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Chapter 11

Phenomenological Theories of
Superconductivity

11.1 Basic Phenomenology of Superconductors

The superconducting state is a phase of matter, as is ferromagnetism, metallicity, etc. The phe-
nomenon was discovered in the Spring of 1911 by the Dutch physicist H. Kamerlingh Onnes,
who observed an abrupt vanishing of the resistivity of solid mercury at T = 4.15K1. Under am-
bient pressure, there are 33 elemental superconductors2 , all of which have a metallic phase at
higher temperatures, and hundreds of compounds and alloys which exhibit the phenomenon.
A timeline of superconductors and their critical temperatures is provided in Fig. 11.1. The re-
lated phenomenon of superfluidity was first discovered in liquid helium below T = 2.17K, at
atmospheric pressure, independently in 1937 by P. Kapitza (Moscow) and by J. F. Allen and A.
D. Misener (Cambridge). At some level, a superconductor may be considered as a charged su-
perfluid – we will elaborate on this statement later on. Here we recite the basic phenomenology
of superconductors:

• Vanishing electrical resistance : The DC electrical resistance at zero magnetic field van-
ishes in the superconducting state. This is established in some materials to better than
one part in 1015 of the normal state resistance. Above the critical temperature Tc, the
DC resistivity at H = 0 is finite. The AC resistivity remains zero up to a critical fre-
quency, ωc = 2∆/~, where ∆ is the gap in the electronic excitation spectrum. The fre-
quency threshold is 2∆ because the superconducting condensate is made up of electron
pairs, so breaking a pair results in two quasiparticles, each with energy ∆ or greater. For
weak coupling superconductors, which are described by the famous BCS theory (1957),

1Coincidentally, this just below the temperature at which helium liquefies under atmospheric pressure.
2An additional 23 elements are superconducting under high pressure.
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2 CHAPTER 11. PHENOMENOLOGICAL THEORIES OF SUPERCONDUCTIVITY

Figure 11.1: Timeline of superconductors and their transition temperatures (from Wikipedia).

there is a relation between the gap energy and the superconducting transition tempera-
ture, 2∆0 = 3.5 k

B
Tc, which we derive when we study the BCS model. The gap ∆(T ) is

temperature-dependent and vanishes at Tc.

• Flux expulsion : In 1933 it was descovered by Meissner and Ochsenfeld that magnetic
fields in superconducting tin and lead to not penetrate into the bulk of a superconductor,
but rather are confined to a surface layer of thickness λ, called the London penetration depth.
Typically λ in on the scale of tens to hundreds of nanometers.

It is important to appreciate the difference between a superconductor and a perfect metal.
If we set σ = ∞ then from j = σE we must have E = 0, hence Faraday’s law ∇ ×
E = −c−1∂tB yields ∂tB = 0, which says that B remains constant in a perfect metal. Yet
Meissner and Ochsenfeld found that below Tc the flux was expelled from the bulk of the
superconductor. If, however, the superconducting sample is not simply connected, i.e. if
it has holes, such as in the case of a superconducting ring, then in the Meissner phase
flux may be trapped in the holes. Such trapped flux is quantized in integer units of the
superconducting fluxoid φ

L
= hc/2e = 2.07× 10−7Gcm2 (see Fig. 11.2).

• Critical field(s) : The Meissner state exists for T < Tc only when the applied magnetic
field H is smaller than the critical field Hc(T ), with

Hc(T ) ≃ Hc(0)

(

1− T 2

T 2
c

)

. (11.1)

In so-called type-I superconductors, the system goes normal3 for H > Hc(T ). For most

3Here and henceforth, “normal” is an abbreviation for “normal metal”.
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Figure 11.2: Flux expulsion from a superconductor in the Meissner state. In the right panel,
quantized trapped flux penetrates a hole in the sample.

elemental type-I materials (e.g., Hg, Pb, Nb, Sn) one hasHc(0) ≤ 1 kG. In type-II materials,
there are two critical fields, Hc1(T ) and Hc2(T ). For H < Hc1, we have flux expulsion, and
the system is in the Meissner phase. For H > Hc2, we have uniform flux penetration and
the system is normal. For Hc1 < H < Hc2, the system in a mixed state in which quantized
vortices of flux φ

L
penetrate the system (see Fig. 11.3). There is a depletion of what we

shall describe as the superconducting order parameter Ψ(r) in the vortex cores over a
length scale ξ, which is the coherence length of the superconductor. The upper critical field
is set by the condition that the vortex cores start to overlap: Hc2 = φ

L
/2πξ2. The vortex

cores can be pinned by disorder. Vortices also interact with each other out to a distance
λ, and at low temperatures in the absence of disorder the vortices order into a (typically
triangular) Abrikosov vortex lattice (see Fig. 11.4). Typically one has Hc2 =

√
2κHc1, where

κ = λ/ξ is a ratio of the two fundamental length scales. Type-II materials exist when
Hc2 > Hc1, i.e. when κ > 1√

2
. Type-II behavior tends to occur in superconducting alloys,

such as Nb-Sn.

• Persistent currents : We have already mentioned that a metallic ring in the presence of an
external magnetic field may enclosed a quantized trapped flux nφ

L
when cooled below its

superconducting transition temperature. If the field is now decreased to zero, the trapped
flux remains, and is generated by a persistent current which flows around the ring. In thick
rings, such currents have been demonstrated to exist undiminished for years, and may
be stable for astronomically long times.

• Specific heat jump : The heat capacity of metals behaves as cV ≡ CV /V = π2

3
k2

B
Tg(ε

F
),

where g(ε
F
) is the density of states at the Fermi level. In a superconductor, once one
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subtracts the low temperature phonon contribution cphononV = AT 3, one is left for T < Tc
with an electronic contribution behaving as celecV ∝ e−∆/k

B
T . There is also a jump in the

specific heat at T = Tc, the magnitude of which is generally about three times the normal
specific heat just above Tc. This jump is consistent with a second order transition with
critical exponent α = 0.

• Tunneling and Josephson effect : The energy gap in superconductors can be measured
by electron tunneling between a superconductor and a normal metal, or between two
superconductors separated by an insulating layer. In the case of a weak link between two
superconductors, current can flow at zero bias voltage, a situation known as the Josephson
effect.

11.2 Thermodynamics of Superconductors

The differential free energy density of a magnetic material is given by

df = −s dT +
1

4π
H · dB , (11.2)

which says that f = f(T,B). Here s is the entropy density, and B the magnetic field. The
quantity H is called the magnetizing field and is thermodynamically conjugate to B:

s = −
(
∂f

∂T

)

B

, H = 4π

(
∂f

∂B

)

T

. (11.3)

In the Ampère-Maxwell equation, ∇ × H = 4πc−1jext + c−1∂tD, the sources of H appear on
the RHS4. Usually c−1∂tD is negligible, in which case H is generated by external sources such
as magnetic solenoids. The magnetic field B is given by B = H + 4πM ≡ µH, where M is
the magnetization density. We therefore have no direct control over B, and it is necessary to
discuss the thermodynamics in terms of the Gibbs free energy density, g(T,H):

g(T,H) = f(T,B)− 1

4π
B ·H

dg = −s dT − 1

4π
B · dH .

(11.4)

Thus,

s = −
(
∂g

∂T

)

H

, B = −4π

(
∂g

∂H

)

T

. (11.5)

4Throughout these notes, RHS/LHS will be used to abbreviate “right/left hand side”.
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Figure 11.3: Phase diagrams for type I and type II superconductors in the (T,H) plane.

Assuming a bulk sample which is isotropic, we then have

g(T,H) = g(T, 0)− 1

4π

H∫

0

dH ′B(H ′) . (11.6)

In a normal metal, µ ≈ 1 (cgs units), which means B ≈ H , which yields

gn(T,H) = gn(T, 0)−
H2

8π
. (11.7)

In the Meissner phase of a superconductor, B = 0, so

gs(T,H) = gs(T, 0) . (11.8)

For a type-I material, the free energies cross at H = Hc, so

gs(T, 0) = gn(T, 0)−
H2

c

8π
, (11.9)

which says that there is a negative condensation energy density −H2
c (T )
8π

which stabilizes the su-
perconducting phase. We may now write

gs(T,H)− gn(T,H) =
1

8π

(

H2 −H2
c (T )

)

, (11.10)

so the superconductor is the equilibrium state for H < Hc. Taking the derivative with respect
to temperature, the entropy difference is given by

ss(T,H)− sn(T,H) =
1

4π
Hc(T )

dHc(T )

dT
< 0 , (11.11)
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Figure 11.4: STM image of a vortex lattice in NbSe2 at H = 1T and T = 1.8K. From H. F. Hess
et al., Phys. Rev. Lett. 62, 214 (1989).

since Hc(T ) is a decreasing function of temperature. Note that the entropy difference is inde-
pendent of the external magnetizing field H . As we see from Fig. 11.3, the derivative H ′

c(T )
changes discontinuously at T = Tc. The latent heat ℓ = T ∆s vanishes because Hc(Tc) itself
vanishes, but the specific heat is discontinuous:

cs(Tc, H = 0)− cn(Tc, H = 0) =
Tc
4π

(
dHc(T )

dT

)2

Tc

, (11.12)

and from the phenomenological relation of Eqn. 11.1, we have H ′
c(Tc) = −2Hc(0)/Tc, hence

∆c ≡ cs(Tc, H = 0)− cn(Tc, H = 0) =
H2

c (0)

πTc
. (11.13)

We can appeal to Eqn. 11.11 to compute the difference ∆c(T,H) for general T < Tc:

∆c(T,H) =
T

8π

d2

dT 2
H2

c (T ) . (11.14)

With the approximation of Eqn. 11.1, we obtain

cs(T,H)− cn(T,H) ≃ TH2
c (0)

2πT 2
c

{

3

(
T

Tc

)2

− 1

}

. (11.15)

In the limit T → 0, we expect cs(T ) to vanish exponentially as e−∆/k
B
T , hence we have ∆c(T →

0) = −γT , where γ is the coefficient of the linear T term in the metallic specific heat. Thus, we
expect γ ≃ H2

c (0)/2πT
2
c . Note also that this also predicts the ratio ∆c(Tc, 0)

/
cn(Tc, 0) = 2. In
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Figure 11.5: Dimensionless energy gap ∆(T )/∆0 in niobium, tantalum, and tin. The solid
curve is the prediction from BCS theory, derived in chapter 3 below.

fact, within BCS theory, as we shall later show, this ratio is approximately 1.43. BCS also yields
the low temperature form

Hc(T ) = Hc(0)

{

1− α

(
T

Tc

)2

+O
(
e−∆/k

B
T
)

}

(11.16)

with α ≃ 1.07. Thus, HBCS

c (0) =
(
2πγT 2

c /α
)1/2

.

11.3 London Theory

Fritz and Heinz London in 1935 proposed a two fluid model for the macroscopic behavior of
superconductors. The two fluids are: (i) the normal fluid, with electron number density nn,
which has finite resistivity, and (ii) the superfluid, with electron number density ns, and which
moves with zero resistance. The associated velocities are vn and vs, respectively. Thus, the total
number density and current density are

n = nn + ns

j = jn + js = −e
(
nnvn + nsvs

)
.

(11.17)
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The normal fluid is dissipative, hence jn = σnE, but the superfluid obeys F = ma, i.e.

m
dvs
dt

= −eE ⇒ djs
dt

=
nse

2

m
E . (11.18)

In the presence of an external magnetic field, the superflow satisfies

dvs
dt

= − e

m

(
E + c−1vs ×B

)

=
∂vs
∂t

+ (vs ·∇)vs =
∂vs
∂t

+∇
(
1
2
v2
s

)
− vs × (∇× vs) .

(11.19)

We then have
∂vs
∂t

+
e

m
E +∇

(
1
2
v2
s

)
= vs×

(

∇× vs −
eB

mc

)

. (11.20)

Taking the curl, and invoking Faraday’s law ∇×E = −c−1∂tB, we obtain

∂

∂t

(

∇× vs −
eB

mc

)

= ∇×
{

vs ×
(

∇× vs −
eB

mc

)}

, (11.21)

which may be written as
∂Q

∂t
= ∇× (vs ×Q) , (11.22)

where

Q ≡ ∇× vs −
eB

mc
. (11.23)

Eqn. 11.22 says that if Q = 0, it remains zero for all time. Assumption: the equilibrium state
has Q = 0. Thus,

∇× vs =
eB

mc
⇒ ∇× js = −nse

2

mc
B . (11.24)

This equation implies the Meissner effect, for upon taking the curl of the last of Maxwell’s
equations (and assuming a steady state so Ė = Ḋ = 0),

−∇2B = ∇× (∇×B) =
4π

c
∇× j = −4πnse

2

mc2
B ⇒ ∇2B = λ−2

L
B , (11.25)

where λ
L
=

√

mc2/4πnse
2 is the London penetration depth. The magnetic field can only penetrate

up to a distance on the order of λ
L

inside the superconductor.

Note that
∇× js = − c

4πλ2
L

B (11.26)

and the definition B = ∇×A licenses us to write

js = − c

4πλ2
L

A , (11.27)
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provided an appropriate gauge choice for A is taken. Since ∇ · js = 0 in steady state, we
conclude ∇·A = 0 is the proper gauge. This is called the Coulomb gauge. Note, however, that
this still allows for the little gauge transformation A → A +∇χ , provided ∇2χ = 0. Consider
now an isolated body which is simply connected, i.e. any closed loop drawn within the body is
continuously contractable to a point. The normal component of the superfluid at the boundary,
js,⊥ must vanish, hence A⊥ = 0 as well. Therefore ∇⊥χ must also vanish everywhere on the
boundary, which says that χ is determined up to a global constant.

If the superconductor is multiply connected, though, the condition ∇⊥χ = 0 allows for non-
constant solutions for χ. The line integral of A around a closed loop surrounding a hole D in
the superconductor is, by Stokes’ theorem, the magnetic flux through the loop:

∮

∂D

dl ·A =

∫

D

dS n̂ ·B = ΦD . (11.28)

On the other hand, within the interior of the superconductor, since B = ∇×A = 0, we can write
A = ∇χ , which says that the trapped flux ΦD is given by ΦD = ∆χ, then change in the gauge
function as one proceeds counterclockwise around the loop. F. London argued that if the gauge
transformation A → A+∇χ is associated with a quantum mechanical wavefunction associated
with a charge e object, then the flux ΦD will be quantized in units of the Dirac quantum φ0 =
hc/e = 4.137 × 10−7Gcm2. The argument is simple. The transformation of the wavefunction
Ψ → Ψ e−iα is cancelled by the replacement A → A + (~c/e)∇α. Thus, we have χ = αφ0/2π,
and single-valuedness requires ∆α = 2πn around a loop, hence ΦD = ∆χ = nφ0.

The above argument is almost correct. The final piece was put in place by Lars Onsager in 1953.
Onsager pointed out that if the particles described by the superconducting wavefunction Ψ
were of charge e∗ = 2e, then, mutatis mutandis, one would conclude the quantization condition
is ΦD = nφ

L
, where φ

L
= hc/2e is the London flux quantum, which is half the size of the

Dirac flux quantum. This suggestion was confirmed in subsequent experiments by Deaver and
Fairbank, and by Doll and Näbauer, both in 1961.

De Gennes’ derivation of London Theory

De Gennes writes the total free energy of the superconductor as

F =

∫

d3x f0 + Ekinetic + Efield

Ekinetic =

∫

d3x 1
2
mnsv

2
s (x) =

∫

d3x
m

2nse
2
j2s (x)

Efield =

∫

d3x
B2(x)

8π
.

(11.29)

Here f0 is the free energy density of the metallic state, in which no currents flow. What makes
this a model of a superconductor is the assumption that a current js flows in the presence of a



10 CHAPTER 11. PHENOMENOLOGICAL THEORIES OF SUPERCONDUCTIVITY

magnetic field. Thus, under steady state conditions ∇×B = 4πc−1js , so

F =

∫

d3x

{

f0 +
B2

8π
+ λ2

L

(∇×B)2

8π

}

. (11.30)

Taking the functional variation and setting it to zero,

4π
δF

δB
= B + λ2

L
∇× (∇×B) = B − λ2

L
∇2B = 0 . (11.31)

Pippard’s nonlocal extension

The London equation js(x) = −cA(x)/4πλ2
L

says that the supercurrent is perfectly yoked to
the vector potential, and on arbitrarily small length scales. This is unrealistic. A. B. Pippard
undertook a phenomenological generalization of the (phenomenological) London equation,
writing5

jαs (x) = − c

4πλ2
L

∫

d3r Kαβ(r)Aβ(x+ r)

= − c

4πλ2
L

· 3

4πξ

∫

d3r
e−r/ξ

r2
r̂α r̂β Aβ(x+ r) .

(11.32)

Note that the kernel Kαβ(r) = 3 e−r/ξ r̂αr̂β/4πξr2 is normalized so that

∫

d3r Kαβ(r) =
3

4πξ

∫

d3r
e−r/ξ

r2
r̂α r̂β =

1
︷ ︸︸ ︷

1

ξ

∞∫

0

dr e−r/ξ ·

δαβ

︷ ︸︸ ︷

3

∫
dr̂

4π
r̂α r̂β = δαβ . (11.33)

The exponential factor means that Kαβ(r) is negligible for r ≫ ξ. If the vector potential is
constant on the scale ξ, then we may pull Aβ(x) out of the integral in Eqn. 11.33, in which case
we recover the original London equation. Invoking continuity in the steady state, ∇ ·j = 0
requires

3

4πξ2

∫

d3r
e−r/ξ

r2
r̂ ·A(x+ r) = 0 , (11.34)

which is to be regarded as a gauge condition on the vector potential. One can show that this
condition is equivalent to ∇·A = 0, the original Coulomb gauge.

In disordered superconductors, Pippard took

Kαβ(r) =
3

4πξ0

e−r/ξ

r2
r̂α r̂β , (11.35)

5See A. B. Pippard, Proc. Roy. Soc. Lond. A216, 547 (1953).
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with
1

ξ
=

1

ξ0
+

1

a ℓ
, (11.36)

where ℓ is the metallic elastic mean free path, and a is a dimensionless constant on the order of
unity. Note that

∫
d3rKαβ(r) = (ξ/ξ0) δ

αβ. Thus, for λ
L
≫ ξ, one obtains an effective penetration

depth λ = (ξ0/ξ)
1/2λ

L
, where λ

L
=

√

mc2/4πnse
2 . In the opposite limit, where λ

L
≪ ξ, Pippard

found λ = (3/4π2)1/6
(
ξ0λ

2
L

)1/3
. For strongly type-I superconductors, ξ ≫ λ

L
. Since js(x) is

averaging the vector potential over a region of size ξ ≫ λ
L
, the screening currents near the

surface of the superconductor are weaker, which means the magnetic field penetrates deeper

than λ
L
. The physical penetration depth is λ, where, according to Pippard, λ/λ

L
∝

(
ξ0/λL

)1/3 ≫
1.

11.4 Ginzburg-Landau Theory

The basic idea behind Ginzburg-Landau theory is to write the free energy as a simple functional
of the order parameter(s) of a thermodynamic system and their derivatives. In 4He, the order
parameter Ψ(x) = 〈ψ(x)〉 is the quantum and thermal average of the field operator ψ(x) which
destroys a helium atom at position x. When Ψ is nonzero, we have Bose condensation with
condensate density n0 = |Ψ|2. Above the lambda transition, one has n0(T > Tλ) = 0.

In an s-wave superconductor, the order parameter field is given by

Ψ(x) ∝
〈
ψ↑(x)ψ↓(x)

〉
, (11.37)

where ψσ(x) destroys a conduction band electron of spin σ at position x. Owing to the an-
ticommuting nature of the fermion operators, the fermion field ψσ(x) itself cannot condense,
and it is only the pair field Ψ(x) (and other products involving an even number of fermion field
operators) which can take a nonzero value.

11.4.1 Landau theory for superconductors

The superconducting order parameter Ψ(x) is thus a complex scalar, as in a superfluid. As we
shall see, the difference is that the superconductor is charged. In the absence of magnetic fields,
the Landau free energy density is approximated as

f = a |Ψ|2 + 1
2
b |Ψ|4 . (11.38)

The coefficients a and b are real and temperature-dependent but otherwise constant in a spa-
tially homogeneous system. The sign of a is negotiable, but b > 0 is necessary for thermody-
namic stability. The free energy has an O(2) symmetry, i.e. it is invariant under the substitution
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Ψ → Ψ eiα. For a < 0 the free energy is minimized by writing

Ψ =

√

−a
b
eiφ , (11.39)

where φ, the phase of the superconductor, is a constant. The system spontaneously breaks the
O(2) symmetry and chooses a direction in Ψ space in which to point.

In our formulation here, the free energy of the normal state, i.e. when Ψ = 0, is fn = 0 at
all temperatures, and that of the superconducting state is fs = −a2/2b. From thermodynamic
considerations, therefore, we have

fs(T )− fn(T ) = −H
2
c (T )

8π
⇒ a2(T )

b(T )
=
H2

c (T )

4π
. (11.40)

Furthermore, from London theory we have that λ2
L
= mc2/4πnse

2, and if we normalize the
order parameter according to

∣
∣Ψ

∣
∣2 =

ns

n
, (11.41)

where ns is the number density of superconducting electrons and n the total number density of
conduction band electrons, then

λ2
L
(0)

λ2
L
(T )

=
∣
∣Ψ(T )

∣
∣
2
= −a(T )

b(T )
. (11.42)

Here we have taken ns(T = 0) = n, so |Ψ(0)|2 = 1. Putting this all together, we find

a(T ) = −H
2
c (T )

4π
· λ

2
L
(T )

λ2
L
(0)

, b(T ) =
H2

c (T )

4π
· λ

4
L
(T )

λ4
L
(0)

(11.43)

Close to the transition, Hc(T ) vanishes in proportion to λ−2
L
(T ), so a(Tc) = 0 while b(Tc) > 0

remains finite at Tc. Later on below, we shall relate the penetration depth λ
L

to a stiffness
parameter in the Ginzburg-Landau theory.

We may now compute the specific heat discontinuity from c = −T ∂2f
∂T 2 . It is left as an exercise

to the reader to show

∆c = cs(Tc)− cn(Tc) =
Tc

[
a′(Tc)

]2

b(Tc)
, (11.44)

where a′(T ) = da/dT . Of course, cn(T ) isn’t zero! Rather, here we are accounting only for the
specific heat due to that part of the free energy associated with the condensate. The Ginzburg-
Landau description completely ignores the metal, and doesn’t describe the physics of the nor-
mal state Fermi surface, which gives rise to cn = γT . The discontinuity ∆c is a mean field result.
It works extremely well for superconductors, where, as we shall see, the Ginzburg criterion is
satisfied down to extremely small temperature variations relative to Tc. In 4He, one sees an
cusp-like behavior with an apparent weak divergence at the lambda transition. Recall that in
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the language of critical phenomena, c(T ) ∝ |T −Tc|−α. For the O(2) model in d = 3 dimensions,
the exponent α is very close to zero, which is close to the mean field value α = 0. The order
parameter exponent is β = 1

2
at the mean field level; the exact value is closer to 1

3
. One has, for

T < Tc,

∣
∣Ψ(T < Tc)

∣
∣ =

√

−a(T )
b(T )

=

√

a′(Tc)

b(Tc)
(Tc − T )1/2 + . . . . (11.45)

11.4.2 Ginzburg-Landau Theory

The Landau free energy is minimized by setting |Ψ|2 = −a/b for a < 0. The phase of Ψ is
therefore free to vary, and indeed free to vary independently everywhere in space. Phase fluc-
tuations should cost energy, so we posit an augmented free energy functional,

F
[
Ψ,Ψ∗] =

∫

ddx
{

a
∣
∣Ψ(x)

∣
∣
2
+ 1

2
b
∣
∣Ψ(x)

∣
∣
4
+K

∣
∣∇Ψ(x)

∣
∣
2
+ . . .

}

. (11.46)

Here K is a stiffness with respect to spatial variation of the order parameter Ψ(x). From K and

a, we can form a length scale, ξ =
√

K/|a|, known as the coherence length. This functional in fact
is very useful in discussing properties of neutral superfluids, such as 4He, but superconductors
are charged, and we have instead

F
[
Ψ,Ψ∗,A

]
=

∫

ddx
{

a
∣
∣Ψ(x)

∣
∣2 + 1

2
b
∣
∣Ψ(x)

∣
∣4 +K

∣
∣
∣

(
∇+ ie∗

~c
A
)
Ψ(x)

∣
∣
∣

2

+ 1
8π

(∇×A)2 + . . .
}

.

(11.47)
Here q = −e∗ = −2e is the charge of the condensate. We assume E = 0, so A is not time-
dependent.

Under a local transformation Ψ(x) → Ψ(x) eiα(x), we have

(
∇+ ie∗

~c
A
)(
Ψ eiα

)
= eiα

(
∇+ i∇α + ie∗

~c
A
)
Ψ , (11.48)

which, upon making the gauge transformation A → A − ~c
e∗
∇α, reverts to its original form.

Thus, the free energy is unchanged upon replacing Ψ → Ψeiα and A → A − ~c
e∗
∇α. Since

gauge transformations result in no physical consequences, we conclude that the longitudinal
phase fluctuations of a charged order parameter do not really exist. More on this later when
we discuss the Anderson-Higgs mechanism.
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11.4.3 Equations of motion

Varying the free energy in Eqn. 11.47 with respect to Ψ∗ and A, respectively, yields

0 =
δF

δΨ∗ = aΨ+ b |Ψ|2Ψ−K
(
∇+ ie∗

~c
A
)2

Ψ

0 =
δF

δA
=

2Ke∗

~c

[

1

2i

(
Ψ∗

∇Ψ−Ψ∇Ψ∗)+
e∗

~c
|Ψ|2A

]

+
1

4π
∇×B .

(11.49)

The second of these equations is the Ampère-Maxwell law, ∇×B = 4πc−1j, with

j = −2Ke∗

~2

[

~

2i

(
Ψ∗

∇Ψ−Ψ∇Ψ∗)+
e∗

c
|Ψ|2A

]

. (11.50)

If we set Ψ to be constant, we obtain ∇× (∇×B) + λ−2
L

B = 0, with

λ−2
L

= 8πK

(
e∗

~c

)2

|Ψ|2 . (11.51)

Thus we recover the relation λ−2
L

∝ |Ψ|2. Note that |Ψ|2 = |a|/b in the ordered phase, hence

λ−1
L

=

[

8πa2

b
· K|a|

]1/2
e∗

~c
=

√
2 e∗

~c
Hc ξ , (11.52)

which says

Hc =
φ

L√
8 π ξλ

L

. (11.53)

At a superconductor-vacuum interface, we should have

n̂ ·
(
~

i
∇+

e∗

c
A

)

Ψ
∣
∣
∂Ω

= 0 , (11.54)

where Ω denotes the superconducting region and n̂ the surface normal. This guarantees n̂ ·
j
∣
∣
∂Ω

= 0, since

j = −2Ke∗

~2
Re

(
~

i
Ψ∗

∇Ψ+
e∗

c
|Ψ|2A

)

. (11.55)

Note that n̂ · j = 0 also holds if

n̂ ·
(
~

i
∇+

e∗

c
A

)

Ψ
∣
∣
∂Ω

= irΨ , (11.56)

with r a real constant. This boundary condition is appropriate at a junction with a normal
metal.
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11.4.4 Critical current

Consider the case where Ψ = Ψ0. The free energy density is

f = a |Ψ0|2 + 1
2
b |Ψ0|4 +K

(
e∗

~c

)2

A2 |Ψ0|2 . (11.57)

If a > 0 then f is minimized for Ψ0 = 0. What happens for a < 0, i.e. when T < Tc ? Minimizing
with respect to |Ψ0|, we find

|Ψ0|2 =
|a| −K(e∗/~c)2A2

b
. (11.58)

The current density is then

j = −2cK

(
e∗

~c

)2( |a| −K(e∗/~c)2A2

b

)

A . (11.59)

Let A = |A|. Clearly we must have 0 ≤ A ≤ Amax, where

Amax =
~c

e∗
·
√

|a|
K

=
φ

L

2πξ
(11.60)

The maximum current density occurs at A = Ac, where j′(Ac) = 0, the solution to which is
Ac = Amax

/√
3. The value of the current jc ≡ j(Ac) is the maximum possible current, known as

the critical current density, and is given by

jc =
4

3
√
3

cK1/2 |a|3/2
b

=
2

3
√
3
· e

∗

h
·H2

c ξ . (11.61)

Physically, what is happening is this. When the kinetic energy density in the superflow exceeds
the condensation energy density H2

c /8π = a2/2b, the system goes normal. Note that the critical
current density vanishes at the critical temperature as jc(T ) ∝ (Tc − T )3/2.

Should we feel bad about using a gauge-covariant variable like A in the above analysis? Not
really, because when we write A, what we really mean is the gauge-invariant combination A+
~c
e∗
∇ϕ, where ϕ = arg(Ψ) is the phase of the order parameter.

London limit

In the so-called London limit, we write Ψ =
√
n0 e

iϕ, with n0 constant. Then

j = −2Ke∗n0

~

(

∇ϕ+
e∗

~c
A

)

= − c

4πλ2
L

(
φ

L

2π
∇ϕ+A

)

. (11.62)



16 CHAPTER 11. PHENOMENOLOGICAL THEORIES OF SUPERCONDUCTIVITY

Thus,

∇× j =
c

4π
∇× (∇×B)

= − c

4πλ2
L

B − c

4πλ2
L

φ
L

2π
∇×∇ϕ ,

(11.63)

which says

λ2
L
∇2B = B +

φ
L

2π
∇×∇ϕ . (11.64)

If we assume B = Bẑ and the phase field ϕ has singular vortex lines of topological index ni ∈ Z

located at position ρi in the (x, y) plane, we have

λ2
L
∇2B = B + φ

L

∑

i

ni δ
(
ρ− ρi

)
. (11.65)

Taking the Fourier transform, we solve for B̂(q), where k = (q, kz) :

B̂(q) = − φ
L

1 + q2λ2
L

∑

i

ni e
−iq·ρi , (11.66)

whence

B(ρ) = − φ
L

2πλ2
L

∑

i

niK0

( |ρ− ρi|
λ

L

)

, (11.67)

where K0(z) is the modified Bessel function, whose asymptotic behaviors are given by

K0(z) ∼
{

−C− ln(z/2) (z → 0)

(π/2z)1/2 exp(−z) (z → ∞) ,
(11.68)

where C = 0.57721566 . . . is the Euler-Mascheroni constant. The logarithmic divergence as
ρ → 0 is an artifact of the London limit. Physically, the divergence should be cut off when
|ρ− ρi| ∼ ξ. The current density for a single vortex at the origin is

j(r) =
nc

4π
∇×B = − c

4πλ
L

· φ
L

2πλ2
L

K1

(
ρ/λ

L

)
ϕ̂ , (11.69)

where n ∈ Z is the vorticity, and K1(z) = −K ′
0(z) behaves as z−1 as z → 0 and exp(−z)/

√
2πz

as z → ∞. Note the ith vortex carries magnetic flux ni φL
.

11.4.5 Ginzburg criterion

Consider fluctuations in Ψ(x) above Tc. If |Ψ| ≪ 1, we may neglect quartic terms and write

F =

∫

ddx
(

a |Ψ|2 +K |∇Ψ|2
)

=
∑

k

(
a+Kk2

)
|Ψ̂(k)|2 , (11.70)
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where we have expanded

Ψ(x) =
1√
V

∑

k

Ψ̂(k) eik·x . (11.71)

The Helmholtz free energy A(T ) is given by

e−A/k
B
T =

∫

D[Ψ,Ψ∗] e−F/T =
∏

k

(
πk

B
T

a+Kk2

)

, (11.72)

which is to say

A(T ) = k
B
T
∑

k

ln

(
πk

B
T

a+Kk2

)

. (11.73)

We write a(T ) = αt with t = (T − Tc)/Tc the reduced temperature. We now compute the
singular contribution to the specific heat CV = −TA′′(T ), which only requires we differentiate
with respect to T as it appears in a(T ). Dividing by NskB

, where Ns = V/ad is the number of
lattice sites, we obtain the dimensionless heat capacity per unit cell,

c =
α2ad

K2

Λξ∫
ddk

(2π)d
1

(ξ−2 + k2)2
, (11.74)

where Λ ∼ a−1 is an ultraviolet cutoff on the order of the inverse lattice spacing, and as before
ξ = (K/a)1/2 ∝ |t|−1/2. We define R∗ ≡ (K/α)1/2, in which case ξ = R∗ |t|−1/2, and

c = R−4
∗ ad ξ4−d

Λξ∫
ddq̄

(2π)d
1

(1 + q̄ 2)2
, (11.75)

where q̄ ≡ qξ. Thus,

c(t) ∼







const. if d > 4

− ln t if d = 4

t
d
2
−2 if d < 4 .

(11.76)

For d > 4, mean field theory is qualitatively accurate, with finite corrections. In dimensions
d ≤ 4, the mean field result is overwhelmed by fluctuation contributions as t → 0+ (i.e. as T →
T+
c ). We see that the Ginzburg-Landau mean field theory is sensible provided the fluctuation

contributions are small, i.e. provided

R−4
∗ ad ξ4−d ≪ 1 , (11.77)

which entails t≫ t
G

, where

t
G
=

(
a

R∗

) 2d
4−d

(11.78)
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is the Ginzburg reduced temperature. The criterion for the sufficiency of mean field theory, namely
t≫ t

G
, is known as the Ginzburg criterion. The region |t| < t

G
is known as the critical region.

In a lattice ferromagnet, as we have seen,R∗ ∼ a is on the scale of the lattice spacing itself, hence
t
G
∼ 1 and the critical regime is very large. Mean field theory then fails quickly as T → Tc. In

a (conventional) three-dimensional superconductor, R∗ is on the order of the Cooper pair size,
and R∗/a ∼ 102 − 103, hence t

G
= (a/R∗)

6 ∼ 10−18 − 10−12 is negligibly narrow. The mean field
theory of the superconducting transition – BCS theory – is then valid essentially all the way to
T = Tc.

Another way to think about it is as follows. In dimensions d > 2, for |r| fixed and ξ → ∞, one
has6

〈
Ψ∗(r)Ψ(0)

〉
≃ Cd

k
B
T R2

∗

e−r/ξ

rd−2
, (11.79)

where Cd is a dimensionless constant. If we compute the ratio of fluctuations to the mean value
over a patch of linear dimension ξ, we have

fluctuations

mean
=

ξ∫
ddr 〈Ψ∗(r) Ψ(0)〉
ξ∫
ddr 〈|Ψ(r)|2〉

∝ 1

R2
∗ ξ

d |Ψ|2

ξ∫

ddr
e−r/ξ

rd−2
∝ 1

R2
∗ ξ

d−2 |Ψ|2 .

(11.80)

Close to the critical point we have ξ ∝ R∗ |t|−ν and |Ψ| ∝ |t|β, with ν = 1
2

and β = 1
2

within
mean field theory. Setting the ratio of fluctuations to mean to be small, we recover the Ginzburg
criterion.

11.4.6 Domain wall solution

Consider first the simple case of the neutral superfluid. The additional parameter K provides

us with a new length scale, ξ =
√

K/|a| , which is called the coherence length. Varying the free
energy with respect to Ψ∗(x), one obtains

δF

δΨ∗(x)
= aΨ(x) + b

∣
∣Ψ(x)

∣
∣
2
Ψ(x)−K∇2Ψ(x) . (11.81)

Rescaling, we write Ψ ≡
(
|a|/b

)1/2
ψ, and setting the above functional variation to zero, we

obtain

− ξ2∇2ψ + sgn(T − Tc)ψ + |ψ|2ψ = 0 . (11.82)

6Exactly at T = Tc, the correlations behave as
〈
Ψ∗(r)Ψ(0)

〉
∝ r−(d−2+η), where η is a critical exponent.
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Consider the case of a domain wall when T < Tc. We assume all spatial variation occurs in the
x-direction, and we set ψ(x = 0) = 0 and ψ(x = ∞) = 1. Furthermore, we take ψ(x) = f(x) eiα

where α is a constant7. We then have −ξ2f ′′(x)− f + f 3 = 0, which may be recast as

ξ2
d2f

dx2
=

∂

∂f

[

1
4

(
1− f 2

)2
]

. (11.83)

This looks just like F = ma if we regard f as the coordinate, x as time, and −V (f) = 1
4

(
1−f 2

)2
.

Thus, the potential describes an inverted double well with symmetric minima at f = ±1. The
solution to the equations of motion is then that the ‘particle’ rolls starts at ‘time’ x = −∞ at
‘position’ f = +1 and ‘rolls’ down, eventually passing the position f = 0 exactly at time x = 0.
Multiplying the above equation by f ′(x) and integrating once, we have

ξ2
(
df

dx

)2

= 1
2

(
1− f 2

)2
+ C , (11.84)

where C is a constant, which is fixed by setting f(x → ∞) = +1, which says f ′(∞) = 0, hence
C = 0. Integrating once more,

f(x) = tanh

(
x− x0√

2 ξ

)

, (11.85)

where x0 is the second constant of integration. This, too, may be set to zero upon invoking
the boundary condition f(0) = 0. Thus, the width of the domain wall is ξ(T ). This solution
is valid provided that the local magnetic field averaged over scales small compared to ξ, i.e.
b =

〈
∇×A

〉
, is negligible.

The energy per unit area of the domain wall is given by σ̃, where

σ̃ =

∞∫

0

dx

{

K

∣
∣
∣
∣

dΨ

dx

∣
∣
∣
∣

2

+ a |Ψ|2 + 1
2
b |Ψ|4

}

=
a2

b

∞∫

0

dx

{

ξ2
(
df

dx

)2

− f 2 + 1
2
f 4

}

.

(11.86)

Now we ask: is domain wall formation energetically favorable in the superconductor? To
answer, we compute the difference in surface energy between the domain wall state and the
uniform superconducting state. We call the resulting difference σ, the true domainwall energy

7Remember that for a superconductor, phase fluctuations of the order parameter are nonphysical since they are
eliiminable by a gauge transformation.
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relative to the superconducting state:

σ = σ̃ −
∞∫

0

dx

(

−H2
c

8π

)

=
a2

b

∞∫

0

dx

{

ξ2
(
df

dx

)2

+ 1
2

(
1− f 2

)2

}

≡ H2
c

8π
δ ,

(11.87)

where we have used H2
c = 4πa2/b. Invoking the previous result f ′ = (1− f 2)/

√
2 ξ, the param-

eter δ is given by

δ = 2

∞∫

0

dx
(
1− f 2

)2
= 2

1∫

0

df

(
1− f 2

)2

f ′ =
4
√
2

3
ξ(T ) . (11.88)

Had we permitted a field to penetrate over a distance λ
L
(T ) in the domain wall state, we’d have

obtained

δ(T ) =
4
√
2

3
ξ(T )− λ

L
(T ) . (11.89)

Detailed calculations show

δ =







4
√
2

3
ξ ≈ 1.89 ξ if ξ ≫ λ

L

0 if ξ =
√
2λ

L

−8(
√
2−1)
3

λ
L
≈ −1.10 λ

L
if λ

L
≫ ξ .

(11.90)

Accordingly, we define the Ginzburg-Landau parameter κ ≡ λ
L
/ξ, which is temperature-

dependent near T = Tc, as we’ll soon show.

So the story is as follows. In type-I materials, the positive (δ > 0) N-S surface energy keeps the
sample spatially homogeneous for all H < Hc. In type-II materials, the negative surface energy
causes the system to break into domains, which are vortex structures, as soon as H exceeds the
lower critical field Hc1. This is known as the mixed state.

11.4.7 Scaled Ginzburg-Landau equations

For T < Tc, we write

Ψ =

√

|a|
b
ψ , x = λ

L
r , A =

√
2λ

L
Hc a , H =

√
2Hch , (11.91)

as well ∂ ≡ λ
L
∇. Recall the GL parameter, which is dimensionless, is given by

κ =
λ

L

ξ
=

√
2 e∗

~c
Hc λ

2
L

, (11.92)
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where from Eqn. 11.53 we have Hc = φ
L
/
√
8πξλ

L
. The Gibbs free energy is then

G =
H2

cλ
3
L

4π

∫

d3r

{

− |ψ|2 + 1
2
|ψ|2 +

∣
∣(κ−1∂ + ia)ψ

∣
∣2 + (∂ × a)2 − 2h · ∂ × a

}

. (11.93)

Setting δG = 0, we obtain

(κ−1∂ + ia)2 ψ + ψ − |ψ|2ψ = 0

∂ × (∂ × a− h) + |ψ|2a− i

2κ

(
ψ∗∂ψ − ψ∂ψ∗) = 0 .

(11.94)

The condition that no current flow through the boundary is

n̂ ·
(
∂ + iκa

)
ψ
∣
∣
∣
∂Ω

= 0 . (11.95)

Note that the dimensionless difference in superconducting and normal state energy densities
is given by

gs − gn = −|ψ|2 + 1
2
|ψ|4 + ψ∗π2ψ + b2 − 2b · h , (11.96)

where

π =
1

iκ
∂ + a . (11.97)

11.5 Applications of Ginzburg-Landau Theory

The applications of GL theory are numerous. Here we run through some examples.

11.5.1 Domain wall energy

Consider a domain wall interpolating between a normal metal at x→ −∞ and a superconduc-
tor at x→ +∞. The difference between the Gibbs free energies is

∆G = Gs −Gn =

∫

d3x

{

a |Ψ|2 + 1
2
b |Ψ|4 +K

∣
∣(∇+ ie∗

~c
A
)
Ψ
∣
∣
2
+

(B −H)2

8π

}

=
H2

c λ
3
L

4π

∫

d3r

[

− |ψ|2 + 1
2
|ψ|4 +

∣
∣(κ−1∂ + ia)ψ

∣
∣2 + (b− h)2

]

,

(11.98)

with b = B/
√
2Hc and h = H/

√
2Hc. We define

∆G(T,Hc) ≡
H2

c

8π
· Aλ

L
· δ , (11.99)
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Figure 11.6: Numerical solution to a Ginzburg-Landau domain wall interpolating between
normal metal (x → −∞) and superconducting (x → +∞) phases, for H = Hc2. Upper panel
corresponds to κ = 5, and lower panel to κ = 0.2. Condensate amplitude f(s) is shown in red,
and dimensionless magnetic field b(s) = B(s)/

√
2Hc in dashed blue.

as we did above in Eqn. 11.87, except here δ is rendered dimensionless by scaling it by λ
L
.

Here A is the cross-sectional area, so δ is a dimensionless domain wall energy per unit area.
Integrating by parts and appealing to the Euler-Lagrange equations, we have

∫

d3r
[

−|ψ|2+ |ψ|4+
∣
∣(κ−1∂+ ia)ψ

∣
∣2
]

=

∫

d3r ψ∗
[

−ψ+ |ψ|2ψ− (κ−1∂+ ia)2 ψ
]

= 0 , (11.100)

and therefore

δ =

∞∫

−∞

dx
[

− |ψ|4 + 2 (b− h)2
]

. (11.101)

Deep in the metal, as x → −∞, we expect ψ → 0 and b → h. Deep in the superconductor,
as x → +∞, we expect |ψ| → 1 and b → 0. The bulk energy contribution then vanishes for
h = hc = 1√

2
, which means δ is finite, corresponding to the domain wall free energy per unit

area.
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We take ψ = f ∈ R, a = a(x) ŷ, so b = b(x) ẑ with b(x) = a′(x). Thus, ∂×b = −a′′(x) ŷ, and the
Euler-Lagrange equations are

1

κ2
d2f

dx2
=

(
a2 − 1

)
f + f 3

d2a

dx2
= af 2 .

(11.102)

These equations must be solved simultaneously to obtain the full solution. They are equivalent
to a nonlinear dynamical system of dimension N = 4, where the phase space coordinates are
(f, f ′, a, a′), i.e.

d

dx







f
f ′

a
a′







=







f ′

κ2(a2 − 1)f + κ2f 3

a′

af 2







. (11.103)

Four boundary conditions must be provided, which we can take to be

f(−∞) = 0 , a′(−∞) =
1√
2

, f(+∞) = 1 , a′(+∞) = 0 . (11.104)

Usually with dynamical systems, we specify N boundary conditions at some initial value
x = x0 and then integrate to the final value, using a Runge-Kutta method. Here we specify
1
2
N boundary conditions at each of the two ends, which requires we use something such as

the shooting method to solve the coupled ODEs, which effectively converts the boundary value
problem to an initial value problem. In Fig. 11.6, we present such a numerical solution to the
above system, for κ = 0.2 (type-I) and for κ = 5 (type-II).

Vortex solution

To describe a vortex line of strength n ∈ Z, we choose cylindrical coordinates (ρ, ϕ, z), and
assume no variation in the vertical (z) direction. We write ψ(r) = f(ρ) einϕ and a(r) = a(ρ) ϕ̂.
which says b(r) = b(ρ) ẑ with b(ρ) = ∂a

∂ρ
+ a

ρ
. We then obtain

1

κ2

(
d2f

dρ2
+

1

ρ

df

dρ

)

=

(
n

κρ
+ a

)2

f − f + f 3

d2a

dρ2
+

1

ρ

da

dρ
=

a

ρ2
+

(
n

κρ
+ a

)

f 2 .

(11.105)

As in the case of the domain wall, this also corresponds to an N = 4 dynamical system bound-
ary value problem, which may be solved numerically using the shooting method.
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11.5.2 Thin type-I films : critical field strength

Consider a thin extreme type-I (i.e. κ ≪ 1) film. Let the finite dimension of the film be along x̂,

and write f = f(x), a = a(x) ŷ, so ∂×a = b(x) ẑ = ∂a
∂x

ẑ. We assue f(x) ∈ R. Now ∂×b = − ∂2a
∂x2 ŷ,

so we have from the second of Eqs. 11.94 that

d2f

dx2
= af 2 , (11.106)

while the first of Eqs. 11.94 yields

1

κ2
d2f

dx2
+ (1− a2)f − f 3 = 0 . (11.107)

We require f ′(x) = 0 on the boundaries, which we take to lie at x = ±1
2
d. For κ ≪ 1, we have,

to a first approximation, f ′′(x) = 0 with f ′(±1
2
d) = 0. This yields f = f0, a constant, in which

case a′′(x) = f 2
0a(x), yielding

a(x) =
h0 sinh(f0x)

f0 cosh(1
2
f0d)

, b(x) =
h0 cosh(f0x)

cosh(1
2
f0d)

, (11.108)

with h0 = H0/
√
2Hc the scaled field outside the superconductor. Note b(±1

2
d) = h0. To deter-

mine the constant f0, we set f = f0 + f1 and solve for f1:

− d2f1
dx2

= κ2
[(
1− a2(x)

)
f0 − f 3

0

]

. (11.109)

In order for a solution to exist, the RHS must be orthogonal to the zeroth order solution8, i.e.
we demand

d/2∫

−d/2

dx
[

1− a2(x)− f 2
0

]

≡ 0 , (11.110)

which requires

h20 =
2f 2

0 (1− f 2
0 ) cosh

2(1
2
f0d)

[
sinh(f0d)/f0d

]
− 1

, (11.111)

which should be considered an implicit relation for f0(h0). The magnetization is

m =
1

4πd

d/2∫

−d/2

dx b(x)− h0
4π

=
h0
4π

[

tanh(1
2
f0d)

1
2
f0d

− 1

]

. (11.112)

8If L̂f1 = R, then 〈 f0 |R 〉 = 〈 f0 | L̂ | f1 〉 = 〈 L̂†f0 | f1 〉. Assuming L̂ is self-adjoint, and that L̂f0 = 0, we obtain

〈 f0 |R 〉 = 0. In our case, the operator L̂ is given by L̂ = −d2/dx2.



11.5. APPLICATIONS OF GINZBURG-LANDAU THEORY 25

Note that for f0d ≫ 1, we recover the complete Meissner effect, h0 = −4πm. In the opposite
limit f0d≪ 1, we find

m ≃ −f
2
0 d

2h0
48π

, h20 ≃
12(1− f 2

0 )

d2
⇒ m ≃ −h0d

2

8π

(

1− h20d
2

12

)

. (11.113)

Next, consider the free energy difference,

Gs −Gn =
H2

cλ
3
L

4π

d/2∫

−d/2

dx
[

− f 2 + 1
2
f 4 + (b− h0)

2 +
∣
∣(κ−1∂ + ia) f

∣
∣2
]

=
H2

cλ
3
L
d

4π

[(

1− tanh(f0d/2)

f0d/2

)

h20 − f 2
0 + 1

2
f 4
0

]

.

(11.114)

The critical field h0 = hc occurs when Gs = Gn, hence

h2c =
f 2
0 (1− 1

2
f 2
0 )

[

1− tanh(f
0
d/2)

f
0
d/2

] =
2 f 2

0 (1− f 2
0 ) cosh

2(f0d/2)
[
sinh(f0d)/f0d

]
− 1

. (11.115)

We must eliminate f0 to determine hc(d).

When the film is thick we can write f0 = 1 − ε with ε ≪ 1. Then df0 = d(1 − ε) ≫ 1 and we
have h2c ≃ 2dε and ε = h2c/2d≪ 1. We also have

h2c ≈
1
2

1− 2
d

≈ 1
2

(

1 +
2

d

)

, (11.116)

which says

hc(d) =
1√
2

(
1 + d−1

)
⇒ Hc(d) = Hc(∞)

(

1 +
λ

L

d

)

, (11.117)

where in the very last equation we restore dimensionful units for d.

For a thin film, we have f0 ≈ 0, in which case

hc =
2
√
3

d

√

1− f 2
0 , (11.118)

and expanding the hyperbolic tangent, we find

h2c =
12

d2
(
1− 1

2
f 2
0

)
. (11.119)

This gives

f0 ≈ 0 , hc ≈
2
√
3

d
⇒ Hc(d) = 2

√
6Hc(∞)

λ
L

d
. (11.120)
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Figure 11.7: Difference in dimensionless free energy density ∆g between superconducting and
normal state for a thin extreme type-I film of thickness dλL. Free energy curves are shown as
a function of the amplitude f0 for several values of the applied field h0 = H/

√
2Hc(∞) (upper

curves correspond to larger h0 values). Top panel: d = 8 curves, with the critical field (in red)
at hc ≈ 0.827 and a first order transition. Lower panel: d = 1 curves, with hc =

√
12 ≈ 3.46 (in

red) and a second order transition. The critical thickness is dc =
√
5.

Note for d large we have f0 ≈ 1 at the transition (first order), while for d small we have f0 ≈ 0
at the transition (second order). We can see this crossover from first to second order by plotting

g =
4π

dλ3
L
H3

c

(
Gs −Gn) =

(

1− tanh(1
2
f0d)

1
2
f0d

)

h20 − f 2
0 + 1

2
f 4
0 (11.121)

as a function of f0 for various values of h0 and d. Setting dg/df0 = 0 and d2g/df 2
0 = 0 and f0 = 0,

we obtain dc =
√
5. See Fig. 11.7. For consistency, we must have d≪ κ−1.
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11.5.3 Critical current of a wire

Consider a wire of radius R and let the total current carried be I . The magnetizing field H is
azimuthal, and integrating around the surface of the wire, we obtain

2πRH0 =

∮

r=R

dl ·H =

∫

dS ·∇×H =
4π

c

∫

dS · j =
4πI

c
. (11.122)

Thus,

H0 = H(R) =
2I

cR
. (11.123)

We work in cylindrical coordinates (ρ, ϕ, z), taking a = a(ρ) ẑ and f = f(ρ). The scaled GL
equations give

(
κ−1∂ + ia

)2
f + f − f 3 = 0 (11.124)

with9

∂ = ρ̂
∂

∂ρ
+

ϕ̂

ρ

∂

∂ϕ
+ ẑ

∂

∂z
. (11.125)

Thus,
1

κ2
∂2f

∂ρ2
+
(
1− a2

)
f − f 3 = 0 , (11.126)

with f ′(R) = 0. From ∂ × b = −
(
κ−1∂θ + a

)
|ψ|2, where arg(ψ) = θ, we have ψ = f ∈ R hence

θ = 0, and therefore
∂2a

∂ρ2
+

1

ρ

∂a

∂ρ
= af 2 . (11.127)

The magnetic field is

b = ∂ × a(ρ) ẑ = −∂a
∂ρ

ϕ̂ , (11.128)

hence b(ρ) = −∂a
∂ρ

, with

b(R) =
H(R)√
2Hc

=

√
2 I

cRHc

. (11.129)

Again, we assume κ ≪ 1, hence f = f0 is the leading order solution to Eqn. 11.126. The vector
potential and magnetic field, accounting for boundary conditions, are then given by

a(ρ) = −b(R) I0(f0 ρ)
f0 I1(f0R)

, b(ρ) =
b(R) I1(f0 ρ)

I1(f0R)
, (11.130)

9Though we don’t need to invoke these results, it is good to recall ∂ρ̂
∂ϕ

= ϕ̂ and ∂ϕ̂
∂ϕ

= −ρ̂.
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where In(z) is a modified Bessel function. As in §11.5.2, we determine f0 by writing f = f0+ f1
and demanding that f1 be orthogonal to the uniform solution. This yields the condition

R∫

0

dρ ρ
(

1− f 2
0 − a2(ρ)

)

= 0 , (11.131)

which gives

b2(R) =
f 2
0 (1− f 2

0 ) I
2
1 (f0R)

I20 (f0R)− I21 (f0R)
. (11.132)

Thin wire : R≪ 1

When R ≪ 1, we expand the Bessel functions, using

In(z) =
(
1
2
z)n

∞∑

k=0

(1
4
z2)k

k! (k + n)!
. (11.133)

Thus

I0(z) = 1 + 1
4
z2 + . . .

I1(z) =
1
2
z + 1

16
z3 + . . . ,

(11.134)

and therefore

b2(R) = 1
4
f 4
0

(
1− f 2

0

)
R2 +O(R4) . (11.135)

To determine the critical current, we demand that the maximum value of b(ρ) take place at
ρ = R, yielding

∂(b2)

∂f0
=

(
f 3
0 − 3

2
f 5
0

)
R2 ≡ 0 ⇒ f0,max =

√
2
3

. (11.136)

From f 2
0,max =

2
3
, we then obtain

b(R) =
R

3
√
3
=

√
2 Ic

cRHc

⇒ Ic =
cR2Hc

3
√
6

. (11.137)

The critical current density is then

jc =
Ic
πR2

=
cHc

3
√
6π λ

L

, (11.138)

where we have restored physical units.
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Thick wire : 1 ≪ R≪ κ−1

For a thick wire, we use the asymptotic behavior of In(z) for large argument:

Iν(z) ∼
ez√
2πz

∞∑

k=0

(−1)k
ak(ν)

zk
, (11.139)

which is known as Hankel’s expansion. The expansion coefficients are given by10

ak(ν) =

(
4ν2 − 12

)(
4ν2 − 32

)
· · ·

(
4ν2 − (2k − 1)2

)

8k k!
, (11.140)

and we then obtain
b2(R) = f 3

0 (1− f 2
0 )R +O(R0) . (11.141)

Extremizing with respect to f0, we obtain f0,max =
√

3
5

and

bc(R) =

(
4 · 33
55

)1/4

R1/2 . (11.142)

Restoring units, the critical current of a thick wire is

Ic =
33/4

55/4
cHcR

3/2 λ
−1/2
L . (11.143)

To be consistent, we must have R ≪ κ−1, which explains why our result here does not coincide
with the bulk critical current density obtained in Eqn. 11.61.

11.5.4 Magnetic properties of type-II superconductors

Consider an incipient type-II superconductor, when the order parameter is just beginning to
form. In this case we can neglect the nonlinear terms in ψ in the Ginzburg-Landau equations
11.94. The first of these equations then yields

(
−iκ−1∂ + a

)2
ψ = ψ +

≈ 0
︷ ︸︸ ︷

O
(
|ψ|2ψ

)
. (11.144)

We neglect the second term on the RHS. This is an eigenvalue equation, with the eigenvalue
fixed at 1. In fact, this is to be regarded as an equation for a, or, more precisely, for the gauge-
invariant content of a, which is b = ∂ × a. The second of the GL equations says ∂ × (b − h) =
O
(
|ψ|2

)
, from which we conclude b = h + ∂ζ , but inspection of the free energy itself tells us

∂ζ = 0.

10See e.g. the NIST Handbook of Mathematical Functions, §10.40.1 and §10.17.1.
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We assume b = bẑ and choose a gauge for a:

a = −1
2
b y x̂+ 1

2
b x ŷ , (11.145)

with b = h. We define the operators

πx =
1

iκ

∂

∂x
− 1

2
b y , πy =

1

iκ

∂

∂y
+ 1

2
b x . (11.146)

Note that
[
πx, πy

]
= b/iκ , and that

(
−iκ−1∂ + a

)2
= − 1

κ2
∂2

∂z2
+ π2

x + π2
y . (11.147)

We now define the ladder operators

γ =

√
κ

2b

(
πx − iπy

)

γ† =

√
κ

2b

(
πx + iπy

)
,

(11.148)

which satisfy
[
γ, γ†

]
= 1. Then

L̂ ≡
(
−iκ−1∂ + a

)2
= − 1

κ2
∂2

∂z2
+

2b

κ

(
γ†γ + 1

2

)
. (11.149)

The eigenvalues of the operator L̂ are therefore

εn(kz) =
k2z
κ2

+
(
n+ 1

2
) · 2b

κ
. (11.150)

The lowest eigenvalue is therefore b/κ. This crosses the threshold value of 1 when b = h = κ,
i.e. when

B = H =
√
2κHc ≡ Hc2 . (11.151)

So, what have we shown? If Hc2 < Hc , and therefore κ < 1√
2

(we call Hc = φ
L
/
√
8πξλ

L
the

thermodynamic critical field), a complete Meissner effect occurs when H is decreased below the
critical field Hc . The order parameter ψ jumps discontinuously, and the transition across Hc

is first order. If κ > 1√
2

, then Hc2 > Hc , and for H just below Hc2 the system wants ψ 6= 0.

However, a complete Meissner effect cannot occur for H > Hc , so for Hc < H < Hc2 the system
is in the so-called mixed phase. Recall again that Hc = φ

L
/
√
8π ξλ

L
, hence

Hc2 =
√
2 κHc =

φ
L

2πξ2
. (11.152)

Thus, Hc2 is the field at which neighboring vortex lines, each of which carry flux φ
L
, are sepa-

rated by a distance on the order of ξ.

Materials for which κ < 1√
2

are called type-I superconductors. Materials for which κ > 1√
2

are

called type-II superconductors.
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11.5.5 Lower critical field of a type-II superconductor

We now compute the energy of a perfectly straight vortex line, and ask at what field Hc1 vortex
lines first penetrate. Let’s consider the regime ρ > ξ, where ψ ≃ eiϕ , i.e. |ψ| ≃ 1. Then the
second of the Ginzburg-Landau equations gives

∂ × b = −
(
κ−1∂ϕ+ a

)
. (11.153)

Therefore the Gibbs free energy is

G
V
=
H2

c λ
3
L

4π

∫

d3r
{

− 1
2
+ b2 + (∂ × b)2 − 2h · b

}

. (11.154)

The first term in the brackets is the condensation energy density −H2
c /8π. The second term is

the electromagnetic field energy density B2/8π. The third term is λ2
L
(∇×B)2/8π, and accounts

for the kinetic energy density in the superflow.

The energy penalty for a vortex is proportional to its length. We have

G
V
−G0

L
=
H2

c λ
2
L

4π

∫

d2ρ
{

b2 + (∂ × b)2 − 2h · b
}

=
H2

c λ
2
L

4π

∫

d2ρ
{

b ·
[
b+ ∂ × (∂ × b)

]
− 2h · b

}

.

(11.155)

The total flux is ∫

d2ρ b(ρ) = −2πnκ−1 ẑ , (11.156)

in units of
√
2Hc λ

2
L

, where n is the integer winding of the angle variable ϕ about the origin.
We also have b(ρ) = −nκ−1K0(ρ) and, taking the curl of Eqn. 11.153, we have

b+ ∂ × (∂ × b) = −2πnκ−1 δ(ρ) ẑ . (11.157)

As mentioned earlier above, the logarithmic divergence of b(ρ→ 0) is an artifact of the London
limit, where the vortices have no core structure. The core can crudely be accounted for by
simply replacing B(0) by B(ξ) , i.e. replacing b(0) by b(ξ/λ

L
) = b(κ−1). Then, for κ ≫ 1, after

invoking Eqn. 11.68,

G
V
−G0

L
=
H2

c λ
2
L

4π

{

2πn2κ−2 ln
(
2 e−Cκ

)
+ 4πnhκ−1

}

. (11.158)

For vortices with vorticity n = −1, this first turns negative at a field

hc1 =
1
2
κ−1 ln

(
2 e−Cκ

)
. (11.159)
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With 2 e−C ≃ 1.123, we have, restoring units,

Hc1 =
Hc√
2κ

ln
(
2 e−Cκ

)
=

φ
L

4πλ2
L

ln(1.123 κ) . (11.160)

So we have

Hc1 =
ln(1.123 κ)√

2κ
Hc (κ≫ 1)

Hc2 =
√
2 κHc .

(11.161)

Note in general that if Ev is the energy of a single vortex, then the lower critical field is given
by the relation Hc1 φL

= 4πEv , i.e.

Hc1 =
4πEv

φ
L

. (11.162)

11.5.6 Abrikosov vortex lattice

Consider again the linearized GL equation
(
−iκ−1∂ + a

)2
ψ ≡ L̂ψ = ψ with b = ∂ × a = b ẑ,

with b = κ, i.e. B = Hc2. We chose the gauge a = 1
2
b (−y, x, 0). We showed that ψ(ρ) with no

z-dependence is an eigenfunction with unit eigenvalue. Recall also that γ ψ(ρ) = 0, where

γ =
1√
2

(
1

iκ

∂

∂x
− κ

2
y − 1

κ

∂

∂y
− iκ

2
x

)

=

√
2

iκ

(
∂

∂w
+ 1

4
κ2w̄

)

,

(11.163)

where w = x+ iy and w̄ = x− iy are complex. We may define another ladder operator,

β =

√
2

iκ

(
∂

∂w̄
+ 1

4
κ2w

)

, (11.164)

which commutes with γ and γ†, i.e. [γ, β] = [γ, β†] = 0. Note that γ ψ0(ρ) = β ψ0(ρ) = 0, where

ψ0(ρ) = (κ/
√
2π) exp(−κ2ρ2/2). Then we can build up the eigenspectrum of L̂ =

(
−iκ−1∂+a

)2

by writing

ψm,n,kz
(r) =

eikzz
√
Lz

× (β†)m (γ†)n√
m!n!

ψ0(ρ) . (11.165)

Thus L̂ ψm,n,kz
(r) = εm,n(kz)ψm,n,kz

(r), with

εm,n(kz) =
k2z
κ2

+
(
2n + 1) · b

κ
, (11.166)
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where here we are taking b = κ. The index n ∈ {0, 1, 2, . . .} is the Landau level index. The index
m is cyclic in the energy εm,n(kz), hence each Landau level is massively degenerate.

To find general solutions of γ ψ = 0, note that

γ =

√
2

iκ
e−κ2w̄w/4 ∂

∂w
e+κ2w̄w/4 . (11.167)

Thus, γ ψ(x, y) = 0 is satisfied by any function of the form

ψ(x, y) = f(w̄) e−κ2w̄w/4 . (11.168)

where f(w̄) is analytic in the complex coordinate w̄. The most general such function11 is of the
form

f(w̄) = C

N
V∏

i=1

(w̄ − w̄i) , (11.169)

where each w̄i is a zero of f(w̄). Any analytic function on the plane is, up to a constant, uniquely
specified by the positions of its zeros. Note that

∣
∣ψ(x, y)

∣
∣
2
= |C|2 e−κ2w̄w/2

N
V∏

i=1

∣
∣w − wi

∣
∣
2 ≡ |C|2 e−Φ(ρ) , (11.170)

where

Φ(ρ) = 1
2
κ2ρ2 − 2

N
V∑

i=1

ln
∣
∣ρ− ρi

∣
∣ . (11.171)

Φ(ρ) may be interpreted as the electrostatic potential of a set of point charges located at ρi, in
the presence of a uniform neutralizing background. To see this, recall that ∇2 ln ρ = 2π δ(ρ), so

∇2Φ(ρ) = 2κ2 − 4π

N
V∑

i=1

δ
(
ρ− ρi

)
. (11.172)

Therefore if we are to describe a state where the local density |ψ|2 is uniform on average, we
must impose

〈
∇2Φ

〉
= 0, which says

〈∑

i

δ(ρ− ρi)
〉

=
κ2

2π
. (11.173)

The zeroes ρi are of course the positions of (anti)vortices, hence the uniform state has vortex
density nv = κ2/2π. Recall that in these units each vortex carries 2π/κ London flux quanta,
which upon restoring units is

2π

κ
·
√
2Hc λ

2
L
= 2π ·

√
2Hc λL

ξ = φ
L
=
hc

e∗
. (11.174)

11We assume that ψ is square-integrable, which excludes poles in f(w̄).
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Multiplying the vortex density nv by the vorticity 2π/κ, we obtain the magnetic field strength,

b = h =
κ2

2π
× 2π

κ
= κ . (11.175)

In other words, H = Hc2.

Aside : The freedom to choose the zeros {w̄i} is associated with the aforementioned degeneracy
of each Landau level.

Just below the upper critical field

Next, we consider the case where H is just below the upper critical field Hc2. We write ψ =
ψ0 + δψ, and b = κ + δb, with δb < 0. We apply the method of successive approximation, and
solve for b using the second GL equation. This yields

b = h− |ψ0|2
2κ

, δb = h− κ− |ψ0|2
2κ

(11.176)

where ψ0(ρ) is our initial solution for δb = 0. To see this, note that the second GL equation may
be written

∂ × (h− b) = 1
2

(

ψ∗ π ψ + ψ π∗ ψ∗
)

= Re
(

ψ∗ π ψ
)

, (11.177)

where π = −iκ−1∂ + a . On the RHS we now replace ψ by ψ0 and b by κ, corresponding to our
lowest order solution. This means we write π = π0 + δa, with π0 = −iκ−1∂ + a0 , a0 =

1
2
κ ẑ×ρ ,

and ∂×δa = δb ẑ. Assuming h− b = |ψ0|2/2κ , we have

∂ ×
( |ψ0|2

2κ
ẑ

)

=
1

2κ

[

∂

∂y
(ψ∗

0 ψ0) x̂− ∂

∂x
(ψ∗

0 ψ0) ŷ

]

=
1

κ
Re

[

ψ∗
0 ∂y ψ0 x̂− ψ∗

0 ∂x ψ0 ŷ

]

= Re
[

ψ∗
0 iπ0y ψ0 x̂− ψ∗

0 iπ0x ψ0 ŷ

]

= Re
[

ψ∗
0 π0 ψ0

]

,

(11.178)

since iπ0y = κ−1∂y + ia0y and Re
[
iψ∗

0 ψ0 a0y
]
= 0. Note also that since γ ψ0 = 0 and γ =

1√
2

(
π0x − iπ0y

)
= 1√

2
π†
0 , we have π0yψ0 = −iπ0xψ0 and, equivalently, π0xψ0 = iπ0yψ0.

Inserting this result into the first GL equation yields an inhomogeneous equation for δψ. The
original equation is

(

π2 − 1
)

ψ = −|ψ|2ψ . (11.179)

With π = π0 + δa, we then have

(

π2
0 − 1

)

δψ = −δa · π0 ψ0 − π0 · δaψ0 − |ψ0|2ψ0 . (11.180)
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The RHS of the above equation must be orthogonal to ψ0, since
(
π2
0 − 1

)
ψ0 = 0. That is to say,

∫

d2r ψ∗
0

[

δa · π0 + π0 · δa+ |ψ0|2
]

ψ0 = 0 . (11.181)

Note that
δa · π0 + π0 · δa = 1

2
δa π†

0 +
1
2
π†
0 δa+

1
2
δā π0 +

1
2
π0 δā , (11.182)

where

π0 = π0x + iπ0y , π†
0 = π0x − iπ0y , δa = δax + iδay , δā = δax − iδay . (11.183)

We also have, from Eqn. 11.146,

π0 = −2iκ−1
(
∂w̄ − 1

4
κ2w

)
, π†

0 = −2iκ−1
(
∂w + 1

4
κ2w̄

)
. (11.184)

Note that

π†
0 δa =

[
π†
0 , δa

]
+ δa π†

0 = −2iκ−1 ∂w δa+ δa π†
0

δā π0 =
[
δā , π0

]
+ π0 δā = +2iκ−1 ∂w̄ δā+ π0 δā

(11.185)

Therefore,
∫

d2r ψ∗
0

[

δa π†
0 + π0 δā− iκ−1 ∂w δa + iκ−1 ∂w̄ δā+ |ψ0|2

]

ψ0 = 0 . (11.186)

We now use the fact that π†
0 ψ0 = 0 and ψ∗

0 π0 = 0 (integrating by parts) to kill off the first two
terms inside the square brackets. The third and fourth term combine to give

− i ∂w δa + i ∂w̄ δā = ∂x δay − ∂y δax = δb . (11.187)

Plugging in our expression for δb, we finally have our prize:

∫

d2r

[(
h

κ
− 1

)

|ψ0|2 +
(

1− 1

2κ2

)

|ψ0|4
]

= 0 . (11.188)

We may write this as
(

1− h

κ

)
〈
|ψ0|2

〉
=

(

1− 1

2κ2

)
〈
|ψ0|4

〉
, (11.189)

where
〈
F (ρ)

〉
=

1

A

∫

d2ρ F (ρ) (11.190)

denotes the global spatial average of F (ρ). It is customary to define the ratio

β
A
≡

〈
|ψ0|4

〉

〈
|ψ0|2

〉2 , (11.191)
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which depends on the distribution of the zeros {ρi}. Note that

〈
|ψ0|2

〉
=

1

β
A

·
〈
|ψ0|4

〉

〈
|ψ0|2

〉 =
2κ(κ− h)

(2κ2 − 1)β
A

. (11.192)

Now let’s compute the Gibbs free energy density. We have

gs − gn = −1
2

〈
|ψ0|4

〉
+
〈
(b− h)2

〉

= −1

2

(

1− 1

2κ2

)
〈
|ψ0|4

〉
= −1

2

(

1− h

κ

)
〈
|ψ0|2

〉
= − (κ− h)2

(2κ2 − 1)β
A

.
(11.193)

Since gn = −h2, we have, restoring physical units

gs = − 1

8π

[

H2 +
(Hc2 −H)2

(2κ2 − 1)β
A

]

. (11.194)

The average magnetic field is then

B̄ = −4π
∂gs
∂H

= H − Hc2 −H

(2κ2 − 1)β
A

, (11.195)

hence

M =
B −H

4π
=

H −Hc2

4π (2κ2 − 1) β
A

⇒ χ =
∂M

∂H
=

1

4π (2κ2 − 1) β
A

. (11.196)

Clearly gs is minimized by making β
A

as small as possible, which is achieved by a regular lattice

structure. Since βsquare
A = 1.18 and βtriangular

A = 1.16, the triangular lattice just barely wins.

Just above the lower critical field

When H is just slightly above Hc1, vortex lines penetrate the superconductor, but their density
is very low. To see this, we once again invoke the result of Eqn. 11.155, extending that result to
the case of many vortices:

G
VL

−G0

L
=
H2

c λ
2
L

4π

∫

d2ρ
{

b ·
[
b+ ∂ × (∂ × b)

]
− 2h · b

}

. (11.197)

Here we have

b− ∂2
b = −2π

κ

N
V∑

i=1

ni δ(ρ− ρi)

b = −1

κ

N
V∑

i=1

niK0

(
|ρ− ρi|

)
.

(11.198)
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Thus, again replacing K0(0) by K0(κ
−1) and invoking Eqn. 11.68 for κ≫ 1,

G
VL

−G0

L
=
H2

c λ
2
L

κ2

{

1
2
ln
(
2e−Cκ

)
N

V∑

i=1

n2
i +

N
V∑

i<j

ni nj K0

(
|ρi − ρj|

)
+ κh

N
V∑

i=1

ni

}

. (11.199)

The first term on the RHS is the self-interaction, cut off at a length scale κ−1 (ξ in physical units).
The second term is the interaction between different vortex lines. We’ve assumed a perfectly
straight set of vortex lines – no wiggling! The third term arises from B · H in the Gibbs free
energy. If we assume a finite density of vortex lines, we may calculate the magnetization. For
H −Hc1 ≪ Hc1, the spacing between the vortices is huge, and since K0(r) ≃ (π/2r)1/2 exp(−r)
for large |r|, we may safely neglect all but nearest neighbor interaction terms. We assume
ni = −1 for all i. Let the vortex lines form a regular lattice of coordination number z and
nearest neighbor separation a. Then

G
VL

−G0

L
=
N

V
H2

c λ
2
L

κ2

{
1
2
ln
(
2e−Cκ

)
+ 1

2
zK0(a)− κh

}

, (11.200)

where N is the total number of vortex lines, given by N = A/Ω for a lattice with unit cell area

Ω. Assuming a triangular lattice, Ω =
√
3
2
a2 and z = 6. Then, dividing by the cross-sectional

area A, we have that the difference in free energy densities is (κ≫ 1 assumed)

∆G

V
=
H2

c λ
2
L√

3 κ2

{

6K0(a) a
−2 − 2κ (h− hc1) a

−2
}

, (11.201)

where hc1 = ln
(
2e−Cκ

)
/2κ. To find the optimal lattice spacing a, differentiate with respect to a,

which yields the condition

K0(a) +
1
2
K1(a) = 4κ (h− hc1) . (11.202)

The LHS is a monotonically decreasing function of a, behaving as 1/a as a→ 0 and decreasing
as (π/2a)1/2 e−a as a → ∞, hence there is a unique solution for a(h) provided h > hc1. This
analysis is valid provided κ ≫ 1 and also κ(h − hc1) ≪ 1. The latter requirement pertains
because we have not done a proper accounting of the vortex core, hence we must assume a is
much larger than κ−1, which is the coherence length ξ in units of λ

L
.
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