PHYSICS 211B : CONDENSED MATTER PHYSICS HW ASSIGNMENT \#4

(1) For the Hamiltonian

$$
\hat{H}(t)=\hat{H}_{0}-\sum_{i} \hat{Q}_{i} \phi_{i}(t)
$$

the response to second order may be written

$$
\langle\Psi(t)| \hat{Q}_{i}|\Psi(t)\rangle=\int_{-\infty}^{\infty} d t^{\prime} \chi_{i j}\left(t, t^{\prime}\right) \phi_{j}\left(t^{\prime}\right)+\int_{-\infty}^{\infty} d t^{\prime} \int_{-\infty}^{\infty} d t^{\prime \prime} \chi_{i j k}^{(2)}\left(t, t^{\prime}, t^{\prime \prime}\right) \phi_{j}\left(t^{\prime}\right) \phi_{k}\left(t^{\prime \prime}\right)+\mathcal{O}\left(\phi^{3}\right)
$$

Find an expression for the nonlinear response tensor $\chi_{i j k}^{(2)}\left(t, t^{\prime}, t^{\prime \prime}\right)$ in terms of the spectral properties of \hat{H}_{0}. Some hints:

- From the above expression for $\left\langle Q_{i}(t)\right\rangle$ you can assume $\chi_{i j k}^{(2)}\left(t, t^{\prime}, t^{\prime \prime}\right)=\chi_{i k j}^{(2)}\left(t, t^{\prime \prime}, t^{\prime}\right)$. Your final expression should honor this symmetry.
- To obtain the linear response tensor $\chi_{i j}\left(t, t^{\prime}\right)$, we computed the first functional variation,

$$
\begin{aligned}
& \frac{\delta\left\langle\hat{Q}_{i}(t)\right\rangle}{\delta \phi_{j}\left(t^{\prime}\right)}=\left\{-\frac{i}{\hbar}\left\langle\Psi\left(t_{0}\right)\right| U^{\dagger}\left(t^{\prime}, t_{0}\right) \hat{Q}_{j} \hat{U}^{\dagger}\left(t, t^{\prime}\right) \hat{Q}_{i} U\left(t, t_{0}\right)\left|\Psi\left(t_{0}\right)\right\rangle\right. \\
&\left.+\frac{i}{\hbar}\left\langle\Psi\left(t_{0}\right)\right| U^{\dagger}\left(t, t_{0}\right) \hat{Q}_{i} \hat{U}\left(t, t^{\prime}\right) \hat{Q}_{j} \hat{U}\left(t^{\prime}, t_{0}\right)\left|\Psi\left(t_{0}\right)\right\rangle\right\} \times \Theta\left(t-t^{\prime}\right) \Theta\left(t^{\prime}-t_{0}\right)
\end{aligned}
$$

with $t_{0} \rightarrow-\infty$, and then set $\phi=0$. To obtain the nonlinear response $\chi_{i j k}^{(2)}\left(t, t^{\prime}, t^{\prime \prime}\right)$, we must first functionally differentiate with respect to $\phi_{k}\left(t^{\prime \prime}\right)$. Since there are three appearances of \hat{U} or \hat{U}^{\dagger} in each of the above matrix elements, you should get six terms in all.
(2) Sketch the spread of particle-hole excitation frequencies, depicted for a $d=3$ Fermi gas in Fig. 9.3 of the lecture notes, in dimensions $d=2$ and $d=1$.
(3) We previously saw how the static density susceptibility of the electron gas could be written as

$$
\hat{\chi}(\boldsymbol{q})=\frac{\widehat{\Pi}(\boldsymbol{q})}{1+\frac{4 \pi \pi^{2}}{\boldsymbol{q}^{2}} \widehat{\Pi}(\boldsymbol{q})}
$$

where $\widehat{\Pi}(\boldsymbol{q})$ is the polarization function. We can extend this expression to dynamical response, viz.

$$
\hat{\chi}(\boldsymbol{q}, \omega)=\frac{\hat{\Pi}(\boldsymbol{q}, \omega)}{1+\frac{4 e^{2}}{q^{2}} \widehat{\Pi}(\boldsymbol{q}, \omega)} .
$$

Formally this may be taken as a definition of the dynamic polarization $\widehat{\Pi}(\boldsymbol{q}, \omega)$. In the random phase approximation (RPA), we replace $\widehat{\Pi}(\boldsymbol{q}, \omega) \rightarrow \chi^{0}(\boldsymbol{q}, \omega)$, the noninteracting dynamic
susceptibility, i.e.

$$
\begin{aligned}
\chi^{0}(\boldsymbol{q}, t) & =\frac{i}{\hbar V}\langle[\hat{n}(\boldsymbol{q}, t), \hat{n}(-\boldsymbol{q}, 0)]\rangle \Theta(t) \\
\chi^{0}(\boldsymbol{q}, \omega) & =2 \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{f_{\boldsymbol{k}+\boldsymbol{q}}-f_{k}}{\hbar \omega-\varepsilon(\boldsymbol{k}+\boldsymbol{q})+\varepsilon(\boldsymbol{k})+i \epsilon} .
\end{aligned}
$$

Using the RPA, you are invited to determine the plasmon dispersion for the two-dimensional electron gas with interactions $u(r)=e^{2} / r$ at $T=0$. Some hints:

- Find the 2D Fourier transform of the interaction potential, $\hat{u}(\boldsymbol{q})$.
- Expand $\chi^{0}(\boldsymbol{q}, \omega)$ in a series in ω^{-2}.
- Locate the pole in the RPA response function, and thereby obtain the solution $\omega(q)$ to order q^{2}.

