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Abstract
Quantum theory provides an extensive framework for the description of the equilibrium 
properties of quantum matter. Yet experiments in quantum simulators have now opened up 
a route towards the generation of quantum states beyond this equilibrium paradigm. While 
these states promise to show properties not constrained by equilibrium principles, such as the 
equal a priori probability of the microcanonical ensemble, identifying the general properties 
of nonequilibrium quantum dynamics remains a major challenge, especially in view of 
the lack of conventional concepts such as free energies. The theory of dynamical quantum 
phase transitions attempts to identify such general principles by lifting the concept of phase 
transitions to coherent quantum real-time evolution. This review provides a pedagogical 
introduction to this field. Starting from the general setting of nonequilibrium dynamics in 
closed quantum many-body systems, we give the definition of dynamical quantum phase 
transitions as phase transitions in time with physical quantities becoming nonanalytic 
at critical times. We summarize the achieved theoretical advances as well as the first 
experimental observations, and furthermore provide an outlook to major open questions as 
well as future directions of research.

Keywords: nonequilibrium, phase transitions, quantum dynamics, quantum simulation, 
quantum matter
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1. Introduction

Quantum simulators have nowadays achieved experimental 
access to the real-time dynamics of closed quantum many-
body systems due to the impressive progress in controlling 
matter at the quantum level over the last two decades [1–4]. 
Such quantum simulators have been realized on various exper-
imental platforms—such as ultra-cold atoms in optical lat-
tices, trapped ions, and more—and admit the study of exotic 
dynamical phenomena that are inaccessible to conventional 
architectures. This includes the observation of prethermaliza-
tion [5, 6], particle-antiparticle production in lattice gauge 
theories [7], many-body localization [8–11] and discrete time 
crystals [12, 13].

It is the central property of these nonequilibrium quantum 
states that they cannot be captured within a thermodynamic 
description. Rather than a shortcoming, however, this can be 
seen as a defining feature, providing the room to realize phe-
nomena that are not accessible within equilibrium statistical 
physics. In turn, conventional strategies, successful for the 
description of quantum many-body systems in equilibrium, 
are not applicable. Concepts such as partition functions or 
organizing principles, such as the minimization of free ener-
gies, are lacking, which provides a significant challenge in 
the approach to a theoretical understanding of nonequilib-
rium quantum many-body dynamics on general grounds. This 
immediately leads to fundamental questions such as whether 
such systems can nevertheless show universality with mac-
roscopic properties becoming independent of microscopic 
details, and whether there is a dynamical analog of a phase of 
matter without the existence of a free energy? 

In equilibrium systems, elementary properties, such as 
universality, are intimately connected to the theory of phase 
transitions [14]. This has motivated various approaches to 
the introduction of notions of phase transitions in far-from- 
equilibrium quantum many-body systems [15–28], address-
ing qualitative changes in either the long-time dynamics or 
the asymptotic long-time limit of observables, or correlation 
functions as a function of the microscopic control parameter.

Remarkably, nonequilibrium phase transitions can also 
occur in transient time scales with physical quantities 

becoming nonanalytic as a function of time—a phenomenon 
that has been termed a dynamical quantum phase transition 
(DQPT) [29]. Accordingly, DQPTs are driven by progressing 
time, as opposed to conventional phase transitions, which are 
driven by control parameters such as temperature or pressure. 
This field has seen substantial progress recently, ranging from 
the identification of dynamical order parameters [30–35], or 
scaling and universality [36, 37], to the first experimental 
observations [32, 38].

The aim of this article is to introduce pedagogically the 
concept of DQPTs, to review their key features, to summarize 
the experimental observations and to identify the prospects of 
the field within a self-contained description. While the theory 
of phase transitions is of particular importance for the under-
standing of the equilibrium properties of matter in nature, it 
will be one purpose of this review to point out the potential 
of DQPTs to provide a key principle for the understanding of 
dynamics in quantum many-body systems. For a related recent 
review focusing on DQPTs in exactly solvable model systems 
see [39].

To begin with, in section 2, a general introduction to the 
field of DQPTs is given by first introducing the central object, 
termed the Loschmidt amplitude, and outlining its connection 
to conventional partition functions, which forms the basis for 
the identification of DQPTs as a nonequilibrium phase trans-
ition phenomenon. In addition, we then present a physical pic-
ture of DQPTs as dynamical analogs to equilibrium quant um 
phase transitions. Afterwards, in section  3 we take the par-
ticular class of DQPTs occurring in topological systems as 
an illustrative example, providing both a straightforward ana-
lytical handle as well as intuitive explanations. In section 4, 
the two recent experimental observations of DQPTs in ultra-
cold atom systems and trapped ions are summarized and put 
into a theoretical context. It is the purpose of the subsequent 
section 5 to outline how the central concepts of equilibrium 
criticality, such as scaling and universality or order param-
eters, extend to DQPTs. This is followed by a summary of the 
further implications of DQPTs for other physical quantities, 
including, for example, entanglement dynamics, or extensions 
to a broader range of physical setups, such as mixed states, 
which is presented in section 6. The last section 7 provides 
an outlook for central open questions and potential future 
research directions in the context of DQPTs.

2. Dynamical quantum phase transitions

Within statistical physics, the central object for the theor-
etical description of systems in contact with a heat bath is the 
(canonical) partition function:

Z = tr e−βH =
∑
ν

e−βEν , (1)

as a sum of the Boltzmann weights over all microstates ν. Here, 
H denotes the system’s Hamiltonian, β inverse temperature 
and Eν  the eigenenergies of H. The partition function contains 
the full information about the system’s thermodynamic prop-
erties, because Z is directly related to the free energy F via:
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Z = e−βF = e−βNf , (2)

with f  =  F/N denoting the free energy density and N the num-
ber of degrees of freedom. This equality gives a link between 
the microscopic (relative) probabilities, the Boltzmann weights 
contained in the partition function and the macroscopic prop-
erties, i.e. thermodynamics, through the free energy F.

At a phase transition, the thermodynamic potentials such 
as the free energy F become nonanalytic as a function of the 
respective control parameter. When the transition is temper-
ature-driven, for example, F exhibits nonanalytic behavior at 
a critical temperature Tc. This translates directly into nonana-
lytic structures of the generalized forces and susceptibilities.

2.1. Closed quantum many-body systems

As opposed to systems described by equation (1), the focus 
of this review is on closed quantum many-body systems, 
where the coupling to an environment can be neglected and 
the dynamics on experimentally relevant time scales can be 
considered purely unitary and quantum.

Conventional experimental systems, such as in the solid 
state context, are naturally embodied with an environment, 
e.g. phonons serving as a heat bath for the electronic degrees 
of freedom. Quantum simulators, such as ultracold atoms or 
trapped ions, on the other hand, constitute to a high degree 
of accuracy experimental platforms where the time scales for 
the system–environment coupling become much longer than 
the internal time scales of the system, such that the dynamics 
can be considered closed to a very good approximation [1–4]. 
While for solid-state systems pump-probe experiments can 
induce and detect the dynamics of an approximately closed 
electronic system [40] as well, quantum simulators provide a 
much more tunable and flexible experimental setting. As such 
they constitute the platforms most directly connected to the 
concepts presented in this review article.

2.2. Nonequilibrium protocol: quantum quenches

In the following, we mainly focus on one particular nonequi-
librium scenario of the so-called quantum quench. While the 
definition of DQPTs is not tied to this specific protocol [29, 
41–44]—see also section 6.4 for a more detailed discussion—
quantum quenches are conceptually the simplest.

Within a quantum quench, the system is initially prepared 
in the ground state |ψ0〉 of an initial Hamiltonian

H0 = H(λ0) , (3)

at a value λ0 of some tunable parameter λ of a more gen-
eral Hamiltonian H(λ). Then, at a time t  =  0 say, the param-
eter λ is suddenly switched to a new value λf  such that the 
Hamiltonian has now changed to

H = H(λf ) . (4)

As a consequence, the system experiences quantum real-time 
dynamics that is formally solved by:

|ψ0(t)〉 = e−iHt|ψ0〉, (5)

which will be nontrivial whenever the initial state |ψ0〉 is not 
an eigenstate of the final Hamiltonian H. In the remainder, 
only so-called global quenches will be considered, which 
lead to a macroscopic change in the system’s internal energy 
which is extensive in system size. This has to be contrasted 
with local quenches where the energy change is not extensive.

2.3. Loschmidt amplitudes and Loschmidt echos

The central object within the theory of DQPTs is the 
Loschmidt amplitude

G(t) = 〈ψ0|ψ0(t)〉 = 〈ψ0|e−iHt|ψ0〉 , (6)

which quantifies the deviation of the time-evolved state from 
the initial condition. The probability L(t) associated with the 
amplitude G(t):

L(t) =
∣∣G(t)∣∣2 , (7)

will be termed the Loschmidt echo. Overall, Loschmidt ampl-
itudes and echos appear in various contexts ranging from the 
theory of quantum chaos [45, 46] and the Schwinger mech-
anism of particle production [7, 47], to work distribution func-
tions in the context of nonequilibrium fluctuation theorems 
[48–51], among many others. As such G(t) and L(t) represent 
important quantities in quantum many-body theory. Within the 
different anticipated contexts, they also appear under varying 
terminologies such as return amplitudes, fidelities or vacuum 
persistence probabilities.

Because of the formal similarity of Loschmidt amplitudes 
to partition functions, which will be discussed in detail in sec-
tion 2.5 below, they experience a particular functional depend-
ence on the number of degrees of freedom N in the limit of 
large N for the considered global quantum quenches [29, 52]:

G(t) = e−Ng(t), (8)

where g(t) is the associated rate function. Alternatively, the 
above scaling might also be rephrased in a form in which

g(t) = − lim
N→∞

1
N

log
[
G(t)

]
, (9)

has a well-defined thermodynamic limit. Analogously, 
for the Loschmidt echo, let us introduce the rate function 
λ(t) = − limN→∞ N−1 logL(t) such that:

L(t) = e−Nλ(t), (10)

with λ(t) = 2Re[g(t)]. This typical large-deviation scaling 
[53] of G(t) and L(t) with exponential dependence on the 
system size N can change for critical initial states when the 
quantum quench induces superextensive energy fluctuations 
in the system [54]. However, for the sake of the review we 
restrict ourselves to cases where conventional large-deviation 
scaling emerges.

Since in our quantum quench protocol the initial condi-
tion is fixed to be the ground state of the initial Hamiltonian, 
see section 2.2, the Loschmidt echo requires a generalization 
whenever the ground state is degenerate, e.g. in the case of 
symmetry-broken phases. While such a generalization is not 
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unique, the following one has turned out to be very fruitful 
[38, 55–57]. Interpreting the Loschmidt echo as the prob-
ability of returning to the ground-state manifold, the natural 
extension for the case of a discrete symmetry is given by:

P(t) =
ν∑

α=1

Pα(t), Pα(t) =
∣∣〈ψα|ψ(t)〉

∣∣2 , (11)

where |ψα〉 is the set of ν degenerate ground states of the 
initial Hamiltonian. For ν = 1, this directly reproduces  
the definition of the Loschmidt echo in equation  (7). When 
the system exhibits a continuous symmetry, a generalization 
following the same spirit as in equation (11) has been recently 
proposed, replacing the sum by an integral over the manifold 
of the degenerate ground states [57]. Notice that DQPTs do 
not only happen in the full probability P(t), but also in the 
individual Pα(t) [58–60].

2.4. Definition of dynamical quantum phase transitions

Now let us come to the actual definition of a DQPT. As antici-
pated before, phase transitions in equilibrium are accompa-
nied by a nonanalytic structure of the free energy upon varying 
the control parameter. In close analogy, in the following we 
identify a DQPT as a nonanalytic behavior of the Loschmidt 
amplitude as a function of time. In this sense, DQPTs are 
dynamical in nature and can thus be thought of as phase trans
itions in time.

In figure 1 an illustration of a prototypical example of a 
DQPT is shown as it appears in various systems. In this sche-
matic sketch, DQPTs are associated with a kink in the rate 
function λ(t) of the Loschmidt echo, yielding the following 
functional behavior in the vicinity of the critical time tc:

λ(t) ∼
∣∣∣∣
t − tc

tc

∣∣∣∣ . (12)

Such kinks appear in various one-dimensional (1D) systems. 
However, in two dimensions (2D) in particular, different non-
analytic structures have been found. For quantum quenches 
in Chern insulators, for example, power-law nonanalyticities 
can emerge [61], and in 2D Ising models one finds logarith-
mic singularities [36]. While the nonanalytic real-time behav-
ior of Loschmidt amplitudes has been recognized already by 

Pollmann et al [41], the interpretation as a dynamical critical 
phenomenon was first pointed out by [29].

Under what circumstances can DQPTs appear? Overall, it 
has been observed in most of the reported cases that DQPTs 
occur whenever a parameter of the Hamiltonian is quenched 
across an underlying equilibrium transition. However, notable 
exceptions do exist [56, 58, 62–65], suggesting that DQPTs 
are not in one-to-one correspondence with conventional phase 
transitions; for a more detailed discussion see section  2.7. 
Thus, generally speaking DQPTs should rather be seen as a 
critical phenomenon distinct from the equilibrium case.

As anticipated already in the introduction, other notions of 
dynamical phase transitions have been reported in the litera-
ture as well [15–28, 66], which in some cases can be linked 
to DQPTs [27, 56, 57]. We discuss these and other notions as 
well as some of the connections to DQPTs in more detail in 
section 6.5. In this review, we resort to the definition in terms 
of the Loschmidt amplitudes given above.

2.5. Complex partition functions and Fisher zeros

Having given the definition of DQPTs it is the aim of the fol-
lowing section to address the elementary question of why it is 
possible that Loschmidt amplitudes can become nonanalytic 
as a function of time. Associated with this: is it a generic fea-
ture or does it require fine-tuning? To see that DQPTs can 
occur generically without fine-tuning, it is most straightfor-
ward to resort to an important concept of equilibrium phase 
transitions: complex partition function zeros, also known as 
Fisher [67] or Lee–Yang zeros [68, 69]. While these complex 
zeros were originally introduced as a purely theoretical con-
cept, it is worthwhile emphasizing that it recently became pos-
sible to measure them experimentally [70, 71].

In order to apply this concept to the problem at hand here, 
let us first point out that there is a specific class of equilibrium 
partition functions that shares an immediate formal similar-
ity to Loschmidt amplitudes. Consider an equilibrium system 
with boundary conditions imposed on two ends a distance R 
apart from each other. Then, importantly for the present aim, 
the respective so-called boundary partition function ZB can be 
represented in the following form [72]:

ZB = 〈ψ1|e−RH|ψ2〉, (13)

with the states |ψ1〉 and |ψ2〉 encoding the boundary condi-
tions and H denoting the bulk Hamiltonian. Thus, formally, 
Loschmidt amplitudes can be identified with boundary 
partition functions at a complexified parameter R = it . 
Accordingly, the initial state |ψ0〉 plays the role of a boundary 
condition in time instead of space. This identification is not 
only useful for the subsequent general discussion, it has also 
been utilized as a computational tool to construct a complex 
transfer matrix representation of the Loschmidt amplitudes 
[64], which can be efficiently computed using DMRG meth-
ods in low dimensions [64, 73].

Although, in general, a partition function with complex 
parameters does not describe a physical system, the complexi-
fication of otherwise real parameters in partition functions 
has been a central concept for the theory of phase transitions 

Figure 1. A schematic illustration of a dynamical quantum phase 
transition. At a critical time t = tc the rate function λ(t) of the 
Loschmidt echo exhibits a nonanalytic kink. While these kinks 
occur in many exactly-solvable one-dimensional models, in higher 
dimensions in particular the nonanalytic structure can be different.
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[67], which we can now also apply directly to the Loschmidt 
amplitudes.

Consider the Loschmidt amplitude with time 
t �→ z = t + iτ ∈ C extended into the complex plane:

G(z) = 〈ψ0|e−iHz|ψ0〉, z ∈ C. (14)

For a finite-sized system, partition functions or equivalently 
Loschmidt amplitudes are analytic functions. One way to see 
this for systems composed of spins or fermions on a lattice is 
to insert an eigenbasis |Eν〉 of the Hamiltonian H with corre-
sponding energies Eν  such that:

G(z) =
∑
ν

∣∣〈Eν |ψ0〉
∣∣2e−iEν z. (15)

Because for fermionic or spin systems the eigenbasis is finite 
for N < ∞, we have for G(z) a finite sum of analytic func-
tions, which results itself in an analytic function. As a con-
sequence, the Weierstrass factorization theorem [74] applies, 
which allows us to represent G(z) via:

G(z) = eµ(z)
∏

j

[zj − z] , (16)

where the zj denote the zeros of G(z) in the complex plane. 
While µ(z) is, by the theorem, always an analytic function, 
all the nonanalytic properties of G(z) in the thermodynamic 
limit are contained in the structure of the zeros zj in the com-
plex plane. Disregarding for a moment the smooth function 
µ(z), the singular contribution gs(t) to the rate function of the 
Loschmidt amplitude is:

gs(z) = − 1
N

∑
j

log
[
zj − z

]
. (17)

As for conventional equilibrium partition functions, the 
zeros zj represent isolated points in the complex plane for 
N < ∞; for an illustration see figure  2. Upon increasing 
the system size N, however, the zeros accumulate on lines 
or areas depending on the details of the system [75]. Why 
is the concept of Fisher zeros now important for DQPTs? 
This is because nonanalyticities, and thus phase transitions, 
occur whenever a line or a boundary of an area of Fisher 
zeros is crossed in the course of time evolution. On a general 
level one can see this by noticing an interesting connection 
between electrostatics and the real part of gs(z) [65], i.e. the 
singular part of the rate function λs(z) = 2Re[gs(z)] of the 
Loschmidt echo, see equation  (10). Defining an effective 
density ρ(z) of Fisher zeros via

ρ(z) =
2
N

∑
j

δ
(

z − zj

)

 

(18)

it is possible to represent λs(t) as:

λs(z) = −
∫

C
dz ρ(z) log |z − z| . (19)

Because log |z| is the Green’s function of the two-dimensional 
Laplacian ∆ = ∂2

t + ∂2
τ with z = t + iτ , we can interpret 

λs(z) as an electrostatic potential that is generated by an 
effective charge density ρ(z). Nonanalyticities in electrostatic 

potentials, and therefore equivalently in λs(z), occur at non-
analytic structures of the respective charge density ρ(z). One 
can distinguish two different cases, see figure 2. First, when 
the Fisher zeros fall onto a line, the nonanalytic behavior of 
λs(t) is determined solely by the line density of defects [67]. 
Second, when the Fisher zeros form an area, the nonanalytic 
structure becomes equivalent to that of an electrostatic poten-
tial at surfaces between two regions of different charge densi-
ties [65].

In the context of complex partition functions, it might 
also be interesting to study the relation to another notion of 
dynamical phase transitions [76, 77], which occurs for so-
called exceptional points of non-Hermitian Hamiltonians at 
complex parameters, where connections to DQPTs might 
appear naturally. Along these lines, there is a further inter-
esting aspect of partition functions at complex temperatures: 
it has been shown that they can be represented in a form of 
the Loschmidt amplitude G(t) using so-called canonical states 
[78], and up to now this has not been explored.

While the robustness of DQPTs will be summarized in 
more detail in section 5.2, the Fisher zero considerations of 
the present section  provide the opportunity for a prelimi-
nary short discussion. From equilibrium, it is known that 
phase transitions are robust against symmetry-preserving 
perturbations that are weak in the renormalization group 
sense. From the perspective of partition function zeros this 
means that the respective structures, lines or areas are also  
robust. Specifically, symmetry-preserving perturbations might 
deform these structures, but provided they are sufficiently 
weak, these deformations do not lead to the melting of the 
lines or the areas of zeros. This robustness has indeed been 

Figure 2. A schematic illustration of Fisher zeros in the complex 
time plane. (a) For systems of a finite size, the zeros appear as 
points in the complex parameter plane. (b) Upon increasing the 
system size, Fisher zeros start to accumulate and form structures 
which can generically be of two different kinds. First—and this 
happens often in low-dimensional systems—Fisher zeros can 
coalesce onto lines. Second, Fisher zeros can accumulate to form 
areas. DQPTs occur whenever such a line or boundary of an area 
hits the real-time axis indicated by the dots along the real-time axis.

Rep. Prog. Phys. 81 (2018) 054001



Report on Progress

6

observed for DQPTs both analytically [79] as well as numer-
ically [36, 42, 79, 80]. If, however, the perturbation breaks 
the symmetry of the system, stability is not guaranteed, as has 
also been seen numer ically for particular cases [41, 81]. In 
this sense, the robustness of DQPTs seems to follow similar 
principles to conventional phase transitions for the examples 
in the literature.

2.6. Analogy to equilibrium quantum phase transitions

It is the goal of the following discussion to give a physical 
interpretation of DQPTs in terms of a dynamical analog to 
conventional quantum phase transitions (QPT) [55], see 
 figure 3 for an illustration. This interpretation aims to provide 
a general argument of how DQPTs can control the dynamics 
of other observables. Since the Loschmidt amplitude G(t) is 
a projection of the full time-evolved many-body wave func-
tion |ψ0(t)〉 onto one single state in Hilbert space (the initial 
state), and therefore only retrieves partial information from 
|ψ0(t)〉, one might wonder to what extent the overlap G(t) 
will be important for understanding the dynamics of the full 
wave function |ψ0(t)〉. Overall, this amounts to the question 

of whether this single overlap represents a singular point or 
whether also other states in Hilbert space show similar prop-
erties such that in this sense the properties of the Loschmidt 
amplitude can spread out to larger portions of Hilbert space. 
QPTs in equilibrium represent an important example where 
the singular behavior in a single many-body state—the ground 
state—can influence an extended set of states within the 
quant um critical region at nonzero temperature T  >  0. In the 
following, we argue that an analogous picture can also emerge 
for DQPTs, and be made concrete and even measurable, see 
section 4.1.

As already anticipated before, the Loschmidt amplitude 
G(t) = 〈ψ0|ψ0(t)〉 is a projection of the time-evolved state 
|ψ0(t)〉 back onto the initial state |ψ0〉, which is always cho-
sen as the ground state of the initial Hamiltonian. From this 
perspective, Loschmidt amplitudes probe the asymptotic low-
energy properties of |ψ0(t)〉 when measuring energies with the 
initial and not the final Hamiltonian [55]. In this sense, the 
nonanalyticities associated with DQPTs are a ground-state 
manifold property in close analogy to conventional QPTs 
occurring at zero temperature T  =  0 [55]. This interpretation 
naturally leads to the general picture in figure 3. Instead of 
representing the phase diagram in the temperature-control 
parameter plane in the case of a QPT, at a DQPT one might 
think of an energy-density–time plane, with the energy den-
sity ε replacing temperature T and time t replacing the control 
parameter g. In this picture, the DQPT occurs along the line 
of vanishing energy density ε = 0 (upon choosing the zero of 
energy accordingly) at a critical time tc.

Due to the quantum quench, however, energy is pumped 
into the system and the dominant contribution to local observa-
bles or correlation functions originates from a narrow shell in 
the vicinity of the mean energy density εav(t) = N−1〈H0(t)〉 
[55] beyond the ground-state manifold. The central question, 
in the end, becomes whether there exists a dynamical analog 
to a quantum critical region controlled by the DQPT ε = 0 and 
whether εav(t) crosses that region or not. For certain examples, 
this ascribed analogy to QPT can be made concrete [55] and 
even measured experimentally [38], as will be discussed in 
more detail in section 4.1. Whether, however, such a dynamical 
analog of a quantum critical region exists for any DQPT is not 
known and has to be checked on a case-by-case basis.

The interpretation of DQPTs as a dynamical analog to the 
QPT can also be extended further. In the equilibrium case, 
QPTs cannot be observed directly in experiments because 
of the third law of thermodynamics. DQPTs also exhibit an 
analog to the third law in the sense that it is not possible to 
experimentally observe them without further theoretical input, 
as it was used in the recent trapped ion experiment [38]. This is 
because of the exponential suppression of the Loschmidt echo 
L(t), for example, with the number of degrees of freedom N:

L(t) = e−Nλ(t). (20)

Importantly, λ(t) is independent of N in the thermodynamic 
limit, implying that it becomes exponentially challenging and 
therefore asymptotically impossible to measure L(t) exper-
imentally. Since DQPTs only occur for N → ∞, observing 
them in an experiment becomes exponentially hard.

Figure 3. A schematic illustration of the analogy between 
dynamical quantum phase transitions and conventional quantum 
phase transitions. (a) A quantum phase transition occurs at zero 
temperature T  =  0 and at a critical value gc of a quantum control 
parameter g. While at nonzero temperatures T  >  0 the quantum 
phase transition disappears, there emerge two crossover lines 
instead, enclosing the quantum critical region whose properties 
are controlled by the underlying critical point. (b) A dynamical 
quantum phase transition is driven by time t with Loschmidt 
amplitudes becoming nonanalytic at a critical time t = tc. The 
Loschmidt amplitude probes the ground-state manifold of the 
initial Hamiltonian (energy density ε = 0). While the nonanalytic 
behavior can disappear for excited energy densities ε > 0, where 
local observables acquire their dominant contribution, there can still 
be an extended region (white space) controlled by the underlying 
dynamical critical point.
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2.7. Relation to equilibrium phase transitions

It has been observed in many cases that DQPTs share a close 
connection to the underlying equilibrium QPTs of the respec-
tive studied model. It therefore appears as a central question 
to ask how these two phase trans ition phenomena are related 
to each other.

For topological systems of noninteracting fermions the 
connection is by now particularly clear for two-band  models 
[61, 82], as will also be discussed in more detail in section 3.5. 
Whenever a topological phase transition is crossed by a 
quant um quench in 1D, a DQPT necessarily has to emerge. 
In 2D, the situation is a bit more subtle and requires the abso-
lute value of the Chern number of the underlying equilibrium 
ground states to change. While these DQPTs are topologically 
protected [61], so-called accidental DQPTs can also occur 
without crossing a QPT. A similar phenomenology has been 
observed for the XY chain in a transverse field [62], which is 
also mappable to a system of noninteracting fermions in 1D. 
In addition, however, it was found that for this model that it is 
also possible for no DQPT to arise, even though the quench 
has crossed an underlying equilibrium QPT. This particular 
property can be traced back to a kinetic constraint, as also 
observed, for example, for the ferromagnetic XXZ chain [64]. 
This kinetic constraint is a U(1) symmetry due to particle or 
magnetization conservation, which does not allow the particle 
number or magnetization sectors to be dynamically adopted. 
Without a coupling to a grand-canonical bath with particle-
number exchange, the system is trapped therefore in a fixed 
sector which lifts, in general, the connection between the 
dynamical and equilibrium phase transitions.

All these examples are related to systems which do not 
exhibit nonzero-temperature phase transitions, such that order 
only exists in the ground states of the respective models. How 
order in excited states, which is relevant for the so-called excited 
state phase transitions [83–89], affects DQPTs is a much more 
intricate question, and the situation is much less clear at this 
point, mainly because there exist only a few studied models 
in the literature with such properties [36, 56, 58–60, 63]. For 
quenches in the 2D transverse-field Ising model it has been 
found that DQPTs emerge with the same nonanalytic struc-
tures as the free energy at the equilibrium nonzero-temperature 
critical point of the classical 2D Ising model [36]. This suggests 
again a close connection of DQPTs to the underlying equilib-
rium phase transitions. In long-range interacting Ising models, 
on the other hand, it has been found that the various observed 
DQPTs are not related to the underlying equilibrium phase 
transition [56, 58–60], i.e. neither that of the quantum nor the 
nonzero-temperature. While a connection between DQPTs and 
another nonequilibrium phase transition in the long-time steady 
state after the quench has been observed [56, 58], evidence for 
DQPTs in a weak quench regime has also been found [58–60], 
and termed ‘anomalous’ accordingly [58]. These anomalous 
DQPTs also connect to an observation in other models, where 
it has been shown that DQPTs can even occur without crossing 
an underlying equilibrium transition [62, 64, 65].

Summarizing, in many cases a strong connection appears 
between DQPTs and the underlying equilibrium phase 

diagram especially in low dimensions. However, the results in 
the literature also show that a substantial number of counter-
examples exist, which suggest that DQPTs constitute a genu-
ine nonequilibrium phenomenon.

3. Dynamical topological quantum phase 
transitions

The theory of DQPTs in noninteracting topological systems, 
also termed dynamical topological quantum phase transitions, 
has reached a rather extensive understanding in recent years 
[30, 32–35, 61, 65, 82, 90]. Interestingly, DQPTs in these 
models are strongly connected to the underlying equilibrium 
topological properties: in 2D, for example, DQPTs always 
appear for quenches between two Hamiltonians with a differ-
ent absolute value of the Chern number [61, 82]. Moreover, 
DQPTs in such topological systems can be characterized by 
dynamical order parameters [30, 32–34], which are capable 
of distinguishing the two ‘dynamical phases’ separated by a 
DQPT. As will be discussed in section 4.2, for a 2D system 
such an order parameter has, in the meantime, been measured 
in an ultra-cold atom experiment.

Overall, the quantum quenches in these topological sys-
tems provide an instructive example, offering both intuitive 
explanations and a straightforward mathematical understand-
ing of the nature and occurrences of DQPTs. Many of the 
discussed formal properties—as long as they are not of topo-
logical origin—also directly extend to other fermionic sys-
tems or spin models that are mappable to fermionic ones [39, 
92–94], which are alternatively summarized in the anticipated 
recent review [39].

3.1. Two-band models

For the sake of simplicity we study DQPTs for two-band topo-
logical systems. For extensions to multiple bands we refer to 
[82]. Consider noninteracting fermions exhibiting transla-
tional invariance and particle–hole symmetry. Such systems 
exhibit a compact representation of the Hamiltonian

H =
∑
k∈BZ

Hk, Hk = c†khkck, (21)

with the momentum summation extending over the Brillouin 
zone (BZ). Here, ck denotes a spinor which has different repre-
sentations depending on the microscopic details of the studied 
model system. This spinor can be of the form ck = (ckA, ckB) 
for insulators with A and B referring, for example, to two sub-
lattices, or the spinor can acquire the form ck = (ck, c†−k) for 
superconductors.

The properties of the particular model are fully specified 
by the Hermitian 2 × 2 matrices hk, which can be represented 
in terms of Pauli matrices τα,α = x, y, z, due to the particle–
hole symmetry in the following form:

hk = dkτ =
∑

α=x,y,z

dα
k τα. (22)

For a 1D Kitaev chain, for example, one has that 
dk = [0,∆sin(k),µ− J cos(k)], with J denoting the hopping 
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strength, Δ the pairing amplitude and μ the chemical poten-
tial. The Hamiltonian can be diagonalized for each momen-
tum sector k separately yielding the two Bloch states |ψk+〉 
and |ψk−〉 with energies +εk and −εk, respectively, with 
εk = |dk|.

Because the different momentum sectors are decoupled, 
ground states (as well as other eigenstates) exhibit a factoriza-
tion property:

|ψ〉 =
∏

k

|ψk−〉 . (23)

Moreover, any nonequilibrium protocol which induces a time-
dependence in dk(t) without coupling of the momentum sec-
tors preserves this property, yielding

|ψ(t)〉 =
∏

k

|ψk−(t)〉. (24)

For the considered case of a quantum quench, the prob-

lem is fully specified by the vectors di/f
k  for the initial/final 

Hamiltonian, respectively. Accordingly, let us denote the 

corresponding Bloch states by |ψi/f
k±〉 and the energies via 

ε
i/f
k = |di/f

k |.

3.2. Loschmidt amplitude

Based on the considerations of the previous section, it is 
straightforward to study DQPTs in the Loschmidt amplitude. 
Due to the factorizing property of the quantum many-body 
state in equation (24), G(t) also factorizes

G(t) =
∏

k

Gk(t), Gk(t) = 〈ψi
k−|ψi

k−(t)〉. (25)

In order to evaluate this expression it is suitable to introduce 
the occupations

n f
k = |〈ψ f

k+|ψ
i
k−〉|2 , (26)

of the upper Bloch band of the final Hamiltonian, which is 
a constant of motion during the nonequilibrium quantum 
evolution. Expanding |ψi

k−〉 in the Bloch states of the final 
Hamiltonian |ψ f

k±〉 one obtains

Gk(t) = n f
k eiε f

k t + (1 − n f
k )e

−iε f
k t. (27)

As discussed in section 2.5, nonanalytic behavior in Loschmidt 
amplitudes and thus DQPTs is associated with the zeros of 
G(t). Because of equation (25), a zero in G(t) is equivalent to 
finding at least one critical momentum k∗ and one critical time 
tc where Gk∗(tc) = 0. According to equation (27), such a zero 
can occur whenever there is a mode k∗ with [29]

n f
k∗ =

1
2

. (28)

Then, there is a series of critical times

tn
c = (2n + 1)

π

2ε f
k∗

, (29)

for which Gk∗(tn
c) = 0. Using this insight, the question remains 

under which conditions n f
k∗ = 1/2 is possible. Formally, it 

means that the two-level system at k∗ is maximally mixed, 
i.e. equivalent to an infinite temperature state. In general, the 
occurrence of a critical momentum k∗ depends on the details 
of the studied problem. However, in many systems the exis-
tence of a k∗ is ensured whenever the system is quenched 
across an underlying equilibrium quantum critical point, as 
discussed in the following.

3.3. Landau–Zener problem

Why the crossing of an underlying equilibrium quantum phase 
transition can lead to the appearance of DQPTs can be seen 
most directly by invoking general Landau–Zener arguments 
[95]. For this purpose, let us first consider the more general 
scenario of a parameter ramp λ(t) = vt + λ0 for our general 
Hamiltonian H(λ), which will be used afterwards to argue 
about the quantum quench case. Here, λ0 and v are chosen 
such that λ(t) interpolates between the initial (λ0) and final 
(λ) values of the parameter from t  =  0 to t = τ , where τ is 
the ramp time. Let us focus on the situation where the ramp 
crosses an underlying equilibrium quantum critical point with 
a gap closing.

Since all momenta k are decoupled from each other, we can 
study the parameter ramp problem for each k separately. For 
each k, we are dealing with a two-level system such that we 
can define a momentum-dependent gap ∆k(λ). Starting with 
a slow ramp, the threshold for the breakdown of adiabaticity, 
and therefore the excitement of the upper Bloch band, is [96]

d
dt
∆k[λ(t)] = ∆2

k [λ(t)] . (30)

For the momentum k0 exhibiting the gap closing, this threshold 
is crossed with certainty and the excitation probability in the 

higher of the two levels approaches unity, i.e. n f
k0
→ 1, imply-

ing almost complete occupation inversion [95]. On the other 
hand, in most cases there are modes k that are only weakly 
excited with n f

k � 1. By using continuity, there then has to be 
at least one momentum k∗ for which n f

k∗ = 1/2 accordingly, 
which is the required condition for the presence of DQPTs.

Importantly, the general picture for the ramp naturally 
extends to quantum quenches by decreasing the ramp time 
τ. It appears that making the ramp faster and therefore excit-
ing the system more strongly does not typically change the 
final occupation of the k0 mode, which has already reached 
its maximum value. What can happen is a shift of the criti-
cal mode k∗ which, however, only modifies the time scales of 
the appearance of the DQPTs—see equation (29)—but not the 
principle occurrence.

Consequently, a gap closing, i.e. crossing an underlying 
quantum phase transition, is often a sufficient condition for 
obtaining a DQPT. This argument might not be applicable to 
cases where all k modes are strongly excited with n f

k > 1/2, 
which occurs, for example, when inverting the complete band 
structure. In most generic situations, however, this scenario 
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does not occur and occupation inversion happens only for a 
subset of modes.

3.4. Relative Bloch sphere

Generally, any state |ψk〉 living in a single momentum sector 
k can be expanded in the eigenbasis of a set of Bloch states 
|ψk±〉 according to:

|ψk〉 = cos[θk/2]|ψk−〉+ eiϕk sin[θk/2]|ψk+〉. (31)

Consequently, |ψk〉 admits a representation as a point on 
the Bloch sphere with θk ∈ [0,π] denoting the polar and 
ϕk ∈ [0, 2π) denoting the azimuthal angle. For an illustration, 
see figure 4.

Such a representation is not only valid in equilibrium but 
also within dynamical processes. When fixing some particular 
basis set |ψk±〉 we can write:

|ψk(t)〉 = cos[θk(t)/2]|ψk−〉+ eiϕk(t) sin[θk(t)/2]|ψk+〉 , (32)

which can be represented as a trajectory on the Bloch sphere. 
For the considered quantum quench protocol it turns out to be 
suitable to choose as the basis the Bloch states |ψi

k±〉 of the ini-
tial Hamiltonian, such that at time t  =  0 the Bloch sphere rep-
resentation for each momentum is located at the north pole, 
i.e. θk(t = 0) = 0 and |ψk(t = 0)〉 = |ψi

k−〉. This par ticular 
representation of the state is referred to as the ‘relative Bloch 
sphere’ [30].

The condition for DQPTs with Gk∗(tc) = 0 translates in the 
relative Bloch sphere picture to cos[θk∗(tc)/2] = 0 yielding 
θk∗(tc) = π. This means that |ψk∗(tc)〉 is located at the south 
pole.

3.5. Topological and accidental DQPTs

We have seen that for DQPTs to occur it is sufficient for at 
least one mode k∗ to reach the south pole on the relative Bloch 
sphere. The considerations from section 3.3 provide a physi-
cal picture for the occurrence of this mode from the Landau–
Zener arguments. It is the goal of the following to summarize 
the rigorous results on the occurrence of DQPTs in topologi-
cal systems.

On general grounds it has been shown in [61] under which 
conditions the equilibrium ground state topology necessarily 
imposes the existence of DQPTs. In 1D the situation is par-
ticularly clear. For any quantum quench between two topo-
logically different Hamiltonians, as characterized by their 
winding number, there exists at least one critical momentum 
k∗. In 2D there is a richer phenomenology. There, it can be 
shown that it is not sufficient to change the ground state topol-
ogy, as measured by the Chern number, in order to be guaran-
teed to get DQPTs. It is rather relevant whether the absolute 
value of the Chern number differs for the two Hamiltonians 
appearing in the quench; only in these cases do DQPTs neces-
sarily appear.

Thus, for quenches in 1D between Hamiltonians with 
different equilibrium topological properties, or in 2D with 
a different absolute value of the Chern number, DQPTs are 
robust and are therefore termed ‘topological’ or ‘symmetry-
protected’ [82]. For quenches not falling into these classes, 
DQPTs can still occur [30, 61, 82, 90]. In these cases they, 
however, require a fine-tuning of the Hamiltonian. These 
DQPTs have acquired the notion of ‘accidental’.

3.6. Topological defects in dynamical phase profiles

DQPTs in topological systems come with interesting struc-
tures in the dynamics of certain phase profiles. These include 
the azimuthal angle ϕk(t) of the relative Bloch sphere, see 
equation  (32), and the so-called Pancharatnam geometric 
phase [30]. The phase profile of the azimuthal angle ϕk(t) for a 
2D system has been measured experimentally, as summarized 
in more detail in section 4.2.

It is straightforward to see on general grounds why DQPTs 
have a strong impact on the azimuthal angle ϕk(t). Due to the 
unitarity of time evolution, the dynamics for each momentum 
on the Bloch sphere describes a smooth trajectory. When, 
however, the trajectory of the critical mode k∗ crosses the 
south pole, the state |ψk(t)〉 moves to the opposite hemisphere 
implying a sudden jump by π in the azimuthal angle ϕk∗(t). 
In 2D this sudden π phase shift leads to the creation of vortex-
antivortex pairs of the full phase profile in the Brillouin zone 
[32]. In figure 5(b) this phase profile is shown for a quantum 
quench in the Haldane model [97], which in the context of 
equation (22) exhibits the following representation:

dx
k = V

3∑
j=1

cos(kaj) , dy
k = V

3∑
j=1

sin(kaj) , (33)

dz
k = m − 2V ′ sin(Φ)

3∑
j=1

cos(kbj) . (34)

Figure 4. The relative Bloch sphere representation of a single-
momentum state |ψk〉 fully specified by the azimuthal φk  and polar 
angle θk. The north (south) pole corresponds to the lower (upper) 
band of the initial Hamiltonian. Real-time evolution describes 
a trajectory (indicated by the orange line) with time-dependent 
angles.
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Here, m denotes an energy offset between two A and B sublat-
tices on the considered honeycomb lattice, see figure 5(a) for 
the respective real-space structure. V is the nearest-neighbor 
hopping amplitude and V ′eiΦ is the complex hopping ampl-
itude within the same sublattice. For the definition of the 
lattice vectors aj and bj, connecting the nearest and next-to-
nearest neighbor lattice sites we refer to [97]. In figure 5(b) 
we show the resulting vortex dynamics for a quantum quench 
from the initial offset mi  =  5V to the final offset mf  =  0 at a 
fixed V ′/V = 1/4 and Φ = π/2 across the underlying equi-
librium topological phase transition. As one can see, there 
appears a critical time where suddenly pairs of vortices are 
created which start to move through the Brillouin zone.

An alternative phase profile to characterize DQPTs in topo-
logical systems makes use of the concept of the Pancharatnam 
geometric phase [98, 99], which extends the notion of Berry’s 
phase [100, 101] to general unitary evolution with nonorthog-
onal initial and final states. Importantly, this phase is natu-
rally contained in the Loschmidt amplitude. Let us introduce 
a polar decomposition of Gk(t) at a given momentum k:

Gk(t) = rk(t)eiφk(t). (35)

The phase φk(t) contains a geometric part φP
k (t)—the 

Pancharatnam geometric phase—by subtracting a dynamical 
contribution

φP
k (t) = φk(t)− φdyn

k (t), (36)

with φdyn
k (t) = −

∫ t
0 ds〈ψk(s)|H(s)|ψk(s)〉 = −n f

k t . As the 
azimuthal phase for the critical momentum k∗ exhibits a π-
phase slip at the DQPT, so does φP

k (t) [30]. In one dimen-
sion  particle–hole symmetry ensures that one can define an 
integer-valued winding number for φP

k (t), changing its value 
±1 at every DQPT [30] due to the anticipated π phase jump. 
Interestingly, from the dynamics of this winding number it is, 
in principle, possible to distinguish accidental from symme-
try-protected DQPTs [30]. In 2D, the π-phase slips lead to 
the creation or annihilation of vortex pairs in the phase pro-
file for φP

k (t) in the Brillouin zone [35] similar to the case 
of the azimuthal angle ϕk(t) studied before. The definition 
of these dynamically created or annihilated vortices for the 

Pancharatnam geometric phase can also be generalized to the 
case of mixed states [33, 35], see also section 6.3.

4. Experiments

Recently, DQPTs have been observed in two experiments 
performed on quantum simulators [32, 38], which are sum-
marized in the following. We do not attempt to discuss the 
experimental details, for which we refer to the respective arti-
cles, but rather focus on the main findings and implications. 
While these two experiments have observed DQPTs with tai-
lored methods, on a general level, a protocol has recently been 
introduced which allows Loschmidt amplitudes to be accessed 
in systems of ultracold atoms [102, 103]. Moreover, in sys-
tems where the complete quantum state can be reconstructed 
with full state tomography, such as in trapped ions or super-
conducting qubits, the Loschmidt amplitudes are accessible 
directly.

4.1. Trapped ions

Systems of trapped ions can synthesize the dynamics of trans-
verse-field Ising models of the form [9, 38, 104–107]

H = −
∑
l>m

Jlmσ
z
lσ

z
m − h

N∑
l=1

σx
l . (37)

Here, σα
l  with α = x, y, z denote the Pauli operators on the 

lattice site l = 1, . . . , N, where N is the total number of spins. 
The coupling Jlm is approximately of long-ranged form [108]

Jlm ∼ 1
|l − m|α

, for |l − m| � 1, (38)

with a tunable interaction exponent α from α = 0 up to α = 3.
In the trapped ion experiment on DQPTs [38] a quantum 

quench across the ferromagnetic to paramagnetic equilibrium 
phase transition has been realized—a situation where generi-
cally DQPTs are expected. Initially, the system is prepared in 
the fully polarized state

|ψ0〉 = | ↑〉 = | ↑ . . . ↑〉 , (39)

Figure 5. Illustration of the vortex dynamics for a quantum quench in the Haldane model [97]. (a) A honeycomb lattice with a nearest-
neighbor hopping amplitude V and intra-sublattice hopping V ′eiΦ. (b) The vortex dynamics of the azimuthal phase ϕk(t) in the Brillouin 
zone (lattice spacing a  =  1) for a quantum quench across the topological phase transition in the Haldane model from an initial mass 
mi/V  =  5 to mf  =  0 for fixed V ′/V = 1/4 and Φ = π/2. The false-color plots (I to VI) show increasing times t between t  =  0.85/V and 
t  =  1.1/V in steps of ∆t = 0.05/V . At a time t  =  0.9/V (II) the first vortex pairs are created. One of the pairs we track by enclosing it in 
orange circles. The vortices are mobile objects moving through the Brillouin zone over time (II to VI).
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which is one of the two ground states of the Hamiltonian in 
equation (37) for a vanishing transverse field h  =  0. After this 
stage of preparation, the subsequent dynamics of the system 
is driven by H in a transverse field h sufficiently large such 
that in equilibrium the system would reside in a paramagnetic 
phase.

Since the system is in a symmetry-broken phase at zero 
temperature for the initial Hamiltonian at h  =  0, we use the 
generalization P(t) from equation  (11) for the Loschmidt 
echo:

P(t) = P↑(t) + P↓(t) , (40)

which is the full probability of returning to the ground state 
manifold at a time t, with

P↑(t) =
∣∣〈↑ |ψ(t)〉

∣∣2, P↓(t) =
∣∣〈↓ |ψ(t)〉

∣∣2 . (41)

As discussed in section  2.3, the wave function overlaps we 
consider all have an exponential dependence on the system 
size N such that:

Pη(t) = e−Nλη(t), η = ↑, ↓ , (42)

where λη(t) is an intensive function independent of N in the 
thermodynamic limit. This property has important implica-
tions for the rate function λN(t) = −N−1 log[P(t)] of the full 
P(t). In particular, P(t) for N → ∞ is always dominated by 
one of the two contributions P↑(t) or P↓(t) such that [38, 55, 
56]

λ(t) = lim
N→∞

λN(t) = min
η=↑,↓

λη(t). (43)

This is the central tool for predicting DQPTs from the experi-
ment where the Pη(t), η = ↑, ↓, can be measured individually. 
Let us define a function λ̃N(t) = minη=↑,↓ λη(t), which for a 
finite system is different from λN(t) but converges to the same 
λ(t) in the thermodynamic limit. And let us suppose that one 
can reach system sizes where the individual λη(t) can be con-
sidered as converging with negligible finite-size corrections. 
Then, we obtain that λ̃N(t) ≈ λ(t) and the finite-size data can 
already be used to predict the behavior in the thermodynamic 
limit. Of course, this procedure implies an additional theor-
etical input to the experiment.

The measured data for the individual rate functions λη(t) 
is shown in figures 6(a) and (b). As one can see, the λη(t) 
have already almost converged, at least for times within the 
first half of the shown data. Consequently, one can use the 
λη to construct λ̃N(t), which due to (almost) converging 
with N is equivalent to λ(t), so that in the following we do 
not have to distinguish λ̃N(t) from λ(t). Since there appear 
points in time where the two λη(t) intersect, λ(t) develops a 
kink in the thermodynamic limit N → ∞. With this theor-
etical input, the experimental data implies nonanalytic real-
time dynamics in particular. Without this theoretical input 
of the minimum construction, one could have studied λN(t) 
instead. In contrast to λ̃N(t), λN(t) is a smooth function for a 
finite system, which, however, becomes sharper at a critical 
time for increasing the system size, eventually leading to the 
nonanalytic behavior of λ̃N(t) in the thermodynamic limit, as 
also discussed in [38].

In the experiment, not only have DQPTs been observed but 
the relation to other observables has also been systematically 
studied. This includes, in particular, a quantitative approach 
to the analogy between DQPTs and conventional equilibrium 
QPTs, discussed on general grounds in section 2.6. For the 
initial Ising Hamiltonian H0 at the vanishing field h  =  0, we 
have that [H0,M] = 0 where M = N−1 ∑

l σ
z
l  is the mag-

netization. Consequently, H0 and M can be measured simul-
taneously which can be used to define an energy-resolved 
magnetization M(ε, t) at a given time t with ε denoting the 
energy density [38, 55]. Due to the measurement capabilities 
in trapped ions it is also possible to experimentally access this 
quantity, which is shown in figure 6(c). As one can clearly see, 
there appears to be a temporal analog of the quantum critical 
region in the energy- density–time plane, which is controlled 
by the DQPT occurring at ε = 0 (upon choosing the zero of 

Figure 6. Dynamical quantum phase transitions in the trapped ion 
experiment [38]. (a) Measured data for the Loschmidt echo rate 
function λ(t) at α ≈ 0 and different system sizes as a function of 
dimensionless time τ = ht displaying clearly nonanalytic behavior. 
The colored data points show λ(t), obtained by taking its dominant 
contribution λ(t) = minη=↑,↓ λη(t), whereas the grey data points 
refer to the respective subleading ones. (b) The experimental result 
for λ(t) at a larger interaction exponent α ≈ 1. (c) Experimental 
reconstruction of the energy-resolved magnetization M(ε, t) 
displaying sharp changes (not nonanalytic because of the finite-
size quantum simulation) with M(ε = 0, t) changing sign along 
ε = 0. This sharp feature fades out to ε > 0, eventually crossing 
the mean energy density εav(t), included as the red line, where local 
observables attain their dominant contribution. Reprinted figure 
with permission from [38], Copyright (2016) by the American 
Physical Society.
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energy accordingly) at a critical time tc. Moreover, the experi-
ment has studied entanglement production and observed a 
close connection, see also section 6.1 for a more detailed dis-
cussion of entanglement properties at DQPTs.

4.2. Ultra-cold atoms in optical lattices

The ultra-cold atom experiment on DQPTs [32] has observed 
dynamical topological quantum phase transitions. While the 
general theory of such DQPTs has already been discussed in 
section 3, it is the goal of the present section to outline and 
discuss the experimental aspects.

This experiment synthesized a quantum quench in a sys-
tem of noninteracting fermionic degrees of freedom on a hex-
agonal lattice, see figure 7 for an illustration. For the initial 
preparation, a large energetic offset between two sublattices 
A and B was imposed, such that the system realizes a simple 
insulating ground state of a two-band system at half filling 
to a very good approximation with the particles localized on 
the lattice sites of the B sublattice. Then, at time t  =  0 lat-
tice shaking Floquet techniques are used to suddenly couple 
the two sublattices—effectively switching on the hopping—
which realizes the quantum quench and induces nonequilib-
rium dynamics in the system.

As discussed already in section  3, the dynamics in such 
a topological system can be decomposed into contrib utions 
from all the (crystal) momenta k of the Brillouin zone. 
Moreover, for each momentum k the wave function |ψk(t)〉 for 
such a two-band model is reduced to an effective two-level 
system admitting a representation on the Bloch sphere with 
two associated angles: the polar angle θk(t) and the azimuthal 
angle ϕk(t).

Using full-state tomography techniques for two-band 
noninteracting fermionic systems [109, 110], the experiment 
obtained access to both of these angles. Of particular interest 
in the context of DQPTs is the azimuthal ϕk(t), whose dynam-
ics has already been anticipated in section 3.6. Monitoring the 
dynamics of ϕk(t) in the Brillouin zone one can observe that 
there appear points in time where pairs of vortices are created 
or annihilated. Importantly, such a sudden creation or annihi-
lation of vortex-antivortex pairs is in one-to-one correspond-
ence with an underlying DQPT independent of the model 
details [32], meaning that the associated number of dynami-
cal vortices can change if and only if the system experiences 
a DQPT—as long as it can be considered as noninteracting. 
Consequently, tracking this vortex number over time is equiv-
alent to tracking DQPTs. This is of particular importance 

since the experiment only provides access to a discrete set 
of points in time, as it is realized as a Floquet system and 
is therefore only monitored stroboscopically. While from the 
full-state tomography, in principle, the Loschmidt echo rate 
function λ(t) can also be reconstructed [32], it is not possible 
to uniquely identify nonanalytic real-time structures from a 
fixed time grid. In this context the dynamical vortex number 
is appealing due to its quantized nature, in that a change in 
this number can only happen nonanalytically. Even further, 
the vortex number is not only to be viewed as a way of detect-
ing DQPTs but can also be interpreted as a dynamical order 
parameter for the DQPTs in this model [32].

5. Characteristic properties

The nonanalyticities at the DQPTs and the formal similarity 
of Loschmidt amplitudes to equilibrium partition functions 
suggest a close connection between DQPTs and conventional 
phase transitions. Equilibrium transitions, however, entail 
many further key properties beyond the mere nonanalytic char-
acter of thermodynamic potentials. It is one of the major chal-
lenges in the theory of DQPTs to identify the proper extensions 
of such characteristic principles to the far-from-equilibrium 
regime. It is the main purpose of this section to summarize and 
discuss results on the theory of DQPTs that address such fun-
damental questions. It is important to emphasize, however, that 
the current understanding rather represents a first step towards 
a comprehensive theory for nonequilibrium phase transitions. 
The summarized results are supposed to be seen as a starting 
point for further invest igations towards this major goal.

5.1. Scaling and universality

Let us start by discussing to what extent the concepts of scal-
ing and universality, which in equilibrium are caused by a 
divergent correlation length, can be applied to DQPTs. While 
a general understanding has not yet been reached, for the 
Ising model these concepts can be extended to the dynamical 
regime [36]. It is the goal of the following section to summa-
rize the main idea and to discuss the implications.

Consider the transverse-field Ising model

H(h) = −J
∑
〈lm〉

σz
lσ

z
m − h

L∑
l=1

σx
l , (44)

with the Pauli-matrices σα
l , α = x, y, z, and l = 1, . . . , L  

where L is the total number of lattice sites. Here, 〈. . . 〉 denotes 
a summation over the nearest-neighboring lattice sites. At the 
moment, let us not be restricted to a particular dimension or 
graph.

Consider in the following a particular quantum quench 
from J/h  =  0 to h/J  =  0. While this quench is very specific, 
it represents a fruitful starting point for approaching the prob-
lem on a general level. Within this nonequilibrium scenario, 
the system is initialized in the fully polarized state along 
transverse-field direction:

|ψ0〉 = |+〉 =
⊗

l

|+〉l, (45)

Figure 7. An illustration of the setup used in the observation 
of dynamical quantum phase transitions in ultra-cold atom 
experiments [32]. Reprinted figure with permission from [32], 
Copyright (2016) by the American Physical Society.
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where σx
l |+〉l = |+〉l , and the time evolution is then governed 

by the final Hamiltonian H = −J
∑

〈lm〉 σ
z
lσ

z
m.

It is the central observation that in this case the Loschmidt 
amplitude can be mapped onto a conventional partition 
function

G(t) = Z(K) =
1
2L TreH(K), (46)

of a classical Ising model with the Hamiltonian

H(K) = K
∑
〈lm〉

σz
lσ

z
m, K = iJt .

 (47)

The only difference with the equilibrium case is that the cou-
pling K ∈ C appearing in H(K) is complex. As discussed in 
section  2.5, Loschmidt amplitudes can always be formally 
understood as conventional boundary partition functions for 
complex parameters. The key property of the particular con-
sidered quantum quench is that the boundary conditions can 
be fully absorbed into the bulk.

The equivalence between G(t) and Z(K) can be seen 
straightforwardly when recognizing that the initial state 
|+〉 = 2−L/2 ∑

s |s〉 is an equally weighted superposition 
of all spin configurations. Because the Hamiltonian H gov-
erning the time evolution is diagonal in the spin basis, i.e. 
H|s〉 = H(s)|s〉 where H(s) is the respective eigenvalue, we 
have that

G(t) = 1
2L

∑
ss′

〈s′|e−itH(s)|s〉 = 1
2L

∑
s

e−itH(s) =
1
2L TreH(K) , 

(48)

which gives the desired relation. The major advantage of this 
construction is that results and strategies known for the equi-
librium case can now be applied to Loschmidt amplitudes and 
thus DQPTs. This is particularly interesting in the 1D and 2D 
cases as will be discussed now.

Let us start with the 1D Ising chain, where it is possible to 
construct an exact renormalization group (RG) transformation 
allowing for the identification of the exact RG fixed points. 
Specifically, it is possible to apply conventional decimation 
RG procedures [111] to the complex partition function of 
interest here [36]. Eliminating every second lattice site, one 
obtains the following exact recursion relation for the change 
of the couplings within one RG step:

tanh(K′) = tanh2(K) , (49)

which precisely matches the equilibrium case where the only 
difference is that in the present dynamical scenario the effective 
coupling K ∈ C is in general complex. This leads to the immedi-
ate question of whether the extension of the coupling K into the 
complex plane can lead to new fixed points. It turns out that only 
the conventional stable K*  =  0 (infinite temper ature) and unsta-
ble K∗ = ∞ (zero temperature) fixed points can be reached.

Which fixed points are the DQPTs associated with? 
Taking the critical coupling Kc = iπ/4, where the system 
exhibits a DQPT, and applying the RG recursion relation in 
equation (49) one obtains that Kc �→ K∗ = ∞ maps into the 
unstable zerotemperature fixed point of the equilibrium Ising 
model. This directly implies that these DQPTs obey scaling 
and universality. As a consequence, one can immediately 

obtain the universal scaling form of the singular contribution 
gs(t) to the dynamical free energy density g(t) as: [36]

gs(t) ∼ |τ |, τ =
t − tc

tc
, (50)

with τ denoting the dimensionless distance from the critical 
time tc. The temporal kink in g(t) obtained by the scaling anal-
ysis matches precisely the result from the full exact solution, 
see figure 8.

What one can gain from the relation between the DQPT and 
an unstable fixed point, for example, is that it is now straight-
forward to systematically study the influence of perturbations 
on the model. In particular, perturbations that are irrelevant 
in the RG sense leave the fixed point unchanged, which also 
implies a certain robustness of DQPTs. For example, adding 
a next-to-nearest neighbor spin coupling is always irrelevant 
under the decimation RG, which holds independently of the 
associated coupling strength [111]. Moreover, one can also 
start studying the influence of a transverse field in the final 
Hamiltonian. Within a perturbative treatment this leads to an 
effective classical description with an effective Ising model 
including weak irrelevant next-to-nearest neighbor interac-
tions [36]. Interestingly, there is the possibility that the rel-
evance of a perturbation, although appearing potentially with 
a weak coupling in the Hamiltonian, might depend on time, 
because the effective couplings appearing in the decimation 
RG implicitly exhibit a time-dependence.

Let us continue by studying the 2D Ising model on a square 
lattice, where the identification of the Loschmidt amplitude 
with a classical partition function is again possible. Although 
in this case no exact RG transformation can be formulated, the 
dynamics for the Loschmidt amplitude can still be accessed, 
extending the solution for the partition function of the 2D 
Ising model [112–114] to complex couplings [36]. One finds 
that this system also exhibits a DQPT. The singular contrib-
ution gs(t) to the Loschmidt amplitude rate function displays 
nonanalytic behavior according to:

0
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λ
(t

)

t/tc

h/J = 0

h/J = 0.1

h/J = 0.2

h/J = 0.3

Figure 8. DQPTs in the Loschmidt echo rate function λ(t) for 
quantum quenches in the transverse-field Ising chain for varying 
final fields h, starting from initial fully polarized states in the 
transverse field direction [36]. At the critical times, λ(t) exhibits 
a kink as predicted by scaling theory, see equation (50). While 
quantitatively for h  >  0 the rate function λ(t) shows deviations 
upon varying h, the universal properties of the DQPT in the form 
of kinks remain unaltered, in agreement with the RG prediction. 
Reprinted figure with permission from [36], Copyright (2015) by 
the American Physical Society.
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gs(τ) ∼ τ 2 log(|τ |). (51)

Remarkably, this matches precisely the critical behavior of the 
free energy density at the thermal critical point of the 2D Ising 
model, suggesting that scaling and universality also hold for 
that case.

Currently, no other examples are known for which scal-
ing and universality at DQPTs have been established, except 
the discussed models. Overall, the DQPTs discussed in this 
section appear to exhibit scaling which is associated not with 
the underlying quantum equilibrium phase transition, as also 
observed for a 1D quantum Potts chain [37], but rather to the 
classical one. Investigating to what extent universality and 
scaling generalize to the other DQPTs, and whether genuine 
nonequilibrium fixed points can also appear, which are not 
related to the equilibrium criticality, is a pertinent task for 
future work on the theory of DQPTs.

5.2. Robustness

The robustness of DQPTs has been studied for many mod-
els [36, 41, 42, 79, 80]. For DQPTs exhibiting scaling and 
universality as discussed in the previous section, robustness 
against a large class of perturbations is guaranteed. Whenever 
the perturbation is weak in the sense of the constructed RG, 
the structure of the nonanalytic behavior is unchanged, while 
only nonuniversal aspects such as the critical time of the 
DQPT might be shifted. An example of such an irrelevant 
RG perturbation has been provided in [36]. Upon adding a 
transverse field to the Ising Hamiltonian discussed in the pre-
vious section, the Loschmidt amplitude becomes equivalent 
to a classical Ising model, including next-to-nearest neighbor 
interactions. These longer-ranged couplings are irrelevant 
and vanish under RG transformation such that the fixed point 
Hamiltonian is described again by an Ising model, with-
out a transverse field at renormalized couplings, however. 
Consequently, the DQPTs are robust in the sense that the non-
analytic structure does not change and the sole influence of 
the transverse field is to shift the critical time.

As a further supporting argument for the robustness of 
DQPTs under symmetry-preserving perturbations, one can 
resort to the formal similarity of the Loschmidt amplitudes 
to complex partition functions, which has already been dis-
cussed in section 2.5. As for equilibrium transitions, DQPTs 
are linked in a one-to-one correspondence with complex par-
tition function zeros. For equilibrium partition functions it is 
well known that the structures formed by these zeros in the 
complex plane are typically robust under weak symmetry-
preserving perturbations, which is a different way of seeing 
the stability of phase transitions without resorting to an RG 
analysis. These structures might deform but do not immedi-
ately melt under the addition of a weak perturbation, which is 
equivalent to changing the critical value of the control param-
eter but retaining the structure of the transition. Assuming 
that complex partition function zeros also show the same 
properties in the whole complex plane, DQPTs are then also 
expected to be robust. This, however, should not been seen as 
a proof, but rather as a general physical argument.

For concrete models, the stability of the DQPTs has been 
studied both using numerical and analytical approaches [36, 
41, 42, 79, 80]. Specifically, in these works variants of the 
transverse-field Ising chain in 1D have been investigated 
under the inclusion of different perturbations. The robustness 
under adding a symmetry-preserving next-to-nearest neigh-
bor interaction to the model has been shown on the basis of 
both numerical simulations using the time-dependent density-
matrix renormalization group approach [80], as well an ana-
lytical approach using the flow equation  method [79]. The 
influence of a magnetic field in the ordering direction of the 
Ising chain, which constitutes a symmetry-breaking pertur-
bation, can lead to a smearing of the DQPT for a parameter 
sweep [41]. Adding such a perturbation to a quantum quench, 
however, it may happen that the DQPTs still exist [42, 80]. 
Understanding the difference between slow and fast perturba-
tions in this context remains an open question [80].

All the summarized examples study the robustness of 
DQPTs on short to intermediate time scales. A different ques-
tion is how the DQPTs are influenced in the long-time limit, 
where it is known from the context of quantum thermalization 
[96] that an already vanishingly weak perturbation can have 
a strong impact on the dynamics. Specifically, an integrable 
model can be turned into an ergodic one, which implies a 
drastic change in the asymptotic long-time steady state from 
a nonthermal to a thermal one. In this light, the robustness of 
DQPTs might depend on time. This question, however, has not 
yet been studied, although it might provide an interesting con-
nection with the field of quantum thermalization. Let us, how-
ever, emphasize that DQPTs do not rely on integrability. For 
example, DQPTs have also been found for genuinely interact-
ing models, such as the Hubbard model, in high dimensions 
[63], which is known to exhibit quantum thermalization [15].

5.3. Dynamical order parameters

Order parameters are central to the characterization of phase 
transitions in equilibrium. Therefore, it is important to ask 
whether this concept can be extended to the considered 
dynamical regime. Beyond providing a further element putting 
DQPTs on comparable footing with equilibrium transitions, 
dynamical order parameters might help in the understanding 
of the respective DQPT by, for example, identifying the nature 
of the two ‘dynamical phases’ separated by the DQPT.

Dynamical order parameters have been formulated and 
identified for DQPTs in 1D and 2D topological systems [30, 
32–35]. Most notably, the 2D case has also been measured 
experimentally recently [32]. All the proposed dynamical top-
ological order parameters share the same property in that they 
assign quantum numbers to the phase profiles discussed in 
section 3.6. Importantly, these quantized integers necessarily 
jump at DQPTs. For 1D systems [30, 31], or along closed 1D 
paths in the 2D Brillouin zone [34], these topological order 
parameters are winding numbers for the Pancharatnam geo-
metric phase as discussed already in section 3.6. This winding 
number is capable of providing insights into the underly-
ing ground state topology of the respective quantum many-
body system, although during the nonequilibrium process the 
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system is by no means close to its ground state. Specifically, 
these winding numbers can, in principle, distinguish topologi-
cally protected DQPTs from accidental ones and can thus be 
used to detect whether a topological quantum phase transition 
has been crossed with a change in the underlying equilibrium 
topology [30]. In 2D, another dynamical order parameter can 
be constructed by measuring the number of vortices created in 
phase profiles across the whole Brillouin zone [32, 35]. Here, 
it is possible to choose either the Pancharatnam geometric 
phase [35] or the azimuthal phase [32] of the associated rela-
tive Bloch sphere, see section 3.4. Notice that the dynamical 
topological order parameter using the Pancharatnam geomet-
ric phase can also be generalized for mixed initial states [35], 
as will be discussed in more detail in section 6.3.

In what sense DQPTs can also be characterized by local 
dynamical order parameters is not yet known. Certainly, it 
cannot be associated with long-ranged correlations in the con-
ventional sense, because causality in terms of Lieb–Robinson 
bounds [115–117] prevents the buildup of such long-ranged 
correlations within a finite time, which is where DQPTs occur. 
This, however, does not rule out alternative notions of a diver-
gent correlation length, which one can imagine within the 
interpretation of DQPTs as the dynamical analogs of equilib-
rium quantum phase transitions, see section 2.6.

5.4. Signatures in other quantities

Equilibrium phase transitions are not only manifested in a non-
analytic free energy, but also in other observables such as the 
order parameter, susceptibilities, or entanglement to name just 
a few. In particular, it is possible to directly infer measurable 
quantities such as the specific heat from the free energy by 
taking derivatives. At this point a difference between DQPTs 
and conventional transitions becomes apparent. It is not pos-
sible to obtain other measurable quantities from Loschmidt 
amplitudes in a similar way. How can DQPTs then be related 
to other quantities? 

In section  2.6 a general argument has been presented 
on how DQPTs are, in principle, capable of controlling 
the dynamics of other quantities. Within this argument, the 
DQPT is interpreted as a dynamical counterpart to a quantum 
phase transition in equilibrium. A DQPT can then control the 
dynamics of observables whenever there exists a dynamical 
complement to the quantum critical region, which for specific 
systems has been established both theoretically [55] as well as 
experimentally [38].

This perspective of DQPTs has been successful in explain-
ing the observed signatures in certain observables of systems 
with symmetry-broken phases [29, 38, 55–57]. Since we are 
dealing with situations where ground states are not unique, it 
is important to specify the generalization of the Loschmidt 
amplitude, which is not unique either, see the discussion in 
section 2.3. In the subsequent discussion, we follow the works 
in [29, 38, 55–57] and define the generalization as in equa-
tion (11). If alternatively, one would still choose the expres-
sion according to equation  (6), DQPTs can also occur [26, 
58–60]. For this choice the connection to other observables, 
however, is not known, which represents an interesting aspect 
to study in the future.

Let us now consider a system which is prepared initially 
in a symmetry-broken ground state with a nonzero value of 
the order parameter. Monitoring the dynamics after a quant um 
quench in such systems, it has been found on a rather general 
level that a DQPT is typically accompanied by a zero of the 
order parameter and therefore a periodic sequence of DQPTs 
with an oscillatory decay of the order parameter [29, 36, 56, 
57]. In a quench in the transverse-field Ising chain, for exam-
ple, the frequency of the oscillatory decay in the longitudinal 
magnetization matches exactly the periodicity of the DQPTs 
in the model independent of the details of the quench, see 
 figure 9 for the data shown in [29]. Importantly, the associated 
time scale t∗ is an emergent nonequilibrium time scale with-
out an equilibrium counterpart [29, 118], which within present 
knowledge only appears in the DQPTs and the anticipated 

Figure 9. The decay of the longitudinal magnetization in the transverse-field Ising chain for various initial (gi) and final (gf) fields [29]. 
When rescaling the time axis by t∗, which is the time of the first DQPT in the dynamics for a given parameter set, at a constant offset tϕ, 
one can identify the periodicity of the oscillatory decay with the periodicity at which DQPTs appear. Reprinted figure with permission from 
[29], Copyright (2015) by the American Physical Society.
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order parameter dynamics, providing strong evidence for 
a connection between the two quantities. The underlying 
mechanism for this connection follows a reasoning already 
discussed in section 4.1 on the recent trapped ion experiment, 
and will now be outlined in more detail. For the Ising model, 
the full return probability to the ground state manifold P(t) as 
defined in equation (11) is given by

P(t) = P+(t) + P−(t), Pη(t) = |〈η|ψ0(t)〉|2 , (52)

where η = ± and |η〉 denote one of the two ground states 
with positive (η = +) and negative (η = −) magnetiza-
tion. As for the Loschmidt echo, the individual probabilities 
Pη = exp[−Nλη(t)] also exhibit a large-deviation scaling, 
where the rate functions λη(t) are intensive, independent 
of the number of degrees of freedom N in the thermody-
namic limit. Due to this exponential dependence on N we 
have that P(t) is always dominated by either P+ (t) or P−(t), 
such that λ(t) = −N−1 log[P(t)] = minη λη(t) for N → ∞. 
Consequently, when the two rate functions λη(t) cross a DQPT 
occurs in λ(t) in the form of a kink, as discussed in section 4.1. 
Let us emphasize that this kink is not the result of an artifi-
cial construction, but rather carries a physical meaning which 
allows the DQPT to be connected to other observables. At 
the crossing point of the DQPT, the symmetry in the ground 
state probability P(t), which was initially broken explicitly by 
the initial condition, is restored. It is generically found that 
this symmetry restoration is not just restricted to the ground 
state manifold, but rather extends to nonzero energy densi-
ties, see for example figure 6. As a consequence, the symme-
try is also restored for observables, which implies a vanishing 
value for the order parameter. While in this discussion we 
have restricted ourselves to a discrete broken symmetry, the 
generalization to continuous symmetries is straightforward, 
yielding a similar connection between the order parameter 
dynamics and DQPTs [57].

An analogous relation between the order parameter dynam-
ics and DQPTs has been found for certain 1D topological 
systems with phases characterized by string order param eters 
[30]. For some models these observations can be traced back 
to the previously discussed case of symmetry-broken phases. 
The Kitaev chain for particular parameter sets, for example, 
is equivalent to a transverse-field Ising model and the string 
order parameter maps onto the respective conventional order 
parameter correlations. Importantly, however, the ground 
states of the Kitaev chain and transverse-field Ising model 
are different [118], implying that the full ground-state return 
probability P(t) reduces to a conventional Loschmidt ampl-
itude [29]. Despite these subtleties, the main phenomenology 
has been found to be unchanged [30]. When preparing the sys-
tem initially in a topological phase characterized by a nonzero 
string order parameter, the dynamics of the string order param-
eter after a quantum quench is linked to the DQPTs in the 
model. Whenever the system experiences DQPTs, which due 
to the integrability of the model appear periodically see equa-
tion (29). the string order parameter exhibits an oscillatory 

decay. Again, the time scale associated with these oscillations 
is an emergent nonequilibrium scale without an equilibrium 
counter part and coincides with the periodicity of DQPTs.

The discussed periodic appearance of DQPTs strongly 
relies on the integrable nature of the considered models. It 
is therefore natural to ask how integrability-breaking pertur-
bations might influence both DQPTs and order parameter 
dynamics. For strong integrability-breaking perturbations it 
has been found that the connection between DQPTs and order 
parameter dynamics can become more subtle [80], since addi-
tional DQPTs can appear at longer times which do not become 
manifest in the order parameter. A further aspect in the context 
of the influence of (weak) perturbations potentially inducing 
quantum thermalization concerns their behavior over long 
time scales, as discussed already in section 5.2. This is not 
known yet, but represents an interesting and important aspect 
which would be worthwhile studying in the future.

The previous examples summarize the relation between 
DQPTs and other observables for quantum quenches out of 
a symmetry-broken or topological phase. For quenches in 
the other direction, meaning from a symmetric phase to a 
param eter set, where the Hamiltonian exhibits symmetry 
breaking in the ground state, other observables have been 
found which connect to the DQPTs observed in these mod-
els. Since the initial state is symmetric and the Hamiltonian 
by definition conserves the symmetry, the order parameter 
has to vanish throughout the dynamics. However, it has been 
observed that the respective order parameter correlations can 
exhibit the signatures of the underlying DQPTs for trans-
verse-field Ising models [36, 119]. Specifically, they become 
maximal at a DQPT with a dependence as a function of the 
temporal distance to the DQPT, which is characteristic of  
the nature of the underlying DQPT. For DQPTs in the trans-
verse-field Ising model for such quenches, it has been found 
that those in the 1D (2D) system are in the same universality 
class as the critical points of the classical 1D (2D) Ising chain.

Let us point out that, in general, identifying observables 
whose dynamics is sensitive to an underlying DQPT can be 
difficult, because promising candidates might not show the 
apparent signatures. One example in this direction has been 
provided in a system of interacting bosons exhibiting a super-
fluid to Mott insulator transition in the ground state. For a 
quantum quench from an initial superfluid state to large inter-
actions, it has been found that DQPTs cannot be identified in 
the dynamics of the momentum distribution [120], whose zero 
momentum peak can be taken as an order parameter for the 
equilibrium superfluid phase.

A further class of observables that appear to connect to 
DQPTs are entanglement quantifiers, such as the entangle-
ment entropy [38, 119] or spin squeezing parameters [38], 
which are also discussed in more detail in section 6.1. Since 
the Loschmidt amplitude is the Fourier transform of the 
energy distribution function [49], the signatures of the DQPTs 
have also been identified in the energy and work statistics [29, 
51, 121, 122].
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5.5. Classification

In equilibrium, phase transitions are grouped mainly into two 
different categories: first-order phase transitions, associated 
with latent heat, and continuous phase transitions that occur 
in the presence of a divergent correlation length, not consider-
ing for a moment the case of Berezinski–Kosterlitz–Thouless 
transitions. Continuous phase transitions are further distin-
guished in terms of universality classes, entailing all those 
critical points sharing the same set of critical exponents. In 
view of the results summarized in section 5.1 about scaling 
and universality, this naturally leads to the question of whether 
analogous classification schemes might also be applicable to 
DQPTs.

While there exist DQPTs which can be classified in the 
conventional sense because of their connections to equi-
librium criticality [36], a general classification scheme for 
them is not known. In particular, it is likely that there can 
be new nonequilibrium fixed points for DQPTs that are not 
accessible within equilibrium dynamics. In the infinite-range 
transverse-field Ising model, for example, it has been found 
that the DQPT is related neither to the underlying equilib-
rium quantum nor the thermal phase transitions [56, 58, 60]. 
In this sense DQPTs represent a critical phenomenon that is 
distinct, in general, from equilibrium phase transitions. Still, 
there have been attempts to introduce classification schemes 
for DQPTs [61, 63].

For the dynamical topological quantum phase transitions 
in noninteracting two-band models, a comprehensive theory 
of DQPTs has been presented [61]. In this work, it has been 
shown how DQPTs are related to the underlying equilibrium 
topological quantum phase transitions. While so-called top-
ologically-protected DQPTs occur whenever the quantum 
quench crosses the underlying equilibrium critical point, so-
called accidental DQPTs can also appear which are of genuine 
nonequilibrium nature, see also section 3.5. Furthermore, the 
work in [61] has analyzed, on general grounds, what nonana-
lytic structures can occur in DQPTs in these models, ranging 
from simple kink structures to power-laws. While this work is 
of central importance for the theory of dynamical topological 
quantum phase transitions, this classification approach cannot 
be directly extended to, for example, interacting systems call-
ing for suitable extensions in the future.

An alternative attempt at the general classification of 
DQPTs has been put forward in [63]. Specifically, a definition 
of first-order DQPTs was introduced, which is based on a new 
class of observable quantities termed ‘generalized expectation 
values’:

〈Y(t′)〉G(t) = G−1(t)〈ψ0|e−iH(t−t′)Ye−iHt′ |ψ0〉 ,
 

(53)

where G(t) denotes the Loschmidt amplitude and Y a 
Hermitian operator. Compared to conventional expecta-
tion values, these generalized ones only involve a forward 
time evolution. Importantly, they can, in principle, be exper-
imentally accessed via an interferometric measurement. The 
proposed definition of a first-order DQPT in this work relies 
on the observation that in the thermodynamic limit 〈Y(t′)〉G(t) 
is dominated by a saddle-point, which, however, does not 

need to stay the same throughout the dynamics. In this con-
text one can define a first-order DQPT as the point in time 
where a dominant contribution switches from one to another 
saddle point. For those operators Y which are sensitive to the 
nature of the saddle point, the generalized expectation value 
〈Y(t′)〉G(t) can exhibit an abrupt change at the critical time, 
as has then been demonstrated for both the Falicov–Kimball 
model as well as the Hubbard model using dynamical mean-
field theory [63]. This definition of a first-order DQPT can 
be universally applied to any system and does not rely on the 
specific properties of the studied models. It is, however, not 
known how to relate the signatures of first-order DQPTs in 
these generalized expectation values to conventional measur-
able quantities, such as local observables or correlation func-
tions, and this remains an important direction for the future. In 
this context it is also of particular interest to study in this light 
DQPTs in topological systems and therefore to connect to the 
classification scheme for the topological DQPTs discussed 
before, for which no local observable Y is known to show a 
signature of DQPTs, but rather only global properties.

6. Further applications and topics

After having discussed the definition of DQPTs and some 
major characteristic properties, in the following we focus on 
further applications which have been studied in recent years.

6.1. Entanglement dynamics

Entanglement has developed into a key concept for the charac-
terization of equilibrium quantum phases and criticality [123, 
124]. It is therefore natural to ask whether and how entangle-
ment dynamics and DQPTs are connected to each other. Such 
a connection has been observed [38, 119, 125, 126], although 
the principle underlying this connection is unclear on a gen-
eral level. From the phenomenology observed in these works 
it appears that the concrete relation of DQPTs to entanglement 
dynamics can be specific to the nonequilibrium protocol. 

In 1D spin chains, evidence has been found that DQPTs 
can be accompanied by vanishing Schmidt gaps and are thus 
featured in the entanglement spectrum [125, 126], although 
the connection to DQPTs has not been explored in detail in 
these works.

For long-range transverse-field Ising models, as realized in 
the trapped ion experiment, see section 4.1 and equation (37), 
DQPTs can be associated with strong entanglement produc-
tion. Here, the system is initially prepared in a fully polar-
ized state along the ordering direction of the Ising model and 
the quantum quench is induced by time-evolving this initial 
condition with a long-range Ising model at a large value of 
the transverse field. In figure  10, the measured data of this 
experiment [38] is shown containing both the dynamics of the 
half-chain entanglement entropy S as well as the Kitagawa–
Ueda spin squeezing parameter ξ2

S  [127]. As one can see, at 
the points of the DQPTs occurring at τcrit and 3τcrit in the units 
used in the experiment, both the entanglement entropy and 
spin squeezing exhibit increased dynamics, signaling that the 
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entangling dynamics happens in the vicinity of the DQPTs. 
Notice that the lower ξ2

S , the more squeezed and therefore 
nonclassical the state is.

In short-ranged transverse-field Ising models the entangle-
ment dynamics has been recently studied [119] for a quantum 
quench, as already discussed in section 5.1. In contrast with 
the trapped ion experiment, in this setup the system is initially 
prepared in a fully polarized state along the transverse-field 
direction and the quantum quench dynamics is driven by an 
Ising model for a weak transverse field. In this case, the unitary 
dynamics can be solved for 1D up to 3D by perturbative map-
ping to an effective classical network that can be efficiently 
sampled using Monte-Carlo techniques [119]. The results are 
shown in figure 11. As one can see, the entanglement entropy 
S2(t) for a subsystem of two nearest-neighboring lattice sites 
becomes maximal at the DQPTs, which are known to occur 
at times (2m + 1)tc with m ∈ N in this model for 1D and 2D.

6.2. Quantum speed limits

The theory of DQPTs has seen a further application in the 
quantum information context beyond entanglement dynam-
ics, namely quantum speed limits [54]. Quantum speed limits 
provide bounds on the time scale for how fast quantum states 

can change in real-time evolution [128–131]. Notice that these 
need not be speeds associated with the change of local observ-
ables or correlations, which are constrained by Lieb-Robinson 
bounds [115–117]. Quantum speed limits rather quantify the 
point in time where a state becomes distinguishable from the 
initial one during the progressing dynamics. Apart from pro-
viding limits on the dynamics in closed [128, 129] and open 
[130, 131] systems, it has been argued that quantum speed 
limits might also have applications in optimal control the-
ory [132] and other quantum technologies such as quantum 
metrology [130, 131].

Optimal distinguishability is obtained when the time-
evolved state becomes orthogonal to the initial one imply-
ing a vanishing Loschmidt amplitude G(tc) = 0 at a time tc. 
As discussed extensively in section 2.5, this condition is the 
defining property of DQPTs, providing a general connection 
between DQPTs and quantum speed limits. It has been shown 
that for particular quantum quench protocols, i.e. quenching 
a quant um critical state by the order parameter, the critical 
times for DQPTs tc can exhibit an unconventional system size 
dependence revealing an up to now unrecognized class of 
quantum speed limits [54].

6.3. Mixed states

The theory of DQPTs was initially formulated for pure states, 
see section 2. Recently, extensions to mixed states have been 
proposed [33, 35, 121], which will be discussed in the fol-
lowing. First of all, it is important to note that the general-
ization of Loschmidt echos to nonpure states is not unique. 
Consequently, each generalization represents a choice target-
ing specific aspects of the dynamics.

The study in [121] attempted to introduce DQPTs for 
thermal initial states by interpreting Loschmidt echos as the 
probability of having performed vanishing work through the 
quantum quench. Thus, a natural extension to initial states 
with a nonzero temperature is to compute a work distribution 
function P(W, t) [50] and to identify the probability density 
P(0, t) for having performed no work W  =  0:

P(0, t) =
∑
ν,µ

e−βEν

Z

∣∣〈Eν |e−iHt|Eµ〉
∣∣2 δ(Eν − Eµ

)
, (54)

as the generalization with Z =
∑

ν e−βEν is the partition 
function connected to the initial state. Here, |Eν〉 denotes a 
complete set of eigenstates of the initial Hamiltonian H0 with 
associated eigenenergies Eν . In the aforementioned article, 
it was then shown that this definition leads to a smearing of 
the real-time nonanalyticities in the 1D transverse-field Ising 
model. It is, however, unclear how this approach could be 
formulated for more general initial conditions beyond Gibbs 
states or nonunitary time evolution, because then the notion 
of a work distribution function faces further challenges [50].

A different route for a theory of DQPTs for mixed states 
was put forward recently [33, 35]. In these works, the exten-
sion of the Loschmidt amplitude to initial mixed states ρ0 is 
inspired by an interferometric interpretation of Loschmidt 
amplitudes, which naturally leads to

Figure 10. Entanglement dynamics in long-range transverse-field 
Ising models and the connection to DQPTs, as measured in the 
trapped ion experiment [38] for N  =  6 spins and the interaction 
exponent α ≈ 0. The time is rescaled with respect to τcrit, setting 
the scale of DQPTs appearing in the system included as dashed 
lines in the plots. (a) The dots represent the measured half-chain 
entanglement entropy S, which is larger than the expected data (red 
line) for the ideal evolution. Upon accounting for imperfections in 
the preparation of the desired fully polarized initial condition (blue 
line) in combination with the uncertainty due to the projection noise 
(shaded grey area) the measured data comes close to a theoretical 
estimate. (b) The red dots (line) correspond to the measured 
(theoretically expected) Kitagawa–Ueda spin squeezing parameter 
ξ2

s . Reprinted figure with permission from [38], Copyright (2016) 
by the American Physical Society.
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Gρ(t) = Tr
(
ρ0e−iHt) , (55)

which can be obtained, in principle, from a mixed-state inter-
ferometric measurement [133]. Alternatively, this extension 
can be seen as the conventional Loschmidt amplitude for an 
appropriately purified initial state [33, 35]. Using this gen-
eralization of Loschmidt amplitudes for quantum quenches 
in topological systems, DQPTs are not smeared out but can 
rather persist up to elevated initial temperatures providing a 
dynamical probe of the topological properties without ever 
preparing a low-entropy state.

While relaxing the constraint on the pureness of the initial 
conditions, it is important to note that both of the discussed 
extensions to mixed states require the dynamics to be purely 
unitary. This leaves open an important question in the con-
text of experiments, because an unavoidable coupling to the 
environ ment, though small, induces decoherence and a nonu-
nitary contribution to the system’s dynamics becoming rel-
evant at long time scales.

6.4. General nonequilibrium protocols

Large parts of this review article are focused on the par ticular 
nonequilibrium protocol of a quantum quench. The natural 
generalization of Loschmidt amplitudes to other protocols is 
given by

G(t) =
〈
ψ0|U(t)|ψ0

〉
, (56)

with U(t) = T exp[−i
∫ t

0 dt′H(t′)] denoting the full time evo-
lution operator and T  the time-ordering prescription. The 
DQPTs as a consequence of the linear ramp of a parameter 
instead of a quench, for example, have been studied [31, 41, 
44, 91], and it was found that DQPTs may not only occur after 
the end of the nonequilibrium protocol, but can also occur 
during the parameter ramp. In this context, one can imagine 
various further interesting nonequilibrium scenarios, such as 
those in the context of periodic Floquet systems or systems 
subject to noise.

6.5. Relation to other notions of dynamical phase transitions

In the literature, several notions of dynamical phase trans-
itions in quantum many-body systems have been introduced 
in recent years. This includes the observation of sudden quali-
tative changes in the long-time relaxation dynamics in closed 
quantum systems [15–17, 23, 24, 28, 134], in nonthermal 
asymptotic long-time steady states [18–20, 22, 25, 26], and 
also in open quantum many-body systems [16, 17, 21, 76, 77]. 
Discussing the potential connections of all of these different 
notions of dynamical phase transitions to DQPTs is beyond 
the scope of this review. Therefore, in the following we now 
summarize these other definitions, for which the relation to 
the DQPTs has already been studied in the literature.

In recent works [27, 56, 57], connections between DQPTs 
and such other notions of nonequilibrium criticality have been 
addressed. The nonequilibrium phase transition discussed 
in [56] concerns a long-range transverse-field Ising model 
along the lines of the trapped ion experiment discussed in 
 section  4.1. Preparing the system in a fully polarized state 
along the ordering direction and performing the dynamics, 
this system supports a nonthermal steady state transition. 
When the transverse field is weak, the system ends up in a 
phase with nonzero magnetization, whereas for large fields 
the magnetization vanishes [20]. These two phases are sepa-
rated by a nonequilibrium phase transition that has no equilib-
rium counterpart [20]. This type of dynamical phase transition 
appears in a model system which is also known to exhibit a 
so-called excited-state quant um phase transition [83–89]. To 
what extent these are related currently remains an interesting 
and open question. As it has been shown in [56], this trans-
ition in the steady state is connected to the DQPT in the full 
ground state return probability, see equation  (11), occurring 
on transient to intermediate time scales. How the anomalous 
DQPTs [58–60], which occur for weak transverse fields over 
long times, can be merged into this picture is, however, not yet 
known. A generalization to the case of a system exhibiting a 
broken continuous symmetry has recently been studied for the 
nonequilibrium dynamics in an O(N)-model [57]. In contrast 

Figure 11. The dynamics of the entanglement entropy Sn(t) for subsystems of size n  =  2 after a quantum quench in short-range transverse-
field Ising models [119]. Here, tcrit denotes the time scale for DQPTs which appears at tc, 3tc, 5tc. Left: a comparison of the exact solution 
with the perturbative classical network (pCN) as well as the conventional lowest order time-dependent perturbation theory (tdPT). Right: 
the entanglement dynamics for 2D and 3D using the perturbation classical network and a comparison with the exact solution for 2D on an 
N = 4 × 4 lattice. Reproduced from [119] with permission.
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to the case of a broken Z2 symmetry in the Ising model, the 
real-time nonanalyticity of the DQPTs does not appear in the 
leading order in the n (number of degrees of freedom) contrib-
ution to the rate function λ(t), but rather in an n−1 correc-
tion, similar to what happens in equilibrium surface phase 
transitions.

A connection between the DQPTs and the nonequilibrium 
topological transition in a steady state after a quench was 
identified recently in [27]. As opposed to the Ising model, 
whose steady-state transition is characterized by a local order 
parameter, in this topological case it is signaled by nonana-
lytic behavior in the linear-response transport properties [24]. 
What has been observed is that DQPTs appear if and only if 
the control parameters are quenched across the critical value 
of the steady state transition. To what extent DQPTs can also 
be connected to other notions of nonequilibrium criticality 
remains an open question.

6.6. Inhomogeneous systems

Dynamical quantum phase transitions have also been studied 
for inhomogeneous systems, including the random energy 
model [135, 136], the Anderson model [137], as well as for sys-
tems in incommensurate lattices in the context of the Aubry–
Andre model [138]. While for the random energy model and 
the Aubry–Andre model strong evidence for DQPTs has been 
observed, in the Anderson model sharp but still smooth struc-
tures have only been found for large but finite systems, leav-
ing open the question of how these sharp features behave in 
the thermodynamic limit. It is currently unclear to what extent 
disorder influences DQPTs on a general level. This is of par-
ticular importance because disorder can also have a drastic 
influence on equilibrium phase transitions. In particular, a 
large class of first-order phase transitions is smeared in the 
presence of disorder and develops into a smooth crossover 
[139–142]. For continuous transitions, the Harris criterion can 
predict the stability of a transition against weak disorder on 
the basis of the critical exponents of the transition [143]. To 
what extent these theorems can be extended to DQPTs is not 
yet known.

7. Prospects

As summarized in this review, the field of DQPTs has seen 
substantial progress in recent years both from the theoretical 
as well as the experimental point of view. While this progress 
underlines the potential of the theory of DQPTs to provide a 
principle for the understanding of the dynamics in quantum 
many-body systems, some major questions are still open. It is 
the aim of this final section to devise some of the challenges 
in this context, to turn to potential prospects, and to point out 
directions for future research on DQPTs.

One of the main challenges within the theory of DQPTs 
is the lack of the notion of a free energy for the considered 
nonequilibrium quantum states. As already anticipated in the 
introduction, this lack, however, may not only be seen as an 
obstacle but also as the defining property of the considered 

nonequilibrium quantum states, also providing room for 
properties that are inaccessible within equilibrium thermo-
dynamics. Still, major questions remain: is there neverthe-
less a macroscopic description? Is it possible to construct a 
nonequilibrium counterpart of the Landau–Ginzburg theory? 
Associated with this: is there an organizing principle analo-
gous to the minimization of free energies? Addressing these 
questions clearly constitutes one of the most pertinent tasks in 
the theory of DQPTs.

Up to now, the majority of work on DQPTs has seen expo-
nents which are integer valued. Although this should not be 
interpreted such that the nature of the considered DQPTs is of 
first order in the equilibrium sense, see e.g. [36], it is not clear 
whether more exotic DQPTs can exist which display nontriv-
ial exponents. This might call for novel approaches that allow 
Loschmidt amplitudes to be computed for higher-dimensional 
interacting theories. Fortunately, DQPTs occur on transient 
time scales where approximative methods can be much better 
controlled, as opposed to the case of studying the long-time 
dynamics of correlated systems.

Further potential scope in the theory of DQPTs is to 
explore connections to other nonequilibrium phases and criti-
cal phenomena, including fields such as many-body locali-
zation (MBL) [8–11, 144, 145], or nonthermal fixed points 
[146, 147]. In this context, it might be of particular interest 
to study the so-called eigenstate phases through the lense of 
DQPTs [148, 149]. Remarkably, these eigenstate phases are 
not only associated with long-range spatial correlations, such 
as in the case of MBL spin glasses [23, 148, 150], but also 
with unconventional spatio- temporal order for time crystals 
[12, 13, 151–153].

From a more general point of view, the theory of DQPTs 
captures nonanalyticities in the time translation operator. In 
this light, it is natural to ask the extent to which analogs of 
these nonanalyticities are possible in different kinds of trans-
lations or rotations, as they appear, for example, in the many-
particle momentum-translation operator [154–156], which 
plays a central role in topological systems.
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