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Chapter 8

Hartree-Fock and Density Functional
Theories

8.1 Second Quantization

8.1.1 Basis states and creation/annihilation operators

Second quantization is a convenient scheme to label basis states of a many particle quantum
system. We are ultimately interested in solutions of the many-body Schrödinger equation,

ĤΨ(x1, . . . ,xN) = EΨ(x1, . . . ,xN) (8.1)

where the Hamiltonian is

Ĥ =

N∑

i=1

(
− ~

2

2m
∇

2
i + vext(xi)

)
+

N∑

j<k

u(xj − xk)

≡ T̂ + Û + V̂ ,

(8.2)

where T̂ is the kinetic energy, Û the one-body potential energy, and V̂ the two-body potential
energy. To the coordinate labels {x1, . . .xN} we may also append labels for internal degrees of

freedom, such as spin polarization, denoted {σ1, . . . , σN}. Since
[
Ĥ, π

]
= 0 for all permutations

π ∈ SN , the many-body wavefunctions may be chosen to transform according to irreducible
representations of the symmetric group SN . Thus, for any π ∈ SN ,

Ψ
(
xπ(1), . . . ,xπ(N)

)
=

{
1

sgn(π)

}
Ψ(x1, . . . ,xN) , (8.3)

where the upper choice is for Bose-Einstein statistics and the lower sign for Fermi-Dirac statis-
tics. Here xj may include not only the spatial coordinates of particle j, but its internal quantum
number(s) as well, such as the spin polarization σj .
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2 CHAPTER 8. HARTREE-FOCK AND DENSITY FUNCTIONAL THEORIES

A convenient basis for the many body states is obtained from the single-particle eigenstates{
|α 〉

}
of some single-particle Hamiltonian Ĥ0 , with 〈x |α 〉 = ϕα(x) and Ĥ0 |α 〉 = εα |α 〉. The

basis may be taken as orthonormal, i.e. 〈α |α′ 〉 = δαα′ . Now define

Ψ{α1 , ... , αN
}(x1, . . . ,xN) =

1√
N !
∏

α nα!

∑

π∈S
N

{
1

sgn(π)

}
ϕα

π(1)
(x1) · · ·ϕα

π(N)
(xN) . (8.4)

These states form a basis for the N-particle Hilbert space. Here nα is the number of times the
index α appears among the set {α1, . . . , αN}. For BE statistics, nα ∈ {0, 1, 2, . . .} , whereas for
FD statistics, nα ∈ {0, 1} . Note that the above states are normalized1:

∫
ddx1 · · ·

∫
ddxN

∣∣Ψ{α1 , ... , αN
}(x1, . . . ,xN)

∣∣2 = 1

N !
∏

α nα!

∑

π,µ∈S
N

{
1

sgn(πµ)

} N∏

j=1

∫
ddxj ϕ

∗
α
π(j)

(xj)ϕα
µ(j)

(xj)

=
1∏
α nα!

∑

π∈S
N

N∏

j=1

δαj ,απ(j)
= 1 . (8.5)

Note that
∑

π∈S
N

ϕα
π(1)

(x1) · · ·ϕα
π(N)

(xN) ≡ per
{
ϕαi

(xj)
}

∑

π∈S
N

sgn(π) ϕα
π(1)

(x1) · · ·ϕα
π(N)

(xN) ≡ det
{
ϕαi

(xj)
}

,
(8.6)

which stand for permanent and determinant, respectively. We may now write

Ψ{α1 , ... , αN
}(x1, . . . ,xN) =

〈
x1 , . . . , xN

∣∣α1 · · · αN

〉
, (8.7)

where

|α1 · · · αN 〉 = 1√
N !
∏

α nα!

∑

π∈S
N

{
1

sgn(π)

}
|απ(1) 〉 ⊗ |απ(2) 〉 ⊗ · · · ⊗ |απ(N) 〉 . (8.8)

Note that |απ(1) · · ·απ(N) 〉 = (±1)π |α1 · · ·αN 〉 , where by (±1)π we mean 1 in the case of BE

statistics and sgn(π) in the case of FD statistics.

We may express |α1 · · ·αN 〉 as a product of creation operators acting on a vacuum | 0 〉 in Fock
space. For bosons,

|α1 · · · αN 〉 =
∏

α

(b†α)
nα

√
nα!

| 0 〉 ≡ | {nα} 〉 , (8.9)

1In the normalization integrals, each
∫
ddx implicitly includes a sum

∑
ζ over any internal indices that may be

present.



8.1. SECOND QUANTIZATION 3

where nα is the multiplicity of the label α in the set {α1, . . . , αN}. Consequently, N =
∑

α nα .
The Hermitian conjugate of the creation operator b†α is the annihilation operator bα. The rela-
tions among these operators are

[
bα , bβ

]
= 0 ,

[
b†α , b

†
β

]
= 0 ,

[
bα , b

†
β

]
= δαβ , (8.10)

where [ • , • ] is the commutator.

For fermions,

|α1 · · · αN 〉 =
∏

α

(c†α)
nα | 0 〉 = c†α1

c†α2
· · · c†α

N
| 0 〉 ≡ | {nα} 〉 , (8.11)

where each nα ∈ {0, 1} and where
∑

α nα = N . Thus nα = 1 for each α ∈ {α1, . . . , αN} and
nα = 0 otherwise. We also implicitly assume a canonical, though arbitrary, ordering of the
single particle labels α. The fermionic creation and annihilation operators satisfy the relations

{
cα , cβ

}
= 0 ,

{
c†α , c

†
β

}
= 0 ,

{
cα , c

†
β

}
= δαβ , (8.12)

where {• , •} is the anticommutator. Because the fermion creation operators all anticommute,
we have

c†α
π(1)
c†α

π(2)
· · · c†α

π(N)
| 0 〉 = sgn(π) | {nα} 〉 , (8.13)

for any π ∈ SN .

We may also define the operators

b(x) =
∑

α

ϕα(x) bα , c(x) =
∑

α

ϕα(x) cα , (8.14)

which satisfy
[
b(x) , b†(x′)

]
= δ(x− x

′) ,
{
c(x) , c†(x′)

}
= δ(x− x

′) . (8.15)

In cases where there are internal (e.g., spin) degrees of freedom, the above relations become

[
bm(x) , b

†
m′(x

′)
]
= δ(x− x

′) δmm′ ,
{
cm(x) , c

†
m′(x

′)
}
= δ(x− x

′) δmm′ . (8.16)

In other words,

bα,m =

∫
ddx ϕ∗

α(x, m) bm(x) , cα,m =

∫
ddx ϕ∗

α(x, m) cm(x) . (8.17)

Note the difference between the many-body states

|x1 · · · xN 〉 ≡ ψ†(x1) · · ·ψ†(xN) | 0 〉

=
1√
N !

∑

π∈S
N

{
1

sgn(π)

}
|xπ(1) , . . . , xπ(N) 〉

(8.18)
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and
|x1 , . . . , xN 〉 = |x1 〉 ⊗ · · · ⊗ |xN 〉 . (8.19)

In particular, 〈
x1 , . . . , xN

∣∣α1 · · · αN

〉
= Ψ{α1 , ... , αN

}(x1, . . . ,xN) (8.20)

but 〈
x1 · · · xN

∣∣α1 · · · αN

〉
=

√
N ! Ψ{α1 , ... , αN

}(x1, . . . ,xN) . (8.21)

A general normalizedN-body wavefunction Ψm1, ... , mN
(x1, . . . ,xN) may be expressed in second

quantized notation as

|Ψ 〉 = 1√
N !

∑

m1

· · ·
∑

m
N

∫
ddx1 · · ·

∫
ddxN Ψm1, ... , mN

(x1, . . . ,xN) ψ
†
m1

(x1) · · ·ψ†
m

N
(xN) | 0 〉 (8.22)

where ψ†
m(x) is the bosonic or fermionic creation operator for particles of internal index m at

position x. Dropping for the moment the internal indices for the sake of simplicity, note that

〈 0 |ψ(y2)ψ(y1)ψ
†(x1)ψ

†(x2) | 0 〉 = 〈 0 |ψ(y2)ψ
†(x2) | 0 〉 δ(x1 − y1)

± 〈 0 |ψ(y2)ψ(x1)ψ
†(y1)ψ

†(x2) | 0 〉

= δ(x1 − y1) δ(x2 − y2)± δ(x1 − y2) δ(x2 − y1) .

(8.23)

Reasoning thusly, we conclude that

〈 0 |ψ(yN) · · ·ψ(y1)ψ
†(x1) · · ·ψ†(xN) | 0 〉 =

∑

σ∈S
N

{
1

sgn(π)

} N∏

j=1

δ(yj − xσ(j)) . (8.24)

Including the internal indices, then,

〈 0 |ψ(yN)n
N
· · ·ψm1

(y1)ψ
†
m1

(x1) · · ·ψ†
n
N
(xN) | 0 〉 =

∑

σ∈S
N

{
1

sgn(π)

} N∏

j=1

δ(yj − xσ(j)) δnj , mσ(j)
.

(8.25)
We then have

〈Φ |Ψ 〉 =
∑

m1

· · ·
∑

m
N

∫
ddx1 · · ·

∫
ddxN Φ∗

m1, ... ,mN
(x1, . . . ,xN) Ψm1, ... ,mN

(x1, . . . ,xN) (8.26)

Another useful thing to derive are expressions for the one- and two-body density matrices.
Note that (with internal indices once again suppressed)

ψ(x)ψ†(x1) · · ·ψ†(xN) = δ(x− x1)ψ
†(x2) · · ·ψ†(xN)± δ(x− x2)ψ

†(x1)ψ
†(x3) · · ·ψ†(xN)

+ . . .+ (±1)N−1 δ(x− xN)ψ
†(x1) · · ·ψ†(xN−1) , (8.27)
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from which we may derive the one-body density matrix,

n1(x | y) ≡ 〈Ψ |ψ†(y)ψ(x) |Ψ 〉

= N

∫
ddx2 · · ·

∫
ddxN Ψ∗(y,x2, . . . ,xN) Ψ(x,x2, . . . ,xN) .

(8.28)

Similarly, the two-body density matrix is given by

n2(x,x
′ | y, y′) ≡ 〈Ψ |ψ†(y′)ψ†(y)ψ(x)ψ(x′) |Ψ 〉

= N(N − 1)

∫
ddx3 · · ·

∫
ddxN Ψ∗(y, y′,x3, . . . ,xN) Ψ(x,x′,x3, . . . ,xN) .

(8.29)

Note the sum rules upon integrating the diagonal elements, viz.
∫
ddx n1(x |x) = N

∫
ddx

∫
ddx′ n2(x,x

′ |x,x′) = N(N − 1) .

(8.30)

In a plane wave basis, we write

ψk =
1√
V

∫
ddx ψ(x) e−ik·x (8.31)

and therefore

〈Ψ |ψ†
k ψk′ |Ψ 〉 = 1

V

∫
ddx

∫
ddr ei(k−k′)·x e−ik′·r 〈Ψ |ψ†(x)ψ(x+ r) |Ψ 〉

= δk,k′

∫
ddr e−ik·r 〈Ψ |ψ†(0)ψ(r) |Ψ 〉

= δk,k′

∫
ddr e−ik·r

∫
ddx2 · · ·

∫
ddxNΨ

∗(0,x2, . . . ,xN) Ψ(r,x2, . . . ,xN) .

(8.32)

8.1.2 The second quantized Hamiltonian

Now consider the action of permutation-symmetric first quantized operators such as the kinetic

energy T̂ = − ~2

2m

∑N
i=1∇

2
i =

∑N
i=1 t̂i and the potential energy Û =

∑N
i<j u(xi − xj). For a one-

body operator such as T̂ , we have

〈α1 · · · αN | T̂ |α′
1 · · · α′

N 〉 =
∫
ddx1 · · ·

∫
ddxN

(∏

α

nα!
)−1/2(∏

α

n′
α!
)−1/2

(8.33)

×
∑

π∈S
N

(±1)πϕ∗
α
π(1)

(x1) · · ·ϕ∗
α
π(N)

(xN)
N∑

k=1

t̂i ϕα′
π(1)

(x1) · · ·ϕα′
π(N)

(xN)

=
∑

π∈S
N

(±1)π
(∏

α

nα!n
′
α!
)−1/2

N∑

i=1

∏

j
(j 6=i)

δαj ,α
′
π(j)

∫
ddx1 ϕ

∗
α
i
(x1) t̂1 ϕα′

π(i)
(x1) .
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One may verify that any permutation-symmetric one-body operator such as T̂ is faithfully
represented by the second quantized expression,

T̂ =
∑

α,β

〈α | t̂ | β 〉ψ†
α ψβ , (8.34)

where ψ†
α is b†α or c†α as the application determines, and

〈α | t̂ | β 〉 =
∫
ddx ϕ∗

α(x) t̂(∇)ϕβ(x) ≡ ταβ . (8.35)

Similarly,

V̂ =
∑

α,β

〈α | v̂ext | β 〉ψ†
α ψβ , (8.36)

where

〈α | v̂ext | β 〉 =
∫
ddx ϕ∗

α(x) v̂ext(x)ϕβ(x) ≡ vextαβ . (8.37)

Two-body operators such as Û are represented as

Û = 1
2

∑

α,β,γ,δ

〈αβ | û | γδ 〉ψ†
α ψ

†
β ψδ ψγ , (8.38)

where

〈αβ | û | γδ 〉 =
∫
ddx

∫
ddx′ ϕ∗

α(x)ϕ
∗
β(x

′) û(x,x′)ϕδ(x
′)ϕγ(x) ≡ uαβγδ . (8.39)

The general form for an n-body operator is then

R̂ =
1

n!

∑

α1···αn

β1··· βn

〈α1 · · · αn | r̂ | β1 · · · βn 〉ψ†
αn
· · ·ψ†

αn
ψβn

· · ·ψβ1
(8.40)

where

〈α1 · · · αn | r̂ | β1 · · · βn 〉 =
∫
ddx1 · · ·

∫
ddxn ϕ

∗
α1
(x1) · · ·ϕ∗

αn
(xn) r̂(x1, . . . ,xn)ϕβn

(xn) · · ·ϕβ1
(x1) .

(8.41)
If the particles have no internal degrees of freedom, then the operators r̂(x1, . . . ,xn) are just
functions of the spatial coordinates {xi}. If there are (discrete) internal degrees of freedom,
then r̂(x1, . . . ,xn) also has operator content in the internal Hilbert space as well.

Finally, if the Hamiltonian is noninteracting, consisting solely of one-body operators, then

Ĥ =
∑

α

εα ψ
†
α ψα , (8.42)

where {εα} is the spectrum of the single particle Hamiltonian.
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8.2 Hartree-Fock Theory

Consider the interacting electron Hamiltonian

Ĥ =

N∑

i=1

{
− ~

2

2m
∇

2
i + v(xi)

}
+

N∑

i<j

u(xi − xj) . (8.43)

We now endeavor to construct the best possible single Slater determinant state,

Ψ(x1 σ1 , . . . , xN σN ) =
1√
N !

A
[
ϕ
α1

(x1, σ1) · · ·ϕα
N

(xN , σN)
]

=
1√
N !

∑

π∈S
N

sgn(π)
N∏

i=1

ϕαi
(xπ(i) , σπ(i)) ,

(8.44)

where A is the antisymmetrizer, and ϕα(x, σ) is a single particle wavefunction. Typically we
will take α = (j, γ) to be a composite label, and write

ϕα(x, σ) = ϕj(x) ηγ(σ) , (8.45)

with ηγ(σ) = δσγ . In second-quantized notation, the wavefunction is given by

|Ψ 〉 =
OCC∏

α

c†α | 0 〉 . (8.46)

The set OCC comprises the N distinct occupied orbitals.

The second-quantized Hamiltonian is

Ĥ =

∫
ddx ψ†

σ(x)

{
− ~

2

2m
δστ∇

2 + vextστ (x)

}
ψτ (x)

+ 1
2

∫
ddx

∫
ddx′ ψ†

σ(x)ψ
†
σ′(x

′) uστσ′τ ′(x− x
′)ψτ ′(x

′)ψτ (x) ,

(8.47)

where {σ, τ, σ′, τ ′} are spin polarizations, and where the two-body interaction for spin-isotropic
systems is written as

uστσ′τ ′(x− x
′) = uSCALAR(x− x

′) δστ δσ′τ ′ + uSPIN(x− x
′)σστ · σσ′τ ′ . (8.48)

Here uSCALAR is the scalar component and uSPIN the Heisenberg component of the two-body in-
teraction, and σ are the Pauli matrices. Throughout we adopt the Einstein convention over
summing over repeated indices.
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In order to evaluate the expectation value E = 〈Ψ | Ĥ |Ψ 〉, we need the following:

〈Ψ|ψ†
σ(x)ψτ (y)|Ψ〉 =

OCC∑

α

ϕ∗
α(x, σ)ϕα(y, τ) (8.49)

〈Ψ|ψ†
σ(x)ψ

†
σ′(x

′)ψτ ′(x
′)ψτ (x)|Ψ〉 =

OCC∑

α,β

ϕ∗
α(x, σ)ϕ

∗
β(x

′, σ′)
(
ϕα(x, τ)ϕβ(x

′, τ ′) − ϕβ(x, τ)ϕα(x
′, τ ′)

)
.

This generalizes to

〈Ψ |ψ†
σ1
(x1) · · ·ψ†

σn
(xn)ψτn

(xn) · · ·ψτ1
(x1) |Ψ 〉 =

OCC∑

α1 ··· αn

(
n∏

i=1

ϕ∗
αi
(xi, σi)

)
det
[
ϕαj

(xk, τk)
]

.

(8.50)
The RHS is necessarily zero if n > N because there is then a linear dependence among the rows
of the matrix Mj,k = det

[
ϕαj

(xk, σk)
]
.

We now have E = T + V + U , with

T =

OCC∑

α

∫
ddx ϕ∗

α(x, σ) t̂στ (∇)ϕα(x, τ) , V =

OCC∑

α

∫
ddx ϕ∗

α(x, σ) v̂
ext
στ (x)ϕα(x, τ) (8.51)

and

U = 1
2

OCC∑

α,β

∫
ddx

∫
ddx′uστσ′τ ′(x−x

′)ϕ∗
α(x, σ)ϕ

∗
β(x

′, σ′)
(
ϕα(x, τ)ϕβ(x

′, τ ′)−ϕβ(x, τ)ϕα(x
′, τ ′)

)
.

Now let’s functionally vary with respect to the wavefunction ϕ∗
α(x, σ). We have

δT

δϕ∗
α(x, σ)

= t̂στ (∇)ϕα(x, τ) ,
δV

δϕ∗
α(x, σ)

= v̂extστ (x)ϕα(x, τ) (8.52)

and

δU

δϕ∗
α(x, σ)

=

∫
ddx′ uστσ′τ ′(x− x

′)

OCC∑

β

ϕ∗
β(x

′, σ′)
(
ϕα(x, τ)ϕβ(x

′, τ ′)− ϕβ(x, τ)ϕα(x
′, τ ′)

)
.

(8.53)
In order to maintain orthonormality of the single particle wavefunctions, i.e. 〈ϕα |ϕβ 〉 = δαβ ,
we extremize not E but rather E∗, where

E∗ = T + V + U −
∑

α,β

Λαβ

(
〈ϕα |ϕβ 〉 − δαβ

)
, (8.54)
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where the {Λαβ} are a set of Lagrange multipliers. The condition δE∗ = 0 now yields

{
− ~

2

2m
δστ∇

2 + vextστ (x) +

∫
ddx′ uστσ′τ ′(x− x

′)

OCC∑

β

ϕ∗
β(x

′, σ′)ϕβ(x
′, τ ′)

}
ϕα(x, τ)

−
∫
ddx′ uστσ′τ ′(x− x

′)ϕα(x
′, τ ′)

OCC∑

β

ϕ∗
β(x

′, σ′)ϕβ(x, τ) =

OCC∑

β

Λαβ ϕβ(x, σ) .

(8.55)

One can show that the matrix Λ must be Hermitian, which means it can be diagonalized by a
unitary matrix Uaα , with (UΛU †)ab = εa δab . Defining ϕa(x, σ) = Uaα ϕα(x, σ), we then obtain
the Hartree-Fock equations ,

{
− ~

2

2m
δστ∇

2 + vextστ (x) +

∫
ddx′ uστσ′τ ′(x− x

′)
OCC∑

b

ϕ∗
b(x

′, σ′)ϕb(x
′, τ ′)

}
ϕa(x, τ)

−
∫
ddx′ uστσ′τ ′(x− x

′)ϕa(x
′, τ ′)

OCC∑

b

ϕ∗
b(x

′, σ′)ϕb(x, τ) = εa ϕa(x, σ) ,

(8.56)

with no sum on a. The quantities {εa} are the single particle Hartree-Fock energies. Note that the
last term in the curly brackets can be interpreted as a renormalization of the one-body potential,
with

vHστ (x) =

∫
ddx′ uστσ′τ ′(x− x

′)

OCC∑

b

ϕ∗
b(x

′, σ′)ϕb(x
′, τ ′) . (8.57)

This is known as the Hartree potential. The Fock term, arising from exchange, has the interpreta-
tion of a nonlocal potential, viz.

vFστ (x,x
′) = −uστ ′σ′τ (x− x

′)

OCC∑

b

ϕ∗
b(x

′, σ′)ϕb(x, τ
′) . (8.58)

Thus, the Hartree-Fock (HF) equations may be written

{
− ~

2

2m
δστ∇

2 + vextστ (x) + vHστ (x)

}
ϕa(x, τ) +

∫
ddx′ vFστ (x,x

′)ϕa(x
′, τ) = εa ϕa(x, σ) . (8.59)

Note that if we multiply Eqn. 8.56 by ϕ∗
a(x, σ) and then integrate over x and sum on σ, we

obtain the relation

εa =

∫
ddx ϕ∗

a(x, σ)

{
− ~

2

2m
δστ∇

2 + vextστ (x) + vHστ (x)

}
ϕα(x, τ)

+

∫
ddx

∫
ddx′ vFστ (x,x

′)ϕ∗
a(x, σ)ϕa(x

′, τ) .

(8.60)
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If we now sum over all occupied states a, we obtain the result

OCC∑

a

εa = T + V + 2U . (8.61)

Thus, the sum over all the single particle HF energies is not the total energy E = 〈Ψ | Ĥ |Ψ 〉 .
Rather, the interpretation of εa is that

δE

δN
= E(N)− E(N − 1) = εa (8.62)

when the electron in state a is removed to form the (N − 1)-electron system. Put another way,
the energy required to transfer an electron from an orbital | a 〉 to an orbital | b 〉 is εb− εa . These
results presume that this transfer does not affect the other wavefunctions ϕc(x, σ) for c 6= a, b .
This is presumably valid in the thermodynamic limit N → ∞ , but need not be so for finite N .
The difference in ground state energies is thus given by the smallest value mina εa .

When vextστ (x) = v(x) δστ and uστσ′τ ′(x − x′) = u(x − x′) δστ δσ′τ ′ , the spin degree of freedom
is just a spectator, and we may obtain a solution where the states are labeled by an index
j ∈ {1, . . . , N} and a spin polarization σ ∈ {↑, ↓}, with polarization-independent single particle
HF energies εj . The HF equations then become

{
− ~

2

2m
∇

2 + vext(x) + vH(x)

}
ϕj(x) +

∫
ddx′ vF(x− x

′)ϕj(x
′) = εj ϕj(x) , (8.63)

where

vH(x) = 2

∫
ddx′ u(x− x

′)

OCC∑

l

|ϕl(x
′)|2

vF(x,x′) = −u(x− x
′)

OCC∑

l

ϕ∗
l (x

′)ϕl(x) .

(8.64)

Translationally invariant systems

For translationally invariant systems, the plane wave basis ϕk(x) = V −1/2 exp(ik · x) yields a
solution. The Hartree and Fock potentials are then

vH(x) = n û(0)

vF(x− x
′) = −u(x− x

′)

∫
ddk

(2π)d
eik·(x−x′) Θ(kF − k) ,

(8.65)

where

n = 2

∫
ddk

(2π)d
Θ(kF − k) =

2Ωd k
d
F

d (2π)d
(8.66)
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is the number density. Here Ωd = 2πd/2/Γ(d/2) is the total solid angle in d space dimensions.
One then has the Hartree-Fock energies

ε(k) =
~
2k2

2m
+ n û(0)−

∫
ddk′

(2π)d
û(k − k

′) Θ(k
F
− k′) , (8.67)

where û(k) is the Fourier transform of u(x).

HF theory for atoms

In atomic physics, we have the one-body ion core potential vext(x) = −Ze2/|x| (neglecting spin-
orbit effects) and the two-body electron-electron interaction u(x− x′) = e2/|x− x′|. It is then a
good approximation to assume that the Hartree-Fock wavefunctions ϕi(x) are of the form

ϕα(x) = Rnl(r) Ylm(θ, φ) , (8.68)

independent of σ. This follows from the rotational isotropy of the ion core potential. We can
then classify the single particle states by the quantum numbers n ∈ {1, 2, . . .}, l ∈ {0, 1, . . . , n−
1}, ml ∈ {−l, . . . ,+l}, and ms = ±1

2
. The essential physics introduced by the Hartree-Fock

method is that of screening. Close to the origin, a given electron senses a potential −Ze2/r due
to the unscreened nucleus. Farther away, though, the nuclear charge is screened by the core
electrons, and the potential decays faster than 1/r.2 Whereas states of different l and identical n
are degenerate for the noninteracting hydrogenic atom, when the nuclear potential is screened,
states of different l are no longer degenerate. Smaller l means lower energy, since these states
are localized closer to the nucleus, where the potential is large and negative and relatively
unscreened. Based on the HF energy levels, the order in which the electron shells are filled
throughout the periodic table is roughly given by that in Fig. 8.1. This is known as the Aufbau
principle from the German Aufbau = ”building up” (see Fig. 8.1). The order in which the orbitals
are filled follows the diagonal rule, which says that orbitals with lower values of n + l are filled
before those with higher values, and that in the case of equal n + l values, the orbital with the
lower n is filled first. For a given l and n there are (2s + 1) × (2l + 1) = 4l + 2 states (s = 1

2
),

labeled by the angular momentum and spin polarization quantum numbers ml and ms ; this
group of orbitals is called a shell.

HF theory for the electron gas

The so-called jellium model of the electron gas consists of N electrons moving in a uniform
neutralizing (i.e. positively charged) background. The system is translationally invariant, hence
the HF wavefunctions are labeled by wavevectors k, with ϕk(x) = V −1/2 exp(ik · x) . In all

2Within the Thomas-Fermi approximation, the potential at long distances decays as −Ce2a3
B
/r4, where C ≃ 100 is

a numerical factor, independent of Z .
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Figure 8.1: The Aufbau principle and the diagonal rule. Image credit: Wikipedia.

dimensions, the neutralizing background contributions precisely cancel the Hartree term in
the energy. The single particle HF energies are then given by (d = 3 dimensions assumed)

ε(k) =
~
2k2

2m
−
∫

d3k′

(2π)3
4πe2

(k − k′)2
Θ(k

F
− k′) = ε0(k) +Σ(k) , (8.69)

where n = k3F/3π
2 is the electron density. The bare dispersion for noninteracting electrons is

ε0(k) = ~
2k2/2m, and the self-energy is

Σ(k) =
e2kF

2π

(
k2 − k2F

kkF

ln

∣∣∣∣
k + kF

k − kF

∣∣∣∣− 2

)
. (8.70)

If we expand about the Fermi wavevector, writing k = (kF + q) n̂, where n̂ is any unit vector,
we obtain

ε(kF + q) = εF +
~
2kF

m
q +

e2

π
q ln

∣∣∣∣
2kF

q

∣∣∣∣ +O(q2) , (8.71)

where εF =
~
2k2F
2m

− e2kF
π

is the Fermi energy within HF theory. The velocity in the vicinity
perpendicular to the Fermi surface is then with

v(q) =
1

~

∂ε(kF + q)

∂q
=

~kF

m
+
e2

π~

(
ln

∣∣∣∣
2kF

q

∣∣∣∣− 1

)
, (8.72)

which diverges logarithmically in the limit q → 0 . This divergence of the Fermi velocity is an
artifact of the HF approach, which neglects screening effects, which we shall consider later on.

The total kinetic energy per particle is given by

T

N
=

1

N
× 2

∑

|k|<kF

ε0(k) =
2

n

∫
d3k

(2π)3
~
2k2

2m
Θ(k

F
− k) =

3~2k2F
10m

. (8.73)
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The total potential energy comes from the sum of the (i) self-interaction of the neutralizing
background, (ii) the energy of interaction between the neutralizing background and the uni-
form density electron gas, (iii) the Hartree energy of the electron gas EH, and (iv) the exchange
energy of the electron gas EX. The first three of these sum to zero, leaving EX, where

EX

N
=

1

2N
× 2

∑

|k|<kF

Σ(k) =
1

n

∫
d3k

(2π)3
Σ(k) Θ(k

F
− k)

= −e
2kF

4π3

1∫

0

dx x2

{
2 +

1− x2

x
ln

∣∣∣∣
1 + x

1− x

∣∣∣∣

}
= −3e2kF

4π
.

(8.74)

Note the factor of 1
2

multiplying the above result, which corrects for the factor of 2 in Eqn. 8.61.

It is conventional to define a dimensionless length rs according to 4
3
π(rs aB)

3 n ≡ 1, where aB =
~
2/me2 is the Bohr radius. Thus

rs =

(
3

4π

)1/3
n−1/3 a−1

B , kF =

(
9π

4

)1/3
r−1
s a−1

B . (8.75)

The kinetic energy per particle is then

T

N
=

3~2

10m

(
9π

4

)2/3
r−2
s a−2

B =
3

5

(
9π

4

)2/3
e2

2aB
· 1

r2s
≃ 2.21

r2s
Ryd , (8.76)

while the exchange energy per particle is

EX

N
= − 3

2π

(
9π

4

)1/3
e2

2aB
· 1
rs

≃ −0.916

rs
Ryd , (8.77)

where 1Ryd = e2/2aB = 13.6057 eV. Thus, interaction effects dominate when rs is large, mean-
ing the density n is small. This is because the kinetic energy term involves two gradients, hence
scales as L−2, whereas the Coulomb interaction scales as L−1. For short-ranged interactions, in-
teraction effects dominate at large densities, which perhaps is more intuitive.

8.3 Density Functional Theory

In any interacting electronic system, the kinetic energy of each electron is given by p2/2m and
the interaction between any two electrons is the Coulomb energy v(x− x′) = e2/|x− x′|. What
differs in the description from one material to the next is the one-body potential vext(x). This is
what distinguishes the Hamiltonian for table salt (NaCl) from that of elemental iron (Fe)3. Thus,

3For large Z ions, the spin-orbit interaction is also important. This can be included in the one-body potential
vext(x) by extending vext to a function vext(x,p,σ) of position, momentum, and spin.
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the ground state wavefunction of any many-electron system Ψσ1···σN
(x1, . . .xN) is completely

determined by vext(x). From the wavefunction we can also determine the one-body electron
density for spin polarization σ, which is

nσ(x) = 〈Ψ |ψ†
σ(x)ψσ(x) |Ψ 〉 = N

∑

σ2

· · ·
∑

σ
N

∫
d3x2 · · ·

∫
d3xN

∣∣Ψσ σ2···σN
(x,x2, . . .xN)

∣∣2 .

(8.78)
Summing over both spin polarizations, we obtain the total electron number density,

n(x) =
∑

σ

nσ(x) . (8.79)

Though at first consideration counterintuitive, it turns out that the entire ground state wave-
function can be considered to be a functional of the electron number density. A number of highly
consequential and extremely useful results follow. This is the subject of density functional the-
ory (DFT), which revolutionized the study of electronic structure of molecules and solids4, and
which was recognized by the 1998 Nobel Prize in Chemistry to Walter Kohn and John Pople.

8.3.1 Hohenberg-Kohn theorems

The mathematical basis underpinning DFT are two theorems by Hohenberg and Kohn.

THEOREM #1 : The ground state energy of a many-electron system is a functional of the total
electron density n(x) =

∑
σ 〈Ψ |ψ†

σ(x)ψσ(x) |Ψ 〉.

To prove this theorem – in our callow physicist’s sort of way – let |Ψ 〉 and |Ψ′ 〉 be the ground
states corresponding respectively to the two external potentials vext(x) and v′ext(x). We assume
these ground states are normalized and distinct, meaning that in any finite volume their over-

lap is less than unity in magnitude. The Hamiltonians are Ĥ = T̂ + V̂ + Û and Ĥ ′ = T̂ + V̂ ′+ Û ,
and it must be that

E ′ = 〈Ψ′ |H ′ |Ψ′ 〉 < 〈Ψ | Ĥ ′ |Ψ 〉 = 〈Ψ | Ĥ |Ψ 〉+ 〈Ψ | V̂ ′ − V̂ |Ψ 〉 , (8.80)

where

V̂ =

∫
d3x vext(x) n̂(x) , V̂ ′ =

∫
d3x v′ext(x) n̂(x) . (8.81)

Thus we conclude E ′ < E + 〈Ψ | V̂ ′ − V̂ |Ψ 〉 . But then E < E ′ + 〈Ψ′ | V̂ − V̂ ′ |Ψ′ 〉 as well,
simply by exchanging the definitions of the primed and unprimed systems. Adding these two
results we obtain

0 < 〈Ψ | V̂ ′ − V̂ |Ψ 〉+ 〈Ψ′ | V̂ − V̂ ′ |Ψ′ 〉 . (8.82)

4Here we follow the discussion in chapter 15 of Girvin and Yang, Condensed Matter Physics (Cambridge, 2019).
See also G. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid (Cambridge, 2005).
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and thus if 〈Ψ | n̂(x) |Ψ 〉 = 〈Ψ′ | n̂(x) |Ψ′ 〉 = n(x), we arrive at a contradiction: 0 < 0 . We
conclude that the ground state wavefunctions for different one-body potentials cannot yield
the exact same density n(x).

THEOREM #2: The ground state energy may be expressed as a functional of the density, E[n],
such that minimizing this functional with respect to n(x) yields the true ground state density.

To see that this is the case, note that theorem #1 entails that for each density n(x) corresponding
to the many-body ground state in some external potential, there is a corresponding ground
state wavefunction |Ψ[n] 〉. Now define the functional

E[n] =

Ejel[n]︷ ︸︸ ︷
〈Ψ[n] | T + U |Ψ[n] 〉 +

∫
d3x vext(x)n(x) . (8.83)

Here Ejel[n] is the energy functional for jellium, with vext = 0. Note that this requires that we

take the two-body potential term Û to be

Û =
1

2

∫
d3x

∫
d3x′

(
n̂(x)− n0

) e2

|x− x′|
(
n̂(x′)− n0

)
, (8.84)

where n0 corresponds to a uniform neutralizing background. Charge neutrality requires that

lim
N→∞

1

N

∫
d3x

(
n(x)− n0

)
= 0 (8.85)

lest the Coulomb energy diverge. Now, since E[ñ] = 〈Ψ[ñ] |H |Ψ[ñ] 〉 > E[n], which follows
by considering |Ψ[ñ] 〉 to be a variational ground state for the Hamiltonian whose true ground
state density is n(x), we conclude that the functional E[n] is indeed minimized when n(x) is
the true ground state density when the external potential is vext(x).

How do we know that a given density n(x) corresponds to the actual ground state density
for Coulomb-interacting electrons in some external potential vext(x)? The short answer is that
we don’t. Indeed for the single particle system, where there are no Coulomb interactions, any
density function n(x) which vanishes at any location cannot possibly be the actual ground state
density for any nonsingular potential vext(x) due to the Perron-Frobenius ”no nodes theorem”.
Functions n(x) which do correspond to the ground state density of a fermionic system for
some potential vext(x) are called V -representable. A weaker condition is that ofN-representability,
which means that for a given density function n(x), there exists an N-fermion wavefunction
Ψσ1···σN

(x1, . . . ,xN) such that

n(x) =
∑

σ

〈Ψ |ψ†
σ(x)ψσ(x) |Ψ 〉

= N
∑

σ

∑

σ2

· · ·
∑

σ
N

∫
d3x2 · · ·

∫
d3xN

∣∣Ψσσ2···σN
(x,x2, . . .xN)

∣∣2 .
(8.86)
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Levy5 and Lieb 6 showed that one could extend the domain of density functionals thusly, so that
the energy minimization is to be carried out over all |Ψ 〉 such that 〈Ψ | n̂(x) |Ψ 〉 = n(x), where
n̂(x) =

∑
σ ψ

†
σ(x)ψσ(x). Note that while obtaining n(x) from |Ψ 〉 is formally defined by Eqn.

8.86, the inverse process, by which one extracts an N-body wavefunction Ψσ1···σN
(x1, . . . ,xN)

from a given N-representable density function n(x) is impractically complex for any N > 1.
The virtue of the Kohn-Sham procedure, discussed in the next section, is that it provides us
with a constructive way to implement the extremization procedure within a class of many-
body wavefunctions.

8.3.2 Kohn-Sham equations

For Coulomb-interacting electrons, the functional Ejel[n] is universal and is given by

Ejel[n] = min
|Ψ〉→n(x)

〈Ψ[n] | T̂ + Û |Ψ[n] 〉 , (8.87)

where the minimization is with respect to all totally antisymmetric N-body wavefunctions
yielding a one-body density n(x). For noninteracting systems, the ground state is a Slater deter-
minant |ΨS[n] 〉 , and we define the functional

TS[n] ≡ min
|Ψ

S
〉→n(x)

〈ΨS[n] | T̂ |ΨS[n] 〉 , (8.88)

where |ΨS 〉 is an N-particle Slater determinant. We may write

n(x) =
∑

α

∑

σ

nα

∣∣ϕα(x, σ)
∣∣2 , (8.89)

where nα ∈ {0, 1} is the occupation of the single particle state ϕα(x, σ), with N =
∑

α nα . We
may write

TS[n] = − ~
2

2m

∑

α

nα 〈ϕα | ∇2 |ϕα 〉 . (8.90)

Aside – I want to comment yet again on the extremely complex and unusual nature of the
functionals Ejel[n] and TS[n]. Functions, such as the iconic f(x), eat numbers (x ∈ R) and excrete
numbers (f(x) ∈ R). Functionals, such as F [f(x)], by contrast eat entire functions (f(x) ∈ C∞(R))
and excrete numbers (F [f(x)] ∈ R).7 Usually it is the case that the functionals we deal with are
specified explicitly. Such it is with the action functional in classical mechanics, S[q(t)], where

S[q(t)] =

t2∫

t1

dt L(q, q̇, t) (8.91)

5M. Levy, Proc. Nat. Acad. Sci 76, 6062 (1979).
6E. H. Lieb, Int. J. Quantum Chem. 24, 243 (1983).
7We can of course generalize to complex functions and complex functionals and functions of several variables
f(x) ∈ C∞(Rn).
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with L = 1
2
mq̇2 − V (q). In this case, if you give me the function q(t), which typically must

satisfy certain boundary conditions such as being fixed at the endpoints, I can in principle
perform the above integral and hand you back S[q(t)]. Things are not so straightforward with
regard to TS[n] and Ejel[n]. Rather, the prescriptions are as follows:

• For TS[n], you give me some function n(x) ∈ C∞(Rd) and I rummage through my file
cabinet of N-particle Slater determinant wavefunctions ΨS(x1, . . . ,xN) = det{ϕαi

(xj)}
constructed from inequivalent orthonormal bases, and I set aside only those functions for
which the density 〈ΨS | n̂(x) |ΨS 〉 = n(x) agrees with your specified function. Then, one-

by-one, I go through this collection, computing 〈ΨS | T̂ |ΨS 〉 for each, and I find which ΨS

yields the lowest expectation value, which is then the value of TS[n].

• For Ejel[n], you give me a function n(x), and I along with a bunch of volunteers search my
giant warehouse of totally antisymmetric N-particle functions Ψ(x1, . . . ,xN) for those Ψ
yielding 〈Ψ | n̂(x) |Ψ 〉 = n(x).8 For each of these surviving wavefunctions, we evaluate

〈Ψ | T̂ + Û |Ψ 〉 and find which Ψ yields the lowest expectation value. This is then the
value of Ejel[n].

As you can see, TS[n] and Ejel[n] are indeed functionals of n(x), because there is an explicit, if
impractical, prescription for how they may be evaluated. Turning the evaluation of Ejel[n] into
an implementable variational scheme was the genius of Kohn and Sham, to whose program
we now return.

Having defined the functionals Ejel[n] and TS[n], we next define the exchange-correlation func-
tional EXC[n] according to the relation

Ejel[n] = TS[n] + EH[n] + EXC[n] , (8.92)

where EH[n] is the Hartree functional,

EH[n] =
1

2

∫
d3x

∫
d3x′

(
n(x)− n0

) e2

|x− x′|
(
n(x′)− n0

)
. (8.93)

Note that Eqn. 8.92 is a definition of the functional EXC[n] in terms of the universal functionals
Ejel[n] (which exists but is unknown), EH[n] (which is explicitly given in Eqn. 8.93), and TS[n]
(which is given in Eqn. 8.90). Note that TS[n] is the kinetic energy of a fictional noninteracting
fermion system which has the same density n(x) as the interacting system under consideration.

At this point, rather than vary with respect to n(x), we instead vary with respect to each of the single
particle wavefunctions ϕ∗

α(x, σ), subject to the conditions of orthonormality.

8This is of course vastly bigger than my file cabinet of Slater determinants, a copy of which is stored somewhere
in the warehouse, since

{
ΨS | 〈ΨS | n̂ |ΨS 〉 = n

}
∈
{
Ψ | 〈Ψ | n̂ |Ψ 〉 = n

}
.
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This results in the Kohn-Sham equations,
{
− ~

2

2m
∇2 + vext(x) + vH(x) + vXC(x)

}
ϕα(x, σ) = εα ϕα(x, σ) , (8.94)

where nα = 1,

vH(x) =
δEH[n]

δn(x)
=

∫
d3x′

e2

|x− x′|
(
n(x′)− n0

)
(8.95)

and where

vXC(x) =
δEXC[n]

δn(x)
(8.96)

are functional derivatives. Note that we have used the functional chain rule,

δF [n]

δϕ∗
α(x)

=
δF [n]

δn(x)
· δn(x)
δϕ∗

α(x)
=
δF [n]

δn(x)
ϕα(x) (8.97)

for any functional F [n]. Note that vXC(x) is local, unlike in Hartree-Fock theory where the Fock
potential vF(x,x

′) is nonlocal.

It is worth emphasizing that while the Kohn-Sham orbitals ϕα(x, σ) have no obvious physical
significance, they are often interpreted as Bloch energy bands for the interacting system (what-
ever that means!). The KS eigenvalues εα do not in general correspond to physical excitation
energies of the system, and the Slater determinant formed from the N lowest-lying KS orbitals
is in general not a good approximation to the actual ground state wavefunction. Indeed the HF
wavefunction is often a better approximation in that regard. However, in the N → ∞ limit, it
can be proven9 that in gapless systems the eigenvalue εN corresponding to the highest occupied
KS energy state is indeed the actual Fermi energy of the system.

At this point, the problem has been reduced to finding the best approximation to the unknown
functional EXC[n].

LDA: the local density approximation

The most commonly used such approximation is called the local density approximation, or LDA.
One writes

ELDA
XC =

∫
d3x n(x) εXC

(
n(x)

)
. (8.98)

The quantity εXC
(
n(x)

)
is the exchange-correlation energy per particle for uniform density jel-

lium. Taking the functional derivative,

µXC

(
n(x)

)
=
δELDA

XC

δn(x)
= εXC

(
n(x)

)
+ n(x)

∂εXC(n)

∂n

∣∣∣∣∣
n(x)

. (8.99)

9G. Giuliani and G. Vignali, op cit.
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Recall how in the HF approximation in d = 3, EX/V = −(3e2/4π)nkF ∝ n4/3, hence

µXC(n) =
4
3
εXC(n) = −e

2kF(n)

π
, (8.100)

where kF(n) = (3π2n)1/3 .

Gradient expansions

If we expand about the jellium density n0, we may write

EGEA
XC [n0 + δn] =

1

2

∫
d3x

{
A(n0)

[
δn(x)

]2
+B(n0)

[
∇δn(x)

]2
+ . . .

}
. (8.101)

This procedure goes under the name gradient expansion approximation, or GEA10. One can also
define spin-resolved expansions viz.

ESGEA
XC [n0↑ + δn↑, n0↓ + δn↓] =

1

2

∫
d3x

{
Aσσ′(n0↑, n0↓) δnσ(x) δnσ′(x) (8.102)

+Bσσ′(n0↑, n0↓)∇δnσ(x) ·∇δnσ′(x) + . . .

}
.

Alas, in applications to real materials, the GEA is often less accurate than the LDA.

Major applications of DFT

Girvin and Yang provide a brief list of popular applications of DFT. For each such application
there are many thousands of papers in the literature:

• Structural determination : Given a set of atoms, what sort of crystal structure will they
form? The external potential is given by

vext(x) = −
∑

l

Zl e
2

|Rl − x| . (8.103)

The total energy is then

Etot

[
{Rl}, n(x)

]
= Ejel[n] +

∫
d3x n(x) vext(x) +

∑

l<l′

Zl Zl′ e
2

|Rl −Rl′ |
. (8.104)

10Density functional theory is replete with acronyms.
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For a given set of nuclear positions {Rl}, the energy functional is minimized with respect
to the density n(x). The resulting energy is then a function of the nuclear positions, and
is then minimized with respect to these variables, yielding the crystal structure. Typically
one works with periodic boundary conditions and with as large a crystallite cell as one
can computationally afford in order to approximate the thermodynamic limit.

• Cohesive energy : The difference between the minimum energy per unit cell in the crys-
talline state and the total atomic energy of each atom in the unit cell is called the cohesive
energy Ecoh = Ecrystal − Eatomic . If Ecoh < 0, then crystal formation is advantageous, and
the difference is the crystalline binding energy per unit cell.

• Elastic constants : After the optimal crystalline structure is determined, by varying with
respect to the nuclear positions one can obtain the elastic constants.

• Phase diagram under pressure : At T = 0 the Gibbs free energy G = E − TS + pV is the
enthalpy H = E + pV . Including the pV term in the energy, one can evaluate the T = 0
Gibbs free energy at any finite pressure.

8.4 Response Functions

8.4.1 Linear response theory

What can we do with Ejel[n]? For starters, we can compute response functions for the jellium
system. If the uniform density for pure jellium is n0 , then upon introducing a potential vext(x)
we may write n(x) = n0 + δn(x). Expanding the functional Ejel[n] about n = n0, we have that
the total energy functional E[n] = Ejel[n] + V [n], to second order in δn, is given by

E[n0 + δn] = Ejel[n0] +
1

2

∫
d3x

∫
d3x′

δEjel[n]

δn(x) δn(x′)

∣∣∣∣∣
n0

δn(x) δn(x′) +

∫
d3x

(
n0 + δn(x)

)
vext(x) .

(8.105)
Note that the first functional variation δEjel[n0] = 0 vanishes for n = n0 by definition. Thus,

δE[n]

δn(x)

∣∣∣∣∣
n0

= vext(x) +

∫
d3x′ χ−1(x,x′) δn(x′) , (8.106)

where11

χ−1(x,x′) ≡
δ2Ejel[n]

δn(x) δn(x′)

∣∣∣∣∣
n0

. (8.107)

11Note that this definition differs by a minus sign by that in ch. 15 of Girvin and Yang, Modern Condensed Matter
Physics.
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The function χ−1(x,x′) is the inverse density susceptibility. The relation between χ−1 and χ is

∫
d3x′ χ−1(x,x′)χ(x′,x′′) = δ(x− x

′′) , (8.108)

thus Eqn. 8.106 is equivalent to

δn(x) = −
∫
d3x′ χ(x,x′) vext(x

′) . (8.109)

The above formula is an example of linear response. Had we expandedE[n0+δn] to higher order
in δn, we’d have obtained higher order terms on the RHS, arranged as a functional Taylor series
in vext(x).

Since the jellium system is translationally invariant, we must have χ(x,x′) = χ(x − x′). We
now define the Fourier transform χ̂(q) as

χ̂(q) ≡
∫
ddx χ(x) e−iq·x , (8.110)

where d = 3 in the present discussion. The FT of χ−1(x − x′) is χ̂−1(q) = 1/χ̂(q). Thus, within
linear response,

δn̂(q) = −χ̂(q) v̂ext(q) . (8.111)

We write, as above,
E[n] = TS[n] + V [n] + EH[n] + EXC[n] . (8.112)

We define the noninteracting susceptibility according to

χ−1
0 (x,x′) =

δ2TS[n]

δn(x) δn(x′)

∣∣∣∣∣
n0

=
1

V

∑

q

χ̂−1
0 (q) eiq·(x−x′) , (8.113)

where, as we shall derive later,

χ̂0(q) = 2

∫
ddk

(2π)d
f 0(k + q)− f 0(k)

ε0(k)− ε0(k + q)
, (8.114)

where ε0(k) = ~
2k2/2m is the noninteracting dispersion, and

f 0(k) =
1

exp
(

ε0(k)−µ

kBT

)
+ 1

(8.115)

is the Fermi distribution. At T = 0, we have f 0(k) = Θ(kF − k) . Performing the integral in
d = 3 dimensions, we obtain

χ̂0(q, T = 0) = g(ε
F
)L(q/2k

F
) , (8.116)
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where g(εF) = mkF/π
2
~
2 is the DOS at the Fermi level, with kF(n) = (3π2n)1/3, and where

L(x) =
1

2
+

1− x2

4x
ln

∣∣∣∣
1 + x

1− x

∣∣∣∣ (8.117)

is the Lindhard function. We may now write

χ−1(x,x′) = χ−1
0 (x,x′) +

e2

|x− x′| + χ−1
XC(x,x

′) (8.118)

where

χ−1
XC(x,x

′) =
δ2EXC[n]

δn(x) δn(x′)

∣∣∣∣∣
n0

. (8.119)

Note that

χ−1
H (x,x′) =

δ2EH[n]

δn(x) δn(x′)

∣∣∣∣∣
n0

=
e2

|x− x′| . (8.120)

Assuming translational invariance, χa(x,x
′) = χa(x − x′) for all labels a (e.g., χ, χ0, χH, χXC),

and χ−1
a (x,x′) = χ−1

a (x− x′) as well. Taking the Fourier transforms, then, we obtain

χ̂−1(q) = χ̂−1
0 (q) +

4πe2

q2
+ χ̂−1

XC(q) ≡ ⊓̂−1
(q) +

4πe2

q2
, (8.121)

where the inverse of the polarization function ⊓̂(q) is defined according to

⊓̂−1
(q) = χ̂−1

0 (q) + χ̂−1
XC(q) . (8.122)

8.4.2 Static screening

We conclude that in the presence of an external potential vext(x), there is to first order a density
response δn̂(q) = −χ̂(q) v̂ext(q). The corresponding charge profile is then δ ˆ̺(q) = −e δn̂(q).
Hence the potential is screened. Within linear response, this results in an effective screened
potential

vscr(x) = vext(x) +

∫
d3x′

e2

|x− x′| δn(x
′)

v̂scr(q) = v̂ext(q)−
4πe2

q2
χ̂(q) v̂ext(q) ≡

v̂ext(q)

ǫ̂(q)
,

(8.123)

where ǫ̂(q) is the static (i.e. zero frequency) dielectric constant, given. by

ǫ̂−1(q) = 1− 4πe2

q2
χ̂(q)

= 1− 4πe2/q2

⊓̂−1
(q) + 4πe2/q2

=
1

1 + 4πe2

q2
⊓̂(q)

.
(8.124)
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Thus,

ǫ̂(q) = 1 +
4πe2

q2
⊓̂(q) . (8.125)

If we ignore the q-dependence and approximate ⊓̂(q) ≈ ⊓̂(0) ≡ Q2/4πe2, which defines a
quantity Q with dimensions of inverse length, then

ǫ̂(q) ≈ 1 +
Q2

q2
(8.126)

and for vext(r) = −Ze2/r, we have v̂ext(q) = −4πZe2/q2 and the FT of the screened potential is

v̂scr(q) = − 4πZe2

q2 +Q2
, (8.127)

which in real space (d = 3) corresponds to a Yukawa potential,

vscr(r) = −Ze
2 exp(−Qr)

r
. (8.128)

Thus, the screened potential is much weaker at long distances (exponentially so) than the bare
1/r Coulomb potential.

Note that the total number of electrons accumulated within linear response theory is

δN =

∫
d3x δn(x) = − lim

q→0
χ̂(q) v̂ext(q)

= lim
q→0

Z

1 + (q2/4πe2) ⊓̂−1
(q)

.
(8.129)

Thus, provided q2/⊓̂(q) vanishes in the limit q → 0, we obtain perfect screening by an induced
charge Q = −e δN = −Ze of the charge +Ze impurity.

We emphasize that throughout this section we are discussing only the linear response of the
jellium system. To compute the linear response of a material like elemental Pb, say, we’d need
to solve the KS equations and evaluate the various functional derivatives at a number density
n(x) which is the ground state electron density for Pb.

8.4.3 Approximate forms for the polarization function

The static dielectric function ǫ̂(q) is given to us, in Eqn. 8.125, in terms of the unknown polar-
ization function ⊓̂(q). There are two common approximations we shall discuss here.

The first is the Lindhard approximation, in which we ignore χ̂XC(q) and write ⊓̂(q) ≈ ⊓̂L(q) where
⊓̂L(q) = χ̂0(q), which is given in Eqns. 8.116 and 8.117 above. Thus

χ̂(q) ≈ χ̂L(q) ≡
χ̂0(q)

1 + 4πe2

q2
χ̂0(q)

, ǫ̂(q) ≈ ǫ̂L(q) ≡ 1 +
4πe2

q2
χ̂0(q) . (8.130)
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In the q → 0 limit, ⊓̂L(q) = g(εF)+O(q2), which entails perfect screening of a Coulomb impurity,
i.e. δN = Z. However, rather than obtaining a Yukawa form for the screened potential, one
instead finds

vscr(r) ∝
cos(2kFr)

r3
(8.131)

in the long distance limit. This arises from the logarithmic singularity in the Lindhard function

L(q/2kF) (Eqn. 8.117) at q = 2kF, which is a feature of the sharp Fermi surface.

A further simplification is the Thomas-Fermi (new acronym: TF) approximation, in which we

also ignore the q-dependence and write ⊓̂(q) ≈ ⊓̂L(0) = g(εF) ≡ Q2
TF/4πe

2, where QTF =√
4πe2g(εF) is the TF wavevector. Thus ǫ̂TF(q) = 1 +

Q2
TF

q2
and the screened potential is of the

Yukawa form. For a quick and dirty way to derive TF theory, assume that the electric po-
tential φ(x) varies slowly in space, and imagine locally shifting the Fermi energy by the local

electrostatic energy, i.e. from εF to εF + e φ(x). This results in a local density accumulation

δn(x) = e φ(x) g(εF), and invoking Poisson’s equation,

∇2φ = −4π̺ = 4πe δn = 4πe2g(ε
F
)φ = Q2

TF φ , (8.132)

whence the Yukawa potential. By ignoring the q-dependence, we have missed the Fermi sur-
face singularity which is present in the (more realistic) Lindhard approximation. Note that the
TF wavelength, λTF = Q−1

TF , is given by

λTF =

(
π

12

)1/6√
rs aB ≈ 0.800

√
rs aB . (8.133)

Recall that 4
3
π(rs aB)

3n ≡ 1 defines rs, hence rs ∝ n−1/3. TF theory is statistical and can only
be justified if there are a large number of electrons within a sphere of radius λTF, which says
rs<∼ (π/12)1/3 ≃ 0.640 .

There is another kind of screening in solids which is relevant when the temperature is much
larger than the Fermi energy. This is called Debye-Hückel screening and the argument goes
as follows. Let the background charge density be ̺0 = e n0 . Classical statistical physics then
yields a local electron density n(x) = n0 exp

[
eφ(x)/k

B
T
]
, and invoking Poisson results in the

equation ∇2φ = Q2
DH φ , where QDH =

√
k

B
T/4πn0e

2 .
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