j + v̄j v̇j) +O
(
(Ω̂j − Ω̂j−1)

2
)

.

(15.80)

The continuum limit is

A[Ω̂(t)] =
T∫

0

dt

{
2iS(ūu̇+ v̄v̇)− 1

~
H(Ω̂)

}
, (15.81)

where H(Ω̂) ≡ H(Ω̂ | Ω̂). Substituting u = cos(θ/2) and v = sin(θ/2) exp(iφ), we obtain

ūu̇+ v̄v̇ = i sin2(θ/2) φ̇ =
i

2
(1− cos θ) φ̇ =

i

2
ω̇ (15.82)

where dω = (1 − cos θ) dφ is the differential element of solid angle. We may now, finally, write
the spin path integral as

〈
Ω̂f

∣∣ e−iHT/~
∣∣ Ω̂i

〉
=

∫

w(0)=w
i

w̄(T )=w̄
f

DΩ̂(t) exp
{
− i

T∫

0

dt
[
S
dω

dt
+

1

~
H(Ω̂)

]}
·
〈
Ω̂f

∣∣ Ω̂(T )
〉 〈

Ω̂(0)
∣∣ Ω̂i

〉
(15.83)

where w ≡ v/u = tan(θ/2) exp(iφ) is the stereographic projection of the spinor coordinates
(u, v) onto the complex plane.

The inclusion of the overlap terms inside the path integral is necessary if we are to allow for
the possibility of so-called discontinuous paths. Within the semiclassical approximation, u(t)
and v(t) are integrated forward from initial data ui and vi while ū(t) and v̄(t) are integrated
backward from final data ūf and v̄f .

4 We encountered an analogous situation with the coherent
state path integral for the Heisenberg-Weyl group, where z(t) was integrated forward from
initial data zi and z̄(t) integrated backward from final data z̄f . In fact, these paths are perfectly
continuous; there simply is no reason why z(T ) should have any resemblance to zf , or z̄(0) to
z̄i, since the equations of motion know nothing about either zf or z̄i.

The thermal, or imaginary time, propagator in the coherent state representation is

〈
Ω̂f

∣∣ e−βH
∣∣ Ω̂i

〉
=

∫

w(0)=w
i

w̄(T )=w̄
f

DΩ̂(τ) exp
{
−

~β∫

0

dτ
[
iS
dω

dτ
+
1

~
H(Ω̂)

]}
·
〈
Ω̂f

∣∣ Ω̂(~β)
〉 〈

Ω̂(0)
∣∣ Ω̂i

〉
. (15.84)

4The equations of motion may also be written in terms of the stereographic coordinate w = v/u, in which case

w(t) is integrated forward from initial data wi and w̄(t) is integrated backward from final data w̄f .
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15.2.4 Gauge field and geometric phase

The solid angle functional ω[Ω̂(t)] may be written

ω[Ω̂(t)] =

T∫

0

dtA(Ω̂) · dΩ̂
dt

(15.85)

for any A(Ω̂) which satisfies ∇× A = Ω̂, i.e.

Ωa = ǫabc
∂

∂Ωb
Ac(Ω̂) (15.86)

(To see this, use Stokes’ theorem.) We now derive a useful result:

δω[Ω̂(t)] =

∫
dt

{
∂Ab

∂Ωa

dΩb

dt
δΩa + Aa

d

dt
δΩa

}

=

∫
dt

(
∂Ab

∂Ωa
− ∂Aa

∂Ωb

)
dΩb

dt
δΩa

=

∫
dt δΩa ǫabcΩ̇

bΩc =

∫
dt δΩ̂ · ∂Ω̂

∂t
× Ω̂ ,

(15.87)

and hence the functional derivative is

δω[Ω̂]

δΩ̂(t)
=
∂Ω̂

∂t
× Ω̂ . (15.88)

15.2.5 Semiclassical dynamics

We begin with the action functional,

Ã[Ω̂(t), λ(t)] ≡ A[Ω̂(t)] +
T∫

0

dt λ(t)
(
Ω̂

2(t)− 1
)

. (15.89)

Here, λ(t) is a Lagrange multiplier field which enforces the constraint Ω̂(t) · Ω̂(t) = 1 at all
times. We next vary with respect to Ω̂(t) and λ(t):

δÃ
δΩ̂(t)

= −S ∂Ω̂
∂t
× Ω̂ − 1

~

∂H

∂Ω̂
+ 2 λ Ω̂

δÃ
δλ(t)

= Ω̂
2(t)− 1 .

(15.90)
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Setting these variations to zero, we solve for λ(t) by taking the dot product of the first equation
with Ω̂(t) and then substituting Ω̂2(t) = 1. In this manner, we find

λ =
1

2~

∂H

∂Ω̂
· Ω̂ , (15.91)

The effect of this is to render all terms on the RHS of eqn. 15.90 orthogonal to Ω̂, thereby effec-
tively projecting ∂H/∂Ω̂ onto this orthogonal subspace. It is then easy to obtain the equations
of motion

~S
∂Ω̂

∂t
=
∂H

∂Ω̂
× Ω̂ . (15.92)

If we write the equations of motion in terms of the spinor coordinates {u, v, ū, v̄} themselves,
it is important to recognize that they must satisfy the constraint uū + vv̄ = 1. A Lagrange
multiplier field λ is invoked to impose this constraint at every value of the time t. This results
in the equations of motion

2i~Su̇ =
∂H

∂ū
+ λu 2i~Sv̇ =

∂H

∂v̄
+ λv (15.93)

−2i~S ˙̄u =
∂H

∂u
+ λū −2i~S ˙̄v =

∂H

∂v
+ λv̄ . (15.94)

Varying the action with respect to the Lagrange multiplier field of course yields the constraint
equation. We are then left with five equations in the five unknowns {u, v, ū, v̄, λ}, along with
the four boundary conditions,

u(0) = ui , ū(T ) = ūf , v(0) = vi , v̄(T ) = v̄f . (15.95)

Implementing the constraint, one obtains an expression for λ,

λ = 2iS(ūu̇+ v̄v̇)− ū ∂H
∂ū
− v̄ ∂H

∂v̄
(15.96)

= −2iS(u ˙̄u+ v ˙̄v)− u ∂H
∂u
− v ∂H

∂v
. (15.97)

Note that for real θ and φ that eqns. 15.93 and eqn. 15.94 are related by complex conjugation.

15.3 Other Useful Representations of the Spin Path Integral

15.3.1 Stereographic representation

In the stereographic representation, we write

w ≡ v

u
= tan(θ/2) eiφ . (15.98)
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One then finds
w̄ẇ

1 + w̄w
= ūu̇+ v̄v̇ − d

dt
ln u . (15.99)

From the differential
dw = 1

2
sec2

(
θ/2) eiφ dθ + i tan(θ/2) eiφ dφ , (15.100)

we obtain
dw ∧ dw̄
(1 + w̄w)2

=
1

2i
sin θ dθ ∧ dφ . (15.101)

The Hamiltonian matrix elements may be recast in terms of w and w̄. For example,

S+ = a†b −→ 2S ūv =
2S w

1 + w̄w

Sz = 1
2
(a†a− b†b) −→ S (ūu− v̄v) = S

1− w̄w
1 + w̄w

.
(15.102)

Thus, the real and imaginary time path integrals are given by

〈
Ω̂f

∣∣ e−iHT/~
∣∣ Ω̂i

〉
=

∫
D[w̄(t), w(t)] exp

{
− i

T∫

0

dt
[
− iS w̄ẇ −

˙̄ww

1 + w̄w
+

1

~
H(w̄, w)

]}
(15.103)

and

〈
Ω̂f

∣∣ e−HT/~
∣∣ Ω̂i

〉
=

∫
D[w̄(t), w(t)] exp

{
−

T∫

0

dt
[
S
w̄ẇ − ˙̄ww

1 + w̄w
+

1

~
H(w̄, w)

]}
, (15.104)

respectively. In these above expressions, the metric D[w̄, w] includes the (1 + w̄w)−2 factor at
each time step, and the Hamiltonian H(w̄, w) is the coherent state diagonal matrix element
expressed in terms of the stereographic coordinate w and its conjugate w̄. These expressions
are incomplete, however, in that we’ve omitted the boundary overlap factors at t = 0 and t = T .

Exercise: Complete the expression in eqns. 15.103 and 15.104, adding the boundary terms.

15.3.2 Recovery of spin wave theory

To recover spin wave theory and the Holstein-Primakoff transformation, define z ≡ uv̄/|v| =
cos(θ/2) exp(−iφ). Then |z|2 = |u|2 and

dz = −1
2
sin(θ/2) e−iφ dθ − i cos(θ/2) e−iφ dφ . (15.105)

We then obtain

dz ∧ dz̄ = 1

2i
sin θ dθ ∧ dφ . (15.106)
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The geometrical phase, which is responsible for the ω[Ω̂(t)] term in the action functional, is
obtained using

z̄ż =
i

2
(1− cos θ) dφ− i dφ+ d cos2(θ/2) (15.107)

which, after dropping the total time derivatives, yields (i/2) dω. As for the Hamiltonian, we
have

S+ = a†b −→ 2S ūv = 2S z̄
√
1− z̄z

Sz = 1
2
(a†a− b†b) −→ S (ūu− v̄v) = 2S (z̄z − 1

2
) .

(15.108)

This is equivalent to Holstein-Primakoff, with h ≡
√
2S z as the HP boson. We therefore obtain

〈
Ω̂f

∣∣ e−iHT/~
∣∣ Ω̂i

〉
=

∫
D[h̄(t), h(t)] exp

{
− i

T∫

0

dt
[
h̄ḣ+

1

~
H(h̄, h)

]}
, (15.109)

where the functional integration is over a disk of area 2πS for each time t.

15.4 Quantum Tunneling of Spin

15.4.1 Model Hamiltonian

The theory of quantum spin tunneling has been developed largely by E. Chudnovsky, A. Garg,
D. Loss, and others. Consider the following model Hamiltonian,

H = K1S
2
z +K2S

2
y − γHSz , (15.110)

where K1 > K2 > 0. This describes a spin-S particle with an easy axis along x̂ and a hard
axis along ẑ. To treat this problem by the coherent state path integral, we need to compute the
diagonal matrix element of H in the coherent state basis. One finds,

E(θ, φ) =
〈
Ω̂
∣∣H
∣∣ Ω̂
〉
= k1 cos2 θ + k2 sin2(θ) sin2(φ)− h cos(θ) , (15.111)

where ki = S(S − 1
2
)Ki (i = 1, 2), h = γSH , and where we have dropped an unimportant

constant. In weak fields h, the energy function E(θ, φ) has the following features:

• E(θ, φ) has two degenerate minima with θ0 = cos−1(h/2k1) at φ = 0 and at φ = π. The
minimum energy is Ecl

0 = −h2/4k1.

• There is a global maximum with Emax = k1+h located (assuming h > 0) at the South Pole
(θ = π), and a local maximum with E ′

max = k1 − h located at the North Pole (θ = 0).



686 CHAPTER 15. SPINS, COHERENT STATES, PATH INTEGRALS, AND APPLICATIONS

• There are two saddle points, located at θx = cos−1(h/2
(
k1 − k2)

)
, with φ = ±1

2
π. The

energy of the saddle points is Esaddle = k2 − 1
4
h2/(k1 − k2).

We therefore expect to find two low-lying states which are linear combinations of the coher-
ent states

∣∣ θ = θ0, φ = 0
〉

and
∣∣ θ = θ0, φ = π

〉
. Let us abbreviate these two states

∣∣ 0
〉

and
∣∣ π
〉
,

respectively. The eigenstates of the system should be symmetric and antisymmetric combina-

tions of these states:
∣∣ ±

〉
= 2−1/2

{∣∣ 0
〉
±
∣∣ π
〉}

. The tunnel splitting ∆ = E0 may be obtained

by examining the matrix elements,

〈
+
∣∣ e−βH

∣∣ +
〉
=
〈
0
∣∣ e−βH

∣∣ 0
〉
+
〈
0
∣∣ e−βH

∣∣π
〉
= e−βE0

〈
−
∣∣ e−βH

∣∣ −
〉
=
〈
0
∣∣ e−βH

∣∣ 0
〉
−
〈
0
∣∣ e−βH

∣∣ π
〉
= e−β(E0+∆) ,

(15.112)

where E0 differs from Ecl
0 due to ‘zero-point energy’, i.e. quantum fluctuations. In reality, there

is no reason why the states
∣∣ ±

〉
should necessarily be eigenstates of H . What is important,

though, is that the antisymmetric combination projects out all of the ground state. By taking
the β → ∞ limit, the contribution from admixtures of higher-lying eigenstates to

∣∣ ±
〉

can be
suppressed. What this means is that we can calculate the exact tunnel splitting by the formula,

∆ = lim
β→∞

1

β
ln

{〈
0
∣∣ e−βH

∣∣ 0
〉
+
〈
0
∣∣ e−βH

∣∣π
〉

〈
0
∣∣ e−βH

∣∣ 0
〉
−
〈
0
∣∣ e−βH

∣∣ π
〉
}

. (15.113)

Another way, of course, to compute the tunnel splitting is to simply numerically diagonalize
the rank-(2J + 1) Hamiltonian matrix. This works without fail, but it is not particularly in-
structive in elucidating the physics of spin tunneling. Moreover, it may be that an instanton
calculation, which we shall presently describe, yields certain analytic results which are useful
and in general impossible to obtain numerically.

15.4.2 Instantons and tunnel splittings

The essence of the instanton approach to quantum tunneling is described in a beautiful article
by Sidney Coleman, entitled “The Uses of Instantons”. We write the imaginary time matrix
element

〈
Pf

∣∣ exp(−βH)
∣∣Pi

〉
between points P1 and P2 as a path integral. In our case, each

P labels a spin orientation Ω̂, and each state
∣∣P
〉

is a spin coherent state. We extremize the
action, applying the method of stationary phase. This involves solving the classical equations
of motion, subject to boundary conditions which we shall not fully specify, save to say that the

most naı̈ve boundary conditions are simply Ω̂(0) = Ω̂i an Ω̂(~β) = Ω̂f .
5

There may be several instanton paths connecting P1 and P2. Associated with each such instan-
ton α is a characteristic time τα, a classical action Yα + iφα, written in units of ~ and separating

5In fact, the proper boundary conditions are u(0) = ui, v(0) = vi, ū(~β) = ūf , and v̄(~β) = v̄f , as derived above.
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real and imaginary parts, and also a ‘fluctuation determinant’ prefactor Dα arising from inte-
grating over Gaussian fluctuations about the classical instanton trajectory. If we write

ξα = Dα e
iφα e−Yα , (15.114)

then the diagonal matrix element can be written in the ‘dilute instanton gas’ approximation as

〈
P1

∣∣ e−βH
∣∣P1

〉
=

∞∑

n=0

∑

{αk ,ᾱk}

~β∫

0

dτ1 · · ·
~β∫

τ2n−1

dτ2n ξα1 ξᾱ1 · · · ξᾱn

= cosh
(
~β
∣∣∣
∑

α

ξα

∣∣∣
)

.

(15.115)

Here we denote the return instantons from P2 to P1 with the index ᾱ. Since the return path is a
time-reversed one, we have ξᾱ = ξα, i.e. the return paths have opposite phase.

The off-diagonal matrix element, in which paths must begin at P1 and end at P2 requires an
odd number of instanton events, and is given by

〈
P2

∣∣ e−βH
∣∣P1

〉
=

∞∑

n=0

∑

{αk ,ᾱk}

~β∫

0

dτ1 · · ·
~β∫

τ2n

dτ2n+1 ξα1 ξᾱ1 · · · ξᾱn ξαn+1

=

∑
α ξα∣∣∣

∑
α ξα

∣∣∣
· sinh

(
~β
∣∣∣
∑

α

ξα

∣∣∣
)

.

(15.116)

If
∑

α ξα is real, then we can read off the tunnel splitting:

∆ = 2~
∑

α

Dα e
iφα e−Yα . (15.117)

15.4.3 Garg’s calculation (1993)

Starting from the Euclidean Lagrangian,

LE = i~S(1− cos θ) φ̇+ E(θ, φ) , (15.118)

one derives the Euler-Lagrange equations of motion,

∂LE

∂θ
− d

dt

∂LE

∂θ̇
= 0 =

1

~

∂E

∂θ
+ iS sin(θ) φ̇

∂LE

∂φ
− d

dt

∂LE

∂φ̇
= 0 =

1

~

∂E

∂φ
− iS sin(θ) θ̇ .

(15.119)
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Note that
dE

dt
= θ̇

∂E

∂θ
+ φ̇

∂E

∂φ
= 0 , (15.120)

which says that the energy E(θ, φ) is conserved along the classical trajectories. One can use
this result to finesse the instanton calculation and solve directly for θ as a function of φ. Energy
conservation provides a quadratic equation in cos(θ),

E0 = −
h2

4k1
= k1 cos2(θ) + k2 sin2(θ) sin2 φ− h cos(θ) , (15.121)

the solution of which is written (Garg, 1993),

u(φ) =
u0 + i

√
λ sinφ

√
1− u20 − λ sin2φ

1− λ sin2φ
(15.122)

where u ≡ cos(θ), u0 = h/2k1 ≡ h/hc, and λ = k2/k1. Note that u = cos θ is complex along the

instanton path. Nevertheless, the path obeys the boundary condition that u = u0 at φ = 0 and
φ = π. The dimensionless instanton action is

A = Y + iφ = βE0 + iS

±π∫

0

dφ
{
1− u(φ)

}
, (15.123)

whence

φ = Im A = ±S
π∫

0

dφ
{
1− u0

1− λ sin2φ

}
= ±πS

{
1− u0√

1− λ2
}

. (15.124)

Thus, there are two instantons connecting (θ, φ) = (θ0, 0) and (θ, φ) = (θ0, π) which wind
around the sphere in opposite directions. The tunnel splitting, according to eqn. 15.117, is

∆ = 4D e−Y cos
(
πS
[
1− h

2
√
k21 − k22

])
. (15.125)

The tunnel splitting therefore vanishes at a set of dimensionless field strengths hm, where

hm = 2
√
k21 − k22

{
1− m+ 1

2

S

}
. (15.126)

Note that for h = 0 the splitting vanishes whenever S = m + 1
2
, which is to say whenever the

ground state is a Kramers doublet.

In Fe8 clusters, where S = 10, this predicts ten values of h > 0 where ∆ vanishes. In fact,
experiments by Wernsdorfer and Sessoli see only four such vanishings. The reason for this is
that the effective Hamiltonian for the experimental molecule includes a term proportional to
J4
+ + J4

− which is not included in the Hamiltonian of eqn. 15.110. This new term allows for two
additional instanton solutions. Moreover, the new solutions exhibit discontinuities in Ω̂(τ) at
the boundaries τ = 0 and τ = ~β. This very interesting result was obtained by Keçecioǧlu and
Garg (2002).
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15.5 Haldane’s Mapping to the Nonlinear Sigma Model

The many-spin dimensionless action is

A = −S
∑

i

ω[Ω̂i(t)]−
1

~

T∫

0

dtH
(
{Ω̂i(t)}

)
, (15.127)

where the Hamiltonian is that of a Heisenberg antiferromagnet, with diagonal coherent state
matrix elements given by

H
(
{Ω̂i(t)}

)
= 1

2
S2
∑

i,j

Jij Ω̂i · Ω̂j , (15.128)

where Jij = J
(
|Rij|

)
with Rij = Ri−Rj is a function of the distance between sites i and j in the

lattice. The spin coherent state at site i is polarized along the direction

Ω̂i = ηi n̂i

√

1−
(v0 Li

~S

)2
+
v0
~S

Li , (15.129)

where n̂i ·Li = 0. Here, n̂i is the local Néel field, which varies slowly once the sublattice modula-
tion ηi extracted from the spin field Ω̂i, Li describes ferromagnetic fluctuations about the local

Néel order; v0 is the unit cell volume. Note that

~S
∑

i

Ω̂i = v0
∑

i

Li =

∫
ddxL(x) , (15.130)

where the RHS is obtained after taking the continuum limit.

15.5.1 Hamiltonian

We now expand the Heisenberg interaction Ω̂i · Ω̂j in the slowly varying quantities n̂i − n̂j and
Li. Since n̂i is a unit vector, we may write

n̂i · n̂j = 1− 1
2
(n̂i − n̂j) · (n̂i − n̂j) . (15.131)

We then have

Ω̂i · Ω̂j = ηi ηj

{
1− 1

2
(n̂i − n̂j) · (n̂i − n̂j)

}{
1− 1

2

( v0
~S

)(
L
2
i + L

2
j

)
+ . . .

}

+
v0
~S

ηi n̂i · (Lj − Li) +
v0
~S

ηj n̂j · (Li − Lj)

+ 1
2

( v0
~S

)2{
L
2
i + L

2
j − (Li − Lj)2

}
.

(15.132)
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Lattice differences may now be expanded in derivatives, as

f(Rj)− f(Ri) = (Rµ
j − Rµ

i )
∂f(Ri)

∂Rµ
i

+ 1
2
(Rµ

j −Rµ
i ) (R

ν
j −Rν

i )
∂2f(Ri)

∂Rµ
i ∂R

ν
i

+ . . . (15.133)

Expanding to Gaussian order in the fields n̂ and L and their gradients, we find

Ω̂i · Ω̂j = ηi ηj

{
1− 1

2
(Rµ

j − Rµ
i ) (R

ν
j − Rν

i ) (∂µn
a
i ) (∂νn

a
i ) + . . .

}
(15.134)

+ 1
2

( v0
~S

)2{
(1− ηi ηj)(L2

i + L
2
j)− (Rµ

j −Rµ
i ) (R

ν
j −Rν

i ) (∂µL
a
i ) (∂νL

a
i ) + . . .

}

+
v0
~S

ηi n
a
i (R

µ
j − Rµ

i ) (∂µL
a
i )−

v0
~S

ηj n
a
j (R

µ
j − Rµ

i ) (∂µL
a
j ) + . . . .

Upon performing the double sum over lattice sites i and j, the terms on the last line vanish,
and we are left with

H = Hn̂ +HL + E0 (15.135)

where the classical energy E0 is given by

E0 =
1
2
S2
∑

i,j

Jij ηi ηj . (15.136)

The Hamiltonian also contains contributions due to gradients in the Néel field,

Hn̂ = − S2

4dN v0

∑

i,j

Jij ηi ηj
∣∣Ri −Rj

∣∣2 ·
∫
ddx (∂µn

a)2 (15.137)

where d is the dimensionality of the (presumed hypercubic) lattice and N is the number of
lattice sites, and from ferromagnetic fluctuations,

HL =
v0

2N~2

∑

i,j

Jij (1− ηi ηj) ·
∫
ddxL2(x)− v0

4dN~2

∑

i,j

Jij
∣∣Ri − Rj

∣∣2 ·
∫
ddx (∂µL

a)2 . (15.138)

Retaining only terms of order L2 – and hence dropping terms of order (∇L)2 – we obtain the
Hamiltonian,

H =

∫
ddx
{

1
2
ρs(~∇n̂)2 + 1

2
χ−1

L
2
}

(15.139)

where the spin stiffness is given by

ρs ≡ −
S2

2dN v0

∑

i,j

Jij ηi ηj
∣∣Ri − Rj

∣∣2 (15.140)
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and the inverse susceptibility is given by

χ−1 ≡ v0
N~2

∑

ij

Jij (1− ηi ηj) =
v0
~2

[
Ĵ(0)− Ĵ(Q)

]
, (15.141)

where Q ≡ (π/a, π/a, . . . .π/a) is the zone corner wavevector. The dimensions of ρs and χ are:

[ρs] = E · L2−d ; [χ] = E · T 2 · L−d . (15.142)

15.5.2 Geometric phase

The geometric phase contribution to the dimensionless action is written

AB = −S
∑

i

ω[Ω̂i(t)] = −S
∑

i

ηiω
[
n̂i(t) + ηi

v0
~S

Li(t)
]

. (15.143)

We now expand in the notionally small quantity linear in Li, using the result of eqn. 15.88:

AB = −S
∑

i

ηi ω[n̂i]− S
∫
dt
∑

i

( v0
~S

)
Li ·

∂n̂i
∂t
× n̂i

= −S
∑

i

ηi ω[n̂i]−
1

~

∫
ddx

∫
dt
∂n̂

∂t
× n̂ · L .

(15.144)

15.5.3 Emergence of the nonlinear sigma model

Let’s start with the quantum action obtained thus far,

A = −1

~

∫
ddx

∫
dt

{
1
2
ρs(~∇n̂)2 +

L2

2χ
+ L · ∂n̂

∂t
× n̂

+
g0µB

~S
Hu · L+

~g0µB

v0
Hs · n̂

}
− S

∑

i

ηi ω[n̂i] .
(15.145)

We have included here an external field H(x, t) which has uniform (k ≈ 0) and staggered
(k ≈ Q) components Hu and Hs, respectively. Now let us integrate out L. In order to do so, we
must introduce a Lagrange multiplier field λ(x, t) which enforces the local constraint n̂ · L = 0.



692 CHAPTER 15. SPINS, COHERENT STATES, PATH INTEGRALS, AND APPLICATIONS

At each position x, we must evaluate the functional integral

I ≡
∫
Dλ(t)

∫
DL(t) exp

{
− i

~

∫
ddx

∫
dt

[
L2

2χ
+ L ·

(
λn̂+

∂n̂

∂t
× n̂+

g0µB

~S
Hu

)]}

= I0
∫
Dλ(t) exp

{
iχ

2~

∫
ddx

∫
dt
(
λn̂+

∂n̂

∂t
× n̂+

g0µB

~S
Hu

)2
}

(15.146)

= Ĩ0 exp

{
i

~

∫
ddx

∫
dt

[
1
2
χ
(∂n̂
∂t

)2
+
g0µBχ

~S
Hu ·

∂n̂

∂t
× n̂+ 1

2
χ
(g0µB

~S

)2
(Hu × n̂)2

]}

where I0 and Ĩ0 are independent of Hu and n̂, and where we have suppressed the x coordinate.
The complete action functional, including the geometric phase term, is then

A =
1

~

∫
ddx

∫
dt

{
1
2
χ
(∂n̂
∂t

)2
− 1

2
ρs(~∇n̂)2 +

g0µBχ

~S
Hu ·

∂n̂

∂t
× n̂

+ 1
2
χ
(g0µB

~S

)2
(Hu × n̂)2 −

g0µB

v0
Hs · n̂

}
− S

∑

i

ηi ω[n̂i] .
(15.147)

Dimensional analysis reveals the spin wave velocity c =
√
ρs/χ. Defining x0 = ct, we find that

the quantum field theoretic action, excluding the geometric phase term, is

A =
ρs
2~c

∫
dd+1x

{
(∂µn

a)(∂µna) +
2g0µB

~cS
Hu ·

∂n̂

∂x0
× n̂

+
(g0µB

~cS

)2
(Hu × n̂)2 −

2g0µB

ρsv0
Hs · n̂

}
− S

∑

i

ηi ω[n̂i] .

where we adopt a Minkowski (+,−, . . . ,−) metric. The Euclidean version is

AE =
ρs
2~c

∫
dd+1x

{
(∂µn

a)(∂µn
a) +

2ig0µB

~cS
Hu ·

∂n̂

∂x0
× n̂

−
(g0µB

~cS

)2
(Hu × n̂)2 +

2g0µB

ρsv0
Hs · n̂

}
+ iS

∑

i

ηi ω[n̂i] .
(15.148)

Notice the factor of i in the coefficient of the second term. To maximize the weight exp(−AE),
the third term inside the brackets should be as large as possible. This favors a spin flop in which
the Néel vector lies perpendicular to the (uniform) applied magnetic field Hu.

The coupling constant for the nonlinear sigma model is defined to be

g =
~c

ρs
=

~√
ρsχ

=

√
2d v0
aS

( ∑
i,j Jij (1− ηiηj)∑

i,j Jij (−ηiηj) |Ri − Rj |2/a2

)1/2
. (15.149)
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For a nearest neighbor model on a d-dimensional cubic lattice, we have6

g =
2
√
d ad−1

S
. (15.150)

15.5.4 Continuum limit of the geometric phase: d = 1

In one space dimension, we have

∑

j

(−1)j ω[n̂j] = ω[n̂0]− ω[n̂1] + ω[n̂2]− . . . = 1
2

L∫

0

dx
∂ω

∂x
. (15.151)

We now invoke eqn. 15.88, which says

δω =

T∫

0

dt ǫabc ṅ
b nc δna , (15.152)

to obtain the beautiful result,

AB = −S
∑

j

(−1)j ω[n̂j] = 1
2
S

∫
dx

∫
dt n̂ · ∂n̂

∂t
× ∂n̂

∂x
≡ 2πS Qtx , (15.153)

where Qtx is an integer topological invariant, known as the Pontrjagin index of the field n̂(x, t):

Qtx =
1

8π

∫
d2x ǫµν ǫabc n

a ∂µn
b ∂νn

c , (15.154)

where x0 = ct as before. Qtx measures the winding of the field n̂(x, t) over the unit sphere. To
see it is an integer, change variables from local coordinates (nb, nc) to (ξ0, ξ1) in the vicinity of
n̂. The differential surface area element projected along na is

dΣa =
1
2
ǫµν ǫabc

∂nb

∂ξµ
∂nc

∂ξν
d2ξ (15.155)

and changing variables from (x0, x1) to (ξ0, ξ1), we obtain

Qtx =
1

4π

∫

S2
int

d2ξ , (15.156)

which is manifestly an integer.

6Take care not to confuse the coupling g with the g-factor g0.
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Put another way, think of n̂(x, t) as a rubber band draped over the surface of a sphere. As time
evolves from 0 to T , the configuration of the rubber band changes, but if the configuration itself
is periodic, i.e. n̂(x, 0) = n̂(x, T ), The Pontrjagin index measures the number of times the rubber
band winds around the sphere. Configurations of n̂(x, t) which yield a nonzero value of Qtx

are known as skyrmions. An example of a skyrmion configuration on the two-dimensional (x, y)
(or (x, t)) plane is obtained by identifying the vector n̂(x, y) with the (inverse) stereographically
projected position (x, y). Put another way, we set

v

u
= tan(θ/2) eiφ ≡ (x+ iy)/a , (15.157)

where a is an arbitrary length scale. This (exercise!) is equivalent to

nx =
2ax

a2 + x2 + y2
, ny =

2ay

a2 + x2 + y2
, nz =

a2 − x2 − y2
a2 + x2 + y2

. (15.158)

This skyrmion has Pontrjagin index Qxy = 1.

Thermodynamic properties are derived from the Euclidean action,

AE

d=1 = 2πiS Qtx +
ρs
2~c

∫
d2x (~∇n̂)2 . (15.159)

The effect of the geometric phase term, then, is quite simple and in fact discrete:

e2πiS Qtx =

{
+1 if S ∈ Z
(−1)Qtx it S ∈ Z + 1

2
.

(15.160)

Thus, for integer S, the geometric phase term always contributes a factor of unity, and the
full quantum field theoretic action is that of the two-dimensional O(3) model, also called the
nonlinear sigma model. For half-odd integer S, space-time configurations with even and odd
Pontrjagin index destructively interfere with each other.

What have we learned? First of all, we conclude that antiferromagnetic Heisenberg chains
generically fall into two classes: those with integer spin and those with half-odd integer spin.
The field theory for the first class is simply that of the classical O(3) model in two dimensions.
The Hohenberg-Mermin-Wagner theorem precludes any spontaneous breaking of the contin-
uous O(3) symmetry in d = 2 at any finite value of ρs. The system has a gap, and correlation
functions decay exponentially, up to power law corrections, viz.

〈
Ψ0

∣∣S0 · Sj
∣∣Ψ0

〉
≃ (−1)j |j|−1/2 exp(−|j|/ξ) , (15.161)

where the correlation length ξ, in units of the lattice spacing a, is a function of the dimensionless
quantity ρs/~c.

For the second class – the half-odd integer antiferromagnetic chains – the field theory includes
the so-called ‘θ-term’,

Aθ =
θ

4π

∫
dx

∫
dt n̂ · ∂n̂

∂t
× ∂n̂

∂x
, (15.162)
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with θ = 2πS = π mod 2π. While no exact solution to the field theory with the θ-term is
yet known, we nonetheless conclude that all half-odd integer antiferromagnetic chains behave
equivalently, since they all map onto the same model. Since the S = 1

2
Heisenberg antifer-

romagnetic chain is known, from Bethe’s Ansatz, to possess a disordered ground state with
gapless excitations and power law correlations, 〈S0 · Sj〉 ∼ (−1)j/|j| (up to logarithmic correc-
tions), we conclude that the same is true for the S = 3

2
, 5
2
, etc. spin chains.

15.5.5 The geometric phase in higher dimensions

So long as the Néel field n̂(x, t) is a smooth function of space and time, there are no interesting
topological terms in the field theory in more than one space dimension. The reason is trivial.
Consider a d-dimensional system as a network of parallel one-dimensional chains. Call the

longitudinal (chain) coordinate x. For each set of transverse coordinates R⊥, one can define the

integer Pontrjagin index Qtx(R⊥). The geometric phase term in the action is then given by

AB = S
∑

i

ηi ω[n̂i] = S
∑

R⊥

ηR⊥
Qtx(R⊥) = 0 , (15.163)

where the last equality follows from the assumed smoothness of n̂(x, t), which requires that

Qtx(R⊥) be independent of R⊥, since a smooth integer-valued function must be a constant!

When the smoothness constraint is relaxed, however, the geometric phase term can play an im-
portant role. For a two-dimensional antiferromagnet, there exist topology-changing instanton
for which ∆Qxy = ±1. Such field configurations are called ‘hedgehogs’, because the direction
of the field n̂(t, x, y) points radially outward from the center of the hedgehog. For quantum-
disordered two-dimensional antiferromagnets (i.e. small ρs), Haldane argued that geometrical
phase considerations associated with the presence of hedgehogs would distinguish not only
between integer and half-odd integer S on the square lattice, but between even and odd inte-
ger S as well.

15.6 Large-N Techniques

The basic idea behind large-N approaches is to extend the global symmetry group of some
physical model from e.g. O(3), SU(2), etc. to a larger group, such as O(N), SU(N), or Sp(N). If the
extension is done in a certain way, the resultant model can be solved exactly in theN →∞ limit.
N plays the role of 1/~, so N → ∞ is a classical limit of sorts, with no quantum fluctuations.
Furthermore, one can derive a systematic diagrammatic expansion in powers of 1/N , which
can be used to investigate properties at finite N .

We shall barely scratch the surface of this subject. My aim here is to guide you through a
large-N calculation for the nonlinear sigma model.
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15.6.1 1/N expansion for an integral

To begin, consider the one-dimensional integral,

I =

∞∫

−∞

dx e−Nf(x) , (15.164)

where f(x) is some function and N is large. Clearly the integral is dominated by values of x
near the minimum of f(x). Suppose a unique global minimum exists at x = xc. We can then
write

I = e−Nf(xc)
∞∫

−∞

du e−
1
2
Nf ′′(xc)u2 e−

1
6
Nf ′′′(xc)u3 e−

1
24
Nf ′′′′(xc) u4 · · ·

= e−Nf(xc)
∞∫

−∞

du e−
1
2
Nf ′′(xc)u2

{
1− 1

6
Nf ′′′(xc) u

3 − 1
24
Nf ′′′′(xc) u

4 + . . .
}

=

(
2π

Nf ′′(xc)

)1/2

e−Nf(xc)
{
1− 1

24
Nf ′′′′(xc)〈u4〉+ . . .

}
.

(15.165)

Thus, we have derived a 1/N expansion for the integral:

− ln I =

O(N1)︷ ︸︸ ︷
Nf(xc) +

O(N0)︷ ︸︸ ︷
1
2
ln
(Nf ′′(xc)

2π

)
+

O(N−1)
corrections︷ ︸︸ ︷
1

8N

f ′′′′(xc)[
f ′′(xc)

]2 +O(N−2) . (15.166)

15.6.2 Large-N theory of the nonlinear sigma model

Recall the Euclidean action for the O(3) nonlinear sigma model,

AE =
ρs
2~c

∫
ddx

L0∫

0

dx0 (∂µn
a)2 , (15.167)

where n̂ = (nx, ny, nz) is a three-component unit vector and L0 = ~c/k
B
T . In the case of Hal-

dane’s derivation of the sigma model action for quantum antiferromagnets, n̂(x) is physically
the Néel field, which varies slowly from site to site even though the local magnetization it-
self oscillates from one sublattice to the next.7 It should be emphasized, though, that the D-
dimensional nonlinear sigma model also describes the finite temperature phase transition of
an isotropic D-dimensional ferromagnet.

7The notation I adopt here is that (d+ 1)-dimensional vectors are denoted as x ≡ (x0,x).
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Quantum mechanics is irrelevant at finite temperature, since the imaginary time variable is
bounded: 0 6 τ 6 ~β. At a critical point, the spatial correlation length diverges as ξ(T ) ∼
|T − Tc|−ν , and the temporal correlation length (or correlation time) diverges along with ξ, as
ξτ ∼ ξz. Here, ν is the correlation length exponent and z the dynamic critical exponent. With
~β finite, however, sufficiently close to Tc the correlation time exceeds the thickness ~β of the
temporal ‘slab’, hence the degrees of freedom at a particular location in space are ‘locked’ as
a function of imaginary time. Finite T second order transitions of a d-dimensional quantum
system are therefore described by a d-dimensional action.8 At zero temperature, though, the
temporal slab is infinitely thick, and one cannot ignore temporal fluctuations. The action is
then for a (d+ 1)-dimensional system.

It is perhaps worth emphasizing that the continuum effective action for the Heisenberg ferro-
magnet is given by

AFM =

∫
ddx

~β∫

0

dτ

{
iS v−1

0 A(n̂) · ∂n̂
∂τ

+ 1
2
ρs (~∇n̂)2

}
(15.168)

where v0 is the unit cell volume, and

ρs =
S2

4dv0

∑

R

J(R)R2 . (15.169)

Note the difference between this and the effective action of the antiferromagnet, in which space
and time appear symmetrically. The effective (low-energy) theory for the antiferromagnet pos-
sesses a ‘Lorentz invariance’ where the speed of light is replaced by the spin wave velocity

c =
√
ρs/χ.

Returning to the nonlinear sigma model, the partition function is given by the functional inte-
gral

Z = e−F/kBT =

∫

n̂2=1

Dn̂(x) e−AE[n̂] . (15.170)

The extension of the O(3) model to one with an O(N) symmetry is trivial. Simply replace the

3-component unit vector (nx, ny, nz) by an N-component one, n = (n1, n2, . . . , nN). How do we
generalize the unit length constraint to general N? Let us write the constraint as n2(x) = qN ,
where the parameter q is as yet undetermined. We can envisage two natural extensions to
general N :

• Maintain n2 = 1, i.e. take q = N−1.

• Fix q and let N vary. The length of n then increases with N .

8Note that this does not say that quantum mechanics has no effect whatsoever at finite temperature. Indeed, the
partition function for the quantum and classical Heisenberg models will be different. What is true is that the
critical properties at a finite temperature second order transition are not affected by quantum mechanics.
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It turns out that it is the second of these schemes which generates a proper 1/N expansion, as
we shall soon see.

To enforce the length constraint, we insert into the functional integral a δ-function δ(n̂2 − qN)
at every space-time point. We write the δ-function as

δ(y) =

i∞∫

−i∞

dλ e−λy , (15.171)

where the integration contour runs along the imaginary axis, from −i∞ to +i∞. The partition
function is then expressed as a double functional integral over the fields n̂(x) and λ(x),

Z =

∫
D[n(x), λ(x)] e−ÃE[n,λ] , (15.172)

where

ÃE =

∫
dd+1x

{
1

2g
(∂µn

a)2 + λ (n2 − qN)

}
. (15.173)

For convenience we have defined the coupling

g ≡ ~c

ρs
=

~√
χρs

. (15.174)

The dimensions of g are [g] = Ld−1.

We now integrate out the na(x) fields, which are quadratic in ÃE. Writing

ÃE = 1
2

∫
dd+1x

∫
dd+1x′ na(x)K(x, x′)na(x′)− qN

∫
dd+1xλ(x) (15.175)

with

K(x, x′) = − ρs
~c

∂

∂xµ
δ(x− x′) ∂

∂x′µ
+ 2λ δ(x− x′) , (15.176)

the partition function can be written in terms of an effective free energy which is a function of
the field λ(x) alone:

Z =

∫
Dλ(x) e−NFeff [λ]/kBT (15.177)

where

e−NFeff [λ]/kBT =

∫
Dn(x) e−ÃE[n(x),λ(x)]

= (det K)−N exp

{
qN

∫
dd+1xλ(x)

}
.

(15.178)
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Thus, the effective free energy is

Feff [λ]/kBT = ln det K − q
∫
dd+1xλ(x) , (15.179)

where the determinant of the integral operator K is, as always, defined by the product of its
eigenvalues,

ln det K =
∏

n

ζn . (15.180)

The eigenvalue equation is

∫
dd+1x′K(x, x′)ψn(x

′) = ζn ψn(x) . (15.181)

We can now see why keeping q finite as N → ∞ generates a true 1/N expansion. Had we

instead taken n2 = 1, we would have q = 1/N and the effective free energy Feff [λ] would not be
independent of N .

Solution of the N →∞ theory

WhenN →∞ the functional integral is dominated by the saddle point in the action. Before we
solve for this saddle point, let us slightly extend our model to include a coupling to a magnetic
field. The augmented action is then

ÃE =

∫
dd+1x

{
1

2g
(∂µn

a)2 + λ (nana − qN)−
√
N ha na

}
. (15.182)

The
√
N factor preceding h · n ensures that the action will be proportional to N when |h| is

of O(N0). In the case of the antiferromagnet, where n̂ is the Néel field, h corresponds to the
q = π/a (zone corner) component of the physical magnetic field, i.e.a sublattice-staggered mag-
netic field. This is of course quite unphysical, however our purpose in introducing h is not to
investigate the effects of an external field per se, but rather as an artifice by which we can couple
to any condensate, as we shall see presently.

To find the saddle point of Feff [λ], we should set its functional variation with respect to λ(x)
to zero. We will assume that the saddle point occurs for real, constant λ. We will justify this

by presenting such a solution to the equation δFeff = 0. Note that the saddle point lies off the
integration contour for λ(x), which runs along the imaginary axis.

When λ is constant, the model may be solved by Fourier transform. We write

na(x) =
1√
L0V

∑

k

n̂a(k) eik·x (15.183)
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with

L0 = β~c , V = L1 · · ·Ld , k =
(2πj0
L0

,
2πj1
L1

, . . . ,
2πjd
Ld

)
. (15.184)

Expressed in terms of the Fourier modes,
{
na(x)

ha(x)

}
≡ 1√

V L0

∑

k

{
n̂a(h)

ĥa(k)

}
eik·x , (15.185)

the Euclidean action is

ÃE =

N∑

a=1

∑

k

{(
λ+

k2

2g

)∣∣n̂a(k)
∣∣2 −
√
N ĥ∗a(k) n̂

a(k)

}
− qNV L0 λ . (15.186)

We now integrate out the {n̂a(k)}, yielding an effective free energy function Feff(λ):

f(λ) ≡ Feff(λ)

N~cV
= −qλ +

1

2L0V

∑

k

ln
(
λ+

k2

2g

)
− 1

2L0V

∑

k

ĥa(k) ĥa(−k)(
λ+ k2

2g

) . (15.187)

The order parameter m, which is the static Néel field in the case of the antiferromagnet and
the static magnetization in the case of the ferromagnet, is obtained by differentiating the free

energy with respect to the q = 0 Fourier component of the field ĥa(k). We therefore obtain

m =
〈n〉√
N

= − 1

NL0V

∂(NFeff/kBT )

∂h
= −∂f

∂h
=

h

2λ
, (15.188)

since ĥ(0) =
√
L0V h.

To find the saddle point in λ, we set ∂f/∂λ = 0, yielding

q = m
2 +

g

L0V

∑

k

1

k2 + 2gλ
. (15.189)

In the absence of an external field, we also have The second mean field equation,

2λm = h = 0 . (15.190)

This requires either (i) λ = 0 or (ii) m = 0.

We now explore the solution to these equations as we vary dimensionality and temperature.

• d = 1, T = 0: In this case the integral is infrared divergent when λ = 0. The mean field
equation can always be solved with m = 0 for some finite λ:

q =

Λ∫
d2k

(2π)2
1

2λ+ k2

g

=
g

4π
ln
(
1 +

Λ2

2gλ

)
, (15.191)
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yielding

λ(g) =
Λ2/2g

exp(4πq/g)− 1
, (15.192)

which monotonically decreases on g ∈ [0.∞] from λ(0) = Λ2/8πq to λ(∞) = 0.

• d > 1, T = 0: In this case there exists a quantum critical point at g = gc. The gap λ
vanishes for g 6 gc. To find gc, set

q = gc

Λ∫
dd+1k

(2π)d+1

1

k2
=

gc
(2π)d+1

· Λ
d−1

d− 1
·
{
Ωd+1 scheme I

πΩd scheme II ,
(15.193)

where Ωd is the area of the d-dimensional unit sphere:

Ωd =
2πd/2

Γ
(
d
2

) . (15.194)

The cutoff is taken to be isotropic in both frequency and momentum (scheme I) or isotropic
in momentum only (scheme II). In scheme II, the integral over the frequency component
k0 extends over the range (−∞,∞), which is appropriate since the imaginary time vari-
able is not quantized on a lattice. This gives us an equation for the critical coupling gc.
The cutoff Λ is proportional to a−1, and it is convenient to write Λ = ζπ/a, where ζ is a
dimensionless constant and a is the lattice spacing.

Recall that Haldane’s mapping for the cubic lattice Heisenberg model resulted in an O(3)

nonlinear sigma model with coupling g = 2
√
d ad−1/S. The critical value for the spin

quantum number Sc is then found to be

Sc =

√
d

d− 1
· ζ

d−1

2dπ2q
·
{
Ωd+1 scheme I

πΩd scheme II ,
(15.195)

For d = 2 and q = N−1 = 1
3
, one finds Sc = 1.35 ζ (scheme I) or Sc = 2.12 ζ (scheme II).

Depending on the value of ζ , then, the critical S may be either smaller or greater than the
smallest value permitted by quantum mechanics, i.e. S = 1

2
. If Sc <

1
2
, then we conclude

the model is Néel-ordered at zero temperature. Indeed numerical work convincingly
shows that the ground state for S = 1

2
is Néel-ordered, and rigorous proofs exist which

show that long-ranged Néel order exists for S > 1.

One might suspect, given eqn. 15.149, that by extending the range of the interactions
one can push g above gc and obtain a quantum-disordered ‘spin-liquid’ ground state for
the S = 1

2
antiferromagnet on a square lattice. For example, if one includes next-nearest

neighbor antiferromagnetic coupling J2 as well as nearest neghibor antiferromagnetic
coupling J1, one has

g =
2
√
d ad−1

S
· 1√

1− 2J2/J1
, (15.196)
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which is increased above its value when J2 = 0. In fact, the search for spin liquid states
has been an arduous one. On the square lattice, one generally finds that frustrating
further-neighbor couplings push the system into another ordered state, for example one
with four sublattice antiferromagnetic order. On lattices which are highly geometrically
frustrated, such as the Kagomé and pyrochlore lattices, the S = 1

2
antiferromagnet is gen-

erally believed to have a quantum-disordered spin liquid ground state, i.e. the ground
state has no long-ranged order and breaks no lattice translation or point group symme-
tries.

• d > 2, T > 0: In this case there is a finite temperature phase transition. Defining the
Matsubara wavevectors κn ≡ 2πn/L0, we use the result

1

L0

∑

κn

H(−iκn) =
H(0)

L0
+

∞∫

−∞

dκ

π

Im H(κ+ i0+)

exp(κL0)− 1
(15.197)

to obtain the finite temperature mean field equation,

q = m
2 + g

Λ∫
ddk

(2π)d

{
2/L0

k2 + 2gλ
+

ctnh (1
2
L0

√
k2 + 2gλ)√

k2 + 2gλ

}
(15.198)

The equation for Tc is obtained by setting λ = m2 = 0:

q = g

Λ∫
ddk

(2π)d

{
2

L0 k2
+

1

k
ctnh (1

2
kL0,c)

}
, (15.199)

which is to be solved for Tc = ~c/k
B
L0.c, assuming g < gc, i.e. that the T = 0 (ground) state

is ordered.

15.6.3 Correlation functions

The correlation functions are obtained via

〈n̂a(k) n̂b(−k)〉c = −L0V
∂2f

∂ĥa(−k) ∂ĥb(k)
=

g

k2 + 2gλ
δab (15.200)

hence the full correlator is given by

Cab(x) ≡ 〈na(0)nb(x)〉 = mamb +
g

L0V

∑

k

eik·x

k2 + 2gλ
δab

= mamb + g

∞∫

−∞

dk0
2π

eik0x
0

Λ∫
ddk

(2π)d
eik·x

k20 + k2 + 2gλ
,

(15.201)
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where in the second line we take the thermodynamic limit, set T → 0, and adopt cutoff scheme
II, appropriate for lattice systems. In the latter case, at large distances we obtain the Ornstein-
Zernike form,

Cab(x)− Cab(∞) ∼ e−|x|/ξ

|x|d/2 δ
ab , (15.202)

with ξ = (2gλ)−1/2. At the quantum critical point, where λ vanishes, one finds C(x) ∼ |x|1−d.
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Chapter 16

Notes on Line Graphs

16.1 Line graphs: Kagomé and Checkerboard Lattices

A line graph is constructed by taking a given graph and associating a site to every link in the
graph. Two sites are connected if their corresponding links share a vertex in the original graph.
To every closed loop of even perimeter on the original graph there corresponds an eigenstate
of the adjacency matrix of the line graph, with eigenvalue λ = 2, provided those closed loops
are all even-membered.

16.1.1 Kagomé lattice

The Kagomé lattice, depicted in fig. 16.1, is a triangular Bravais lattice with a three element
basis. It is the line graph of the honeycomb lattice. Choosing primitive direct lattice vectors

a1 = x̂ and a2 =
1
2
x̂+

√
3
2
ŷ, we then write



aR
bR
cR


 =

1√
N

∑

k

eik·R




ak
e
i
2
k·a1 bk

e
i
2
k·a2 ck


 . (16.1)

The basis vectors here are 0, 1
2
a1, and 1

2
a2.

With θi = k · ai, we then have the Hamiltonian

Hk = −




0 2tc1 2tc2
2tc1 0 2tc12
2tc2 2tc12 0


 , (16.2)

705
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where as before ci = cos 1
2
θi and cij = cos 1

2
(θi − θj). The eigenvalues are

E1,2 = −t± t
√

3 + 2 cos θ1 + 2 cos θ2 + 2 cos(θ1 − θ2) (16.3)

and

E3 = +2t . (16.4)

Thus, there is a lower band with energies in the interval E1 ∈ [−4t , −t], a middle band with

E2 ∈ [−t , +2t], and a flat upper band with E3 = +2t.

16.1.2 Checkerboard lattice

The checkerboard lattice, also known as the planar pyrochlore structure, is depicted in fig. 16.2.
It is the line graph of the square lattice. It may be represented as an underlying square lattice

with primitive direct lattice vectors a1 = x̂ − ŷ and a2 = x̂ + ŷ, with a two element basis 0 and
x̂. (

aR
bR

)
=

1√
N

∑

k

eik·R
(

ak
e
i
2
k·x̂ bk

)
. (16.5)

It the hoppings are t along ±x̂ and ±ŷ, and t′ along ±a1 and ±a2, then the Hamiltonian is

Hk = −
(

2t′ cos θ2 4t cos(1
2
θ1) cos(

1
2
θ2)

4t cos(1
2
θ1) cos(

1
2
θ2) 2t′ cos θ1

)
, (16.6)

Figure 16.1: The Kagomé lattice, which is a triangular Bravais lattice with a three element basis
(A,B,C). The Kagomé lattice is the line graph of a honeycomb lattice.
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with eigenvalues

E1,2 = −t′
(
cos θ1 + cos θ2

)
±
√(

t′ cos θ1 − t′ cos θ2
)2

+ 4t2
(
1 + cos θ1

)(
1 + cos θ2

)
. (16.7)

When t = t′ this simplifies to

E1 = −2t
(
1 + cos θ1 + cos θ2

)
, E2 = +2t . (16.8)

Once again, as in the Kagomé and pyrochlore lattices, the top band is flat.

16.1.3 Square-octagon lattice line graph

The line graph of the square-octagon lattice is shown in Fig. 16.3. The Hamiltonian is

Hk = −




0 t1 t2 e
−ikx 0 t2 e

−iky t1
t1 0 t2 t1 t2 e

−iky 0
t2 e

ikx t2 0 t2 0 t2 e
ikx

0 t1 t2 0 t2 t1
t2 e

iky t2 e
iky 0 t2 0 t2

t1 0 t2 e
−ikx t1 t2 0




, (16.9)

where t1 is the hopping along the blue links and t2 the hopping along the red links. When
t1 6= t2, the adjacency matrix has a flat band at λ = 2t1. When t1 = t2, the flat band is doubly
degenerate.

Figure 16.2: The checkerboard (planar pyrochlore) lattice, which is a square lattice with a two
element basis (A,B). The checkerboard lattice is the line graph of the square lattice.
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Figure 16.3: This fourfold coordinated lattice is the line graph of the square-octagon lattice.
The hopping along the blue links is t1 and that along the red links is t2.

16.2 Pyrochlore Lattice

The pyrochlore lattice (fig. 16.5) is a sixfold-coordinated structure whose underlying Bravais
lattice is FCC, with a four element basis. It is effectively described as a diamond lattice of
‘corner-sharing tetrahedra’. Recall that diamond is FCC with a two element basis. It can be
constructed as the line graph of the diamond lattice.

To apprehend the geometry better, consider the sketch in fig. 16.6. Let the center of the cube,
indicated by the yellow star, be located at the origin (0, 0, 0). Then the four corners of the
tetrahedron are located as

A = d
2
(+1,−1,+1) C = d

2
(+1,+1,−1)

B = d
2
(−1,+1,+1) D = d

2
(−1,−1,−1) .

There are two species of tetrahedra in the pyrochlore lattice, which we call α and β (see figure
16.7). We identify the tetrahedron depicted in fig. 16.6 as an α-tetrahedron. The centers of the
four neighboring β-tetrahedra are then located at 2A, 2B, 2C, and 2D. That is, to move from
the center of an α-tetrahedron to the center of a neighboring β-tetrahedron, we displace by one
of these four vectors. This set is not invariant under inversion. To move from the center of a
β-tetrahedron to the center of a neighboring α-tetrahedron, we displace by the negative of one
of these four vectors.
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Thus, the twelve nearest neighbor displacements on the underlying FCC Bravais lattice are
given by 2(A − B), 2(A − C), etc., since we move from (the center of) one α-tetrahedron to
another. These twelve vectors may be written as

2A− 2B =
a√
2
(+1,−1, 0) = −a1 + a2 (16.10)

2A− 2C =
a√
2
(0,−1,+1) = a2 − a3

2A− 2D =
a√
2
(+1, 0,+1) = a2

2B − 2C =
a√
2
(−1, 0,+1) = a1 − a3

2B − 2D =
a√
2
(0,+1,+1) = a1

2C − 2D =
a√
2
(+1,+1, 0) = a3 (16.11)

Figure 16.4: Energy bands for the line graph of the square-octagon lattice.
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and their negatives, where a = 2
√
2 d is the FCC lattice constant. Here

a1 =
a√
2
(0, 1, 1) a2 =

a√
2
(1, 0, 1) a3 =

a√
2
(1, 1, 0) (16.12)

are primitive FCC direct lattice basis vectors. Note a = 2b relates the side length of the tetrahe-
dra to the FCC lattice constant. The center of any α-tetrahedron is then located at

R = m1 a1 +m2 a2 +m3 a3 , (16.13)

and the four basis vectors are s1,2,3,4 = {A,B,C,D}, i.e.

s1 =
a

4
√
2
(1,−1, 1) s3 =

a

4
√
2
(1, 1,−1) (16.14)

s2 =
a

4
√
2
(−1, 1, 1) s4 =

a

4
√
2
(−1,−1,−1) .

The reciprocal lattice is BCC, with primitive vectors

b1 =

√
2 π

a
(−1, 1, 1) , b2 =

√
2 π

a
(1,−1, 1) , b3 =

√
2π

a
(1, 1,−1) , (16.15)

which satisfy bi · aj = 2π δij .

Figure 16.5: The pyrochlore lattice is an FCC Bravais lattice with a four element basis.
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16.2.1 Adjacency Matrix

Let us label each vertex on the pyrochlore lattice by a Bravais lattice siteRm1,m2,m3
(i.e. the center

of an α-tetrahedron) and by a sublattice index, with A ≡ 1, B ≡ 2, C ≡ 3, D ≡ 4. The adjacency
matrix is

Aij(R) =




0 δ
R,0

+ δ
R ,a2−a1

δ
R,0

+ δ
R ,a2−a3

δ
R,0

+ δ
R ,a2

δ
R,0

+ δ
R ,a1−a2

0 δ
R,0

+ δ
R ,a1−a3

δ
R,0

+ δ
R ,a1

δ
R,0

+ δ
R ,a3−a2

δ
R,0

+ δ
R ,a3−a1

0 δ
R,0

+ δ
R ,a3

δ
R,0

+ δ
R ,−a2

δ
R,0

+ δ
R ,−a1

δ
R,0

+ δ
R ,−a3

0




. (16.16)

The definition of the adjacency matrix is that Aij(R) = 1 if sites si and R + sj are nearest
neighbors.

Figure 16.6: A cube of side length d, containing a tetrahedron of side length b =
√
2 d. The

origin of coordinates is located at the yellow star, which lies at the geometric center of the cube.
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Figure 16.7: The α and β tetrahedra are related by inversion. The colors of the sites show the
sublattice structure.

The Fourier transform of the adjacency matrix is

Âij(k) =
∑

R

Aij(R) e
ik·R (16.17)

=




0 1 + ei(θ2−θ1) 1 + ei(θ2−θ3) 1 + eiθ2

1 + ei(θ1−θ2) 0 1 + ei(θ1−θ3) 1 + eiθ1

1 + ei(θ3−θ2) 1 + ei(θ3−θ1) 0 1 + eiθ3

1 + e−iθ2 1 + e−iθ1 1 + e−iθ3 0


 , (16.18)

where we define

k ≡ θ1 b1
2π

+
θ2 b2
2π

+
θ3 b3
2π

, (16.19)

so that
k · Rm1,m2,m3

= m1 θ1 +m2 θ2 +m3 θ3 . (16.20)

Note that the unitary transformation,

U =




eiθ2/2 0 0 0

0 eiθ1/2 0 0

0 0 eiθ3/2 0
0 0 0 1


 (16.21)

has the effect

U † Âij(k)U = 2




0 c12 c23 c2
c12 0 c13 c1
c23 c13 0 c3
c2 c1 c3 0


 , (16.22)
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where ci = cos 1
2
θi and cij = cos 1

2
(θi − θj).

The characteristic polynomial is found to be

P (λ) = det
(
λ− Â

)
(16.23)

= λ4 − 4αλ2 − 16βλ+ 16γ ,

where

α = c21 + c22 + c23 + c212 + c213 + c223 (16.24)

β = c1 c2 c12 + c1 c3 c13 + c2 c3 c23 + c12 c13 c23

γ = c21 c
2
23 + c22 c

2
13 + c23 c

2
12 − 2 c1 c2 c13 c23 − 2 c1 c3 c12 c23 − 2 c2 c3 c12 c13 .

Simplifying, using results such as

c21 + c22 + c212 = 1 + 2 c1 c2 c12 , (16.25)

we find

β = 1 + 1
2

(
cos θ1 + cos θ2 + cos θ3 + cos(θ1 − θ2) + cos(θ1 − θ3) + cos(θ2 − θ3)

)
(16.26)

and
α = 2 + β , γ = 1− β . (16.27)

The function β(θ) takes its minimum value of βmin = 0 at θ = π
2
(1, 1, 0) (and at symmetry-

related points in the Brillouin zone). The maximum occurs at the zone center θ = 0, where
βmax = 4.

The characteristic polynomial may be factored, using the results of eqn. 16.27. If we define
λ ≡ ε− 2, then

P (ε− 2) = ε4 − 8ε3 + 4(6− α) ε2 + 16(2 + β − α) ε+ 16(1− α + 2β + γ)

= ε2
(
ε2 − 8 ε+ 4(4− β)

)
, (16.28)

and thus with λ = ε− 2 we have the four bands

λ1 = −2 , λ2 = −2 , λ3 = 2− 2
√
β , λ4 = 2 + 2

√
β . (16.29)

Note that there are two flat bands at λ1,2 = −2. Note also that the largest eigenvalue is λ4,max =

2 + 2β
1/2
max = 6, which is (correctly) the lattice coordination number. To make contact with some

results of ref. 1, the adjacency matrix in eqn. 4 of ref. 1 is equivalent to Â + 2, hence the

eigenvalues are our ε1,2,3,4, which is to say ε1,2 = 0 and ε3,4 = 4± 2
√
β. I presume that there is a

typo and the eigenvalues ν1,2,3,4 in ref. 1 are for half the adjacency matrix.

For the electronic hopping HamiltonianH = −t∑〈ij〉

(
c†icj+ c

†
jci

)
on the pyrochlore lattice, the

energy eigenvalues are

E1 = −2t− 2t
√
β(θ) , E2 = −2t+ 2t

√
β(θ) , E3,4 = +2t , (16.30)

where β(θ) ∈ [0, 4], as discussed above.
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Figure 16.8: First Brillouin zone for an FCC structure, with high symmetry points labeled.

16.2.2 The FCC lattice Brillouin zone

Fig. 16.8 shows the first Brillouin zone for a (real space) FCC structure. Note that

Γ = (0, 0, 0) (16.31)

L = 1
2

(
b1 + b2 + b3

)
=

√
2π

a

(
1, 1, 1

)
(16.32)

X = 1
2

(
b1 + b3) =

√
2π

a

(
0, 1, 0

)
. (16.33)

Consider the point L′ residing in the center of the hexagonal face adjacent to that containing L
but with negative x coordinate. (This face is hidden in the figure.) One has

L′ = 1
2
b1 =

√
2π

a

(
− 1, 1, 1

)
. (16.34)

To find W we note that it lies at the confluence of the two hexagonal faces containing L and L′,
respectively, and the square face containing X . We may therefore write

W = 1
2

(
b1 + b2 + b3

)
+ r · 1

2

(
b1 − b2

)
+ s · 1

2

(
b1 − b3

)

W = 1
2

(
b1 + b3

)
+ u · 1

2

(
b1 + b2

)
+ v · 1

2

(
b2 + b3

)

W = 1
2
b1 + x · 1

2

(
b1 + b2 + 2 b3

)
+ y · 1

2

(
b2 − b3

)
,

(16.35)
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where we must solve for (r, s, u, v, x, y). What we have done here is to write the location of W
as the location of each of the face centers plus an unknown vector lying in the plane of that
face. Since the elementary reciprocal lattice vectors b1,2,3 are a linearly independent set, the
coefficients of each elementary reciprocal lattice vector must independently sum to zero in the
two equations which result from equating the first and second, and the second and third lines
in eqn. 16.35. This yields six equations in our six unknowns, and solving for the unknowns we
obtain

r = 1
2

, s = 0 , u = 1
2

, v = 0 , x = 1
2

, y = 0 , (16.36)

and therefore

W = 3
4
b1 +

1
4
b2 +

1
2
b3 =

√
2 π

a

(
0, 1, 1

2

)
. (16.37)

Consider next the point W ′ lying on the other end of the edge containing U and K. We have

W ′ = 1
2

(
b1 + b2 + b3

)
+ r · 1

2

(
b1 − b2

)
+ s · 1

2

(
b1 − b3

)

W ′ = 1
2

(
b1 + b2

)
+ u · 1

2

(
b2 + b3

)
+ v · 1

2

(
b1 + b3

)

W ′ = 1
2
b1 + x · 1

2

(
b1 + b2 + 2 b3

)
+ y · 1

2

(
b2 − b3

)
.

(16.38)

Solving for the unknowns, we obtain

r = 1
2

, s = 1
2

, u = 0 , v = 1
2

, x = 1
2

, y = 1
2
, (16.39)

and therefore

W ′ = 3
4
b1 +

1
2
b2 +

1
4
b3 =

√
2π

a

(
0, 1

2
, 1
)
. (16.40)

Finally, consider the point W ′′ lying on the other end of the edge containing W and U . One
then has

W = 1
2

(
b1 + b2 + b3

)
+ r · 1

2

(
b1 − b2

)
+ s · 1

2

(
b1 − b3

)

W = 1
2

(
b1 + b3

)
+ u · 1

2

(
b1 + b2

)
+ v · 1

2

(
b2 + b3

)

W = 1
2
b3 + x · 1

2

(
b1 − b2

)
+ y · 1

2

(
b1 + 2 b2 + b3

)
.

(16.41)

Solving for the unknowns, we obtain

r = 0 , s = −1
2

, u = 0 , v = 1
2

, x = 1
2

, y = 1
2
, (16.42)

and therefore

W ′′ = 1
2
b1 +

1
4
b2 +

3
4
b3 =

√
2 π

a

(
1
2
, 1, 0

)
. (16.43)

Since K and U lie a the midpoints of WW ′ and WW ′′ respectively, we may now write

K = 3
4
b1 +

3
8
b3 +

3
8
b3 =

(
0, 3

4
, 3
4

)
(16.44)

U = 5
8
b1 +

1
4
b2 +

5
8
b3 =

(
1
4
, 1, 1

4

)
. (16.45)
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Figure 16.9: Supertetrahedron basis for the pyrochlore lattice.

16.3 Depleted Pyrochlores

16.3.1 Pyrochlore with 16 element basis

We change notation slightly. We define

a1 =
1√
2
a
(
0, 1, 1

)
, a2 =

1√
2
a
(
1, 0, 1

)
, a3 =

1√
2
a
(
1, 1, 0

)
. (16.46)

Consider the 16 site basis for the pyrochlore lattice defined in Fig. 16.9, composed of a ‘superte-
trahedron’ formed from four primary tetrahedra. The sites on each tetrahedron are labeled
{a, b, c, d} and the tetrahedra are labeled {A,B,C,D}. The origin is taken to be site Dd. The
supertetrahedra form a simple cubic lattice with primary direct lattice vectors

c1 = −a1 + a2 + a3 =
√
2 a (1, 0, 0)

c2 = +a1 − a2 + a3 =
√
2 a (0, 1, 0)

c3 = +a1 + a2 − a3 =
√
2 a (0, 0, 1) .

(16.47)

To see why the supertetrahedra fill all space with no missing tetrahedra, write the location of
Dd on supertetrahedron (n1, n2, n3) as

Rn1,n2,n3
= n1 c1 + n2 c2 + n3 c3

= (−n1 + n2 + n3) a1 + (n1 − n2 + n3) a2 + (n1 + n2 − n3) a3
≡ ℓ1 a1 + ℓ2 a2 + ℓ3 a3 .

(16.48)

Thus,

ℓ1 = −n1 + n2 + n3 , ℓ2 = n1 − n2 + n3 , ℓ3 = n1 + n2 − n3 . (16.49)
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Note that ℓ1 − ℓ2, ℓ2 − ℓ3, and ℓ3 − ℓ1 are all even integers. Rn1,n2,n3
is the location of the Dd site

in unit cell (n1, n2, n3). The location of the Ad site is then Rn1,n2,n3
+ a1. The location of the Bd

site is Rn1,n2,n3
+ a2. The location of the Cd site is Rn1,n2,n3

+ a3. Thus, we have

(ℓ1 − ℓ2 , ℓ2 − ℓ3 , ℓ3 − ℓ1) = (odd , odd , even) (A)

= (odd , even , odd) (B)

= (even , odd , odd) (C)

= (even , even , even) (D) .

(16.50)

Since (ℓ1− ℓ2)+(ℓ2− ℓ3)+(ℓ3− ℓ1) = 0, there number of odd differences must itself be even (i.e.
0 or 2). This exhausts all the possibilities for (ℓ1, ℓ2, ℓ3), so we have identified every tetrahedron.

The locations of the 16 sites in the (0, 0, 0) supertetrahedron are then

Aa = 3
2
a1 Ab = a1 +

1
2
a2 Ac = a1 +

1
2
a3 Ad = a1 (16.51)

Ba = a2 +
1
2
a1 Bb = 3

2
a2 Bc = a2 +

1
2
a3 Bd = a2 (16.52)

Ca = a3 +
1
2
a1 Cb = a3 +

1
2
a2 Cc = 3

2
a3 Cd = a3 (16.53)

Da = 1
2
a1 Db = 1

2
a2 Dc = 1

2
a3 Dd = 0 . (16.54)

The Fourier transform of the adjacency matrix is given by

M(θ) =



Aa Ab Ac Ad Ba Bb Bc Bd Ca Cb Cc Cd Da Db Dc Dd
Aa 0 1 1 1 0 z̄1z2 0 0 0 0 z̄1z3 0 0 0 0 z2z3
Ab 1 0 1 1 1 0 0 0 0 0 0 z3 0 0 z3 0
Ac 1 1 0 1 0 0 0 z2 1 0 0 0 0 z2 0 0
Ad 1 1 1 0 0 0 z̄1 0 0 z̄1 0 0 1 0 0 0
Ba 0 1 0 0 0 1 1 1 0 0 0 z3 0 0 z3 0
Bb z1z̄2 0 0 0 1 0 1 1 0 0 z̄2z3 0 0 0 0 z1z3
Bc 0 0 0 z1 1 1 0 1 0 1 0 0 z1 0 0 0
Bd 0 0 z̄2 0 1 1 1 0 z̄2 0 0 0 0 1 0 0
Ca 0 0 1 0 0 0 0 z2 0 1 1 1 0 z2 0 0
Cb 0 0 0 z1 0 0 1 0 1 0 1 1 z1 0 0 0
Cc z1z̄3 0 0 0 0 z2z̄3 0 0 1 1 0 1 0 0 0 z1z2
Cd 0 z̄3 0 0 z̄3 0 0 0 1 1 1 0 0 0 1 0
Da 0 0 0 1 0 0 z̄1 0 0 z̄1 0 0 0 1 1 1
Db 0 0 z̄2 0 0 0 0 1 z̄2 0 0 0 1 0 1 1
Dc 0 z̄3 0 0 z̄3 0 0 0 0 0 0 1 1 1 0 1
Dd z̄2z̄3 0 0 0 0 z̄1z̄3 0 0 0 0 z̄1z̄2 0 1 1 1 0




where zj = eiθj with j ∈ {1, 2, 3}. The way to read this matrix is as follows. There are six
nonzero entries in each row and in each column, corresponding to coordination number six.
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Figure 16.10: Comparison of pyrochlore band structures computed in 4-element FCC basis
(left) and 16-element SC basis (right).

The rows correspond to sites Aa (1) through Dd (16). Reading along the first row, we see that
Aa has neighbors Ab, Ac, and Ad in the unit cell (0, 0, 0), as well as a neighbor Bb in unit cell
c2−c1 (from M16 = z̄1z2), a neighbor Cc in unit cell c3−c1, and a neighbor Dd in unit cell c2+c3.
The Hamiltonian is then H(θ) = −tM(θ).

The high-symmetry points in the cubic lattice Brillouin zone are as follows:

Γ : (θ1, θ2, θ3) = (0, 0, 0) (zone center)

X : (θ1, θ2, θ3) = (π, 0, 0) (face center)

M : (θ1, θ2, θ3) = (π, π, 0) (edge center)

R : (θ1, θ2, θ3) = (π, π, π) (zone corner) .

(16.55)

In Fig. 16.10, we plot the dispersion for the tight binding Hamiltonian on the pyrochlore lattice
with t = 1 using both the 4-element FCC basis as well as the 16-element SC basis.

For the Kondo Hamiltonian with fixed local moments, we write

H(θ) = −t
16∑

a,b=1

2∑

µ=1

Mab(θ) c
†
a,µ(θ) cb,µ(θ)− J

16∑

a=1

2∑

µ,ν=1

n̂a · c†a,µ(θ) σµν ca,ν(θ) , (16.56)

where J is the Kondo coupling and n̂a is the direction of the local moment, with all local mo-
ments assumed to be of unit magnitude. At each θ point in the Brillouin zone, the Hamiltonian
is a 32× 32 matrix.
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Figure 16.11: Comparison of depleted pyrochlore band structures (t = 1, J = 0). Left panel:
sites Aa, Bb, Cc, Dd removed. Right panel: sites Ab, Bc, Ca, Dd removed.

16.3.2 Depleted pyrochlore

To deplete the pyrochlore, we knock out rows and columns of M . Equivalently, we can add an
infinite on-site energy to the diagonal elements Haa(θ). For the Kondo Hamiltonian, we add
the infinite on-site energy to Ha↑,a↑(θ) and Ha↓,a↓(θ). In Fig. 16.11 we plot the band structures
for two depleted pyrochlore structures, one in which sites Aa, Bb, Cc, and Dd have been re-
moved (I), and another in which sites Ab, Bc, Ca, and Dd have been removed (II). The resulting
structures may not have the full cubic lattice symmetry.

Eliminating the necessary rows and columns from M(θ), we arrive at the adjacency matrices
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for the two depleted structures (I) and (II). We find for (I),

M (I)(θ) =




Ab Ac Ad Ba Bc Bd Ca Cb Cd Da Db Dc
Ab 0 1 1 1 0 0 0 0 z3 0 0 z3
Ac 1 0 1 0 0 z2 1 0 0 0 z2 0
Ad 1 1 0 0 z̄1 0 0 z̄1 0 1 0 0
Ba 1 0 0 0 1 1 0 0 z3 0 0 z3
Bc 0 0 z1 1 0 1 0 1 0 z1 0 0
Bd 0 z̄2 0 1 1 0 z̄2 0 0 0 1 0
Ca 0 1 0 0 0 z2 0 1 1 0 z2 0
Cb 0 0 z1 0 1 0 1 0 1 z1 0 0
Cd z̄3 0 0 z̄3 0 0 1 1 0 0 0 1
Da 0 0 1 0 z̄1 0 0 z̄1 0 0 1 1
Db 0 z̄2 0 0 0 1 z̄2 0 0 1 0 1
Dc z̄3 0 0 z̄3 0 0 0 0 1 1 1 0




.

This corresponds to a five-fold coordinated structure, since there are five nonzero elements in
each row and each column. For the (II) structure, we have

M (II)(θ) =




Aa Ac Ad Ba Bb Bd Cb Cc Cd Da Db Dc
Aa 0 1 1 0 z̄1z2 0 0 z̄1z3 0 0 0 0
Ac 1 0 1 0 0 z2 0 0 0 0 z2 0
Ad 1 1 0 0 0 0 z̄1 0 0 1 0 0
Ba 0 0 0 0 1 1 0 0 z3 0 0 z3
Bb z1z̄2 0 0 1 0 1 0 z̄2z3 0 0 0 0
Bd 0 z̄2 0 1 1 0 0 0 0 0 1 0
Cb 0 0 z1 0 0 0 0 1 1 z1 0 0
Cc z1z̄3 0 0 0 z2z̄3 0 1 0 1 0 0 0
Cd 0 0 0 z̄3 0 0 1 1 0 0 0 1
Da 0 0 1 0 0 0 z̄1 0 0 0 1 1
Db 0 z̄2 0 0 0 1 0 0 0 1 0 1
Dc 0 0 0 z̄3 0 0 0 0 1 1 1 0




,

corresponding to a four-fold coordinated structure, known as the hyperkagome lattice.



16.3. DEPLETED PYROCHLORES 721

Figure 16.12: Comparison of two additional depleted pyrochlore band structures III and IV
(t = 1, J = 0).

The energy bands for two additional structures are shown in Fig. 16.12. We find

M (III)(θ) =




Aa Ac Ad Ba Bb Bd Ca Cb Cc Db Dc Dd
Aa 0 1 1 0 z̄1z2 0 0 0 z̄1z3 0 0 z2z3
Ac 1 0 1 0 0 z2 1 0 0 z2 0 0
Ad 1 1 0 0 0 0 0 z̄1 0 0 0 0
Ba 0 0 0 0 1 1 0 0 0 0 z3 0
Bb z1z̄2 0 0 1 0 1 0 0 z̄2z3 0 0 z1z3
Bd 0 z̄2 0 1 1 0 z̄2 0 0 1 0 0
Ca 0 1 0 0 0 z2 0 1 1 z2 0 0
Cb 0 0 z1 0 0 0 1 0 1 0 0 0
Cc z1z̄3 0 0 0 z2z̄3 0 1 1 0 0 0 z1z2
Db 0 z̄2 0 0 0 1 z̄2 0 0 0 1 1
Dc 0 0 0 z̄3 0 0 0 0 0 1 0 1
Dd z̄2z̄3 0 0 0 z̄1z̄3 0 0 0 z̄1z̄2 1 1 0




In this structure, nine of the 12 sites are 5-fold coordinated, and the remaining three are 3-fold
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coordinated. What seems to be an equivalent structure is (IV):

M (IV)(θ) =




Aa Ab Ac Ba Bc Bd Ca Cb Cd Db Dc Dd
Aa 0 1 1 0 z̄1z2 0 0 0 0 0 0 z2z3
Ab 1 1 1 1 0 0 0 0 z3 0 z3 0
Ac 1 0 1 0 0 z2 1 0 0 z2 0 0
Ba 0 0 0 0 1 1 0 0 z3 0 z3 0
Bc 0 0 z1 1 1 1 0 1 0 0 0 0
Bd 0 z̄2 0 1 1 0 z̄2 0 0 1 0 0
Ca 0 1 0 0 0 z2 0 1 1 z2 0 0
Cb 0 0 z1 0 0 0 1 0 1 0 0 0
Cd 0 0 0 z̄3 0 0 1 1 0 0 1 0
Db 0 z̄2 0 0 0 1 z̄2 0 0 0 1 1
Dc 0 0 0 z̄3 0 0 0 0 1 1 0 1
Dd z̄2z̄3 0 0 0 z̄1z̄3 0 0 0 0 1 1 0




16.4 References
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Chapter 17

Quadratic Hamiltonians

17.1 Bosonic Models

The general noninteracting bosonic Hamiltonian is written

Ĥ = 1
2
Ψ †
r HrsΨs , (17.1)

where Ψ is a rank-2N column vector whose Hermitian conjugate is the row vector

Ψ † =
(
ψ†
1 , · · · , ψ†

N , ψ1 , · · · , ψN
)

. (17.2)

Since
[
ψi , ψ

†
j

]
= δij , we have

[
Ψr , Ψ

†
s

]
= Σrs , Σ =

(
IN×N 0

0 −IN×N

)
, (17.3)

with I the identity matrix. Note that the indices r and s run from 1 to 2N , while i and j run
from 1 to N . The matrix H is of the form

H =

(
A B
B∗ A∗

)
(17.4)

where A = A† is Hermitian and B = Bt is symmetric.

The Hamiltonian is brought to diagonal form by a canonical transformation:

(
ψ
ψ†

)
=

S︷ ︸︸ ︷(
U V ∗

V U∗

) (
φ
φ†

)
, (17.5)

723
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which is to say Ψ = S Φ, or in component form

ψi = Uia φa + V ∗
ia φ

†
a

ψ†
i = Via φa + U∗

ia φ
†
a ,

(17.6)

where a, like i, runs from 1 to N . In order that the transformation be canonical, we must
preserve the commutation relations, meaning

[
φa , φ

†
b

]
= δab, i.e.

[
Φr , Φ

†
s

]
= Σrs . (17.7)

This then requires
S Σ S† = S†Σ S = Σ , (17.8)

which entails

U †U − V †V = I U tV − V tU = 0 (17.9)

UU † − V ∗V t = I U∗V t − V U † = 0 . (17.10)

Note that Σ2 = I, where I =

(
I 0
0 I

)
, hence

S−1 = Σ S†Σ =

(
U † −V †

−V t U t

)
. (17.11)

Thus, the inverse relation between the Ψ and Φ operators is Φ = S−1Ψ = Σ S†Σ Ψ , or

φa = U∗
ia ψi − V ∗

ia ψ
†
i

φ†
a = −Via ψi + Uia ψ

†
i ,

(17.12)

17.1.1 Bogoliubov equations

We are now in the position to demand

S†HS = E =

(
E 0
0 E

)
, (17.13)

where E is a diagonal N ×N matrix. Thus,

HS = S†−1E = Σ S Σ E , (17.14)

which is to say (
A B
B∗ A

)(
U V ∗

V U∗

)
=

(
U −V ∗

−V U∗

)(
E 0
0 E

)
. (17.15)
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If the bosonic system is stable, each of the eigenvalues Ea is nonnegative. In component form,
this yields the Bogoliubov equations,

Aij Uja +Bij Vja = +UiaEa

B∗
ij Uja + A∗

ij Vja = −ViaEa ,
(17.16)

with no implied sum on a on either RHS. The Hamiltonian is then

Ĥ =
∑

a

Ea
(
φ†
aφa +

1
2

)
. (17.17)

At temperature T , we have 〈
φ†
a φb
〉
= n(Ea) δab , (17.18)

where

n(E) =
1

exp(E/kBT )− 1
(17.19)

is the Bose distribution. The anomalous correlators all vanish, e.g. 〈φaφb〉 = 0. The finite tem-
perature two-point correlation functions are then

〈ψ†
iψj〉 =

∑

a

{
na U

∗
ia Uja + (1 + na) Via V

∗
ja

}
(17.20)

〈ψiψj〉 =
∑

a

{
na V

∗
ia Uja + (1 + na)Uia V

∗
ja

}
, (17.21)

where na ≡ n(Ea).

17.1.2 Ground state

We have found
Φ = S−1Ψ = Σ S†Σ Ψ , (17.22)

hence

φa = U †
ai ψi − V †

ai ψ
†
i

= ψi U
∗
ia − ψ†

i V
∗
ia .

(17.23)

We assume the following Bogoliubov form for the ground state of Ĥ :

|G 〉 = C exp
(

1
2
Qij ψ

†
iψ

†
j

)
| 0 〉 , (17.24)

where C is a normalization constant, Q is a symmetric matrix, and | 0 〉 is the vacuum for the ψ
bosons: ψi| 0 〉 = 0. We now demand that |G 〉 be the vacuum for the φ bosons: φa|G 〉 ≡ 0. This
means

φa e
Q̂ | 0 〉 = eQ̂

(
e−Q̂ φa e

Q̂
)
| 0 〉 , (17.25)
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where
Q̂ ≡ 1

2
Qij ψ

†
iψ

†
j . (17.26)

We now define

ψi(x) ≡ e−xQ̂ ψi e
xQ̂ (17.27)

and we find
dψi(x)

dx
= e−xQ̂

[
ψi , Q̂

]
exQ̂ = Qij ψ

†
j , (17.28)

and integrating1 we obtain

ψi(x) ≡ e−xQ̂ ψi e
xQ̂ = ψi(x) + xQij ψ

†
j . (17.29)

We may now write

e−Q̂ φa e
Q̂ = U †

ai ψi +
(
U †
aiQij − V †

aj

)
ψ†
j , (17.30)

and we demand that the coefficient of ψ†
j vanish for all a, which yields

Q =
(
U †)−1

V † , (17.31)

or, equivalently, Q† = V U−1. Note that Qt = V ∗(U∗)−1 = Q since U †V ∗ = V †U∗.

17.1.3 A final note on the boson problem

Note that S†HS has the same eigenvalues as H only if S† = S−1, i.e. only if S is Hermitian. We
have S† = ΣS−1Σ and therefore

S†HS = Σ S−1ΣHS . (17.32)

Now

ΣH =

(
A B
−B∗ −A∗

)
. (17.33)

Consider the characteristic polynomial P (E) = det(E − ΣH). Since det(M) = det(M t) for any
matrix M , we consider

(ΣH)t =
(
At −B†

Bt −A†

)
=

(
A∗ −B∗

B −A

)
= −J −1(ΣH)J , (17.34)

where

J =

(
0 I

−I 0

)
(17.35)

1Note that e−xQ̂ ψ†
i e

xQ̂ = ψ†
i since

[
ψ†
i , Q̂

]
= 0.
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and J −1 = −J , i.e. J 2 = −I. But then we have

P (E) = det(E −ΣH) = det(E + J −1ΣHJ ) = det(E +ΣH) = P (−E) . (17.36)

We conclude that the eigenvalues of ΣH come in (+E,−E) pairs. To obtain the eigenenergies

for the bosonic Hamiltonian Ĥ, however, as per eqn. 17.32, we must multiply S−1ΣHS on
the left by Σ, which reverses the sign of the negative eigenvalues, resulting in a nonnegative
definite spectrum of bosonic eigenoperators (for stable bosonic systems).

17.2 Fermionic Models

The general noninteracting fermionic Hamiltonian is written

Ĥ = 1
2
Ψ †
r HrsΨs , (17.37)

where once again Ψ is a rank-2N column vector whose Hermitian conjugate is the row vector

Ψ † =
(
ψ†
1 , · · · , ψ†

N , ψ1 , · · · , ψN
)

. (17.38)

In contrast to the bosonic case, we now have
{
ψi , ψ

†
j

}
= δij with the anticommutator, hence

{
Ψr , Ψ

†
s

}
= δrs . (17.39)

The matrix H is of the form

H =

(
A B
−B∗ −A∗

)
, (17.40)

where A = A† is Hermitian and B = −Bt is antisymmetric. Since this is of the same form as
eqn. 17.33, we conclude that the eigenvalues ofH come in (+E,−E) pairs2.

As with the bosonic case, the Hamiltonian is brought to diagonal form by a canonical transfor-
mation:

(
ψ
ψ†

)
=

S︷ ︸︸ ︷(
U V ∗

V U∗

) (
φ
φ†

)
, (17.41)

which is to say Ψ = S Φ, or in component form

ψi = Uia φa + V ∗
ia φ

†
a

ψ†
i = Via φa + U∗

ia φ
†
a .

(17.42)

2This is true even though B in eqn. 17.33 is symmetric rather than antisymmetric. In proving the evenness of the
characteristic polynomial P (E) = P (−E), we did not appeal to the symmetry or antisymmetry of B.
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In order that the transformation be canonical, we must preserve the anticommutation relations,

i.e.
{
φa , φ

†
b

}
= δab, meaning {

Φr , Φ
†
s

}
= δrs , (17.43)

which requires that S is unitary:
S†S = SS† = I , (17.44)

where I is again the identity matrix of rank 2N . Thus,

U †U + V †V = I U tV + V tU = 0 (17.45)

UU † + V ∗V t = I U∗V t + V U † = 0 . (17.46)

The inverse relation between the operators follows from Φ = S−1Ψ = S†Ψ :

φa = U∗
ia ψi + V ∗

ia ψ
†
i

φ†
a = Via ψi + Uia ψ

†
i ,

(17.47)

The transformed Hamiltonian matrix is

S†HS = E ≡
(
E 0
0 −E

)
. (17.48)

Without loss of generality, we may take E to be a diagonal matrix with nonnegative entries. In
component notation, the eigenvalue equations are

Aij Uja +Bij Vja = UiaEa

−B∗
ij Uja −A∗

ij Vja = ViaEa .
(17.49)

The Hamiltonian then takes the form

Ĥ =
∑

a

Ea
(
φ†
aφa − 1

2

)
. (17.50)

At temperature T , we have 〈
φ†
aφb
〉
= f(Ea) δab , (17.51)

where

f(E) =
1

exp(E/kBT ) + 1
(17.52)

is the Fermi distribution. As for bosons, the anomalous correlators all vanish: 〈φaφb〉 = 0. The
finite temperature two-point correlation functions are then

〈ψ†
iψj〉 =

∑

a

{
fa U

∗
ia Uja + (1− fa) Via V ∗

ja

}

〈ψiψj〉 =
∑

a

{
fa V

∗
ia Uja + (1− fa)Uia V ∗

ja

}
,

(17.53)

where fa = f(Ea).
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17.2.1 Ground state

We write

|G 〉 = C exp
(

1
2
Qij ψ

†
iψ

†
j

)
| 0 〉 , (17.54)

with Q = −Qt, and we demand, as in the bosonic case, that φa |G 〉 ≡ 0. Again we define

Q̂ = 1
2
Qij ψ

†
iψ

†
j , and

ψi(x) = e−xQ̂ ψi e
xQ̂ . (17.55)

We then have

dψi(x)

dx
= e−xQ̂

[
ψi, Q̂

]
exQ̂ = Qij ψ

†
j ⇒ ψi(x) = ψi + xQij ψ

†
j . (17.56)

Thus,

e−Q̂ φa e
Q̂ = U †

ai ψi +
(
V †
aj + U †

aiQij

)
ψ†
j , (17.57)

from which we obtain

Q = −
(
U †)−1

V † . (17.58)

Since U †V ∗ + V †U∗ = 0, we recover Q = −Qt.

17.3 Majorana Fermion Models

Majorana fermions satisfy the anticommutation relations
{
θi , θj

}
= 2δij . Thus, (θi)

2 = 1 for

every i. We also have θ†i = θi and for this reason they are sometimes called ‘real’ fermions. If
c is the annihilator for a Dirac particle, with

{
c , c†

}
= 1, we may define Majorana fermions η

and η̃ as follows:

η = c+ c† c = 1
2
(η − iη′) (17.59)

η̃ = i(c− c†) c† = 1
2
(η + iη̃) . (17.60)

The most general noninteracting Majorana Hamiltonian is of the form

Ĥ = i
4
Mij θi θj , (17.61)

where M = −M t = M∗ is a real antisymmetric matrix of even dimension 2N . This is brought
to canonical form by a real orthogonal transformation,

θi = Ria ξa , (17.62)
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whereRtR = I, and where
{
ξa , ξb

}
= 2δab. We have

RtMR = E ⊗ iσy =




0 −E1 0 0 · · ·
E1 0 0 0 · · ·
0 0 0 −E2 · · ·
0 0 E2 0 · · ·
...

...
...

...
. . .




. (17.63)

Thus,

Ĥ = − i
2

N∑

a=1

Ea ξ2a−1 ξ2a =
∑

a

Ea
(
c†aca − 1

2

)
, (17.64)

where
ca ≡ 1

2

(
ξ2a−1 − i ξ2a

)
, c†a ≡ 1

2

(
ξ2a−1 + i ξ2a

)
. (17.65)

17.3.1 Majorana chain

Consider the Hamiltonian

Ĥ = −i
N∑

n=1

σn αn αn+1 (17.66)

where σn = ±1 is a Z2 gauge field and {αm, αn} = 2 δmn is the Majorana fermion anticom-

mutator. Periodic boundary conditions are assumed, i.e. αN+1 = α1. We now make a gauge
transformation to a new set of Majorana fermions,

θ1 ≡ α1 , θ2 ≡ σ1α2 , θ3 ≡ σ1σ2 α3 , . . . , θN ≡ σ1σ2 · · ·σN−1 αN . (17.67)

The Hamiltonian may now be written as

Ĥ = −i
N∑

n=1

θn θn+1 , (17.68)

where θN+1 = σ θ1, with σ =
∏N

j=1 σj . So the boundary conditions on the θ Majoranas are
either periodic (σ = +1) or antiperiodic (σ = −1). We now switch to crystal momentum space,
defining

θ̂k =
1√
N

N∑

n=1

e−ikn θn , θn =
1√
N

∑

k

eikn θ̂k . (17.69)

The k-values are quantized according to eikN = σ. The anticommutators are

{
θm , θn

}
= 2 δm−n , 0modN ,

{
θ̂k , θ̂p

}
= 2 δk+p , 0mod 2π . (17.70)
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There are four cases to consider:

Case I : σ = +1, N even. We have eikN = +1, and the N allowed k values are

k ∈ ±2π
N
×
{
1 , . . . , 1

2
N − 1

}
, k = 0 , k = π . (17.71)

Note that the allowed crystal momenta all occur in {+k,−k} pairs, with the exception of k = 0
and k = π, which are unpaired.

Case II : σ = +1, N odd. We have eikN = +1, and the N allowed k values are

k ∈ ±2π
N
×
{
1 , . . . , 1

2
(N − 1)

}
, k = 0 . (17.72)

Only k = 0 is unpaired.

Case III : σ = 1, N even. We have eikN = −1, and the N allowed k values are

k ∈ ±2π
N
×
{

1
2
, . . . , 1

2
(N − 1)

}
. (17.73)

All the crystal momenta are paired.

Case IV : σ = 1, N odd. We have eikN = −1, and the N allowed k values are

k ∈ ±2π
N
×
{

1
2
, . . . , 1

2
N − 1

}
, k = π . (17.74)

Only k = π is unpaired.

We may now write

Ĥ = −i
∑

k

e−ik θ̂k θ̂−k

= −i
∑

k∈(0,π)

(
eik θ̂−k θ̂k + e−ik θ̂k θ̂−k

)
− i
∑

k∈U
e−ik θ̂2k

=
∑

k∈(0,π)
2 sin k θ̂−k θ̂k − 2i

∑

k∈(0,π)
e−ik − i

∑

k∈U
e−ik .

(17.75)

where U denotes the set of unpaired (or self-paired) crystal momenta, i.e. the set of k for which

eik = e−ik. Note that
{
θ̂−k , θ̂k′

}
= 2 δk,k′ and θ̂−k = θ̂†k, so we may define θ̂−k ≡

√
2 c†k and

θ̂k ≡
√
2 ck, where ck is a complex fermion. Thus, we have

Ĥ =
∑

k∈(0,π)
4 sin k c†k ck + E0 , (17.76)

where
E0 = −2i

∑

k∈(0,π)
e−ik − i

∑

k∈U
e−ik . (17.77)
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We now proceed to evaluate E0 for our four cases.

Case I : Since U = {0, π}, we have
∑

k∈U e
−ik = 0. For k ∈ (0, π) we may write k = 2πℓ/N with

ℓ ∈
{
1 , . . . , 1

2
N − 1

}
. We then have

E
(I)
0 = −2i

N
2
−1∑

ℓ=1

e−2πiℓ/N = −2 ctn
( π
N

)
. (17.78)

Note that we have used the identity

J−1∑

ℓ=1

xℓ =
x− xJ
1− x . (17.79)

Case II : We have U = {0}. For the main set k ∈ (0, π) we may write k = 2πℓ/N with ℓ ∈{
1 , . . . , 1

2
(N − 1)

}
. We then have

E
(II)
0 = −2i

N+1
2

−1∑

ℓ=1

e−2πiℓ/N − i = −2i
(
e−2πi/N + e−iπ/N

1− e−2πi/N

)
− i = − ctn

( π

2N

)
. (17.80)

Case III : We have U = {∅}. For k ∈ (0, π) we may write k = 2πℓ/N + π/N with ℓ ∈{
0 , . . . , 1

2
N − 1

}
. Then

E
(III)
0 = −2i e−iπ/N

N
2
−1∑

ℓ=0

e−2πℓ/N = −2 csc
( π
N

)
. (17.81)

Case IV : We have U = {π}. For k ∈ (0, π) we may write k = 2πℓ/N − π/N with ℓ ∈{
1 , . . . , 1

2
(N − 1)

}
. Thus,

E
(IV)
0 = −2i eiπ/N

N+1
2

−1∑

ℓ=1

e−2πiℓ/N + i = −2i
(
e−iπ/N + 1

1− e−2πi/N

)
+ i = − ctn

( π

2N

)
. (17.82)

Note that in the N →∞ limit, in all four cases we have E0 = 2N/π +O(1).
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17.4 Jordan-Wigner Transformation

The Jordan-Wigner transformation is an equivalence, in one-dimensional lattice systems, be-
tween the S = 1

2
SU(2) algebra and the algebra of spinless fermions. Explicitly, we have

S+
n = exp

(
iπ

n−1∑

j=1

c†jcj

)
c†n

S−
n = exp

(
iπ

n−1∑

j=1

c†jcj

)
cn

Szn = c†ncn − 1
2

.

(17.83)

The inverse is then

c†n = exp

(
iπ

n−1∑

j=1

(
Szj +

1
2

))
S+
n

cn = exp

(
iπ

n−1∑

j=1

(
Szj +

1
2

))
S−
n .

(17.84)

Note that eiπc
†c has eigenvalues ±1, and that

c eiπc
†c = −c , c†eiπc

†c = c† . (17.85)

Taking the Hermitian conjugate,

eiπc
†c c† = −c† , eiπc

†c c = c . (17.86)

The expression

exp

(
iπ

n−1∑

j=1

(
Szj +

1
2

))
=

n−1∏

j=1

exp
(
iπ
(
Szj +

1
2

))
(17.87)

is known as a Jordan-Wigner string.

The nearest-neighbor bilinear transverse spin interaction terms are

S+
n S

−
n+1 = c†n e

iπc†ncn cn+1 = c†n cn+1

S−
n S

+
n+1 = cn e

iπc†ncn c†n+1 = c†n+1 cn

S+
n S

+
n+1 = c†n e

iπc†ncn c†n+1 = c†n c
†
n+1

S−
n S

+
n+1 = cn e

iπc†ncn cn+1 = cn+1 cn .

(17.88)
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On an N-site ring, however, on the ‘last’ link, which connects site N back to site 1, yields

S+
N S

−
1 = −eiπM̂ c†Nc1

S−
N S

+
1 = −eiπM̂ c†1cN

S+
N S

+
1 = −eiπM̂ c†Nc

†
1

S−
N S

+
1 = −eiπM̂ c1cN .

(17.89)

where

M̂ =
N∑

j=1

c†jcj . (17.90)

Note that eiπM̂ = (−1)M̂ must commute with every possible term we could write, since fermion
number parity must be conserved.

17.4.1 Anisotropic XY model

Consider the anisotropic XY model in a perpendicular field on an N-site chain3, with

Ĥchain =

N−1∑

n=1

{
Jx S

x
n S

x
n+1 + Jy S

y
n S

y
n+1

}
+ h

N∑

n=1

Szn (17.91)

= 1
2

N−1∑

n=1

{
J+
(
c†n cn+1 + c†n+1 cn

)
+ J−

(
c†n c

†
n+1 + cn+1 cn

)}
+ h

N∑

n=1

(
c†n cn − 1

2

)
,

where J± = 1
2
(Jx ± Jy). On an N-site ring, we add the term

∆H = Jx S
x
N S

x
1 + Jy S

y
N S

y
1

= −1
2
eiπM̂

{
J+
(
c†N c1 + c†1 cN

)
+ J−

(
c†N c

†
1 + c1 cN

)}
.

(17.92)

Since eiπM̂ commutes with Ĥchain and with all fermion bilinears (hence with ∆H as well), we

can specify the eigenvalues as η ≡ eiπM̂ = ±1, which are the even and odd fermion number
sectors, respectively. We then define

c1 ≡
{
−cN+1 if η = +1

+cN+1 if η = −1 .
(17.93)

If we write

cn =
1√
N

∑

k

eikn ck , (17.94)

3See E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. 16, 407 (1961).
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where the index n refers to real space and k to momentum space, we have the wave vector
quantization rule eikN = −η, i.e. for even and odd sectors

kj =

{
2π(j + 1

2
)/N if η = +1

2πj/N if η = −1 .
(17.95)

Thus, the Hamiltonian becomes

Ĥring =
∑

k

{
(J+ cos k + h) c†k ck +

1
2
J− e

ik c†k c
†
−k +

1
2
J− e

−ik c−k ck

}
+ 1

2
Nh

=
∑

k>0

(
c†k c−k

)
Hk︷ ︸︸ ︷(

ωk ∆k

∆∗
k −ωk

) (
ck
c†−k

)
,

(17.96)

where
ωk = J+ cos k + h . ∆k = i J− sin k . (17.97)

Diagonalizing via a unitary transformation, we obtain

Ĥring =
∑

k

Ek
(
γ†kγk − 1

2

)
, (17.98)

where the dispersion relation is

Ek =
√
ω2
k + |∆k|2 =

√
(J+ cos k + h)2 + J2

− sin2k . (17.99)

Note that S†
kHk Sk = diag(Ek,−Ek), where

Sk =

(
uk −v∗k
vk uk

)
(17.100)

where

uk =
Ek + ωk√

2Ek(Ek + ωk)
, vk =

∆∗
k√

2Ek(Ek + ωk)
. (17.101)

Thus,

γk = uk ck − v∗k c†−k
γ†k = −vk c−k + uk c

†
k .

(17.102)

Note that u−k = uk = u∗k while v−k = −vk = v∗k , and that

ck = uk γk + v∗k γ
†
−k

c†k = vk γ−k + uk γ
†
k .

(17.103)
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When we compute correlation functions, we use the fact that

eiπc
†c = (c† + c)(c† − c) = −(c† − c)(c† + c) , (17.104)

and, defining Aj ≡ c†j + cj and Bj ≡ c†j − cj , Then the correlation functions are

ρx(ℓ) =
〈
Sxn S

x
n+ℓ

〉
= 1

4

〈
BnAn+1Bn+1 · · ·An+ℓ−1Bn+ℓ−1An+ℓ

〉

ρy(ℓ) =
〈
Syn S

y
n+ℓ

〉
= 1

4
(−1)ℓ

〈
AnBn+1An+1 · · ·Bn+ℓ−1An+ℓ−1Bn+ℓ

〉

ρz(ℓ) =
〈
Szn S

z
n+ℓ

〉
= 1

4

〈
AnBnAn+ℓBn+ℓ

〉
,

(17.105)

where, without loss of generality, we presume ℓ > 0. These expressions may be evaluated using
Wick’s theorem,

〈
O1O2 · · · O2m

〉
=
∑

σ∈C2r

(−1)σ
〈
Oσ(1)Oσ(2)

〉
· · ·
〈
Oσ(2r−1)Oσ(2r)

〉
, (17.106)

where σ is one of a special set of permutations C2r of the set {1, . . . , 2r} called contractions, which
are arrangements of the 2r indices into r pairs. Exchanging any two pairs, or exchanging the
indices within a pair results in the same contraction, so the number of such contractions is
|C2r| = (2r)!/(2r · r!) . Here (−1)σ is the sign of the permutation σ. As an example, for r = 2
there are 4!/(4 · 2) = 3 contractions. We then have

ρz(ℓ) =
1
4

〈
AnBn

〉〈
An+ℓBn+ℓ

〉
− 1

4

〈
AnAn+ℓ

〉〈
BnBn+ℓ

〉
+ 1

4

〈
AnBn+ℓ

〉〈
BnAn+ℓ

〉
. (17.107)

Now we need the following:
〈
AnAn′

〉
= δnn′ ,

〈
BnBn′

〉
= −δnn′ ,

〈
AnBn′

〉
≡ G(n′ − n) (17.108)

The first two of these relations follow by inversion symmetry, i.e.
〈
AnAn′

〉
=
〈
An′An

〉
⇒

〈
AnAn′

〉
= 1

2

〈
{An , An′}

〉
= δnn′ , (17.109)

with a corresponding argument showing
〈
BnBn′

〉
= −δnn′ . We then have

G(n′ − n) =
〈
(c†n + cn) (c

†
n′ − cn′)

〉

=
1

N

∑

k,k′

(〈
c†k c

†
k′

〉
−
〈
c−kck′

〉
+
〈
c−kc

†
−k
〉
−
〈
c†kck

〉)
eik(n

′−n)

=
1

N

∑

k

(
u2k − |vk|2 + 2ukvk

)
e−ikn eik

′n′

=
1

N

∑

k

(
ωk +∆k

Ek

)
eik(n

′−n)

(17.110)

for n 6= n′, and at T = 0. Note that
〈
Bn′An

〉
= −G(n − n′) for n 6= n′ and that G(0) = 1 − 2ν

where ν = 〈c†jcj〉 is the fermion occupation per site, which is translationally invariant. Thus,
we have

ρz(ℓ) =
1
4
G2(0)− 1

4
G(ℓ)G(−ℓ) (17.111)
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The transverse spin correlations may be expressed as determinants, viz.

ρx(ℓ) = det




G(1) G(2) · · · G(ℓ)
G(0) G(1) · · · G(ℓ− 1)
...

...
. . .

...
G(2− ℓ) G(3− ℓ) · · · G(1)


 (17.112)

and

ρy(ℓ) = det




G(−1) G(0) · · · G(ℓ− 2)
G(−2) G(−1) · · · G(ℓ− 3)
...

...
. . .

...
G(−ℓ) G(1− ℓ) · · · G(−1)


 . (17.113)

Matrices like these which are constant along the diagonals are called Toeplitz matrices. A matrix
M is Toeplitz if Mi,j =Mi+1,j+1 = m(i− j).

17.4.2 Majorana representation of the JW transformation

With Eqn. 17.65, which describes how one can write a single Dirac fermion with operators c
and c† in terms of two Majorana fermions α and β, i.e. α = c+ c† and β = i(c− c†), we can write
the JW transformation as follows:

Xn = (i α1 β1) (i α2 β2) · · · (i αn−1 βn−1)αn
Yn = (i α1 β1) (i α2 β2) · · · (i αn−1 βn−1) βn
Zn = −i αn βn .

(17.114)

Here we write (Xn, Yn, Zn) for the Pauli matrices (σxn , σ
y
n , σ

z
n) = (2Sxn , 2S

y
n, 2S

z
n). Note that

Xn Yn = i Zn . Thus, we have written the N spin operators along the chain in terms of 2N Majo-
rana fermions {α1, β1, . . . , αN , βN}, and, through the relations αn = cn + c†n and βn = i(cn − c†n),
in terms of N Dirac fermions

{
(c1, c

†
1), . . . , (cN , c

†
N)
}

. Note that

i αn βn = −Zn = exp(iπc†ncn) = 1− 2 c†ncn , (17.115)

and we thereby recover Eqn. 17.84.
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