## PHYSICS 211B : CONDENSED MATTER PHYSICS HW ASSIGNMENT \#3

(1) Define the operator

$$
\Pi_{N}=\frac{1}{N!} \underset{\mathbb{R}^{d N}}{ } \int^{d} d^{d} x_{1} \cdots d^{d} x_{N}\left|\boldsymbol{x}_{1} \cdots \boldsymbol{x}_{N}\right\rangle\left\langle\boldsymbol{x}_{1} \cdots \boldsymbol{x}_{N}\right|
$$

where

$$
\left|\boldsymbol{x}_{1} \cdots \boldsymbol{x}_{N}\right\rangle=\psi^{\dagger}\left(\boldsymbol{x}_{1}\right) \cdots \psi^{\dagger}\left(\boldsymbol{x}_{N}\right)|0\rangle
$$

where $\left[\psi(\boldsymbol{x}), \psi^{\dagger}\left(\boldsymbol{x}^{\prime}\right)\right]_{\mp}=\delta\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)$ for bosons ( - ) and fermions (+). Here each $\boldsymbol{x}_{j} \in \mathbb{R}^{d}$.
(a) Show that $\Pi_{N}$ is a projector onto the totally symmetric and totally antisymmetric parts of the $N$-body Hilbert space for bosons and fermions, respectively.
(b) Show that one can also write

$$
\Pi_{N} \equiv \int_{\Delta_{N}} d^{d} x_{1} \cdots d^{d} x_{N}\left|\boldsymbol{x}_{1} \cdots \boldsymbol{x}_{N}\right\rangle\left\langle\boldsymbol{x}_{1} \cdots \boldsymbol{x}_{N}\right|
$$

where $\Delta_{N}$ is defined to be the subset of $\mathbb{R}^{d N}$ for which

$$
\Delta_{N}=\left\{\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right) \mid x_{1}^{(1)}<x_{2}^{(1)}<\cdots<x_{N}^{(1)}\right\}
$$

(2) Consider a one-dimensional electron gas with spin-independent interactions

$$
u\left(x-x^{\prime}\right)=\frac{u_{0}}{\pi} \frac{\lambda}{\left(x-x^{\prime}\right)^{2}+\lambda^{2}}
$$

Find the Hartree-Fock energies $\varepsilon(k)$.
(3) For spinless electrons interacting via a potential $u(\boldsymbol{x})$, find the Hartree-Fock energies $\varepsilon(\boldsymbol{k})$. Show that when $\hat{u}(\boldsymbol{k})=$ const. that there is no interaction contribution to $\varepsilon(\boldsymbol{k})$. Interpret this physically.
(4) Consider a polarized electron gas (three dimensions, Coulomb interactions) in which $N_{\sigma}$ denotes the number of electrons with spin polarization $\sigma$.
(a) Begin with the Hamiltonian

$$
\begin{aligned}
\hat{H}=- & \frac{\hbar^{2}}{2 m} \sum_{\sigma} \int d^{3} x c^{\dagger}(\boldsymbol{x}) \nabla^{2} c(\boldsymbol{x})+\frac{1}{2} \sum_{\sigma, \sigma^{\prime}} \int d^{3} x \int d^{3} x^{\prime} c_{\sigma}^{\dagger}(\boldsymbol{x}) c_{\sigma^{\prime}}^{\dagger}\left(\boldsymbol{x}^{\prime}\right) u\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right) c_{\sigma^{\prime}}\left(\boldsymbol{x}^{\prime}\right) c_{\sigma}(\boldsymbol{x}) \\
& -\sum_{\sigma} \int d^{3} x c_{\sigma}^{\dagger}(\boldsymbol{x}) c_{\sigma}(\boldsymbol{x}) \int d^{3} x^{\prime} u\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right) n_{0}+\frac{1}{2} \int d^{3} x \int d^{3} x^{\prime} n_{0} u\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right) n_{0}
\end{aligned}
$$

where $n_{0}=N_{0} / V$ is the background number density and where $u(\boldsymbol{r})=\left(e^{2} / r\right) e^{-Q r}$. is the Yukawa potential. At the appropriate time, you may take the $Q \rightarrow 0$ limit in order to recover the jellium system. Using the relation

$$
c_{\sigma}(\boldsymbol{x})=V^{-1 / 2} \sum_{k} e^{i \boldsymbol{k} \cdot \boldsymbol{x}} c_{\boldsymbol{k}, \sigma}
$$

show that one may write
$\hat{H}=\sum_{k, \sigma} \varepsilon(\boldsymbol{k}) c_{\boldsymbol{k}, \sigma}^{\dagger} c_{\boldsymbol{k}, \sigma}-n_{0} \hat{u}(0) \sum_{\boldsymbol{k}, \sigma} c_{\boldsymbol{k}, \sigma}^{\dagger} c_{\boldsymbol{k}, \sigma}+\frac{1}{2 V} \sum_{\boldsymbol{k}, \boldsymbol{p}, \boldsymbol{q}} \sum_{\sigma, \sigma^{\prime}} \hat{u}(\boldsymbol{q}) c_{\boldsymbol{k}+\boldsymbol{q}, \sigma}^{\dagger} c_{\boldsymbol{p}-\boldsymbol{q}, \sigma^{\prime}}^{\dagger} c_{\boldsymbol{p}, \sigma^{\prime}} c_{\boldsymbol{k}, \sigma}+E_{\mathrm{bg}}$
with

$$
\varepsilon(\boldsymbol{k})=\frac{\hbar^{2} \boldsymbol{k}^{2}}{2 m} \quad, \quad \hat{u}(\boldsymbol{q})=\frac{4 \pi e^{2}}{\boldsymbol{q}^{2}+Q^{2}} \quad, \quad E_{\mathrm{bg}}=\frac{2 \pi e^{2}}{Q^{2}} \frac{N_{0}^{2}}{V} .
$$

You may assume periodic boundary conditions in a $L \times L \times L$ box of volume $V=L^{3}$ in the limit $L \rightarrow \infty$. The allowed $\boldsymbol{k}$ values are then quantized according to $\boldsymbol{k}=\frac{2 \pi}{L}\left(n_{x}, n_{y}, n_{z}\right)$ where $n_{x, y, z} \in \mathbb{Z}$.
(b) Find the ground state energy to first order in the interaction potential as a function of $N=N_{\uparrow}+N_{\downarrow}$ and the magnetization $M=N_{\uparrow}-N_{\downarrow}$. You should assume a wavefunction

$$
|\Psi\rangle=\prod_{|\boldsymbol{k}|<k_{\mathrm{F} \uparrow}} c_{k, \uparrow}^{\dagger} \prod_{\left|k^{\prime}\right|<k_{\mathrm{F} \downarrow}} c_{\boldsymbol{k}^{\prime}, \downarrow}^{\dagger}|0\rangle
$$

where $n_{\sigma}=k_{\mathrm{F}, \sigma}^{3} / 6 \pi^{2}=N_{\sigma} / V$ is the number density of electrons of spin polarization $\sigma$. Along the way, show that

$$
\langle\Psi| c_{\boldsymbol{k}+\boldsymbol{q}, \sigma}^{\dagger} c_{\boldsymbol{p}-\boldsymbol{q}, \sigma^{\prime}}^{\dagger} c_{\boldsymbol{p}, \sigma^{\prime}} c_{\boldsymbol{k}, \sigma}|\Psi\rangle=n_{\boldsymbol{k}, \sigma} n_{\boldsymbol{p}, \sigma^{\prime}} \delta_{\boldsymbol{q}, 0}-n_{\boldsymbol{p}, \sigma} n_{\boldsymbol{k}, \sigma} \delta_{\boldsymbol{q}, \boldsymbol{p}-\boldsymbol{k}} \delta_{\sigma, \sigma^{\prime}},
$$

where $n_{k, \sigma}=\langle\Psi| c_{k, \sigma}^{\dagger} c_{k, \sigma}|\Psi\rangle$. Express your result for the energy as $E(n, \zeta, V)$, where $\zeta \equiv\left(n_{\uparrow}-n_{\downarrow}\right) /\left(n_{\uparrow}+n_{\downarrow}\right)$ is the dimensionless magnetization and $n=N / V=n_{\uparrow}+n_{\downarrow}$.
(c) Prove, to this order in the interaction, that the ferromagnetic state $(M=N)$ has a lower energy than the unmagnetized state $(M=0)$ provided $r_{\mathrm{s}}$ exceeds a critical value $r_{\mathrm{s}, 1}$. Find that critical value $r_{\mathrm{s}, 1}$.
(d) Define $\varepsilon(\zeta)=E / N$ with $\zeta=M / N$. Show that $\varepsilon^{\prime \prime}(0)<0$ when $r_{\mathrm{s}}$ exceeds a critical value $r_{\mathrm{s}, 2}$. Find $r_{\mathrm{s}, 2}$. You should find $r_{\mathrm{s}, 1}<r_{\mathrm{s}, 2}$. What happens for $r_{\mathrm{s}} \in\left[r_{\mathrm{s}, 1}, r_{\mathrm{s}, 2}\right]$ ?

