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16.1.1 Kagomé lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

16.1.2 Checkerboard lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

16.1.3 Square-octagon lattice line graph . . . . . . . . . . . . . . . . . . . . . . . 3

16.2 Pyrochlore Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

16.2.1 Adjacency Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

16.2.2 The FCC lattice Brillouin zone . . . . . . . . . . . . . . . . . . . . . . . . . 10

16.3 Depleted Pyrochlores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

16.3.1 Pyrochlore with 16 element basis . . . . . . . . . . . . . . . . . . . . . . . 12

16.3.2 Depleted pyrochlore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

i



ii LIST OF FIGURES

16.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

List of Figures
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Chapter 16

Notes on Line Graphs

16.1 Line graphs: Kagomé and Checkerboard Lattices

A line graph is constructed by taking a given graph and associating a site to every link in the
graph. Two sites are connected if their corresponding links share a vertex in the original graph.
To every closed loop of even perimeter on the original graph there corresponds an eigenstate
of the adjacency matrix of the line graph, with eigenvalue λ = 2, provided those closed loops
are all even-membered.

16.1.1 Kagomé lattice

The Kagomé lattice, depicted in fig. 16.1, is a triangular Bravais lattice with a three element
basis. It is the line graph of the honeycomb lattice. Choosing primitive direct lattice vectors

a1 = x̂ and a2 =
1
2
x̂+

√
3
2
ŷ, we then write





aR
bR
cR



 =
1√
N

∑

k

eik·R







ak
e

i
2
k·a

1 bk
e

i
2
k·a

2 ck






. (16.1)

The basis vectors here are 0, 1
2
a1, and 1

2
a2.

With θi = k · ai, we then have the Hamiltonian

Hk = −





0 2tc1 2tc2
2tc1 0 2tc12
2tc2 2tc12 0



 , (16.2)

1
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where as before ci = cos 1
2
θi and cij = cos 1

2
(θi − θj). The eigenvalues are

E1,2 = −t± t

√

3 + 2 cos θ1 + 2 cos θ2 + 2 cos(θ1 − θ2) (16.3)

and

E3 = +2t . (16.4)

Thus, there is a lower band with energies in the interval E1 ∈ [−4t , −t], a middle band with

E2 ∈ [−t , +2t], and a flat upper band with E3 = +2t.

16.1.2 Checkerboard lattice

The checkerboard lattice, also known as the planar pyrochlore structure, is depicted in fig. 16.2.
It is the line graph of the square lattice. It may be represented as an underlying square lattice

with primitive direct lattice vectors a1 = x̂− ŷ and a2 = x̂ + ŷ, with a two element basis 0 and
x̂.

(

aR
bR

)

=
1√
N

∑

k

eik·R
(

ak
e

i
2
k·x̂ bk

)

. (16.5)

It the hoppings are t along ±x̂ and ±ŷ, and t′ along ±a1 and ±a2, then the Hamiltonian is

Hk = −
(

2t′ cos θ2 4t cos(1
2
θ1) cos(

1
2
θ2)

4t cos(1
2
θ1) cos(

1
2
θ2) 2t′ cos θ1

)

, (16.6)

Figure 16.1: The Kagomé lattice, which is a triangular Bravais lattice with a three element basis
(A,B,C). The Kagomé lattice is the line graph of a honeycomb lattice.
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with eigenvalues

E1,2 = −t′
(

cos θ1 + cos θ2
)

±
√

(

t′ cos θ1 − t′ cos θ2
)2

+ 4t2
(

1 + cos θ1
)(

1 + cos θ2
)

. (16.7)

When t = t′ this simplifies to

E1 = −2t
(

1 + cos θ1 + cos θ2
)

, E2 = +2t . (16.8)

Once again, as in the Kagomé and pyrochlore lattices, the top band is flat.

16.1.3 Square-octagon lattice line graph

The line graph of the square-octagon lattice is shown in Fig. 16.3. The Hamiltonian is

Hk = −

















0 t1 t2 e
−ikx 0 t2 e

−iky t1
t1 0 t2 t1 t2 e

−iky 0
t2 e

ikx t2 0 t2 0 t2 e
ikx

0 t1 t2 0 t2 t1
t2 e

iky t2 e
iky 0 t2 0 t2

t1 0 t2 e
−ikx t1 t2 0

















, (16.9)

where t1 is the hopping along the blue links and t2 the hopping along the red links. When
t1 6= t2, the adjacency matrix has a flat band at λ = 2t1. When t1 = t2, the flat band is doubly
degenerate.

Figure 16.2: The checkerboard (planar pyrochlore) lattice, which is a square lattice with a two
element basis (A,B). The checkerboard lattice is the line graph of the square lattice.
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Figure 16.3: This fourfold coordinated lattice is the line graph of the square-octagon lattice.
The hopping along the blue links is t1 and that along the red links is t2.

16.2 Pyrochlore Lattice

The pyrochlore lattice (fig. 16.5) is a sixfold-coordinated structure whose underlying Bravais
lattice is FCC, with a four element basis. It is effectively described as a diamond lattice of
‘corner-sharing tetrahedra’. Recall that diamond is FCC with a two element basis. It can be
constructed as the line graph of the diamond lattice.

To apprehend the geometry better, consider the sketch in fig. 16.6. Let the center of the cube,
indicated by the yellow star, be located at the origin (0, 0, 0). Then the four corners of the
tetrahedron are located as

A = d
2
(+1,−1,+1) C = d

2
(+1,+1,−1)

B = d
2
(−1,+1,+1) D = d

2
(−1,−1,−1) .

There are two species of tetrahedra in the pyrochlore lattice, which we call α and β (see figure
16.7). We identify the tetrahedron depicted in fig. 16.6 as an α-tetrahedron. The centers of the
four neighboring β-tetrahedra are then located at 2A, 2B, 2C, and 2D. That is, to move from
the center of an α-tetrahedron to the center of a neighboring β-tetrahedron, we displace by one
of these four vectors. This set is not invariant under inversion. To move from the center of a
β-tetrahedron to the center of a neighboring α-tetrahedron, we displace by the negative of one
of these four vectors.
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Thus, the twelve nearest neighbor displacements on the underlying FCC Bravais lattice are
given by 2(A − B), 2(A − C), etc., since we move from (the center of) one α-tetrahedron to
another. These twelve vectors may be written as

2A− 2B =
a√
2
(+1,−1, 0) = −a1 + a2 (16.10)

2A− 2C =
a√
2
(0,−1,+1) = a2 − a3

2A− 2D =
a√
2
(+1, 0,+1) = a2

2B − 2C =
a√
2
(−1, 0,+1) = a1 − a3

2B − 2D =
a√
2
(0,+1,+1) = a1

2C − 2D =
a√
2
(+1,+1, 0) = a3 (16.11)

Figure 16.4: Energy bands for the line graph of the square-octagon lattice.
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and their negatives, where a = 2
√
2 d is the FCC lattice constant. Here

a1 =
a√
2
(0, 1, 1) a2 =

a√
2
(1, 0, 1) a3 =

a√
2
(1, 1, 0) (16.12)

are primitive FCC direct lattice basis vectors. Note a = 2b relates the side length of the tetrahe-
dra to the FCC lattice constant. The center of any α-tetrahedron is then located at

R = m1 a1 +m2 a2 +m3 a3 , (16.13)

and the four basis vectors are s1,2,3,4 = {A,B,C,D}, i.e.

s1 =
a

4
√
2
(1,−1, 1) s3 =

a

4
√
2
(1, 1,−1) (16.14)

s2 =
a

4
√
2
(−1, 1, 1) s4 =

a

4
√
2
(−1,−1,−1) .

The reciprocal lattice is BCC, with primitive vectors

b1 =

√
2 π

a
(−1, 1, 1) , b2 =

√
2 π

a
(1,−1, 1) , b3 =

√
2 π

a
(1, 1,−1) , (16.15)

which satisfy bi · aj = 2π δij .

Figure 16.5: The pyrochlore lattice is an FCC Bravais lattice with a four element basis.
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16.2.1 Adjacency Matrix

Let us label each vertex on the pyrochlore lattice by a Bravais lattice site Rm
1
,m

2
,m

3

(i.e. the center

of an α-tetrahedron) and by a sublattice index, with A ≡ 1, B ≡ 2, C ≡ 3, D ≡ 4. The adjacency
matrix is

Aij(R) =













0 δ
R,0

+ δ
R ,a

2
−a

1

δ
R,0

+ δ
R ,a

2
−a

3

δ
R,0

+ δ
R ,a

2

δ
R,0

+ δ
R ,a

1
−a

2

0 δ
R,0

+ δ
R ,a

1
−a

3

δ
R,0

+ δ
R ,a

1

δ
R,0

+ δ
R ,a

3
−a

2

δ
R,0

+ δ
R ,a

3
−a

1

0 δ
R,0

+ δ
R ,a

3

δ
R,0

+ δ
R ,−a

2

δ
R,0

+ δ
R ,−a

1

δ
R,0

+ δ
R ,−a

3

0













. (16.16)

The definition of the adjacency matrix is that Aij(R) = 1 if sites si and R + sj are nearest
neighbors.

Figure 16.6: A cube of side length d, containing a tetrahedron of side length b =
√
2 d. The

origin of coordinates is located at the yellow star, which lies at the geometric center of the cube.
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Figure 16.7: The α and β tetrahedra are related by inversion. The colors of the sites show the
sublattice structure.

The Fourier transform of the adjacency matrix is

Âij(k) =
∑

R

Aij(R) eik·R (16.17)

=











0 1 + ei(θ2−θ
1
) 1 + ei(θ2−θ

3
) 1 + eiθ2

1 + ei(θ1−θ
2
) 0 1 + ei(θ1−θ

3
) 1 + eiθ1

1 + ei(θ3−θ
2
) 1 + ei(θ3−θ

1
) 0 1 + eiθ3

1 + e−iθ
2 1 + e−iθ

1 1 + e−iθ
3 0











, (16.18)

where we define

k ≡ θ1 b1
2π

+
θ2 b2
2π

+
θ3 b3
2π

, (16.19)

so that
k ·Rm

1
,m

2
,m

3

= m1 θ1 +m2 θ2 +m3 θ3 . (16.20)

Note that the unitary transformation,

U =











eiθ2/2 0 0 0

0 eiθ1/2 0 0

0 0 eiθ3/2 0
0 0 0 1











(16.21)

has the effect

U † Âij(k)U = 2









0 c12 c23 c2
c12 0 c13 c1
c23 c13 0 c3
c2 c1 c3 0









, (16.22)
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where ci = cos 1
2
θi and cij = cos 1

2
(θi − θj).

The characteristic polynomial is found to be

P (λ) = det
(

λ− Â
)

(16.23)

= λ4 − 4αλ2 − 16βλ+ 16γ ,

where

α = c21 + c22 + c23 + c212 + c213 + c223 (16.24)

β = c1 c2 c12 + c1 c3 c13 + c2 c3 c23 + c12 c13 c23

γ = c21 c
2
23 + c22 c

2
13 + c23 c

2
12 − 2 c1 c2 c13 c23 − 2 c1 c3 c12 c23 − 2 c2 c3 c12 c13 .

Simplifying, using results such as

c21 + c22 + c212 = 1 + 2 c1 c2 c12 , (16.25)

we find

β = 1 + 1
2

(

cos θ1 + cos θ2 + cos θ3 + cos(θ1 − θ2) + cos(θ1 − θ3) + cos(θ2 − θ3)
)

(16.26)

and
α = 2 + β , γ = 1− β . (16.27)

The function β(θ) takes its minimum value of βmin = 0 at θ = π
2
(1, 1, 0) (and at symmetry-

related points in the Brillouin zone). The maximum occurs at the zone center θ = 0, where
βmax = 4.

The characteristic polynomial may be factored, using the results of eqn. 16.27. If we define
λ ≡ ε− 2, then

P (ε− 2) = ε4 − 8ε3 + 4(6− α) ε2 + 16(2 + β − α) ε+ 16(1− α + 2β + γ)

= ε2
(

ε2 − 8 ε+ 4(4− β)
)

, (16.28)

and thus with λ = ε− 2 we have the four bands

λ1 = −2 , λ2 = −2 , λ3 = 2− 2
√

β , λ4 = 2 + 2
√

β . (16.29)

Note that there are two flat bands at λ1,2 = −2. Note also that the largest eigenvalue is λ4,max =

2 + 2β
1/2
max = 6, which is (correctly) the lattice coordination number. To make contact with some

results of ref. 1, the adjacency matrix in eqn. 4 of ref. 1 is equivalent to Â + 2, hence the

eigenvalues are our ε1,2,3,4, which is to say ε1,2 = 0 and ε3,4 = 4± 2
√
β. I presume that there is a

typo and the eigenvalues ν1,2,3,4 in ref. 1 are for half the adjacency matrix.

For the electronic hopping Hamiltonian H = −t
∑

〈ij〉

(

c
†
icj + c

†
jci

)

on the pyrochlore lattice, the

energy eigenvalues are

E1 = −2t− 2t
√

β(θ) , E2 = −2t+ 2t
√

β(θ) , E3,4 = +2t , (16.30)

where β(θ) ∈ [0, 4], as discussed above.
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Figure 16.8: First Brillouin zone for an FCC structure, with high symmetry points labeled.

16.2.2 The FCC lattice Brillouin zone

Fig. 16.8 shows the first Brillouin zone for a (real space) FCC structure. Note that

Γ = (0, 0, 0) (16.31)

L = 1
2

(

b1 + b2 + b3

)

=

√
2π

a

(

1, 1, 1
)

(16.32)

X = 1
2

(

b1 + b3) =

√
2π

a

(

0, 1, 0
)

. (16.33)

Consider the point L′ residing in the center of the hexagonal face adjacent to that containing L

but with negative x coordinate. (This face is hidden in the figure.) One has

L′ = 1
2
b1 =

√
2π

a

(

− 1, 1, 1
)

. (16.34)

To find W we note that it lies at the confluence of the two hexagonal faces containing L and L′,
respectively, and the square face containing X . We may therefore write

W = 1
2

(

b1 + b2 + b3

)

+ r · 1
2

(

b1 − b2

)

+ s · 1
2

(

b1 − b3

)

W = 1
2

(

b1 + b3

)

+ u · 1
2

(

b1 + b2

)

+ v · 1
2

(

b2 + b3

)

W = 1
2
b1 + x · 1

2

(

b1 + b2 + 2 b3
)

+ y · 1
2

(

b2 − b3

)

,

(16.35)
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where we must solve for (r, s, u, v, x, y). What we have done here is to write the location of W
as the location of each of the face centers plus an unknown vector lying in the plane of that
face. Since the elementary reciprocal lattice vectors b1,2,3 are a linearly independent set, the
coefficients of each elementary reciprocal lattice vector must independently sum to zero in the
two equations which result from equating the first and second, and the second and third lines
in eqn. 16.35. This yields six equations in our six unknowns, and solving for the unknowns we
obtain

r = 1
2

, s = 0 , u = 1
2

, v = 0 , x = 1
2

, y = 0 , (16.36)

and therefore

W = 3
4
b1 +

1
4
b2 +

1
2
b3 =

√
2 π

a

(

0, 1, 1
2

)

. (16.37)

Consider next the point W ′ lying on the other end of the edge containing U and K. We have

W ′ = 1
2

(

b1 + b2 + b3

)

+ r · 1
2

(

b1 − b2

)

+ s · 1
2

(

b1 − b3

)

W ′ = 1
2

(

b1 + b2

)

+ u · 1
2

(

b2 + b3

)

+ v · 1
2

(

b1 + b3

)

W ′ = 1
2
b1 + x · 1

2

(

b1 + b2 + 2 b3
)

+ y · 1
2

(

b2 − b3

)

.

(16.38)

Solving for the unknowns, we obtain

r = 1
2

, s = 1
2

, u = 0 , v = 1
2

, x = 1
2

, y = 1
2
, (16.39)

and therefore

W ′ = 3
4
b1 +

1
2
b2 +

1
4
b3 =

√
2π

a

(

0, 1
2
, 1
)

. (16.40)

Finally, consider the point W ′′ lying on the other end of the edge containing W and U . One
then has

W = 1
2

(

b1 + b2 + b3

)

+ r · 1
2

(

b1 − b2

)

+ s · 1
2

(

b1 − b3

)

W = 1
2

(

b1 + b3

)

+ u · 1
2

(

b1 + b2

)

+ v · 1
2

(

b2 + b3

)

W = 1
2
b3 + x · 1

2

(

b1 − b2

)

+ y · 1
2

(

b1 + 2 b2 + b3

)

.

(16.41)

Solving for the unknowns, we obtain

r = 0 , s = −1
2

, u = 0 , v = 1
2

, x = 1
2

, y = 1
2
, (16.42)

and therefore

W ′′ = 1
2
b1 +

1
4
b2 +

3
4
b3 =

√
2π

a

(

1
2
, 1, 0

)

. (16.43)

Since K and U lie a the midpoints of WW ′ and WW ′′ respectively, we may now write

K = 3
4
b1 +

3
8
b3 +

3
8
b3 =

(

0, 3
4
, 3
4

)

(16.44)

U = 5
8
b1 +

1
4
b2 +

5
8
b3 =

(

1
4
, 1, 1

4

)

. (16.45)
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Figure 16.9: Supertetrahedron basis for the pyrochlore lattice.

16.3 Depleted Pyrochlores

16.3.1 Pyrochlore with 16 element basis

We change notation slightly. We define

a1 =
1√
2
a
(

0, 1, 1
)

, a2 =
1√
2
a
(

1, 0, 1
)

, a3 =
1√
2
a
(

1, 1, 0
)

. (16.46)

Consider the 16 site basis for the pyrochlore lattice defined in Fig. 16.9, composed of a ‘superte-
trahedron’ formed from four primary tetrahedra. The sites on each tetrahedron are labeled
{a, b, c, d} and the tetrahedra are labeled {A,B,C,D}. The origin is taken to be site Dd. The
supertetrahedra form a simple cubic lattice with primary direct lattice vectors

c1 = −a1 + a2 + a3 =
√
2 a (1, 0, 0)

c2 = +a1 − a2 + a3 =
√
2 a (0, 1, 0)

c3 = +a1 + a2 − a3 =
√
2 a (0, 0, 1) .

(16.47)

To see why the supertetrahedra fill all space with no missing tetrahedra, write the location of
Dd on supertetrahedron (n1, n2, n3) as

Rn
1
,n

2
,n

3

= n1 c1 + n2 c2 + n3 c3

= (−n1 + n2 + n3)a1 + (n1 − n2 + n3)a2 + (n1 + n2 − n3)a3

≡ ℓ1 a1 + ℓ2 a2 + ℓ3 a3 .

(16.48)

Thus,

ℓ1 = −n1 + n2 + n3 , ℓ2 = n1 − n2 + n3 , ℓ3 = n1 + n2 − n3 . (16.49)
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Note that ℓ1 − ℓ2, ℓ2 − ℓ3, and ℓ3 − ℓ1 are all even integers. Rn
1
,n

2
,n

3

is the location of the Dd site

in unit cell (n1, n2, n3). The location of the Ad site is then Rn
1
,n

2
,n

3

+ a1. The location of the Bd
site is Rn

1
,n

2
,n

3

+ a2. The location of the Cd site is Rn
1
,n

2
,n

3

+ a3. Thus, we have

(ℓ1 − ℓ2 , ℓ2 − ℓ3 , ℓ3 − ℓ1) = (odd , odd , even) (A)

= (odd , even , odd) (B)

= (even , odd , odd) (C)

= (even , even , even) (D) .

(16.50)

Since (ℓ1− ℓ2)+(ℓ2− ℓ3)+(ℓ3− ℓ1) = 0, there number of odd differences must itself be even (i.e.
0 or 2). This exhausts all the possibilities for (ℓ1, ℓ2, ℓ3), so we have identified every tetrahedron.

The locations of the 16 sites in the (0, 0, 0) supertetrahedron are then

Aa = 3
2
a1 Ab = a1 +

1
2
a2 Ac = a1 +

1
2
a3 Ad = a1 (16.51)

Ba = a2 +
1
2
a1 Bb = 3

2
a2 Bc = a2 +

1
2
a3 Bd = a2 (16.52)

Ca = a3 +
1
2
a1 Cb = a3 +

1
2
a2 Cc = 3

2
a3 Cd = a3 (16.53)

Da = 1
2
a1 Db = 1

2
a2 Dc = 1

2
a3 Dd = 0 . (16.54)

The Fourier transform of the adjacency matrix is given by

M(θ) =




























































Aa Ab Ac Ad Ba Bb Bc Bd Ca Cb Cc Cd Da Db Dc Dd
Aa 0 1 1 1 0 z̄1z2 0 0 0 0 z̄1z3 0 0 0 0 z2z3
Ab 1 0 1 1 1 0 0 0 0 0 0 z3 0 0 z3 0
Ac 1 1 0 1 0 0 0 z2 1 0 0 0 0 z2 0 0
Ad 1 1 1 0 0 0 z̄1 0 0 z̄1 0 0 1 0 0 0
Ba 0 1 0 0 0 1 1 1 0 0 0 z3 0 0 z3 0
Bb z1z̄2 0 0 0 1 0 1 1 0 0 z̄2z3 0 0 0 0 z1z3
Bc 0 0 0 z1 1 1 0 1 0 1 0 0 z1 0 0 0
Bd 0 0 z̄2 0 1 1 1 0 z̄2 0 0 0 0 1 0 0
Ca 0 0 1 0 0 0 0 z2 0 1 1 1 0 z2 0 0
Cb 0 0 0 z1 0 0 1 0 1 0 1 1 z1 0 0 0
Cc z1z̄3 0 0 0 0 z2z̄3 0 0 1 1 0 1 0 0 0 z1z2
Cd 0 z̄3 0 0 z̄3 0 0 0 1 1 1 0 0 0 1 0
Da 0 0 0 1 0 0 z̄1 0 0 z̄1 0 0 0 1 1 1
Db 0 0 z̄2 0 0 0 0 1 z̄2 0 0 0 1 0 1 1
Dc 0 z̄3 0 0 z̄3 0 0 0 0 0 0 1 1 1 0 1
Dd z̄2z̄3 0 0 0 0 z̄1z̄3 0 0 0 0 z̄1z̄2 0 1 1 1 0





























































where zj = eiθj with j ∈ {1, 2, 3}. The way to read this matrix is as follows. There are six
nonzero entries in each row and in each column, corresponding to coordination number six.
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Figure 16.10: Comparison of pyrochlore band structures computed in 4-element FCC basis
(left) and 16-element SC basis (right).

The rows correspond to sites Aa (1) through Dd (16). Reading along the first row, we see that
Aa has neighbors Ab, Ac, and Ad in the unit cell (0, 0, 0), as well as a neighbor Bb in unit cell
c2−c1 (from M16 = z̄1z2), a neighbor Cc in unit cell c3−c1, and a neighbor Dd in unit cell c2+c3.
The Hamiltonian is then H(θ) = −tM(θ).

The high-symmetry points in the cubic lattice Brillouin zone are as follows:

Γ : (θ1, θ2, θ3) = (0, 0, 0) (zone center)

X : (θ1, θ2, θ3) = (π, 0, 0) (face center)

M : (θ1, θ2, θ3) = (π, π, 0) (edge center)

R : (θ1, θ2, θ3) = (π, π, π) (zone corner) .

(16.55)

In Fig. 16.10, we plot the dispersion for the tight binding Hamiltonian on the pyrochlore lattice
with t = 1 using both the 4-element FCC basis as well as the 16-element SC basis.

For the Kondo Hamiltonian with fixed local moments, we write

H(θ) = −t

16
∑

a,b=1

2
∑

µ=1

Mab(θ) c
†
a,µ(θ) cb,µ(θ)− J

16
∑

a=1

2
∑

µ,ν=1

n̂a · c†a,µ(θ)σµν ca,ν(θ) , (16.56)

where J is the Kondo coupling and n̂a is the direction of the local moment, with all local mo-
ments assumed to be of unit magnitude. At each θ point in the Brillouin zone, the Hamiltonian
is a 32× 32 matrix.
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Figure 16.11: Comparison of depleted pyrochlore band structures (t = 1, J = 0). Left panel:
sites Aa, Bb, Cc, Dd removed. Right panel: sites Ab, Bc, Ca, Dd removed.

16.3.2 Depleted pyrochlore

To deplete the pyrochlore, we knock out rows and columns of M . Equivalently, we can add an
infinite on-site energy to the diagonal elements Haa(θ). For the Kondo Hamiltonian, we add
the infinite on-site energy to Ha↑,a↑(θ) and Ha↓,a↓(θ). In Fig. 16.11 we plot the band structures
for two depleted pyrochlore structures, one in which sites Aa, Bb, Cc, and Dd have been re-
moved (I), and another in which sites Ab, Bc, Ca, and Dd have been removed (II). The resulting
structures may not have the full cubic lattice symmetry.

Eliminating the necessary rows and columns from M(θ), we arrive at the adjacency matrices
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for the two depleted structures (I) and (II). We find for (I),

M (I)(θ) =













































Ab Ac Ad Ba Bc Bd Ca Cb Cd Da Db Dc
Ab 0 1 1 1 0 0 0 0 z3 0 0 z3
Ac 1 0 1 0 0 z2 1 0 0 0 z2 0
Ad 1 1 0 0 z̄1 0 0 z̄1 0 1 0 0
Ba 1 0 0 0 1 1 0 0 z3 0 0 z3
Bc 0 0 z1 1 0 1 0 1 0 z1 0 0
Bd 0 z̄2 0 1 1 0 z̄2 0 0 0 1 0
Ca 0 1 0 0 0 z2 0 1 1 0 z2 0
Cb 0 0 z1 0 1 0 1 0 1 z1 0 0
Cd z̄3 0 0 z̄3 0 0 1 1 0 0 0 1
Da 0 0 1 0 z̄1 0 0 z̄1 0 0 1 1
Db 0 z̄2 0 0 0 1 z̄2 0 0 1 0 1
Dc z̄3 0 0 z̄3 0 0 0 0 1 1 1 0













































.

This corresponds to a five-fold coordinated structure, since there are five nonzero elements in
each row and each column. For the (II) structure, we have

M (II)(θ) =













































Aa Ac Ad Ba Bb Bd Cb Cc Cd Da Db Dc
Aa 0 1 1 0 z̄1z2 0 0 z̄1z3 0 0 0 0
Ac 1 0 1 0 0 z2 0 0 0 0 z2 0
Ad 1 1 0 0 0 0 z̄1 0 0 1 0 0
Ba 0 0 0 0 1 1 0 0 z3 0 0 z3
Bb z1z̄2 0 0 1 0 1 0 z̄2z3 0 0 0 0
Bd 0 z̄2 0 1 1 0 0 0 0 0 1 0
Cb 0 0 z1 0 0 0 0 1 1 z1 0 0
Cc z1z̄3 0 0 0 z2z̄3 0 1 0 1 0 0 0
Cd 0 0 0 z̄3 0 0 1 1 0 0 0 1
Da 0 0 1 0 0 0 z̄1 0 0 0 1 1
Db 0 z̄2 0 0 0 1 0 0 0 1 0 1
Dc 0 0 0 z̄3 0 0 0 0 1 1 1 0













































,

corresponding to a four-fold coordinated structure, known as the hyperkagome lattice.
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Figure 16.12: Comparison of two additional depleted pyrochlore band structures III and IV
(t = 1, J = 0).

The energy bands for two additional structures are shown in Fig. 16.12. We find

M (III)(θ) =













































Aa Ac Ad Ba Bb Bd Ca Cb Cc Db Dc Dd
Aa 0 1 1 0 z̄1z2 0 0 0 z̄1z3 0 0 z2z3
Ac 1 0 1 0 0 z2 1 0 0 z2 0 0
Ad 1 1 0 0 0 0 0 z̄1 0 0 0 0
Ba 0 0 0 0 1 1 0 0 0 0 z3 0
Bb z1z̄2 0 0 1 0 1 0 0 z̄2z3 0 0 z1z3
Bd 0 z̄2 0 1 1 0 z̄2 0 0 1 0 0
Ca 0 1 0 0 0 z2 0 1 1 z2 0 0
Cb 0 0 z1 0 0 0 1 0 1 0 0 0
Cc z1z̄3 0 0 0 z2z̄3 0 1 1 0 0 0 z1z2
Db 0 z̄2 0 0 0 1 z̄2 0 0 0 1 1
Dc 0 0 0 z̄3 0 0 0 0 0 1 0 1
Dd z̄2z̄3 0 0 0 z̄1z̄3 0 0 0 z̄1z̄2 1 1 0













































In this structure, nine of the 12 sites are 5-fold coordinated, and the remaining three are 3-fold
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coordinated. What seems to be an equivalent structure is (IV):

M (IV)(θ) =













































Aa Ab Ac Ba Bc Bd Ca Cb Cd Db Dc Dd
Aa 0 1 1 0 z̄1z2 0 0 0 0 0 0 z2z3
Ab 1 1 1 1 0 0 0 0 z3 0 z3 0
Ac 1 0 1 0 0 z2 1 0 0 z2 0 0
Ba 0 0 0 0 1 1 0 0 z3 0 z3 0
Bc 0 0 z1 1 1 1 0 1 0 0 0 0
Bd 0 z̄2 0 1 1 0 z̄2 0 0 1 0 0
Ca 0 1 0 0 0 z2 0 1 1 z2 0 0
Cb 0 0 z1 0 0 0 1 0 1 0 0 0
Cd 0 0 0 z̄3 0 0 1 1 0 0 1 0
Db 0 z̄2 0 0 0 1 z̄2 0 0 0 1 1
Dc 0 0 0 z̄3 0 0 0 0 1 1 0 1
Dd z̄2z̄3 0 0 0 z̄1z̄3 0 0 0 0 1 1 0
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