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Chapter 3

Deformations of Crystals

3.1 Elasticity

3.1.1 Stress and strain tensors

An elastic medium is described by a local deformation field u(r), corresponding to the elastic
displacement of the solid at r. The strain tensor is defined by the dimensionless expression

εij(r) =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
. (3.1)

Note that ε = εT is a symmetric tensor by definition. Similarly, the stress tensor σij(r) is defined
by

dFi(r) = −σij(r)nj dΣ , (3.2)

where dF (r) is the differential force on a surface element dΣ whose normal is the vector n̂.
Angular momentum conservation requires that the stress tensor also be symmetric1. The stress
and strain tensors are related by the rank four elastic modulus tensor, viz.

σij(r) = Cijkl εkl(r) =
δf

δεij(r)
, (3.3)

where the second equality is a statement of thermal equilibrium akin to p = −∂F/∂V . Here,

f(r) = f0 +
1
2
Cijkl εij(r) εkl(r) +O(ε3) (3.4)

1Integrate the differential torque dN = r × dF over the entire body. Integrating by parts, one obtains a surface
term and a volume term. The volume torque density is −ǫijk σjk , which must vanish, thereby entailing the
symmetry σ = σT.
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2 CHAPTER 3. DEFORMATIONS OF CRYSTALS

is the local free energy density. Since ε is a dimensionless tensor, the elastic moduli have dimen-
sions of energy density, typically expressed in cgs units as dyn/cm2. For an isotropic material,
the only O(3) invariant terms in the free energy to order ε2 are proportional to either (Tr ε)2 or
to Tr(ε2). Thus,

f = f0 +
1
2
λ (Tr ε)2 + µ Tr (ε2) . (3.5)

The parameters λ and µ are called the Lamé coefficients2. For isotropic elastic materials, then,

σij =
∂f

∂εij
= λ Tr ε δij + 2µ εij . (3.6)

In the literature, one often meets up with the quantity K ≡ λ+ 2
3
µ , in which case the free energy

density becomes

f = f0 +
1
2
K (Tr ε)2 + µ Tr

(
ε− 1

3
Tr ε

)2
(3.7)

The reason is that the tensor ε̃ ≡ ε− 1
3
(Tr ε)·1 is traceless, and therefore the constant K tells us

about bulk deformations while µ tells us about shear deformations. One then requires K > 0 and
µ > 0 for thermodynamic stability. We then may write, for isotropic materials,

σ = K (Tr ε)·1+ 2µ ε̃

ε =
1

9K
(Tr σ)·1+

1

2µ
σ̃ ,

(3.8)

with σ̃ ≡ σ − 1
3
(Tr σ)·1 the traceless part of the stress tensor3.

If one solves for the homogeneous deformation4 of a rod of circular cross section, the only
nonzero element of the stress tensor is σzz = p , where p is the pressure on either of the circular
faces of the rod. One then finds that εxx = εyy =

(
1
9K

− 1
6µ

)
p and εzz =

(
1
9K

+ 1
3µ

)
p are the only

nonzero elements of the strain tensor. Thus,

Y ≡ σzz

εzz
=

9Kµ

3K + µ
, β ≡ −εxx

εzz
=

3K − 2µ

2(3K + µ)
. (3.9)

The quantity Y is called the Young’s modulus, and must be positive. The quantity β is the
Poisson ratio β and satisfies β ∈

[
− 1, 3

2

]
. A material like tungsten carbide has a very large

Young’s modulus of Y = 53.4 × 1011 dyn/cm2 at STP, which means that you have to pull like
hell in order to get it to stretch a little. Normally, when you stretch a material, it narrows in the
transverse directions, which corresponds to a positive Poisson ratio. Materials for which β < 0
are called auxetics. When stretched, an auxetic becomes thicker in the directions perpendicular
to the applied force. Examples include various porous foams and artificial macrostructures.

2If you were wondering why we’ve suddenly switched to roman indices Cijkl instead of Greek Cαβµν , it is to
obviate any confusion with the Lamé parameter µ.

3In d space dimensions, one has K = λ+ 2d−1µ and m̃ = m− d−1 Tr m is the traceless part of any matrix m.
4In a homogeneous deformation, the strain and stress tensors are constant throughout the body.



3.1. ELASTICITY 3

(αβ) : (11) (22) (33) (23) (31) (12)

a : 1 2 3 4 5 6

Table 3.1: Abbreviation for symmetric compound indices (αβ).

3.1.2 Elasticity and symmetry

Since

Cijkl = Cjikl = Cijlk = Cklij , (3.10)

we may use the composite index notation in Tab. 3.1 to write the rank four tensor Cijkl ≡ Cab =
Cba as a symmetric 6×6 matrix, with 21 independent elements before accounting for symmetry
considerations. The linear stress-strain relation is then given by




σ1

σ2

σ3

σ4

σ5

σ6




=




C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66







ε1
ε2
ε3
2ε4
2ε5
2ε6




. (3.11)

Since the elastic tensor is rank four, it is symmetric under inversion.

And now, let the symmetry commence!

• For triclinic crystals with point group C1 or Ci , there are no symmetries to apply to Cab ,
hence there are 21 independent elastic moduli. However, one can always rotate axes,
and given the freedom to choose three Euler angles, this means we can always choose
axes in such a way that three of the 21 moduli vanish, leaving 18. Again, this requires a
nongeneric choice of axes.

• For monoclinic crystals, there is symmetry under z → −z, and as in the example of the
piezoelectric tensor dµνλ, we have that Cijkl vanishes if the index 3(z) appears an odd
number of times, which means, in composite index notation,

C14 = C15 = C24 = C25 = C34 = C35 = C46 = C56 = 0 , (3.12)

leaving 13 independent elastic moduli for point groups C2 , Cs , and C2h. The 6× 6 matrix
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Cab thus takes the form

CMONO

ab =




C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0
0 0 0 C45 C55 0
C16 C26 C36 0 0 C66




. (3.13)

• For orthorhombic crystals, x → −x and y → −y are each symmetries. Adding z → −z in
the case of D2h doesn’t buy us any new restrictions since C is symmetric under inversion.
We then have Cab = 0 whenever a ∈ {1, 2, 3} and b ∈ {4, 5, 6}. The general form of Cab is
then

CORTHO

ab =




C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66




. (3.14)

• For the tetragonal system, we can rotate (x, y, z) to (−y, x, z). For the lower symmetry
point groups among this system, namely C4 , S4 , and C4h , the most general form is

CTET

ab [C4, S4, C4h] =




C11 C12 C13 0 0 C16

C12 C11 C13 0 0 −C16

C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
C16 −C16 0 0 0 C66




, (3.15)

which has seven independent moduli. For the higher symmetry tetragonal point groups
D4 , C4v , D2d , and D4h , we have C16 = 0 because of the twofold axes which send (x, y, z)
into (x,−y,−z) and (−x, y,−z), and there are only six independent moduli.

• For the trigonal point groups, our lives are again complicated by the C3 rotations. One
convenient way to deal with this is to define ξ ≡ x+ iy and ξ̄ ≡ x− iy , with

εξξ = ξi ξj εij = εxx − εyy + 2i εxy

εξξ̄ = ξi ξ̄j εij = εxx + εxy

εzξ = ξi εzi = εzx + i εzy

εzξ̄ = ξ̄i εzi = εzx − i εzy ,

(3.16)

where ξi = ∂iξ where x1 = x and x2 = y, and ξ̄i = ∂iξ̄. A C3 rotation then takes ξ → e2πi/3 ξ
and ξ̄ → e−2πi/3 ξ̄ . The only allowed elements of Cijkl are

Czzzz , Czzξξ̄ , Cξξξ̄ξ̄ , Cξξ̄ξξ̄ , Czξzξ̄ , Czξξξ , Czξ̄ξ̄ξ̄ , (3.17)
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and their corresponding elements obtained by permuting Cijkl = Cjikl = Cijlk = Cklij .
The first five of these are real, and the last two are complex conjugates: C

zξ̄ξ̄ξ̄
= C∗

zξξξ .

So there are seven independent elastic moduli for the point groups C3 and S6. Note the
general rule that we must have either no complex indices, one ξ and one ξ̄ index, two
each of ξ and ξ̄, three ξ, or three ξ̄. All other coefficients vanish by C3 symmetry. We may
now construct the elastic free energy density,

f = f0 +
1
2
Czzzz ε

2
zz + Cξξξ̄ξ̄ εξξ εξ̄ξ̄ + 2Cξξ̄ξξ̄ ε

2
ξξ̄ + 2Czzξξ̄ εzz εξξ̄

+ 4Czξzξ̄ εzξ εzξ̄ + 2Czξξξ εzξ εξξ + 2Czξ̄ξ̄ξ̄ εzξ̄ εξ̄ξ̄ .
(3.18)

Note the coefficient of four in front of the C
zξzξ̄

term, which arises from summing over the

eight equal contributions,

1
2

(
Czξzξ̄+Czξξ̄z+Cξzzξ̄+Cξzξ̄z+Czξ̄zξ+Czξ̄ξz+Cξ̄zzξ+Cξ̄zξz

)
εzξ εzξ̄ = 4Czξzξ̄ εzξ εzξ̄ . (3.19)

From the free energy, one can identify the coefficients of εa εb , where a and b are composite
indices, and thereby determine the general form for Cab , which is

CTRIG

ab [C3, S6] =




C11 C12 C13 C14 −C25 0
C12 C11 C13 −C14 C25 0
C13 C13 C33 0 0 0
C14 −C14 0 C44 0 C25

−C25 C25 0 0 C44 C14

0 0 0 C25 C14
1
2
(C11 − C12)




, (3.20)

Adding in reflections or twofold axes, as we have in the higher symmetry groups in this
system, i.e. D3 , C3v , and D3d allows for ξ ↔ ξ̄, in which case Czξξξ = C

zξ̄ξ̄ξ̄
, reducing the

number of independent moduli to six, with C25 = 0.

• For all seven hexagonal system point groups, we have Czξξξ = C
zξ̄ξ̄ξ̄

= 0, because C6

rotations take ξ to ξ eiπ/3, hence Czξξξ to −Czξξξ . C3h and D3h don’t contain this element,
but do contain the mirror reflection z → −z, hence in all cases the elastic tensor resembles
that for the trigonal case, but with C14 = C25 = 0. Hence there are five independent
moduli, with

CHEX

ab =




C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 1

2
(C11 − C12)




, (3.21)

• For the cubic system (five point groups), the only independent elements are Cxxxx , Cxxyy ,
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Cxyxy , and their symmetry-related counterparts such as Czzzz , Cyzyz , etc. Thus,

CCUB

ab =




C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44




, (3.22)

• For an isotropic material, C11 = C22+2C44. The Lamé parameters are λ = C12 and µ = C44.

3.2 Phonons in Crystals

Crystalline solids support propagating waves called phonons, which are quantized vibrations

of the lattice. Recall that the quantum mechanical Hamiltonian for a harmonic oscillator, Ĥ =
p2

2m
+ 1

2
mω2

0 q
2, may be written as Ĥ = ~ω0 (a

†a + 1
2
), where a and a† are ‘ladder operators’

satisfying commutation relations
[
a , a†

]
= 1.

3.2.1 One-dimensional chain

Consider the linear chain of masses and springs depicted in fig. 3.1. We assume that our system
consists of N mass points on a large ring of circumference L. In equilibrium, the masses are
spaced evenly by a distance b = L/N . That is, x0

n = nb is the equilibrium position of particle n.
We define un = xn−x0

n to be the difference between the position of mass n and The Hamiltonian
is then

Ĥ =
∑

n

[
p2n
2m

+ 1
2
κ (xn+1 − xn − a)2

]

=
∑

n

[
p2n
2m

+ 1
2
κ (un+1 − un)

2

]
+ 1

2
Nκ(b − a)2 ,

(3.23)

where a is the unstretched length of each spring, m is the mass of each mass point, κ is the
force constant of each spring, and N is the total number of mass points. If b 6= a the springs
are under tension in equilibrium, but as we see this only leads to an additive constant in the
Hamiltonian, and hence does not enter the equations of motion.
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The classical equations of motion are

u̇n =
∂Ĥ

∂pn
=

pn
m

(3.24)

ṗn = − ∂Ĥ

∂un

= κ
(
un+1 + un−1 − 2un

)
. (3.25)

Taking the time derivative of the first equation and substituting into the second yields

ün =
κ

m

(
un+1 + un−1 − 2un

)
. (3.26)

We now write

un =
1√
N

∑

k

ũk e
ikna , (3.27)

where periodicity uN+n = un requires that the k values are quantized so that eikNa = 1, i.e.
k = 2πj/Na where j ∈ {0, 1, . . . , N−1}. The inverse of this discrete Fourier transform is

ũk =
1√
N

∑

n

un e
−ikna . (3.28)

Note that ũk is in general complex, but that ũ∗
k = ũ−k. In terms of the ũk, the equations of motion

take the form
¨̃uk = −2κ

m

(
1− cos(ka)

)
ũk ≡ −ω2

k ũk . (3.29)

Thus, each ũk is a normal mode, and the normal mode frequencies are

ωk = 2

√
κ

m

∣∣sin
(
1
2
ka

)∣∣ . (3.30)

The density of states for this band of phonon excitations is

g(ε) =

π/a∫

−π/a

dk

2π
δ(ε− ~ωk)

=
2

πa

(
J2 − ε2

)−1/2
Θ(ε) Θ(J − ε) ,

(3.31)

where J = 2~
√

κ/m is the phonon bandwidth. The step functions require 0 ≤ ε ≤ J ; outside
this range there are no phonon energy levels and the density of states accordingly vanishes.

The entire theory can be quantized, taking
[
pn , un′

]
= −i~δnn′ . We then define

pn =
1√
N

∑

k

p̃k e
ikna , p̃k =

1√
N

∑

n

pn e
−ikna , (3.32)
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Figure 3.1: A linear chain of masses and springs. The black circles represent the equilibrium
positions of the masses. The displacement of mass n relative to its equilibrium value is un.

in which case
[
p̃k , ũk′

]
= −i~δkk′ . Note that ũ†

k = ũ−k and p̃†k = p̃−k. We then define the ladder
operator

ak =

(
1

2m~ωk

)1/2
p̃k − i

(
mωk

2~

)1/2
ũk (3.33)

and its Hermitean conjugate a†k, in terms of which the Hamiltonian is

Ĥ =
∑

k

~ωk

(
a†kak +

1
2

)
, (3.34)

which is a sum over independent harmonic oscillator modes. Note that the sum over k is
restricted to an interval of width 2π, e.g. k ∈

[
− π

a
, π
a

]
, which is the first Brillouin zone for the

one-dimensional chain structure. The state at wavevector k + 2π
a

is identical to that at k, as we
see from eqn. 3.28.

3.2.2 General theory of lattice vibrations

Consider next the vibrations of a general crystalline lattice in d space dimensions with an r
component basis. We define R to be a Bravais lattice vector, i.e. a label for a unit cell, and ui(R)
to be the displacement of the ith basis ion in the R unit cell. The Hamiltonian is

H =
∑

R,i

p2
i (R)

2mi

+
1

2

∑

R,R′

∑

i,j

∑

α,β

uα
i (R) Φαβ

ij (R−R′) uβ
j (R

′) +O(u3) , (3.35)

where

Φαβ
ij (R−R′) =

∂2U

∂uα
i (R) ∂uβ

j (R
′)

. (3.36)

Remember that the indices i and j run over the set {1, . . . , r}, where r is the number of basis
vectors, while α and β are Cartesian vector indices taken from {1, 2, . . . , d}, where d is the
dimension of space.

In the case of molecules, the dynamical matrix is of rank dN . For a molecule with no point
group symmetries, this is the dimension of the eigenvalue problem to be solved. In crystals,
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by contrast, we may take advantage of translational invariance to reduce the dimension of the
eigenvalue problem to dr, i.e. to the number of degrees of freedom within a unit cell. This is so
even in the case of a triclinic system with no symmetries (i.e. point group C1). Each vibrational
state is labeled by a wavevector k, and at certain high symmetry points k in the Brillouin zone,
crystallographic point group symmetries may be used to group these dr states into multiplets
transforming according to point group IRREPs.

Upon Fourier transform,

uα
i (R) =

1√
N

∑

k

ûα
i (k) e

ik·R eik·δi

pαi (R) =
1√
N

∑

k

p̂αi (k) e
ik·R eik·δi ,

(3.37)

where the sum is over all k within the first Brillouin zone. The Fourier space dynamical matrix
is then

Φ̂αβ
ij (k) =

∑

R

Φαβ
ij (R) e−ik·R e−ik·δi eik·δj . (3.38)

The Hamiltonian, to quadratic order, takes the form

H =
∑

k,i

p̂αi (k) p̂
α
i (−k)

2mi

+
1

2

∑

k

∑

i,j

∑

α,β

ûα
i (−k) Φ̂αβ

ij (k) û
β
j (k) , (3.39)

Note that ûα
i (−k) =

[
ûα
i (k)

]∗
because the displacements uα

i (R) are real; a corresponding relation
holds for the momenta. Note also the Poisson bracket relation in crystal momentum space
becomes

{
uα
i (R) , pβj (R

′)
}

PB

= δRR′ δij δαβ ⇒
{
ûα
i (k) , p̂

β
j (k

′)
}

PB

= δP

k+k′,0 δij δαβ , (3.40)

where δP

k+k′,0 =
∑

G δk+k′,G requires k + k′ = 0 modulo any reciprocal lattice vector. Note also
that

Φαβ
ij (R) = Φβα

ji (−R) ⇒ Φ̂βα
ji (k) = Φ̂αβ

ij (−k) =
[
Φ̂αβ
ij (k)

]∗
. (3.41)

Thus, for each crystal momentum k, the dynamical matrix Φ̂βα
ji (k) is Hermitian, where we take

(iα) and (jβ) as composite indices. We now have the eigensystem
∑

β,j

Φ̂αβ
ij (k) ê

β
jλ(k) = mi ω

2
λ(k) ê

α
iλ(k) (3.42)

where λ ∈ {1, . . . , rd} indexes the normal modes, and Siα,λ(k) ≡ êαiλ(k) ≡ m
−1/2
i Uiα,λ(k) di-

agonalizes the dynamical matrix, with Uiα,λ(k) unitary. We may now write the completeness
relation,

dr∑

λ=1

êα∗iλ (k) ê
β
jλ(k) =

1

mi

δij δαβ (3.43)
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Figure 3.2: Upper panel: phonon spectrum in fcc elemental rhodium (Rh) at T = 297K mea-
sured by high precision inelastic neutron scattering (INS) by A. Eichler et al., Phys. Rev. B 57,
324 (1998). Note the three acoustic branches and no optical branches, corresponding to d = 3
and r = 1. Lower panel: phonon spectrum in gallium arsenide (GaAs) at T = 12K, comparing
theoretical lattice-dynamical calculations with INS results of D. Strauch and B. Dorner, J. Phys.:
Condens. Matter 2, 1457 (1990). Note the three acoustic branches and three optical branches,
corresponding to d = 3 and r = 2. The Greek letters along the x-axis indicate points of high
symmetry in the Brillouin zone.

and the orthogonality relation,

r∑

i=1

d∑

α=1

mi ê
α∗
iλ (k) ê

α
iλ′(k) = δλλ′ , (3.44)

which are the completeness and orthogonality relations, respectively. Since êα∗iλ (−k) and êαiλ(k)
obey the same equation, we have that ωλ(−k) = ωλ(k). If the phonon eigenmode | k, λ 〉 is
nondegenerate, we may choose êαiλ(−k) = êα∗iλ (k). Else at best we can conclude êαiλ(−k) =
êα∗iλ′(k) eiη where | k, λ′ 〉 is another state from the degenerate manifold of phonon states at this
wavevector, and eiη is a phase.
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Expressing ûα
i (k) and p̂αi (k) in terms of the normal modes, we write

ûα
i (k) =

dr∑

λ=1

êαiλ(k) q̂λ(k) , p̂αi (k) = mi

dr∑

λ=1

êα∗iλ (−k) π̂λ(k) (3.45)

where
{
q̂λ(k), π̂λ′(k)

}
PB

= δk+k′,0 δλλ′ . This entails

q̂λ(k) =
r∑

i=1

d∑

α=1

mi ê
α∗
iλ (k) û

α
i (k) , π̂λ(k) =

r∑

i=1

d∑

α=1

êαiλ(−k) p̂αi (k) . (3.46)

The phonon Hamiltonian now takes the diagonalized form

H =
∑

k

rd∑

λ=1

{
1
2
π̂λ(−k) π̂λ(k) +

1
2
ω2
λ(k) q̂λ(−k) q̂λ(k)

}
, (3.47)

with
{
q̂λ(k) , π̂λ′(k′)

}
PB

= δλλ′ δP

k+k′,0 . To quantize, promote the Poisson brackets to commuta-

tors:
{
A , B}

PB
→ −i~−1

[
A , B

]
. Then define the ladder operators,

Aλ(k) =

(
ωλ(k)

2~

)1/2
q̂λ(k) + i

(
1

2~ωλ(k)

)1/2
π̂λ(k) , (3.48)

which satisfy
[
Aλ(k) , A

†
λ′(k′)

]
= δP

kk′ δλλ′ . The quantum phonon Hamiltonian is then

Ĥ =
∑

k

rd∑

λ=1

~ωλ(k)
(
A†

λ(k)Aλ(k) +
1
2

)
. (3.49)

Of the dr phonon branches, d are acoustic, and behave as ωa(k) = c(k̂) k as k → 0, which
is the Γ point in the Brillouin zone. These gapless phonons are the Goldstone bosons of the
spontaneously broken translational symmetry which gave rise to the crystalline phase. To each
broken generator of translation, there corresponds a Goldstone mode. The remaining d(r − 1)
modes are called optical phonons. Whereas for acoustic modes, all the ions in a given unit cell
are moving in phase, for optical modes they are moving out of phase. Hence optical modes
are always finite frequency modes. Fig. 3.2 shows the phonon spectra in elemental rhodium
(space group Fm3m, point group Oh ) , and in gallium arsenide (space group F43m, point
group Td ) . Since Rh forms an fcc Bravais lattice, there are no optical phonon modes. GaAs
forms a zincblende structure, i.e. two interpenetrating fcc lattices, one for the gallium, the other
for the arsenic. Thus r = 2 and we expect three acoustic and three optical branches of phonons.

Nota bene : One may choose to define the Fourier transforms above taking the additional
phases for the basis elements to all be unity, viz.

uα
i (R) =

1√
N

∑

k

ûα
i (k)e

ik·R , pαi (R) =
1√
N

∑

k

p̂αi (k)e
ik·R , Φ̂αβ

ij (k) =
∑

R

Φαβ
ij (R) e−ik·R .

(3.50)
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All the equations starting with Eqn. 3.39 remain the same. Setting the basis phases to unity
amounts to a choice of gauge. It is somewhat simpler in certain contexts, but it may obscure
essential space group symmetries. On the other hand, it should also be noted that the Fourier

transforms ûα
i (k), p̂

α
i (k), and Φ̂αβ

ij (k) are not periodic in the Brillouin zone, but instead satisfy
generalized periodic boundary conditions,

ûα
i (K + k) = e−iK·δi ûα

i (k)

p̂αi (K + k) = e−iK·δi p̂αi (k)

Φ̂αβ
ij (K + k) = e−iK·(δi−δj) Φ̂αβ

ij (k) ,

(3.51)

where K ∈ L̂ is any reciprocal lattice vector.

3.2.3 Translation and rotation invariance

The potential energy U
(
{uα

i (R)}
)

must remain invariant under the operations

uα
i (R) → uα

i (R) + dα

uα
i (R) → uα

i (R) + ǫαµν (R
µ + δµi − δµj ) d

ν (3.52)

for an infinitesimal vector d. The first equation represents a uniform translation of all lattice
sites by d. The second represents an infinitesimal rotation about the jth basis ion in the R = 0
unit cell. We are free to choose any j.

Writing U(u +∆u) = U(u), we must have that the linear terms in ∆u vanish, hence
∑

R,i

Φαβ
ij (R) =

∑

i

Φ̂αβ
ij (0) = 0

ǫαµν
∑

R,i

(Rµ + δµi − δµj )Φ
νβ
ij (R) = i ǫαµν

∑

i

∂Φ̂νβ
ij (k)

∂kµ

∣∣∣∣
k=0

= 0 .

(3.53)

Note that (α, β, j) are free indices in both equations. The first of these equations says that any
vector dβ is an eigenvector of the dynamical matrix at k = 0, with zero eigenvalue. Thus, at
k = 0, there is a three-dimensional space of zero energy modes. These are the Goldstone modes
associated with the three broken generators of translation in the crystal.

3.2.4 Phonons in an fcc lattice

When the crystal is a Bravais lattice, there are no basis indices, and the dynamical matrix be-
comes

Φ̂αβ(k) =
∑

R

′
(1− cos k ·R)

∂2v(R)

∂Rα ∂Rβ
, (3.54)
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where v(r) is the inter-ionic potential, and the prime on the sum indicates that R = 0 is to be
excluded. For central potentials v(R) = v(R),

∂2v(R)

∂Rα ∂Rβ
=

(
δαβ − R̂α R̂β

) v′(R)

R
+ R̂α R̂β v′′(R) . (3.55)

For simplicity, we assume v(R) is negligible beyond the first neighbor. On the fcc lattice, there
are twelve first neighbors, lying at ∆ = 1

2
a (±ŷ ± ẑ), ∆ = 1

2
a (±x̂ ± ẑ), and ∆ = 1

2
a (±x̂ ± ŷ).

Here a is the side length of the underlying simple cubic lattice, so the fcc lattice constant is
a/

√
2. We define

A =

√
2

a
v′
(
a/

√
2
)

, B = v′′
(
a/

√
2
)

. (3.56)

Along (100), we have k = kx̂ and

Φ̂αβ(k) = 4 sin2(1
4
ka)



2A+ 2B 0 0

0 3A +B 0
0 0 3A+B


 , (3.57)

which is already diagonal. Thus, the eigenvectors lie along the cubic axes and

ω
L
= 2

√
2(A+B)

m

∣∣ sin(ka/4)
∣∣ , ω

T1
= ω

T2
= 2

√
3A+B

m

∣∣ sin(ka/4)
∣∣ . (3.58)

Along (111), we have k = 1√
3
k (x̂+ ŷ + ẑ). One finds

Φ̂αβ(k) = 4 sin2
(
ka/

√
12
)


4A+ 2B B −A B −A
B −A 4A+ 2B B −A
B −A B −A 4A+ 2B


 . (3.59)

ω
L
= 2

√
A+2B

m

∣∣ sin
(
ka/

√
12
)∣∣ , ω

T1
= ω

T2
= 2

√
5A+B
2m

∣∣ sin
(
ka/

√
12
)∣∣ . (3.60)

3.2.5 Phonons in the hcp structure

The HCP structure is represented as an underlying simple hexagonal lattice with a two-element
basis:

a1 = a x̂ , a2 =
1
2
a x̂+

√
3
2
a ŷ , a3 =

√
8
3
a ẑ . (3.61)

Bravais lattice sites are of the form R = la1 + ma2 + na3. The A sublattice occupies the sites
{R }, while the B sublattice occupies the sites {R+ δ }, where

δ = 1
2
a x̂+ 1

2
√
3
a ŷ +

√
2
3
a ẑ . (3.62)

The nearest neighbor separation is |a1| = |a2| = |δ| = a. Note that R can be used to label the
unit cells, i.e. each unit cell is labeled by the coordinates of its constituent A sublattice site.
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Classical energy

The classical energy for the system is the potential energy of the fixed lattice, given by

U0

N
=

∑

R

[
v(R)

(
1− δR,0

)
+ v(R+ δ)

]
, (3.63)

where v(r) is the interatomic potential.

Dynamical matrix

When phonon fluctuations are included, the positions of the A and B sublattice sites are written

R −→ R+ uA(R)

R+ δ −→ R+ δ + uB(R) .
(3.64)

Then the potential energy is

U = U0 +
∑

R

(
uA(R) · FA(R) + uB(R) · FB(R)

)

+ 1
2

∑

R,R′

∑

j,j′

∑

α,α′

Φαα′

jj′ (R−R′) uα
j (R) uα′

j′ (R
′) +O(u3) ,

(3.65)

where

Φαα′

jj′ (R−R′) =
∂2U

∂uα
j (R) ∂uα′

j′ (R
′)
. (3.66)

Here {α, α′} are spatial indices (x, y, z), and {j, j′} are sublattice indices (A,B).

It is convenient to Fourier transform, with

uα
A(R) =

1√
N

∑

k

ûα
A(k) e

ik·R

uα
B(R) =

1√
N

∑

k

ûα
B(k) e

ik·(R+δ) ,
(3.67)

where N is the total number of unit cells. Then

U = U0 +
∑

k

∑

j

ûj(k) · F̂j(−k) + 1
2

∑

k

∑

j,j′

∑

α,α′

Φ̂αα′

jj′ (k) û
α
j (k) û

α′

j′ (−k) +O(u3) , (3.68)

where the dynamical matrix is

Φ̂αα′

jj′ (k) =



Φ̂αα′

11 (k) Φ̂αα′

12 (k)

Φ̂αα′

21 (k) Φ̂αα′

22 (k)


 . (3.69)
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Figure 3.3: Classical lattice energy for hcp 4He as a function of nearest neighbor separation a
for the Lennard-Jones potential (red) and the Aziz potential (blue).

where

Φ̂αβ
11 (k) =

∑

R

′
(1− cos k ·R)

∂2v(R)

∂Rα ∂Rβ
+
∑

R

∂α∂β v(R+ δ)

Φ̂αβ
12 (k) = −

∑

R

eik·(R+δ) ∂
2v(R+ δ)

∂Rα ∂Rβ

(3.70)

Note that Φ̂αβ
21 (k) =

[
Φ̂αβ
12 (k)

]∗
. Note also that if v(R) = v(R) is a central potential, then

∂2v(R)

∂Rα ∂Rβ
=

(
δαβ − R̂αR̂β

) v′(R)

R
+ R̂αR̂β v′′(R) , (3.71)

where R̂α = Rα/|R|.

Lennard-Jones potential

The Lennard-Jones potential is given by

v(r) = 4ε0

[(
σ

r

)12
−

(
σ

r

)6]
(3.72)

where
ε0 = 10.22K , σ = 2.556 Å . (3.73)
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Figure 3.4: Phonon dispersions along high-symmetry directions in the Brillouin zone for hcp
4He at molar volume v0 = 12 cm3/mol, using the Lennard-Jones potential.

Aziz potential

The Aziz potential is given by

v(r) = ε0

{
Ae−αr/b −

[
C6

(
b

r

)6
+ C8

(
b

r

)8
+ C10

(
b

r

)10]
F (r)

}
, (3.74)

where

F (r) =

{
e−(

Db
r
−1)

2

if r ≤ Db

1 if r > Db ,
(3.75)

with
ε = 10.8K , b = 2.9763 Å , A = 5.448504× 105 , α = 13.353384 (3.76)

and

C6 = 1.37732412 , C8 = 0.4253785 , C10 = 0.171800 , D = 1.231314 . (3.77)

The mass of the helium-4 atom is m = 6.65× 10−24 g.

3.2.6 Phonon density of states

For a crystalline lattice with an r-element basis, there are then d · r phonon modes for each
wavevector k lying in the first Brillouin zone. If we impose periodic boundary conditions, then
the k points within the first Brillouin zone are themselves quantized, as in the d = 1 case where
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we found k = 2πn/N . There are N distinct k points in the first Brillouin zone – one for every
direct lattice site. The total number of modes is than d · r · N , which is the total number of
translational degrees of freedom in our system: rN total atoms (N unit cells each with an r
atom basis) each free to vibrate in d dimensions. Of the d · r branches of phonon excitations,
d of them will be acoustic modes whose frequency vanishes as k → 0. The remaining d(r − 1)
branches are optical modes and oscillate at finite frequencies. Basically, in an acoustic mode, for
k close to the (Brillouin) zone center k = 0, all the atoms in each unit cell move together in the
same direction at any moment of time. In an optical mode, the different basis atoms move in
different directions.

There is no number conservation law for phonons – they may be freely created or destroyed in
anharmonic processes, where two photons with wavevectors k and q can combine into a single
phonon with wavevector k + q, and vice versa. Therefore the chemical potential for phonons is
µ = 0. We define the density of states gs(ω) for the sth phonon mode as

gs(ω) =
1

N

∑

k

δ
(
ω − ωs(k)

)
= Ω

∫

Ω̂

ddk

(2π)d
δ
(
ω − ωs(k)

)
, (3.78)

where N is the number of unit cells, Ω is the unit cell volume of the direct lattice, and the k

sum and integral are over the first Brillouin zone only. Note that ω here has dimensions of
frequency. The functions ga(ω) is normalized to unity:

∞∫

0

dω gs(ω) = 1 . (3.79)

The total phonon density of states per unit cell is given by5 g(ω) =
∑dr

s=1 gs(ω) .

The grand potential for the phonon gas is

Ω(T, V ) = −k
B
T ln

∏

k,s

∞∑

na(k)=0

e−β~ωs(k)
(
ns(k)+

1

2

)

= k
B
T
∑

k,s

ln

[
2 sinh

(
~ωs(k)

2k
B
T

)]
= Nk

B
T

∞∫

0

dω g(ω) ln

[
2 sinh

(
~ω

2k
B
T

)]
.

(3.80)

Note that V = NV0 since there are N unit cells, each of volume V0. The entropy is given by

S = −
(
∂Ω
∂T

)
V

and thus the heat capacity is

CV = −T
∂2Ω

∂T 2
= Nk

B

∞∫

0

dω g(ω)

(
~ω

2k
B
T

)2
csch2

(
~ω

2k
B
T

)
(3.81)

5Note the dimensions of g(ω) are (frequency)−1. By contrast, the dimensions of g(ε) are (energy)−1 · (volume)−1.
The difference lies in the a factor of V

0
· ~, where V

0
is the unit cell volume.
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Figure 3.5: Upper panel: phonon spectrum in elemental rhodium (Rh) at T = 297K measured
by high precision inelastic neutron scattering (INS) by A. Eichler et al., Phys. Rev. B 57, 324
(1998). Note the three acoustic branches and no optical branches, corresponding to d = 3 and
r = 1. Lower panel: phonon spectrum in gallium arsenide (GaAs) at T = 12K, comparing
theoretical lattice-dynamical calculations with INS results of D. Strauch and B. Dorner, J. Phys.:
Condens. Matter 2, 1457 (1990). Note the three acoustic branches and three optical branches,
corresponding to d = 3 and r = 2. The Greek letters along the x-axis indicate points of high
symmetry in the Brillouin zone.

Note that as T → ∞ we have csch
(

~ω
2k

B
T

)
→ 2k

B
T

~ω
, and therefore

lim
T→∞

CV (T ) = Nk
B

∞∫

0

dω g(ω) = rdNk
B
. (3.82)

This is the classical Dulong-Petit limit of 1
2
k

B
per quadratic degree of freedom; there are rN

atoms moving in d dimensions, hence d · rN positions and an equal number of momenta, re-
sulting in a high temperature limit of CV = rdNk

B
.
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3.2.7 Einstein and Debye models

HIstorically, two models of lattice vibrations have received wide attention. First is the so-
called Einstein model, in which there is no dispersion to the individual phonon modes. We
approximate ga(ω) ≈ δ(ω − ωa), in which case

CV (T ) = Nk
B

∑

s

(
~ωs

2k
B
T

)2
csch2

(
~ωs

2k
B
T

)
. (3.83)

At low temperatures, the contribution from each branch vanishes exponentially, because csch2
(

~ωs

2k
B
T

)
≃

4 e−~ωs/kBT → 0. Real solids don’t behave this way.

A more realistic model. due to Debye, accounts for the low-lying acoustic phonon branches.
Since the acoustic phonon dispersion vanishes linearly with |k| as k → 0, there is no tempera-
ture at which the acoustic phonons ‘freeze out’ exponentially, as in the case of Einstein phonons.
Indeed, the Einstein model is appropriate in describing the d (r−1) optical phonon branches,
though it fails miserably for the acoustic branches.

In the vicinity of the zone center k = 0 (also called Γ in crystallographic notation) the d acoustic
modes obey a linear dispersion, with ωs(k) = cs(k̂) k. This results in an acoustic phonon density
of states in d = 3 dimensions of

g̃(ω) =
V0 ω

2

2π2

∑

s

∫
dk̂

4π

1

c3s(k)
Θ(ω

D
− ω)

=
3V0

2π2c̄3
ω2Θ(ω

D
− ω) ,

(3.84)

where c̄ is an average acoustic phonon velocity (i.e. speed of sound) defined by

3

c̄3
=

∑

s

∫
dk̂

4π

1

c3s(k)
(3.85)

and ω
D

is a cutoff known as the Debye frequency. The cutoff is necessary because the phonon
branch does not extend forever, but only to the boundaries of the Brillouin zone. Thus, ω

D

should roughly be equal to the energy of a zone boundary phonon. Alternatively, we can
define ω

D
by the normalization condition

∞∫

0

dω g̃(ω) = 3 =⇒ ω
D
= (6π2/V0)

1/3 c̄ . (3.86)

This allows us to write g̃(ω) =
(
9ω2/ω3

D

)
Θ(ω

D
− ω).
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The specific heat due to the acoustic phonons is then

CV (T ) =
9Nk

B

ω3
D

ω
D∫

0

dω ω2

(
~ω

2k
B
T

)2
csch2

(
~ω

2k
B
T

)

= 9Nk
B

(
2T

Θ
D

)3
φ
(
Θ

D
/2T

)
,

(3.87)

where Θ
D
= ~ω

D
/k

B
is the Debye temperature and

φ(x) =

x∫

0

dt t4 csch2t =






1
3
x3 x → 0

π4

30
x → ∞ .

(3.88)

Therefore,

CV (T ) =





12π4

5
Nk

B

(
T
Θ

D

)3

T ≪ ΘD

3Nk
B

T ≫ ΘD .

(3.89)

Thus, the heat capacity due to acoustic phonons obeys the Dulong-Petit rule in that CV (T →
∞) = 3Nk

B
, corresponding to the three acoustic degrees of freedom per unit cell. The remain-

ing contribution of 3(r − 1)Nk
B

to the high temperature heat capacity comes from the optical
modes not considered in the Debye model. The low temperature T 3 behavior of the heat ca-
pacity of crystalline solids is a generic feature, and its detailed description is a triumph of the
Debye model.

3.2.8 Phenomenological theory of melting

Atomic fluctuations in a crystal

For the one-dimensional chain, eqn. 3.33 gives

ũk = i

(
~

2mωk

)1/2(
ak − a†−k

)
. (3.90)

Therefore the RMS fluctuations at each site are given by

〈u2
n〉 =

1

N

∑

k

〈ũk ũ−k〉 =
1

N

∑

k

~

mωk

(
n(k) + 1

2

)
, (3.91)

where n(k, T ) =
[
exp(~ωk/kB

T )− 1
]−1

is the Bose occupancy function.
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Element Ag Al Au C Cd Cr Cu Fe Mn
Θ

D
(K) 227 433 162 2250 210 606 347 477 409

Tmelt (K) 962 660 1064 3500 321 1857 1083 1535 1245

Element Ni Pb Pt Si Sn Ta Ti W Zn
Θ

D
(K) 477 105 237 645 199 246 420 383 329

Tmelt (K) 1453 327 1772 1410 232 2996 1660 3410 420

Table 3.2: Debye temperatures (at T = 0) and melting points for some common elements
(carbon is assumed to be diamond and not graphite). (Source: the internet!)

Let us now generalize this expression to the case of a d-dimensional solid. The appropriate
expression for the RMS position fluctuations of the ith basis atom in each unit cell is

〈u2
l (R)〉 = 1

N

∑

k

dr∑

s=1

~

Mls(k)ωs(k)

(
ns(k) +

1
2

)
. (3.92)

Here we sum over all wavevectors k in the first Brilliouin zone, and over all normal modes a.
There are dr normal modes per unit cell i.e. d branches of the phonon dispersion ωs(k). (For the
one-dimensional chain with d = 1 and r = 1 there was only one such branch to consider). Note
also the quantity Mis(k), which has units of mass and is defined in terms of the polarization
vectors eαls(k) as

1

Mls(k)
=

d∑

µ=1

∣∣eµls(k)
∣∣2 . (3.93)

The dimensions of the polarization vector are [mass]−1/2, since the generalized orthonormality
condition on the normal modes is

∑

l,µ

Ml e
µ
ls
∗
(k) eµls′(k) = δss′ , (3.94)

where Mi is the mass of the atom of species i within the unit cell (i ∈ {1, . . . , r}). For our
purposes we can replace Mis(k) by an appropriately averaged quantity which we call Mi ; this
‘effective mass’ is then independent of the mode index a as well as the wavevector k. We may
then write

〈u2
l 〉 ≈

∞∫

0

dω g(ω)
~

Ml ω
·
{

1

e~ω/kBT − 1
+

1

2

}
, (3.95)

where we have dropped the site label R since translational invariance guarantees that the fluc-
tuations are the same from one unit cell to the next. Note that the fluctuations 〈u2

i 〉 can be
divided into a temperature-dependent part 〈u2

i 〉th and a temperature-independent quantum
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contribution 〈u2
i 〉qu , where

〈u2
l 〉th =

~

Ml

∞∫

0

dω
g(ω)

ω
· 1

e~ω/kBT − 1

〈u2
l 〉qu =

~

2Ml

∞∫

0

dω
g(ω)

ω
.

(3.96)

Let’s evaluate these contributions within the Debye model, where we replace g(ω) by

ḡ(ω) =
d2 ωd−1

ωd
D

Θ(ω
D
− ω) . (3.97)

We then find

〈u2
l 〉th =

d2~

Ml ωD

(
k

B
T

~ω
D

)d−1

Fd(~ωD
/k

B
T )

〈u2
l 〉qu =

d2

d− 1
· ~

2Ml ωD

,

(3.98)

where

Fd(x) =

x∫

0

dy
yd−2

ey − 1
=





xd−2

d−2
x → 0

ζ(d− 1) x → ∞
. (3.99)

We can now extract from these expressions several important conclusions:

1) The T = 0 contribution to the the fluctuations, 〈u2
l 〉qu, diverges in d = 1 dimensions.

Therefore there are no one-dimensional quantum solids.

2) The thermal contribution to the fluctuations, 〈u2
l 〉th, diverges for any T > 0 whenever

d ≤ 2. This is because the integrand of Fd(x) goes as yd−3 as y → 0. Therefore, there are no
two-dimensional classical solids.

3) Both the above conclusions are valid in the thermodynamic limit. Finite size imposes
a cutoff on the frequency integrals, because there is a smallest wavevector kmin ∼ 2π/L,
where L is the (finite) linear dimension of the system. This leads to a low frequency cutoff
ωmin = 2πc̄/L, where c̄ is the appropriately averaged acoustic phonon velocity from eqn.
3.85, which mitigates any divergences.
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Lindemann melting criterion

An old phenomenological theory of melting due to Lindemann says that a crystalline solid
melts when the RMS fluctuations in the atomic positions exceeds a certain fraction η of the
lattice constant a. We therefore define the ratios

x2
l,th ≡ 〈u2

l 〉th
a2

= d2 ·
(

~
2

Ml a2 kB

)
· T

d−1

Θd
D

· F (Θ
D
/T )

x2
l,qu ≡

〈u2
l 〉qu
a2

=
d2

2(d− 1)
·
(

~
2

Ml a2 kB

)
· 1

Θ
D

,

(3.100)

with xl =
√

x2
l,th + x2

l,qu =
√

〈u2
l 〉
/
a.

Let’s now work through an example of a three-dimensional solid. We’ll assume a single ele-
ment basis (r = 1). We have that

9~2/4k
B

1 amu Å
2 = 109K . (3.101)

According to table 3.2, the melting temperature always exceeds the Debye temperature, and
often by a great amount. We therefore assume T ≫ Θ

D
, which puts us in the small x limit of

Fd(x). We then find

x2
qu =

Θ⋆

Θ
D

, x2
th =

Θ⋆

Θ
D

· 4T
Θ

D

, x =

√(
1 +

4T

Θ
D

)
Θ⋆

Θ
D

. (3.102)

where

Θ∗ =
109K

M [amu] ·
(
a[Å]

)2 . (3.103)

The total position fluctuation is of course the sum x2
l = x2

l,th + x2
l,qu. Consider for example the

case of copper, with M = 56 amu and a = 2.87 Å. The Debye temperature is Θ
D
= 347K. From

this we find xqu = 0.026, which says that at T = 0 the RMS fluctuations of the atomic positions
are not quite three percent of the lattice spacing (i.e. the distance between neighboring copper
atoms). At room temperature, T = 293K, one finds xth = 0.048, which is about twice as
large as the quantum contribution. How big are the atomic position fluctuations at the melting
point? According to our table, Tmelt = 1083K for copper, and from our formulae we obtain
xmelt = 0.096. The Lindemann criterion says that solids melt when x(T ) ≈ 0.1.

We were very lucky to hit the magic number xmelt = 0.1 with copper. Let’s try another example.
Lead has M = 208 amu and a = 4.95 Å. The Debye temperature is Θ

D
= 105K (‘soft phonons’),

and the melting point is Tmelt = 327K. From these data we obtain x(T = 0) = 0.014, x(293K) =
0.050 and x(T = 327K) = 0.053. Same ballpark.
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We can turn the analysis around and predict a melting temperature based on the Lindemann
criterion x(Tmelt) = η, where η ≈ 0.1. We obtain

T
L
=

(
η2Θ

D

Θ⋆
− 1

)
· ΘD

4
. (3.104)

We call T
L

the Lindemann temperature. Most treatments of the Lindemann criterion ignore the
quantum correction, which gives the −1 contribution inside the above parentheses. But if we
are more careful and include it, we see that it may be possible to have TL < 0. This occurs for
any crystal where Θ

D
< Θ⋆/η2.

Consider for example the case of 4He, which at atmospheric pressure condenses into a liquid
at Tc = 4.2K and remains in the liquid state down to absolute zero. At p = 1 atm, it never
solidifies! Why? The number density of liquid 4He at p = 1 atm and T = 0K is 2.2× 1022 cm−3.
Let’s say the Helium atoms want to form a crystalline lattice. We don’t know a priori what
the lattice structure will be, so let’s for the sake of simplicity assume a simple cubic lattice.
From the number density we obtain a lattice spacing of a = 3.57 Å. OK now what do we
take for the Debye temperature? Theoretically this should depend on the microscopic force
constants which enter the small oscillations problem (i.e. the spring constants between pairs of
helium atoms in equilibrium). We’ll use the expression we derived for the Debye frequency,
ω

D
= (6π2/V0)

1/3c̄, where V0 is the unit cell volume. We’ll take c̄ = 238m/s, which is the speed
of sound in liquid helium at T = 0. This gives Θ

D
= 19.8K. We find Θ⋆ = 2.13K, and if

we take η = 0.1 this gives Θ⋆/η2 = 213K, which significantly exceeds Θ
D

. Thus, the solid
should melt because the RMS fluctuations in the atomic positions at absolute zero are huge:
xqu = (Θ⋆/Θ

D
)1/2 = 0.33. By applying pressure, one can get 4He to crystallize above pc = 25 atm

(at absolute zero). Under pressure, the unit cell volume V0 decreases and the phonon velocity c̄
increases, so the Debye temperature itself increases.

It is important to recognize that the Lindemann criterion does not provide us with a theory of
melting per se. Rather it provides us with a heuristic which allows us to predict roughly when
a solid should melt.

3.2.9 Goldstone bosons

The vanishing of the acoustic phonon dispersion at k = 0 is a consequence of Goldstone’s theorem
which says that associated with every broken generator of a continuous symmetry there is an asso-
ciated bosonic gapless excitation (i.e. one whose frequency ω vanishes in the long wavelength
limit). In the case of phonons, the ‘broken generators’ are the symmetries under spatial transla-
tion in the x, y, and z directions. The crystal selects a particular location for its center-of-mass,
which breaks this symmetry. There are, accordingly, three gapless acoustic phonons.

Magnetic materials support another branch of elementary excitations known as spin waves, or
magnons. In isotropic magnets, there is a global symmetry associated with rotations in internal
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spin space, described by the group SU(2). If the system spontaneously magnetizes, meaning
there is long-ranged ferromagnetic order (↑↑↑ · · · ), or long-ranged antiferromagnetic order
(↑↓↑↓ · · · ), then global spin rotation symmetry is broken. Typically a particular direction is
chosen for the magnetic moment (or staggered moment, in the case of an antiferromagnet).
Symmetry under rotations about this axis is then preserved, but rotations which do not pre-
serve the selected axis are ‘broken’. In the most straightforward case, that of the antiferromag-
net, there are two such rotations for SU(2), and concomitantly two gapless magnon branches,
with linearly vanishing dispersions ωa(k). The situation is more subtle in the case of ferromag-
nets, because the total magnetization is conserved by the dynamics (unlike the total staggered
magnetization in the case of antiferromagnets). Another wrinkle arises if there are long-ranged
interactions present.

For our purposes, we can safely ignore the deep physical reasons underlying the gaplessness
of Goldstone bosons and simply posit a gapless dispersion relation of the form ω(k) = A |k|σ.
The density of states for this excitation branch is then

g(ω) = C ω
d
σ
−1

Θ(ωc − ω) , (3.105)

where C is a constant and ωc is the cutoff, which is the bandwidth for this excitation branch.6

Normalizing the density of states for this branch results in the identification ωc = (d/σC)σ/d.

The heat capacity is then found to be

CV = Nk
B
C

ωc∫

0

dω ω
d
σ
−1

(
~ω

k
B
T

)2
csch2

(
~ω

2k
B
T

)

=
d

σ
Nk

B

(
2T

Θ

)d/σ
φ
(
Θ/2T

)
,

(3.106)

where Θ = ~ωc/kB
and

φ(x) =

x∫

0

dt t
d
σ
+1

csch2t =





σ
d
xd/σ x → 0

2−d/σ Γ
(
2 + d

σ

)
ζ
(
2 + d

σ

)
x → ∞ ,

(3.107)

which is a generalization of our earlier results. Once again, we recover Dulong-Petit for k
B
T ≫

~ωc, with CV (T ≫ ~ωc/kB
) = Nk

B
.

In an isotropic ferromagnet, i.e.a ferromagnetic material where there is full SU(2) symmetry
in internal ‘spin’ space, the magnons have a k2 dispersion. Thus, a bulk three-dimensional
isotropic ferromagnet will exhibit a heat capacity due to spin waves which behaves as T 3/2 at
low temperatures. For sufficiently low temperatures this will overwhelm the phonon contri-
bution, which behaves as T 3.

6If ω(k) = Akσ , then C = 21−d π
−

d
2 σ−1 A

−
d
σ g

/
Γ(d/2) .
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3.2.10 Elasticity theory redux : Bravais lattices

In a Bravais lattice, we have Φ̂αβ(0) = 0 from translational invariance. The potential energy
may then be written in the form

U = U0 −
1

4

∑

R,R′

∑

α,β

[
uα(R)− uα(R′)

]
Φαβ(R−R′)

[
uβ(R)− uβ(R′)

]
. (3.108)

We now assume a very long wavelength disturbance, and write

uα(R)− uα(R′) = (Rµ − R′µ)
∂uα

∂xµ

∣∣∣∣
R

+ . . . . (3.109)

Thus,

U = U0 −
1

4

∑

R,R′

∑

α,β

∑

µ,ν

∂uα

∂xµ

∣∣∣∣
R

∂uβ

∂xν

∣∣∣∣
R

(Rµ − R′µ) (Rν − R′ν)Φαβ(R−R′) . (3.110)

We may symmetrize with respect to Cartesian indices7 to obtain the elastic tensor

Cαβµν ≡ − 1

8Ω

∑

R

(
RµRν Φαβ(R) +RµRβ Φαν(R) +RαRν Φµβ(R) +RαRβ Φµν(R)

)
. (3.111)

Note that

Cαβµν = Cβαµν = Cαβνµ = Cµναβ , (3.112)

where Ω is the Wigner-Seitz cell volume.

Elasticity in solids

Recall from §3.1.2 that we may regard the rank four tensor Cαβµν as a symmetric 6 × 6 matrix
Cab , where we replace (αβ) → a and (µν) → b according to the scheme from Tab. 3.1. In cubic
crystals, for example, we have

C11 = Cxxxx = Cyyyy = Czzzz

C12 = Cxxyy = Cxxzz = Cyyzz

C44 = Cxyxy = Cxzxz = Cyzyz .

(3.113)

Typical values of Cab in solids are on the order of gigapascals, i.e. 109 Pa:

7Symmetrization is valid because the antisymmetric combination
(
∂uα

∂xβ − ∂uβ

∂xα

)
corresponds to a rotation.
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element C11 C12 C44

4He 0.031 0.028 0.022

Cu 16 8 12

Al 108 62 28.3

Pb 48.8 41.4 14.8

C (diamond) 1040 170 550

Table 3.3: Elastic moduli for various solids (in GPa).

The bulk modulus of a solid is defined as B = V ∂2F/∂V 2. We consider a uniform dilation, which
is described by R → (1 + ζ)R at each lattice site. Thus the displacement field is u(r) = ζr. This
leads to a volume change of δV = 3ζV , hence ζ = δV/3V . The strain tensor is εαβ = ζ δαβ, hence

δF =
(δV )2

18V

∑

α,β

Cααββ = 1
9

3∑

a,b=1

Cab . (3.114)

Thus, for cubic materials, B = 1
3
C11 +

2
3
C12 .

Elastic waves

The Lagrangian of an elastic medium is be written as

L =

∫
ddr L =

∫
ddr

{
1
2
ρ

(
∂uα

∂t

)2
− 1

2
Cαβµν

∂uα

∂xβ

∂uµ

∂xν

}
, (3.115)

where ρ is the overall mass density of the crystal, i.e. ρ = m/Ω. The Euler-Lagrange equations
of motion are then

0 =
∂

∂t

∂L
∂(∂tu

α)
+

∂

∂xβ

∂L
∂(∂βu

α)

= ρ
∂2uα

∂t2
− Cαβµν

∂2uν

∂xβ ∂xµ
.

(3.116)

The solutions are elastic waves, with u(x, t) = ê(k) ei(k·x−ωt) where

ρω2 eα(k) = Cαβµν k
β kµ eν(k) . (3.117)

Thus, the dispersion is ωa(k) = ca(k̂) k , where

det
[
ρ c2(k̂) δαν − Cαβµν k̂

β k̂µ
]
= 0 (3.118)
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is the equation to be solved for the speeds of sound ca(k̂) in each elastic wave branch a.

For isotropic solids, C12 ≡ λ, C44 ≡ µ, and C11 = C12 + 2C14 = λ + 2µ, where λ and µ are the
Lamé coefficients. The free energy density is discussed in §3.1 and is given by

f = 1
2
λ (∂iui)

2 + 1
2
µ (∂iuj) (∂iuj) +

1
2
µ (∂iuj) (∂jui) , (3.119)

which results in the Euler-Lagrange equations of motion

ρ ü = (λ+ µ)∇(∇ · u) + µ∇2u . (3.120)

Writing u(r, t) = u0 ê(k) e
i(k·r−ωt), where ê is a polarization unit vector, we obtain a longitudinal

mode when ê(k) · k̂ = 1 with ω
L
(k) = c

L
|k| and c

L
=

√
(λ+ 2µ)/ρ , and two transverse modes

when ê(k) · k̂ = 0 with ω
T
(k) = c

T
|k| and c

T
=

√
µ/ρ .

In cubic crystals, there are three independent elastic moduli, C11, C12, and C14 . We then have

ρ c2(k̂) ex =
[
C11 k̂

2
x + C44

(
k̂2
y + k̂2

z

)]
êx + (C12 + C44)

(
k̂x k̂y ê

y + k̂x k̂z ê
z
)

ρ c2(k̂) ey =
[
C11 k̂

2
y + C44

(
k̂2
x + k̂2

z

)]
êy + (C12 + C44)

(
k̂x k̂y ê

x + k̂y k̂z ê
z
)

ρ c2(k̂) ez =
[
C11 k̂

2
z + C44

(
k̂2
x + k̂2

y

)]
êz + (C12 + C44)

(
k̂x k̂z ê

x + k̂y k̂z ê
y
)

.

(3.121)

This still yields a cubic equation, but it can be simplified by looking along a high symmetry
direction in the Brillouin zone.

Along the (100) direction k = k x̂, we have

ê
L
= x̂ c

L
=

√
C11/ρ (3.122)

ê
T1

= ŷ c
T1

=
√

C44/ρ (3.123)

ê
T2

= ẑ c
T2

=
√

C44/ρ . (3.124)

Along the (110) direction, we have k = 1√
2
k
(
x̂+ ŷ). In this case

ê
L
= 1√

2

(
x̂+ ŷ) c

L
=

√
(C11 + 2C12 + 4C44)/3ρ (3.125)

ê
T1

= 1√
2

(
x̂− ŷ) c

T1
=

√
(C11 − C12)/2ρ (3.126)

ê
T2

= ẑ c
T2

=
√

C44/ρ . (3.127)

Along the (111) direction, we have k = 1√
3
k
(
x̂+ ŷ + ẑ). In this case

ê
L
= 1√

3

(
x̂ + ŷ + ẑ) c

L
=

√
(C11 + C12 + 2C44)/2ρ (3.128)

ê
T1

= 1√
6

(
2x̂− ŷ − ẑ) c

T1
=

√
(C11 − C12)/3ρ (3.129)

ê
T2

= 1√
2

(
ŷ − ẑ) c

T2
=

√
(C11 − C12)/3ρ . (3.130)
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3.2.11 Elasticity theory in cases with bases

The derivation of the elastic tensor Cαβµν is significantly complicated by the presence of a basis.
Sadly, translational invariance if of no direct avail because

U 6= U0 −
1

4

∑

R,R′

∑

α,β

∑

i,j

[
uα
i (R)− uα

i (R
′)
]
Φαβ
ij (R−R′)

[
uβ
j (R)− uβ

j (R
′)
]

. (3.131)

The student should understand why the above relation is not an equality.

Rather than work with the energy, we will work with the eigenvalue equation 3.42,

Φ̂αβ
ij (k) ê

β
jλ(k) = mi ω

2
λ(k) ê

α
iλ(k) ,

and expand in powers of k. Accordingly, we write

êαiλ(k) = dαi + kσfα
iσ +

1
2
kσkτgβiστ +O(k3)

Φ̂αβ
ij (k) = Φ̂αβ

ij (0) + kµ
∂Φ̂αβ

ij (k)

∂kµ

∣∣∣∣
0

+ 1
2
kµ kν

∂2Φ̂αβ
ij (k)

∂kµ ∂kν

∣∣∣∣
0

+O(k3) .
(3.132)

We retain the basis index i on dαi even though it is independent of i because we will use it to make
clear certain necessary sums on the basis index within the Einstein convention. We then have

mi ω
2
{
dαi + kσfα

iσ + . . .
}
= (3.133)

{
Φ̂αβ
ij (0) + kµ

∂Φ̂αβ
ij (k)

∂kµ

∣∣∣∣
0

+ 1
2
kµ kν

∂2Φ̂αβ
ij (k)

∂kµ ∂kν

∣∣∣∣
0

+ . . .

}{
dβj + kτfβ

jτ + . . .
}

,

where there is no implied sum on i on the LHS. We now work order by order in k . To start,

note that ω2(k) = c2(k̂) k2 is already second order. On the RHS, we have Φ̂αβ
ij (0) d

β
j = 0 to zeroth

order in k. At first order, we must have

Φ̂αβ
ij (0) f

β
jσ +

∂Φ̂αβ
ij (k)

∂kσ

∣∣∣∣
0

dβj = 0 , (3.134)

and defining the matrix inverse Υ̂ γα
li (k) by the relation

Υ̂ γα
li (k) Φ̂αβ

ij (k) = δγβ δlj , (3.135)

we have

f γ
lσ = −Υ̂ γα

li (0)
∂Φ̂αβ

ij (k)

∂kσ

∣∣∣∣
0

dβj (3.136)

Finally, we obtain the eigenvalue equation for the elastic waves,

mi ω
2 dαi =

[
1

2

∂2Φ̂αβ
il (k)

∂kµ ∂kν

∣∣∣∣
0

−
∂Φ̂ασ

ij (k)

∂kµ

∣∣∣∣
0

Υ̂ σγ
jm(0)

∂Φ̂γβ
ml(k)

∂kν

∣∣∣∣
0

]
kµ kν dβl . (3.137)
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Remember that dαi is independent of the basis index i. We have dropped the mode index λ

here for notational convenience. Note that the quadratic coefficient gβiστ never entered our cal-
culation because it leads to an inhomogeneous term in the eigenvalue equation, and therefore
must be dropped. We do not report here the explicit form for the elastic tensor, which may be
derived from the above eigenvalue equation.

3.3 Neutron diffraction

3.3.1 Inelastic differential scattering cross-section

Elastic X-ray scattering yields a measure of the static structure factor of a crystal,

S(q) =
1

N

∑

R,R′

∑

i,j

eiq·(R
′+δj−R−δi) . (3.138)

The wavevector transfer is q = kf − ki. Now consider an inelastic process between states

|Ψi 〉 ≡
∣∣ ki , {ni

s(k)}
〉
→

∣∣kf , {nf
s (k)}

〉
≡ |Ψf 〉 . (3.139)

The initial and final energies are given by

Ei =
~
2k2

i

2mn

+
∑

k,s

~ωs(k)
(
ni
s(k) +

1
2

)

Ef =
~
2k2

i

2mn

+
∑

k,s

~ωs(k)
(
nf
s (k) +

1
2

)
.

(3.140)

Energy conservation requires Ef = Ei, and we define the energy transfer to the lattice to be

~ω ≡ ~
2

2mn

(
k2
i − k2

f

)
=

∑

k,s

~ωs(k)
(
nf
s (k)− ni

s(k)
)
≡ Ef − Ei , (3.141)

where E =
∑

k,s ~ωs(k)
(
ns(k) +

1
2

)
is the energy of the lattice vibrations.

The scattering rate from |Ψi 〉 to |Ψf 〉 is given by Fermi’s Golden Rule, viz.

Γi→f =
2π

~

∣∣〈 f | V | i 〉
∣∣2 δ(Ef −Ei) , (3.142)

from which we derive the differential scattering cross section

∂2σ

∂Ω ∂ω
=

~

4πvi

∑

i,f

Pi Γi→f g(kf) , (3.143)
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where Pi is the Boltzmann weight for the lattice state | i 〉 = | {ni
s(k)} 〉, and where g(kf) is the

density of states,

g(kf) =

∫
d3k

(2π)3
δ

(
~
2k2

2mn

−
~
2k2

f

2mn

)
=

mnkf
2π2~2

. (3.144)

Thus,
∂2σ

∂Ω ∂ω
=

m2
n ki

4π2~3 kf

∑

i,f

Pi

∣∣〈 kf , f | V | ki, i 〉
∣∣2δ(Ef −Ei) . (3.145)

We may approximate the potential V (r) as

V (r) =
∑

R,l

2πal~
2

mn

δ
(
r −R− δl − ul(R)

)
, (3.146)

where al is the effective s-wave scattering length for ions of species l. The matrix element is
thus

〈 kf , f | V | ki, i 〉 =
〈
f
∣∣ ∑

R,l

2π~2al
mn

e−iq·(R+δ
l
) e−iq·u

l
(R)

∣∣ i
〉

, (3.147)

which is an approximation of the more correct form

V (r) =
∑

R,l

vl
(
r −R− δl − ul(R)

)

〈 kf | V | ki 〉 =
∑

R,l

v̂(q) e−iq·(R+δ
l
) e−iq·u

l
(R) .

(3.148)

We now have

∂2σ

∂Ω ∂ω
=

~kf
ki

∑

R,R′

∑

l,l′

al a
∗
l′ e

iq·(R′−R+δ
l′
−δ

l
)
∑

i,f

Pi 〈 i | eiq·ul′
(R′) | f 〉 〈 f | e−iq·u

l
(R) | i 〉 δ(~ω+Ei−Ef) .

(3.149)
Writing

δ(~ω + Ei − Ef) =
∞∫

0

dt

2π~
eiωt ei(Ei−E

f
)t/~ , (3.150)

we have,

∂2σ

∂Ω ∂ω
= N

kf
ki

∑

l,l′

al a
∗
l′ e

iq·(δ
l′
−δ

l
)
∑

R

e−iq·R
∞∫

−∞

dt

2π
eiωt

〈
e−iq·u

l
(R,t) e+iq·u

l′
(0,0)

〉
T

, (3.151)

where 〈O〉T =
∑

i Pi〈 i | O | i 〉 is the thermodynamic average. We define the dynamic structure
factor (dsf),

Sll′(q, ω) =

∞∫

−∞

dt

2π
eiωt

∑

R

e−iq·R 〈
e−iq·u

l
(R,t) e+iq·u

l′
(0,0)

〉
T

. (3.152)
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3.3.2 Evaluation of Sll′(q, ω)

To evaluate the dsf, it is convenient to express the displacements ua(R, t) in terms of the ladder
operators, viz.

uα
l (R, t) =

1√
N

∑

k,s

(
~

2ωs(k)

)1/2
eαls(k) e

ik·R
(
As(k) e

−iωs(k) t + A†
s(−k) e+iωs(k) t

)
. (3.153)

Thus,

iq · ul(R, t) =
∑

k,s

(
Xk,sAk,s −X∗

k,sA
†
k,s

)

iq · ul′(0, 0) =
∑

k,s

(
Yk,sAk,s − Y ∗

k,sA
†
k,s

)
,

(3.154)

where

Xk,s =
i√
N

(
~

2ωs(k)

)1/2
q · els(k) eik·R e−iωs(k) t

Yk,s =
i√
N

(
~

2ωs(k)

)1/2
q · el′s(k) .

(3.155)

Thus, we may write

〈
e−iq·u

l
(R,t) e+iq·u

l′
(0,0)

〉
T
=

∏

k,s

〈
exp

(
X∗

k,sA
†
k,s −Xk,sAk,s

)
exp

(
Yk,sAk,s − Y ∗

k,sA
†
k,s

)〉
, (3.156)

where we have invoked the fact that
[
Ak,s, A

†
k′,s′

]
= δkk′ δss′ . To evaluate this expression, we

appeal to the Baker-Campbell-Hausdorff equality,

eA eB = eA+B e
1

2
[A,B] , (3.157)

valid when both A and B commute with their commutator [A,B]. We may then write, for each
(k, s) pair,

exp
(
X∗

k,sA
†
k,s −Xk,sAk,s

)
exp

(
Yk,sAk,s − Y ∗

k,sA
†
k,s

)
= (3.158)

exp
[
1
2

(
Xk,sY

∗
k,s −X∗

k,sYk,s

)]
exp

(
Zk,sAk,s − Z∗

k,sA
†
k,s

)
,

where Zk,s = Yk,s − Xk,s . Now consider a single harmonic oscillator with Hamiltonian H =

~ω (a†a + 1
2
) and define g(x, y) = 〈exa eya†〉T . Then from the cyclic property of the trace, we
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have8

g(x, y) ≡
〈
exa eya

†〉
T

= Z−1Tr
(
e−βHexa eya

†)

= Z−1 exy Tr
(
e−βHeya

†

exa
)

= Z−1 exy Tr
(
e−βHeβHexae−βHeya

†)

= Z−1 exy Tr
(
e−βHex exp(−β~ω) aeya

†)

= exy g
(
x exp(−β~ω), y

)

= exy ex exp(−β~ω) y g
(
x exp(−2β~ω), y

)

= exp

( ∞∑

n=0

xy e−nβ~ω

)
g(0, y)

= exp

(
xy

1− exp(−β~ω)

)
,

(3.159)

since g(0, y) = 〈eya†〉T = 1 . We therefore find

〈
exp

(
Zk,sAk,s − Z∗

k,sA
†
k,s

)〉
= exp

(
1
2
Z∗

k,sZk,s

) 〈
eZk,s

A
k,s e−Z∗

k,s
A†

k,s
〉

= exp
(
−
(
nk,s +

1
2

)
Z∗

k,sZk,s

)
,

(3.160)

where

nk,s =
1

eβ~ωs(k) − 1
(3.161)

is the Bose function. Finally, we have

〈
e−iq·u

l
(R,t) e+iq·u

l′
(0,0)

〉
T
= exp

{
−

∑

k,s

(
|Xk,s|2 + |Yk,s|2

)(
ns(k) +

1
2

)}
(3.162)

× exp

{∑

k,s

[
Xk,sY

∗
k,s

(
ns(k) + 1

)
+X∗

k,sYk,s ns(k)
]}

.

3.3.3 Dynamic structure factor for Bravais lattices

For the case of Bravais lattices, we have r = 1 and

S(q, ω) = e−2W (q)

∞∫

−∞

dt

2π

∑

R

e−iq·R eiωt eΓ (q,R,t) , (3.163)

8See N. D. Mermin, J. Math. Phys. 7, 1038 (1966).
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where

W (q) = 1
2
Ω

∫

Ω̂

ddk

(2π)d

d∑

s=1

~ω−1
s (k)

∣∣q · es(k)
∣∣2 ctnh

(
~ωs(k)

2k
B
T

)
(3.164)

and

Γ (q,R, t) = 1
2
Ω

∫

Ω̂

ddk

(2π)d

d∑

s=1

~

ωs(k)

∣∣q · es(k)
∣∣2
{
(
ns(k) + 1

)
eik·Re−iωs(k) t + ns(k) e

−ik·R eiωs(k) t

}
.

(3.165)

Expanding eΓ = 1 + Γ + 1
2
Γ 2 + . . . in a power series, we have

S(q, ω) = e−2W (q)

{ zero phonons︷ ︸︸ ︷
Ω̂ δ(ω)

∑

G

δ(q −G) +1
2

∫

Ω̂

ddk

(2π)d

d∑

s=1

~

ωs(k)

∣∣q · es(k)
∣∣2 × (3.166)

[ single phonon absorption︷ ︸︸ ︷
ns(k) δ

(
ω + ωs(k)

)∑

G

δ(q + k−G) +

single phonon emission︷ ︸︸ ︷(
ns(k) + 1

)
δ
(
ω − ωs(k)

)∑

G

δ(q − k −G)

]
+ . . .

}
.

Here we have labeled the terms corresponding to zero phonon processes, in which the entire
lattice recoils elastically, and single phonon absorption and emission processes. The ellipses
contain terms corresponding to multiphonon processes. The fact that processes in which a
phonon is created (emitted) are proportional to ns(k)+1 , while processes in which a phonon is
destroyed (absorbed) are proportional to ns(k) is a consequence of detailed balance. Satisfying
the Dirac delta functions for the single phonon processes, we may write

S(q, ω) = e−2W (q)

{ zero phonons︷ ︸︸ ︷
Ω̂ δ(ω)

∑

G

δ(q −G) +

d∑

s=1

~

2ωs(q)

∣∣q · es(q)
∣∣2
[ single phonon absorption︷ ︸︸ ︷
ns(q) δ

(
ω + ωs(q)

)

+

single phonon emission︷ ︸︸ ︷(
ns(q) + 1

)
δ
(
ω − ωs(k)

) ]
+ . . .

}
.

(3.167)

3.3.4 Debye-Waller Factor

The term e−2W (q) is called the Debye-Waller factor. Note that

2W (q) =
〈(

q · u(R)
)2〉

T
= Ω

∫

Ω̂

ddk

(2π)d

d∑

s=1

~

ωs(k)

∣∣q · es(k)
∣∣2 ctnh

(
~ωs(k)

2k
B
T

)
. (3.168)
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We may approximate the angular integral

∫
dk̂

4π

∣∣q · es(k)
∣∣2 ≈ 1

3
q2
∣∣q̂ · es(k)

∣∣2 = q2

3M
, (3.169)

where M is the ionic mass. We then obtain

2W (q) ≈ q2

3M

∞∫

0

dω g(ω)
~

2ω
ctnh

(
~ω

2k
B
T

)
, (3.170)

where g(ω) is the total phonon density of states. Within the Debye model in d = 3 dimensions,

gDebye(ω) =
9ω2

ω2
D

Θ(ωD − ω) , (3.171)

For k
B
T ≪ ~ωD, we find

2W (q) =
3~q2

4MωD

{
1 +

2π2

3

(
k

B
T

~ωD

)2
+ . . .

}
, (3.172)

while for k
B
T ≫ ~ωD we obtain

2W (q) =
3~q2

MωD

· kB
T

~ωD

. (3.173)

We see that W (q) increases linearly with T , and that as T → 0 it approaches a constant, given
by WT=0(q) = 3~q2/8MωD . The q-dependence has the effect of reducing the intensity of large
|q| processes relative to small |q| processes. One noteworthy feature is that finite temperature
fluctuations do not smooth out the Bragg peaks in

∑
G δ(q−G). Rather, the Bragg peaks at each

reciprocal lattice vector G are simply reduced in intensity by the Debye-Waller factor e−2W (G) .
Note that W (q) does not vanish at T = 0, due to quantum fluctuations of the ionic positions. In
a one-dimensional lattice, these fluctuations are strong enough to melt the lattice and destroy
long-ranged positional order.

3.3.5 The Mössbauer effect

Suppose a stationary ion (or atom) of mass M radiates and decays from an excited state with
energy E = E1 to its ground state at E = E0. A photon of energy ε = hν and momentum p =
hν/c is emitted in the process. This results in a recoil of the ion with energy R = (hν/c)2/2m.
Thus, energy conservation requires

E1 = E0 + hν +R ⇒ hν = ∆E − (hν)2

2Mc2
≃ ∆E − (∆E)2

2Mc2
, (3.174)
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where ∆E = E1−E0 , assuming Mc2 ≫ ∆E . In 57Fe, for example, we have ∆E = 14.4 keV and
Mc2 = 53.3GeV, and the recoil energy is R ≈ 1.96meV. If the photon is reabsorbed by another
57Fe nucleus in its ground state, then the energy change is

∆E ′ = ∆E − (hν)2

2Mc2
≃ ∆E − (∆E)2

Mc2
, (3.175)

and we have ∆E −∆E ′ = 2R = 3.91meV. This is small, but still much greater than the natural
linewidth of the transition, which is Γ = 4.6 × 10−9 eV. So the resonant absorption should
never happen. Except that it is indeed observed, as first shown by Mössbauer in 1958 in an
experiment for which he won the Nobel Prize in Physics in 19619. The reason is that in a crystal
there are zero phonon processes in which the entire lattice recoils, hence R = (hν)2/2NMc2,
where N is the number of unit cells of the crystal, which is thermodynamically large, i.e. R = 0
for all intents and purposes. In addition, by using a moving source, the Doppler shift may be
used to probe the structure of the absorption line. The Doppler shifted frequency is

ω′ =
ω − v · k√

1− v2

c2

= ω − v · k +O(v2/c2) . (3.176)

If we take v ‖ k then we have δω = vk and ~ δω = (v/c) · ~ck ≈ (v/c)∆E . Setting ~ δω = Γ , we
obtain v = 0.01 cm/s – a very small velocity compared with c indeed! Since the Debye-Waller
factor involves the ratio ~q2/2MωD = (hν)2/2Mc2~ωD, where the Debye energy ~ωD is on the
order of millivolts, only low energy atomic γ-transitions yield observable Mössbauer effects.

9Mössbauer used a 191Os source and a 191Ir absorber.
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