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THE THEORY OF THE STABILITY OF NON-UNIFORM 
PLASMA AND ANOMALOUS DIFFUSI0N-f 

A. A. GALEEV, S. S. MOISEEV and R. Z .  SAGDEEV 

(Received 17 June 1963) 

Abstract-A review of the theory of the stability of a low-pressure ( p  < H*/Sn)  plasma contained 
in a magnetic field is given, with regard to the excitation of drift waves due to non-uniformity of 
the plasma. In the first part are considered drift waves in a low-temperature plasma, when a hydro- 
dynamic description is justified. It is shown that dissipative effects (in particular, the effect of finite 
electrical conductivity) play an important part in the stability of the plasma. On the basis of a 
rigorous linear theory of stability, a semi-quantitative discussion of non-linear effects in an unstable 
plasma and of anomalous diffusion is presented. It has been possible along these lines to obtain 
a natural explanation of the phenomenon of Bohm diffusion and of the ‘critical’ value of magnetic 
field. The results are compared with the available experimental data. 

In the second part of the paper, drift waves in a high-temperature plasma are considered. An 
analysis of linear stability theory is presented, using the collisionless Boltzmann equation. A quasi- 
linear method has been adopted to calculate the influence of drift waves on particle diffusion in an 
unstable plasma. 

1. INTRODUCTION 
VARIOUS aspects of the theory of magnetic containment of a plasma, including the 
well-studied problem of plasma stability on an ideal magnetohydrodynamic medium 
model, have been discussed in books‘l) and review articles(2). The basic cause of the 
instability of the magnetic equilibrium of a plasma may be thought of as the ‘effective’ 
acceleration due to a gravitational force, arising in the absence of a real gravitational 
force from the curvature of the magnetic field lines. 

The results of an experimental study of plasma stability cannot, however, always 
be explained in terms of the ideal theoretical models. There has therefore been, in 
recent years, an intense study of the influence of dissipative effects on plasma stability. 
For example, a theory of this sort has been applied to the question of the stability of 
the so-called positive column of a gas discharge and has given an  explanation of 
several anomalous phenomena occurring in low-temperature weakly ionized plasmas(3), 
when the cause of instability was an electric current, flowing along the lines of force 
of the superimposed magnetic field. 

Until recently, however, there remained unexplained the nature of the experi- 
inentum crucis of magnetic containment, the phenomenon of so-called anomalous 
Bohm diffusion of a plasma across a magnetic field. In 1949 it was discovered experi- 
mentally(4) that the diffusion coefficient of a plasma, across a magnetic field, sub- 
stantially exceeds the value obtained from classical kinetic theory. Bohm suggested 
that the reason for this anomaly was instability of an  unknown kind which was 
causing the plasma to become turbulent, and he postulated a coefficient of anomalous 
diffusion 

cT 
16eH (1) 

Di = - 

where H is the magnetic field strength; T is the temperature of the plasma; c is the 
t Translated by A. N. DELLIS from Atomnuya Enevgiya 15, 451 (1963). 
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velocity of light in vacuo; e is the electronic charge. Since that time there have been 
many experiments to establish the nature of this instability and the character of the 
turbulence caused by it, but none has succeeded in elucidating the anomaly. (The best 
that has been done has been to obtain numerically (!) approximate values of the diffu- 
sion coefficient for special cased5) by making additional assumptions.) On the other 
hand, there has been a succession of experiments to study plasma diffusion@) and they 
have frequently led to contrary results, sometimes obtaining satisfactory agreement 
with the classical theory. We shall, in particular, show that in a fully ionized low- 
pressure plasma, placed in a strong magnetic field (H2 + 8 ~ p  where p is tlie plasma 
pressure), instability does indeed exist when the magnetic field lines are straight and 
uniform along their length. This instability is due only to the presence of a density 
gradient in the plasma. Examination of the turbulence arising from this instability 
leads to a diffusion coefficient close to (1). I t  will also be shown that condition (1) 
is not universal and that regimes do exist in which the diffusion coefficient may vary, 
for instance, as 1/H2. 

It is well known that a plasma which is not in thermodynamic equilibrium is 
unstable as regards the excitation of oscillations of a different sort. Such oscillations 
often exert a large influence on the particle distribution in both velocity and ordinary 
space. In  a uniform plasma, placed in a magnetic field, there are seven classes of 
oscillation (Alfven, Langmuir etc.). In a non-uniform plasma, the dielectric properties 
may be altered substantially even for only small spatial gradients. This mainly applies 
to the low-frequency oscillations (having frequencies small compared with the ion 
cyclotron frequency). Here there occur classes of oscillation the phase velocity of 
which coincides with the velocity of the plasma drift due to the magnetic field and the 
pressure gradient; these are ‘drift waves’ [see, for example, GALEEV et aZ.(’)]. The 
‘slowness’ of drift waves leads one to expect that they will exert a considerable influ- 
ence on plasma stability. For example, the passage of a relatively low-velocity 
particle beam through the plasma may be quite sufficient to excite them. In an intro- 
duction it is natural to precede the systematic exposition of the theory of drift wave 
excitation and instability by a non-rigorous qualitative argument. Let us choose a 
one-dimensional geometry for the initial equilibrium configuration of the plasma in 
the magnetic field: Ha = (0, 0, Ha} is the magnetic field, which is taken along the z 
axis. Let the gradients of the unperturbed quantities be directed along the x axis; 
no = no(x) is the density; To = T,(x) is the temperature; E = {Eo2 0, 0} is the electric 
field strength, determined from the condition 

_ -  n,T, = -en,E,, 
d x  

which expresses the absence of a macroscopic ion velocity, in equilibrium. 
The properties of the drift waves may be deduced qualitatively in the following 

way. The dispersion equations for the frequencies of the drift waves are most simply 
derived in the co-ordinate system for which the unperturbed electric field equals zero 
(Eo2 = 0). Let the phase velocity of the waves be greater than the ion thermal 
velocity VTi  and less than the electron thermal velocity VTe.  Then provided that the 
perturbation electric field can be derived from a scalar potential (curl E = 0) the 
electrons, moving along the lines of force, are able to redistribute themselves according 
to the Boltzmann law: n = n,(x)ecp/T (n  is the perturbation of plasma density, cp is 
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the electrical potential of the perturbations). Choosing perturbations of the form 
exp (iwt + ik,y + ik,z) and making use of the conditions of irrotational field and 
quasi-neutrality, and of the equation of continuity for the ions 

we obtain 

E, iwn + c - no'(x)  = 0 
Ho 

On increasing k ,  these waves go over into the so-called 

(3) 

ion sound waves. 
From equation (3) it follows that the frequency of the oscillations increases as the 

wavelength decreases. When, however, the wavelength attains the order of the ion 
Larmor radius, this increase ceases. This is because the effective electric field, averaged 
over the particle orbit, decreases; therefore the mean drift velocity of the particles, 
cE,/H in equation (2) ,  falls. An exact analysis shows that this decrease of field just 
compensates for the increase of frequency due to the increase in k,, so that w w 
VTino'/n for k,ri > 1. We shall show later that these drift waves are excited in a non- 
uniform low-density plasma even without a temperature gradient, there being only a 
density gradient. In  the case of a high-temperature plasma, where one may neglect 
particle collisions, the excitation mechanism for drift waves consists of a resonant 
interaction between the wave and electrons moving along the magnetic lines of force 
with a velocity equal to the phase velocity of the wave wlk,,.  

In a low-temperature plasma for which hydrodynamics may be used, an  imaginary 
part of the frequency will occur due to the various dissipative effects: viscosity, 
thermal conductivity and so on. In  a uniform plasma these factors lead to a damping of 
waves. In a non-uniform plasma the situation may be otherwise. Let us, for example, 
consider the influence of finite electrical resistance, arising from a frictional force 
between the electrons and the ions. It has been found that this may cause the excita- 
tion of drift waves (3). In fact, using the assumptions on which the existence of the 
oscillations (3) is based, considering for simplicity that the ions are cold and taking 
into consideration the frictional force of the electrons on the ions, we obtain, for the 
motion of electrons along and of ions perpendicular to the magnetic field, the 
equations 

-ik,nTo - en,E, - menOVe,v, = 0 (4) 

dV, e 
- dt = en0El + C - no(Vi x Ho). ( 5 )  

Here Y, is the effective electron-ion collision frequency. 

of quasi-neutrality 
Adding to these the condition curl E = 0 and the equations of continuity, (2), and 

we obtain the following dispersion equation : 

C O ~  = i w p  - iwp, (7) 
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Thus it is evident that there is instability in a plasma of variable density having finite 
conductivity. If 03, 3 w, (the friction is small) then Re w m we; Im w m we2/wS. In 
the opposite case (me 3 w,)  Re w m Im w w JG,. 

I t  is not difficult t o  understand physically how the frictional force acts in this 
example. In  the absence of friction, and for intermediate frequencies ( VTi < o /k ,  < 
V,,). the electrons, moving along the lines of force, are able to become redistributed 
according to the Boltzmann law and the pressure forces and electric field d o  no  work. 
I n  the presence of friction the electron mobility falls. Because of this, the original 
density fluctuation continues to grow, leading to the development of instability. The 
net work done by the pressure forces of the expanding plasma is now positive over a 
period of the oscillations, and it is easily verified that it exceeds the frictional loss. 

From the discussion given here it follows that in both limiting cases, a high temper- 
ature and a low-temperature plasma, there are physical mechanism which produce 
a growth of drift oscillations with time (the growth rates are the frequencies of the 
drift waves). 

A detailed investigation of the anomalies in transport phenomena, occurring 
because of drift instabilities, meets with great difficulties; it  is, nevertheless, precisely 
the results of such an investigation which must be our aim. An attempt has been made 
to derive an anomalous diffusion coefficient by combining the results of linear stab- 
ility-theory with some, in our view, reasonable estimates of the effects of non-linearity. 
As has already been remarked, this will lead to a natural explanation of the Bohm 
diffusion coefficient (in a low-temperature plasma). For a high-temperature plasma, 
where collisions are infrequent, the so-called quasi-linear method(*19) has been used 
to calculate the diffusion coefficient. This method takes into account the effect on the 
particle distribution function of the waves which arise from the instability. 

Waves arising from an instability tend to alter the electron distribution function 
in such a way as to suppress the instability. If however the electron-electron collisions 
are sufficiently frequent to allow a Maxwellian velocity distribution to be re-established, 
the instability will not be suppressed although the anomalous diffusion caused by it 
will be substantially reduced. 

2. THE H Y D R O D Y N A M I C  THEORY O F  STABILITY OF A 
N 0 N-U N I F 0 R M L 0 W-TE M P E RAT U R E P LA S MA 

(i) Linearized equations. Investigation of the problem in terms of eigenvalues 
To investigate the stability of a non-uniform plasma having finite conductivity we 

shall use the two-fluid hydrodynamic equations for electrons and ions in a strong 
magnetic field ( p  < H 2 / 8 r ) .  We shall assume, as in the example above, that the 
perturbed motion does not disturb the quasi-neutrality of the plasma (noi = no,, n, = 
n,). In  addition we shall neglect the perturbation H ,  in Maxwell's equations for the 
electric and magnetic fields of the perturbations; this is justified if 8~noTo  < Ho2. 

For the frequencies appropriate to the problem (V,, 9 w/k,  > VTi) we shall 
neglect both the motion of the ions along Ho and the inertia of the electrons; this 
latter means that we limit ourselves to those oscillations having frequencies much less 
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than the electron collision frequency with neutral particles and ions. Then the linear- 
ized set of two-fluid hydrodynamic equations(lO) in the frame of reference for which 
the unperturbed electric field E, = 0, has the form 

iw ik,Ez - ik,E, = - -H*, 
C 

dE, - ik,E, - - - 0 ;  
dx 

-ik,(n,T, + nT,) - en,E, - O~71ik,n0T, + RI ,  + -= 0 ;  

- V l p ,  - eEln, - -O (V,  x H) - - (V, x H,) = 0 ;  

(10) 
C 

(11) 
en en 

c C 

Qn,(iwT, + Vo,T,ik, + VaeToe)) - T,,(iwn + ikuVoen + Vxno’) 

5 cT 
2 eH,  

- - -kZ2KT, + - a  -O iku(nToe’ - Teno’); (12) 

iwn + div (nV,) + div (noV) = 0; ( 1 3 )  

mino[iwVi + (Voi .  0 ) V J  = en,E + flll (VOi x H,) 
C 

+ (Vi x H,) - Vpi - div XI. + R,; (14) 
C 

5 cT,, 
2 eH,  

--.-  - (Tino’ - TIT,,‘); (15) 

H e r e j  is the perturbation of the current density. In the equation of motion for the 
electrons (10) along the magnetic field lines, both the thermal force 0.71 ikznO arising 
from the presence of a temperature gradient and the frictional force R,, of the electrons 
with the ions (or with the neutral particles in the case of a weakly ionized plasma) 
have been taken into account. The frictional force has not been included in the 
equation of motion of the electrons across the magnetic field; this implies that 
w ~ , v , - ~  > 1. The equation of heat balance (12) for the electrons has been included 
since there arises a perturbation in the temperature T, in the presence of an initial 
temperature gradient Ti,. In (12) K is the coefficient of electronic thermal conductivity. 
Equation (13) is the equation of continuity for the ions. The motion of the ions 
across the magnetic field is described by equation (14), in which the viscosity tensor, 
with components given in (16) has been retained. Note that the form of the viscosity 
tensor (16) corresponds to a hydrodynamical description of the motion across the 
magnetic field even when collisions between the ions have been neglected, if the 

7 
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Larmor radius of the ions is small compared with the characteristic transverse dimen- 
sions [cf. for example, RUDAKOV(ll)]. The quantity R, is the frictional force between 
the ions and the neutral particles; (the friction between the ions and the electrons 
scarcely affects the motion of the ions). Equation (15) is the equation of heat balance 
for the ions; YOB and V,, are the unperturbed electron and ion velocities. 

First of all we shall consider a fully ionized plasma, where R, = 0. When this is so 

wherej, is the initial longitudinal current. The second term in (17) corresponds to an 
additional frictional force due to the conductivity parallel to the magnetic field 
changing. 

Choosing perturbations of the form ~ ( x )  exp(ik,y + ik,z + iwt) we obtain from 
(8) to (15) the following equation for long-wave perturbations of the potential (k,ri Q 
1) in the co-ordinate system where the ions are at  rest: 

Here 

An analysis of (18) was carried out by MOISEEV and SAGDEEV(~~)  for the case 
involving no longitudinal current. In general, a rigorous solution of a differential 
equation of the type of (18) requires an accurate knowledge of the density profile. 
Here we shall limit,ourselves to the case when wi, w,, wT <we, and the density changes 
so slowly that the magnitude of o, may be considered constant. In the neighbourhood 
of points where n,l /no is a maximum, we may be put in the form 

w, = coco - p,x2* 
Using (20), we obtain for (18) 

3 + (2E -Kx2)k;p  = 0, 
dx2 

where 

The solution of equation (21) is similar to that of the Schrodinger equation for the 
linear harmonic oscillator. We consequently have, for the eigenvalues and eigen- 
functions 
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Here H,(yx)  are Hermite polynomials and 
,- 

From (25) and (26) it follows that finite solutions exist. In the quasi-classical approxi- 
mation, when y is small, we obtain (7) from (24). The existence of localized solutions 
confirms that the complex potential of equation (18) [i.e. the function v] has the 
character of a potential well. Although equation (21) is only correct sufficiently near 
to the bottom of the well, the results obtained from it remain qualitatively correct 
wherever localized solutions exist provided that the density only changes slowly(26). 
For varying temperature it is necessary to take into account the influence of thermal 
conductivity on the growth rate. However, it is clear that, for w 2 w,, if 

0, >kk,2X (27) 
this influence is negligible. Using the expressions for os, Im w and 2, we obtain from 
(27) 

k,r, < 1, (28) 
i.e. the thermal conductivity changes the growth rates of the long wavelength pertur- 
bations considered hardly at all. 

Let us now consider the case when there is current flowing along the magnetic 
lines of force(13). If w,, cui, wT < wo, equation (18) assumes the form 

Let w, > os, XkZ2. This is equivalent to satisfying the following inequalities : 

Here V,, = jo /eno;  I is the electron mean free path; A, = 2.rr/kZ; kR w 2 ~ / r  (Y is the 
transverse dimension of the system). I t  is to be noted that, for a uniform initial 
magnetic field, one must take k,  > (k,k,)/k,, where k,  M (2nj0)/cH0; this does not 
conflict with k ,  being small, however, since ko is small if, in accordance with the 
Kruskal-Shafranov criterion, we exclude the hydrodynamic instabilities of an ideal 
plasma from consideration. 

When conditions (30) and ( 3 1 )  are satisfied, equation (29) gives a pure potential 

U = 1 - w,W~, 0 = iv. (32) 
V2 

In Fig. 1 is shown a graph of U(x) for an indicated variation of the temperature 
T,(x). Comparing the growth rates for the given case (Im w m d/wow,) with those for 
the instability developing from drift waves (Im w M dG,), we see that for 
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FIG. 1 .-Graph of V(x)  when w,, 3 w,, XkZ2. 

current instability develops the faster. The case w, 0 wo < w,  corresponds to the 
current-convective instability considered by KADOMTSEV(14). If w, 3 we, wo and the 
thermal conductivity are small but wo 2 a,, then w = CO, - iw,. I n  this case insta- 
bility also develops from the drift waves, but with a growth rate -roo, i.e. the initial 
longitudinal current plays a fundamental part in the development of the instability. 

One must take into account the effect of the neutral gas, for a weakly ionized 
plasma. When wo, w T ,  (U, < we, the equation for the perturbations of potential takes 
the form(13) 

Here voi is the ion-neutral collision frequency. For the frequencies and growth rates 
we then have 

(w, + voi 3 JW,W,). J 
Taking the longitudinal motion of the electrons into account in the equation of conti- 
nuity, when ai, wo, wT < wc, we have for the perturbations of potential in a weakly 
ionized plasma(l5): 

voe is the electron-neutral collision frequency. 
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The longitudinal motion of the ions has less stabilizing effect than does the 
stabilizing factor we have considered in (36). 

In a strongly ionized plasma, when cos& w, ion-acoustical oscillations (St = 
kzVi) grow at a rate w,. 

One of the important dissipative processes, friction between different kinds of 
particles, has been considered above and it has been shown that on doing so a destabil- 
izing action appears. We shall now briefly mention the peculiarities of the influence 
of thermal conductivity and viscosity. Thus, if one retains in the dispersion equation 
the terms which recognize the finite Larmor radius and the term Xk,2, and considers 
the friction as being small [which is so if condition (28) is not obeyed], then a non- 
uniform plasma will be unstable even in the absence of a temperature gradient"). 
For long-wave perturbations, thermal conduction causes an insignificant change in the 
growth rates and frequencies, but viscosity, because of the transverse motion of the 
ions, exerts a stabilizing action(13). 

Let us discuss the effect of 'shear' in the magnetic field when investigating the 
stability of a non-uniform plasma. We shall consider current-instability first of all. 
Let the magnetic lines of force lie in the ( y ,  z )  plane and be straight, having an angle 
of inclination e(x) ,  relative to the z-axis, which is a function of x .  This shear of the 
lines of force is provided by a current, flowing along them, so that the angle of inclina- 
tion 0 in accordance with Maxwell's equation curl H = 4n-/cj is related to V,, by 
the expression 

4n-enoVeo _ - -  , K O =  0. d0  _ -  
dx cH0 

If the density and the temperature have a similar variation, and thermal conduction 
may be neglected, the graph for U i s  similar to that depicted in Fig. 1. In the presence 
of shear, 

kli = k ,  + k,jx dx 
dx 

( k ,  is the component of the wave vector along the magnetic field). It is necessary to 
take thermal conduction into account when kii  increases; when this is so, w, also 
increases and wo decreases. The potential well becomes smaller, as may be seen from 
(29). When w, 3 wo, instability generally vanishes, if xkIl2 2 wo. 

Let us now consider the case when w, >> wT, coo, wi. With increase of kll  the 
situation may arise in which w, > w,, and this leads to a narrowing of the potential 
well [this follows from analysis of (18)], and so the condition w,/kl, 3 Vi may also be 
violated. In the opposite limiting case, in a fully ionized plasma, as has already 
been indicated, the ion-acoustical oscillations grow at a rate we Q kll VTi. We note 
that an increase in k, and a small value of the parameter o,/k,Vi substantially 
decrease the diffusion coefficient [cf. (41)]. It follows from (36a) that in a weakly 
ionized plasma the effect of increasing kll is to cause stabilization of the instability. 

In conclusion, let us consider what effect the violation of the condition curl E = 0 
would have. Neglecting thermal conduction due to collisions, in the absence of an 
external longitudinal current and of a temperature gradient, we obtain from equations 
(8) to (1 5) the equation (in the laboratory system of co-ordinates) 
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If the perturbations are not described by a potential (w 9 k,V,) then we find from 
the qualitative criterion for stability 

kLL2 kS2VA2 > 0 Im w = Re -. - 
i.e. the perturbations die out with time. We notice that the stabilizing effect, due to 
these circumstances increases with increasing temperature. 

(ii) Consideration of non-linear efects .  The inpuence of instabilities 

kVZ us 

on anomalous di@iision 
The development of instability must lead to the occurrence of a turbulent state in a 

plasma and to the onset of turbulent diffusion. As is usually done in turbulence theory, 
we shall estimate the resulting diffusion coefficient by dimensional analysis. 

The diffusion coefficient may be written down in the form 

D M V,%. 

Here V ,  is the velocity fluctuation of the plasma; T is the characteristic correlation 
time. In the case we have been considering T w l/v/, since there is no other time 
scale to characterize the irreversible nature of the turbulent state. The amplitude of 
the fluctuations is determined from the following considerations. On the other hand, 
instability leads to a growth in the amplitude of the fluctuations and (aV,)/at - vV,; 
on the other, non-linear terms such as div(nV) cause a transfer of energy to  the short 
wavelength part of the spectrum, where the fluctuations get damped. The balance 
between these two processes determines the steady-state value of the fluctuation 
amplitude. 

where 1, is the characteristic dimension of the turbulence elements along the x-axis 
direction. 

Determining V ,  w IvIL, from (39), we obtain 

D w I ~ j 1 ~ ~ .  (40) 

It is natural to take as ill the wavelength of the instability AZ. For the case (v /Q < 1) 
it has been possible to develop an adequately rigorous method for investigating the 
turbulence fluctuations and their influence on the particle distribution f ~ n c t i o n . ( ~ ~ ~ ~ )  
The latter is calculated using the so-called quasi-linear method($), the essence of which 
is that the distribution function can be split into slowly varying and rapidly oscillating 
parts and in the equation for the ‘slow’ part the mean square effect of the rapid oscil- 
lations is taken. The division into two frequency ranges presupposes that there operate 
in the plasma, from the very start, two processes having different time scales: rapid 
oscillations with a slowly varying amplitude. This is just the previously mentioned 
condition v < Q. Extending the quasi-linear method to a non-uniform plasma, in 
the hydrodynamic approximation, and using Boltzmann’s equation for the waves(16), 
the following expression for the diffusion coefficient is obtained(15) : 
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If vk w Qk then perturbations having different wavelengths will strongly interact with 
each other over a prolonged time interval and the method we have indicated cannot 
be used. One can, however, take advantage of expression (41) in order to estimate the 
diffusion, putting v M f2 in it. We then obtain expression (40). As an example, let us 
find D when the ions are cold, when there is no longitudinal current and when T, = 
const. Then for we 9 CO, it follows from (18) that k, M k,. Using the expression for 
Im m, we obtain 

(42) 
D - d  JOW 

kJ2 . 
We are interested in the maximum diffusion coefficient, and so we shall take the 
minimum allowable values of k, M (27r)/r, where r is the transverse dimension charac- 
teristic of the system. The ratio kJk, still comes into 2/G and should also be taken as 
its maximum; from the condition w, 2 CO, we have the limiting acceptable value for 
kzlk, : 

where 

Finally we obtain 
V 4  = H,/d4m,mi. 

D ,  N cTo,/27reHO. 

(43) 

(44) 

We notice that the diffusion coefficient given by Bohm has just this order of 
magnit~de‘~).  It is now necessary to consider the following. According to (43) the 
value of (k,/k,)l,,ax will decrease with increasing magnetic field. It may turn out that, 
for k, - (27r)/r, the magnitude of k, attains the order of 27r/LII (LII is the longitudinal 
dimension of the system.) It is clear that one would now obtain the smallest diffusion 
coefficient, for the largest increase in H, for k, N 27r/r. In fact, for constant k, and 
when k, is given a lower limit, k,  2 2n/L,,, the value of CO, becomes greater than we 
with increasing H,. If CO, > w e ,  it is easily seen from (18) that D grows with increasing 
k,. But as has beenshown, for w, > U,, D decreases with increasing kg;  i.e. for os m 

the value of D rises to a maximum. Thus for magnetic fields which are greater than 

H* M L$‘3 ~(m,m,v,T,)~‘~/r~’~e (45) 

(for H M H * ,  k ,  M 27r/LI, and k, w 277/r), the minimum value of k, is obtained from 
(43) as before, where now k, = 27~/L,,. The expression for the diffusion coefficient 
then assumes the form 

CT H* 
2.rreH0 Ho 

D, --.- 

In these discussions, the radius of the plasma column has been taken as fixed and 
independent of the magnetic field. We note also that drift-wave instability leads to 
a diffusion coefficient -1/H2 in particular when voi 2 we, and a similar situa- 
tion arises for current instability when H > H**, where 
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The very abundance of experimental data, in which the influence of greatly differ- 
ing factors is often superimposed, makes it difficult to give a detailed analysis of all 
the experiments on plasma diffusion. This matter demands, at  the very least, a 
separate detailed discussion. We shall confine ourselves here to the analysis of those 
experiments in which the influence of a longitudinal current appears t o  be unimpor- 
tant. 

In the experiments described in GUTHRIE and WAKERLINCC4), (Y M 0.3 cm, H M 
(3-4).103 gauss, p = 5.10-4-5.10-3 torr, Te M Ti M 2 eV) vOi < us, we G LO,. There- 
fore, in accordance with (35), the expression for the diffusion coefficient approximates 
to (46), and this is confirmed by these experiments. In  the same paper(4) the presence 
of low-frequency oscillations was discovered, having a frequency of the order of 
magnitude of that of drift waves. 

In  several experiments, the anomalous diffusion sets in above a certain field HCrit. 
Thus in the experiment of Z H A R I N O V ~ ~ ~ )  using an  argon discharge having a neutral- 
gas density of 7.1013 ~ m - ~ ,  an  electron density of 10l1 ~ m - ~ ,  T, = Ti M 1 eV, LIl = 
10 cm, anomalous phenomena set in at H, M 2300 oersteds. I t  is easy to understand 
the existence of a lower magnetic-field limit if it  is assumed that anomalous diffusion 
will not be masked by classical diffusion when 

cT 
27reHo 
- > Dil. 

( D i ,  is the classical diffusion coefficient for the ions.) 
From (48) we have 

wisi > 2nvoi (49) 

which gives an  accurate qualitative and a satisfactory quantitative agreement with the 
experiment. 

If one uses expression (36b) for the growth rate and takes the radius of the plasma 
column to be determined by classical diffusion (only if it has not been set by virtue of 
the conditions of the experiment) then we obtain the following condition for 
instability: .- 

where I ,  is the electron mean free path; hoe, cOi are respectively the effective collision 
cross section of electrons and ions with neutrals. 

I t  is of interest to note that the measured diffusion coefficient in the Stellarator 
coincides with (46)(lS). The analysis of the curves of plasma containment time given 
by STODIEK et aZ.(lS) shows that Bohm diffusion evidently changes to 1/H2 diffusion at  
H, 5 2.104 gauss. From (45) we find that, for the parameters of the Stellarator 
(n M 1014 ~ m - ~ ,  L,, M 1 m, Y = 1 cm, T, 2 5 eV), the magnetic fields at  which the 
character of the diffusion should change are indeed of that order. I t  would not  appear 
that the longitudinal current is a factor which determines the instability in the Stella- 
rator (the electric fields are 0.3-0.06 V/cm). Indeed, in this case the critical fields 
required for current instability to  cause 1/H2 diffusion have a value H* < lo4 gauss, 
i.e. the change of regime occurs earlier than for Bohm diffusion. We note that, when 
the plasma temperature is decreased, expressions (45) and (47) predict that Bohm 
diffusion can change to 1/H2 diffusion earlier than this latter kind of diffusion would 
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arise due to current instability. This is possibly the explanation of the fact that for a 
cold plasma (Tw 0.1 eV) carrying a sufficiently large longitudinal current (of the 
order of a few amperes) the rate of diffusion was observed by MOTLEY“’) to rise 
sharply. 

The theory which we have given cannot, strictly speaking, be used when the Larmor 
radius of the particles becomes comparable with the transverse dimensions of the 
system, and the characteristic frequencies of the problem are of the order of wHi 
(thus in the case when rHi  M r it is necessary, for instance, to take into account the 
finite size of the Larmor radius for the unperturbed motion). We do not therefore 
claim, for example, to explain the experiment of D’ANGELO and RYNN@~), where these 
parameters are near to this limit. I t  is, however, curious(20) that the diffusion of the 
caesium plasma occurs in accordance with classical theory. We should also mention 
that the present work concerns drift and current instabilities only for the conditions of 
a magnetized non-uniform plasma. Similar instabilities are, however, sometimes 
observed with no magnetic field present(21). It may be expected that instabilities in a 
plasma which is described by equations (8)-(15) are not exhaustively covered by the 
considerations in the present work. 

3. K I N E T I C  THEORY O F  THE STABILITY O F  A NON-UNIFORM 
HI GH-TE MPE R AT U R E  PLAS M A  

In the previous section we considered the stability of a plasma, taking into account 
finite conductivity, on the basis of a two-fluid hydrodynamical plasma and we showed 
that instability connected with potential perturbations causes anomalous diffusion 
with, in particular, a diffusion coefficient of the order of that given by Bohm. If, in 
fact, the perturbations do not derive from a potential (w > k,VA) then the instability 
is stabilized. Assuming that (o M w,(x) for the maximum diffusion coefficient and that 
k ,  is determined by (48) where k, w 2n/r, the condition for this potential derivation 
can be rewritten in the form 

With increasing plasma temperature the conductivity increases and this condition 
shouldeventually be violated. The plasma should then become more stable (or, more 
strictly, less unstable). However, it may be that under these circumstances we have gone 
outside the region of appiicability of hydrodynamics, and that the problem of stability 
should be considered on the basis of collisionless kinetics, since the mean free path is 
increasing even faster than the electrical conductivity. We shall consider the stability 
of a collisionless pla~ma(77~~) in this section, and it will be convenient to consider 
separately the cases when the magnetic field lines are parallel or non-parallel. 

(i) Instability of a non-unform rar@edplasma iii a magneticfield having 
parallel lines of force 
As in the preceding sections, we shall concentrate the entire discussion on the 

example of a flat slab of plasma in a strong magnetic field H, ( H 2  9 8mT 3 meH2/mi), 
assuming fcr simplicity that only the density n(x)  is a function of the co-ordinate x ,  
and that T(x) = consty. In the introduction, it has already been remarked that, in a 

t We shall not be interested, in this review, in effects arising due to  the presence of a gravitational 
field; they have previously been considered in 
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high-temperature plasma, instability shows itself as the excitation of drift waves by 
resonant electrons. We shall now establish in more detail a qualitative analysis of the 
factors leading to instability. 

In a uniform plasma the basic source of the imaginary part in the dispersion 
equation is the term of the type 

- eE,  df I 
i12 ’ av, l a , = w i l r ,  

(fi,e(~, x )  are the distribution functions of the ions and electrons in the unperturbed 
plasma). In a Maxwellian plasma it is responsible for the damping of the waves (the 
Landau damping). Similar terms should really also be retained for a slightly non- 
uniform plasma. However, there are additional factors, arising from the (v.V)f term 
in the Boltzmann equation. For example, at low frequencies (U < wIIi = eH/m,c), 
when the motion of the ions and electrons across H takes the form of a drift, the 
(v.V)fterm gives a contribution cE, /H.  afiax to the ‘electrical’ drift. This term should 
naturally give a contribution to the imaginary part on account of the corresponding 

half residue (5 af 1 ) .  If E, 3 E, [this occurs, for example, for irrotational 

perturbations, curl E = 0, having a spatial dependence exp i(k,y + kZz),  (k,  > k J ] ,  
this term may (even for small gradients) exceed the Landau damping, and the plasma 
will be unstable. 

In order to be sure of this, we shall estimate the work done on the particles of the 
plasma by the electric field of the wave: 

H * ax v = w l p , ,  

j z E ,  d r = dr ev, f ,E,  s- s 

where 
no( x) m1l2 . exp (“1. h=v/2rrT 

Here the integration is carried out over the localized region of the wave packet. From 
(51) it follows that the plasma will be unstable if the second factor in the integrand 
exceeds the term describing the Landau damping. The latter depends on the relation- 
ship between the spatial gradients of n(x) and T(x) and on the magnitude of the 
frequency. It is therefore clear that the plasma will be unstable for short drift waves 
A < ri, since for these the frequency o is small compared with on = (ck,Tno’)/ 

The order of magnitude of the instability growth rate may be determined from the 
expression for the work done on the particles by the electric field of the wave. By 
definition v = 1/2w.  dw/dt where w is the energy of the wave packet. Noting that, 
for drift waves, there is a basic contribution to the wave energy coming from the 
energy contained in the density fluctuations 

(eHn0). 



The theory of the stability of non-uniform plasma and anomalous diffusion 659 

we obtain 
,- 

Equation (52) is only true if curl E = 0, this being so if w 6 kzVA. However, when 
the condition curl E = 0 is not satisfied, it may be shown that the twisting magnetic 
field lines are damped in the absence of a temperature gradient [T(x) = const.], and 
are able to be set up only in the presence of a temperature gradient of definite sign 
(q = d In T/d In n < 0). This imposes limits on the magnitude of the phase velocity 

where the first inequality has been obtained on the assumption that the Landau 
damping of the ions may be neglected. For a given wavelength A, the maximum 
value of the growth rate v,,, m d(wm,>//?mi (w - w,) occurs precisely when w/k ,  m 
V,; it increases with decreasing A,. The growth rate is comparable to the frequency 
w M (VTin’)/n [cf. (56)] for short wavelength perturbations A, M rep-1/2, A:, M n/n’ 

The discussion of drift-wave excitation given here is dependent on the assumption 
that the perturbations have the form of a wave packet, since expression (51) is the 
‘localized’ form for the law of the conservation of energy, for the wave plus particle 
system, within the localized bounds of a wave packet. For the case of a high-temper- 
ature plasma, a wave packet does succeed in forming because of the size of the packet 
Ax 2 A, being much smaller, for the wavelengths A, < ri considered, than the whole 
transparent region of the plasma, which is of the order of magnitude of the transverse 
dimension R w n/n’ of the system. Thus all perturbations may be represented as a 
packet, made from the waves: 

p-1/2. 

Y = Yo  exp [ik,(x)x + ikvy + ik,z + itot] (54) 

where the spatial dependence of Y in the direction of the gradient of n(x)  must be 
determined from the appropriate integro-differential equation for the magnitude of 
Y(x),(24--2‘3) which in approximation (54) leads to an algebraic, in the general case 
transcendental, equation for k,(x). Thus, in particular, for potential-derivable drift 
waves, the equation for k,(x) in a co-ordinate system where the unperturbed electric 
field E,, = 0 has the form”) 

k i T j  d a+--’- mjwIij dx 
f : 0 ’ (U i i )~ l ( k2 r l~ ) ]  a, ( 5 5 )  

w + k;lvll + 1 W H i  

where FL(k2u2) = IL(k2r2) e--lc2v2 (here Z, is the Bessel function of order I with imaginary 

is the unperturbed particle distribution function for longitudinal velocities. 
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For  low-frequency drift waves (w < wTI) only the term with I = 0 is retained in 
the sum over all I in this equation, and the integrals are expanded using the conditions 
(53). Expression (55) then leads to the following equation (T, = Ti, k l r ,  < 1 ) :  

from which it is seen that the frequency of the oscillations 

as has already been mentioned, remains roughly constant for short waves 1, < ri, 
and the growth rate is given by expression (52). 

So, as in the case of a uniform plasma, one may use an algebraic equation such as 
(55) for determining the instability growth rate. However, as has been indicated, the 
growth rate obtained describes the excitation of a wave packet only at  a given point in 
space and it changes with movement of this point. According to the eikonal method, 
the motion of wave packets is described using e q u a t i ~ n : ( ~ ~ s ~ ~ )  2 - (2 + all -)- ak, auk = ~v,?I,, 

ak, ax ak, 
which expresses the conservation of the adiabatic invariant 1 2 ,  = wk/wk. (w,is the spec- 
tral density of the oscillations; wk is the frequency; vk is the growth rate (or decay rate) 
of a wave packet in its resonant interaction with the particles.) The net effect of the 
growth or decay of the wave naturally depends on the net work done by the particles 
over all their trajectories through the wave packet. Thus, if a packet enters a region 
of damping before i t  has had time to grow sufficiently, it will decay completely. 

A detailed examination shows that, for sufficiently long potential-derivable drift 
waves (A, 3 ri), the allowed region of propagation is bounded on two sides, for the 
distribution of plasma particles shown in Fig. 2, and in all this region the electrons 
will excite a wave(26). Therefore, the wave packet from long-wave perturbations, 
moving between the two points of inflection i.e. the points were V(x) = 0, will grow 
until non-linear effects become operative. On the other hand, short-wave perturba- 
tions are always able to fall in the region where there is very strong Landau damping 
of the ions. Nevertheless, due to the large growth rate v w w these perturbations 
succeed in growing as far as the non-linear effects before they get into the region of 
damping. 

In  contrast to the instability associated with low-frequency drift waves (w < oH), 
which exists for an arbitrarily small density gradient, the instability of drift waves 
having frequencies near to harmonics of the cyclotron frequency arises only if a 
certain critical value of density gradient is exceeded. We shall not delay here to 
consider the instability (arising from the same mechanism of resonant interaction 
between the particles and the wave) for which the dispersion equation is easily obtained 
from (53) by the substitution, in the denominator of the second term, of the frequency 
w over w - hH. We shall merely observe that the maximum growth rate of the 
instability is given, as before, by the expression v - (w - h H ) ( w  - wn)/llcn1 VT, 
with (w - ZwfI)/lksl w V,, and the instability itself exists for gradients ri n'/n > 
l /kLr ,  - dm,/m,P for v w w - 10,. 
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I 
FIG. 2.-Possible region of localization ( U ( x )  < 0)  for long-wave oscillations. 

Let us discuss in detail the instability of a hydrodynamic type(28). For simplicity we 
shall assume(28) that T, = 0, Ti # 0 and that the wave is propagated strictly perpen- 
dicular to the magnetic field (k ,  = 0). Then, from (52) we obtain the dispersion 
equation for perturbations with frequencies w e - hII, 

1 w +U, ,  

mi 0 J27 kr,  + ~ W H  

1 f k2(d,” + !.% r:) + ?Li = -. - , 

m 

Here we shall replace the function F(kL2r,2) by its asymptotic expression F w 1/ 
d2n(krJz  for kr, 9 1. Solving this quadratic equation for w, we obtain the growth 
rate and frequency of the perturbations 

where 

It is then easily proved that the growth rate reaches its maximum value Y M 2d(mekr i ) /  
l /& x h H ( l  + 8)lfor loH(l + e)  - coni = - (VTi)/V%R. Equating the frequency 
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w w -wni(l + O)-l to its minimum value (in absolute magnitude) wH (for I = I), 
we obtain the critical magnitude of density gradient at which instability sets in, 

The maximum growth rate for such short-wave perturbations, having a wavelength of 
the order of L w r i d +  equals 

and the frequency intervals where the instability has v f: 0 are 

i.e. the instability is almost purely aperiodic. 
To  conclude this section we shall briefly consider the case when the collision 

frequency is sufficiently high that a hydrodynamic description (A,, > I,) is justified for the 
electrons, whilst for’the ions collisions are still negligible ( v  > vi,< = ( J m x )  V , , J ( ~ ~ ) .  

The motion of the electrons along the magnetic field is then described by the equation 

-ik,nTo - enoES - menOVe,v, = 0. (61) 

As in the first section, we have retained the term menOVe,v, in the equation of motion 
of the electrons, corresponding to friction between the electrons and the ions. The 
physical mechanism of the instability therefore corresponds exactly to that considered 
in the introduction for the case of a low-temperature plasma. 

Using the equation of continuity 

iwn + no’ + ik,noV,, = 0 
H 

and the connexion (coming from the Boltzmann equation for the ions) between the 
density perturbation and that of the electric field E = -Vp, for intermediate pertur- 
bation frequencies [k,V,, < w < kzVA, cf. (52)] 

we obtain the frequency w and the growth rate of the instability v 

As for the excitation of low-frequency drift waves (w < wFI) in a high-temperature 
plasma, described by the Boltzmann equations for the ions and the electrons, the 
instability considered is almost aperiodic for perturbations having certain wavelengths, 
the values of which may easily be found from (62) and from (53). 

Summarizing the results of this section, it can be noted that a truly universal 
instability, occurring for any arbitrarily small density gradient, is observed only for 
low-frequency (w < wH) potential perturbations in the frequency range kzVri < 
w 6 k,V,. Instability for perturbations having frequencies close to harmonics of the 
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ion Larmor frequency, lo,, may also exist only if the gradients exceed a certain 
critical value ri n'/n > (m,/mi)l'z and, in contrast to the low-frequency modes, it is 
not associated with a resonant mechanism of excitation. 

In this section the stability has been studied of perturbations relatively widely 
extended along the lines of force (Ai, > w/Y,, or even Ai, = CO). In the following 
section the influence will be considered of a slight shear in the magnetic field, causing 
a violation of this necessary condition for the existence of instability. 

(ii) Stability of a non-uniform rarifiedplasrna in a magneticjield having shear 
We shall take the lines of force as lying in the (y, z )  plane and making a small 

angle O(x) with the z-axis, changing with x. Then the shear can lead to two stabilizing 
effects : 

(a) Due to  the fact that the phase velocity, along the lines of force, of a wave 
packet moving along the x-axis, cu/kll(x) (kil = k,  + k, s" (dO/dx) dx) decreases 
greatly and becomes comparable to the thermal velocity of the ions, VTi, the wave 
packet is subjected to a strong Landau damping by the ions. The condition for 
stabilization may be simply written in the formt 

(b) In the localized region of a wave packet one may always neglect the ion Landau 
damping over several wavelengths (w/klI 3 VTi), but due to the shear the region 
A X  over which the plasma is transparent, being strongly dependent on the magnitude 
of k, , (x) ,  becomes shorter than one wavelength A, of the oscillation and the existence 
of such perturbations becomes impossible. This leads to stability with the condition 

A X  =G A, (64) 
(this stabilizing mechanism is entirely similar to the levelling of a potential well due to 
its narrowing, which occurs in quantum mechanics under similar conditions). 

The first stabilizing effect acts on a universal instability for low-frequency (w < wH) 
potential perturbations, in the frequency range k,VTi < w 6 k,V,. The energy 
balance in the 'wave plus particles' system, taking into account Landau damping 
from the ions as described by the half-residue in the integrals containing the ion 
distribution function fi(0) in (51), can be written in a form similar to ( 5 ) ,  

It directly follows from this that the wave is damped for w/k,VTi G 1. As is apparent 
from (63) the most difficult to stabilize are perturbations in which the possible region 
of localization is small, so that the wavelength A,,(x) is unable to decrease strongly 

The stabilization of a drift instability was proposed by R O ~ E N B L U T H ~ ~ ~ ' .  A more detailed 
investigation of this question has been made by GALEEV(*~'. 
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within it. I t  may be shown that such small regions of localization occur near to the 
points of inflection xl, where k,(x,) = 0, and have a width Ax = r:/3R2/3, so that 
from (63)  we obtain a criterion for universal instability suppression(26)t 

R 3 > 1. ( > ) a ’ s  
dx 4 R 

This criterion is satisfied also for the instabilities considered at the end of the preceding 
section, since the motion of the ions is determined by the Boltzmann equation and 
their resonant interaction with the wave leads to the damping of the latter. 

For perturbations not derivable from a potential (w > k,V,), in distinction to 
those which are, ion Landau damping may be neglected in any localized wave packet 
region. Therefore the stabilizing mechanism for these non-potential perturbations, 
which occur in the presence of a temperature gradient q < 0, results in a levelling 
described by condition (64), which in this case assumes the form(26) 

(iii) Discussion of non-linear effects 
The results of the linear stability theory of the equilibrium of a non-uniform 

rarified plasma in a strong magnetic field show that, at least in magnetic traps with a 
large Larmor radius ( rJR not too small), it is difficult to stabilize instabilities having 
wavelengths Y J ~ - ~ ’ ~  by means of field shear and they essentially remain universal. It 
is important to know to  what extent the fluctuations, arising from this instability, 
impair the magnetic containment of the plasma. 

The influence of the fluctuations of the electric and magnetic fields on the distribu- 
tion of the particles is calculated, as in the low-temperature case, by a quasi-linear 
method(9). In  the.most interesting case of an  almost aperiodic instability (v w w )  the 
splitting of the distribution function of the ions, which is carried out in this method, 
into rapidly oscillating and slowly varying parts, is not entirely rigorous, and the 
discussion takes on a qualitative character. 

The limits of applicability of the method are somewhat wider for electrons, and 
are given by the expression v < /k,l VTp. 

Let us consider, for simplicity, the case T,(x) = T,(x) = const. It is also conven- 
ient to restrict ourselves to the drift approximation in which the Boltzmann equation 
has the form 

E x H  V f + v , - . V f + - 2 -  H e~ aj- = o .  
at H2 H av, - a f + c - .  

We shall assume fields of the form 

E,  = 3 Ek,eZWlt+7k‘r + complex conjugate 

.i- For small P = 8rrnT/H2 ( r , / R ) ? / 3  and long wavelength perturbations i, > )I,, this criterion is 
somewhat relaxed for incidental reasons, and assumes the form’2‘J 
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the connexion between E and H for instability (56)  being given by the expressions: 

After the normal p r o c e d ~ r e ( ~ 9 ~ )  we obtain the averaged equation for the slowly 
varying part 

Here the term 
f >. 

describes 'anomalous' diffusion. The cross term containing a2/axav, also gives the 
particle flux along x .  I t  may be shown that in the optimum case it leads to a contri- 
bution of the order of magnitude of that of the term with a2flax2. The term with 
a2flav,2 is responsible for diffusion in velocity space. We shall call the entire right-hand 
side (St,,,,Cr)) the 'wave-particle Stoss term' ('collision' term). An accurate expression 
for this quasi-linear 'Stoss term', in the general case of an  arbitrary ratio between the 
wavelength of the fluctuations and the Larmor radius, has been obtained(31) by 
integrating along the particle trajectories. 

Short-wavelength perturbations (kr, > 1) with a wavelength il m re@-1'2 will give a 
basic contribution to the anomalous diffusion. This comes about because it is just for 
these perturbations that the growth rate reaches its maximum at which U N  O. We 
have so far assumed the velocity distribution of the electrons to approximate to 
Maxwellian. Actually however, as follows from the quasi-linear equation (67),  just as 
for resonant electrons (U, w w/k,) the form of the distribution function may be 
distorted by the wave. Therefore all the expressions for the growth rate, assuming 
the existence of a Maxwellian velocity distribution for the electrons, are only correct 
in the case when electron-electron collisions, whilst being infrequent, nevertheless 
are able to establish a Maxwellian distribution. The formal significance of this is 
that in equation (67) it is necessary to keep in mind also the ordinary 'Stoss term' 
which takes into account the collisions between electrons (StParticleCf)), since Stparticle 
U} exceeds St,",,,Cf>. In  the general case when the term St,,,,Cf} is no longer small 
compared with the Coulomb term, one must determine the form of the electron 
distribution function for the velocity region U, w u / k Z  < V, from equation (67).  
The growth rate v in the general case of an  arbitrary distributionS,(u,) has the form 
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We shall first of all deduce a general expression for the diffusion coefficient. For 
this we shall integrate equation (67) with respect to uz. Using expression (68) for the 
growth rate, one may obtain (for v < w )  the equation of diffusion 

Evidently, for v w w ,  the expression for the diffusion coefficient 

is inexact and can only be used for order of magnitude estimates. 
The most difficult stage in the solution of the problem consists in finding the 

turbulence spectrum lEkI2. The quasi-stationary fluctuation spectrum which estab- 
lishes itself after the development of instability is the result of the action of two factors : 
(1) due to the instability, energy is continuously fed into those fluctuation modes 
which are unstable (vk > 0); (2)  due to the non-linear interaction between the modes, 
the energy is transferred through the spectrum into the region where vk < 0, and gets 
dissipated. In principle one may rigorously describe this process by means of the 

FIG. 3.-Diagram of the distribution of turbulence fluctuations in wave-vector space. 

Boltzmann equation for the interacting waves only when Y < w .  Here we shall give 
a non-rigorous? estimate of the order of magnitude of the fluctuations, from the 
following graphical physical considerations. Let us consider two cases : 

(a) Stparticle ff] > St,,,, U>, when expression (52) may be used for the growth rate. 
If the turbulent 'background' is represented as the superposition of different harmonics 
with scale k then the process of establishing the spectrum in 'tongues' (Fig. 3) will 
occur in the following way. Instability excites waves with k lying inside region I. Non- 
linear interaction between such waves leads to the formation of fluctuations with k 
lying in region 11, where strong damping due to the ions takes place. When the rate 
of both processes attains an equal order of magnitude, the quasi-stationary picture is 

t In the most interesting case the unwieldy approach, using the Boltzmann equation for the 
waves, can hardly pretend to be highly accurate. 
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established. The chief non-linear term in the Boltzmann equation for the ions has the 
form eEJm,.afQv. Comparing it with the linear term vf m eE,/m,.aflaD and putting 
afiav w f/ VTi, we obtain an estimate of the electric field amplitude 

where for P one evidently understands the maximum growth rate (which is attained 
for kri m (m,p/m,)1/2. Now, for the diffusion coefficient we shall have 

where R-l m (l/n) &/ax. This estimate, although not pretending to give a numerically 
accurate coefficient, apparently reflects the physical dependence. It is interesting to 
observe that turbulence fluctuations having a characteristic dimension I M ri, in 
which a basic fraction of all the energy of the fluctuations is included, lead to a much 
smaller plasma diffusion coefficient. For an estimate of the distribution through the 
spectrum of the energy of such long wave fluctuations (A > re p-ll2) it may be consid- 
ered that, owing to the smallness of the growth rate v < w, the phase shifts of separate 
fluctuations succeed in becoming disordered. Then in the random phase approxi- 
mation the transfer of energy through the spectrum may be described by means of the 
Boltzmann equation for wave numbers nb = wR/wb with the collision integral being 
responsible for the non-linear interaction of the w a v e ~ . ( ~ ~ $ ~ ~ )  As a result we find that 
in the fluctuations with a characteristic scale length il M rz there is contained an energy 

Substituting this value in (70) we obtain the diffusion coefficient 

1 cT ri me 
100 ' eH ' R ' mi/3 * 

D M -  - - - 

(b) An interesting situation arises in the opposite limiting case St,,,,{ f} >Stparticle 
U], which occurs at sufficiently high temperatures when Coulomb collisions become 
very infrequent. It turns out that in this case we are relieved of the most difficult 
stage, the consideration of the non-linear interaction of the waves. Indeed a reduced 
value of the growth rate v already strongly enters into the diffusion coefficient 

In order to find P one must know the form of the distribution function in the region 
of the resonance velocities U, m v/kz < V,. Since St,,&} > Stparticle{f} we shall 
look for those solutions for f in the resonance region, having the formf = f o  + fl + . . . 
where the zero-order approximation f o  satisfies the equation 

Stwavo{fo) = 0. (74) 
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The solution of this equation gives a smooth plateau in (x ,  U,) space, so that 

Finding fi from the equation 

StwsveCf(l)} = Stparticle&} = 0 
and reckoning at the same time that the magnitude off, itself (but not of its derivative 
with respect to U,) differs little 

where vnf is the value of the 
D, = (ezl?,2)/m2m. Now from 
diffusion 

From Maxwillian, weobtain; 

4 1 )  = YEv~,f/Dv(vz) (76) 
growth rate for a Maxwellian distribution function, 
(73) and (76) we obtain the coefficient of anomalous 

I- 

The regions of applicability of the two limiting cases indicated may now be formu- 
lated thus. In  the first case D,,, > D(z )  and vice versa for the second. For parameters 
n m 1015 ~ m - ~ ,  H = 6.104 gauss, the dividing boundary between the two cases lies in 
the region of T w lo4 eV, i.e. for high temperatures it is necessary to use the formulae 
of the second case. 

All these results are applicable if p lies within the interval 

In the present section we have only discussed the most interesting case of plasma 
diffusion, due tc ihe development of universal instability, taking place in any arbitrary 
density gradient. Aperiodic instability concerning perturbations with frequencies w 
in the neighbourhood of harmonics of the ion cyclotron frequency hEI(zs) over a 
certain range of the plasma parameters p, ri and in large density gradients, may 
introduce a comparable contribution into the diffusion, but it does not substantially 
exceed that contribution from universal instability. Neither shall we dwell on the 
case, intermediate between hydrodynamics and the kinetic description of the plasma, 
since this would simply give a smooth transition between the values of diffusion 
coefficient in these two limiting cases. 

Drift instabilities may be called universal in a certain sense. They remain, even in 
a plasma in which magnetohydrodynamic instabilities can be suppressed. However, 
as we have seen, it is possible to visualize a situation when the plasma is stable also 
with respect to the excitation of drift waves. In a 'cold' plasma, the presence of 
neutral gas is a stabilizing factor; it also leads to the phenomenon of the 'critical' 
field. 

A second stabilizing factor is due to the circumstance that the drift waves are 
strongly 'extended' along the magnetic lines of force. In the case when the volume 
occupied by the plasma is limited along H, the plasma will be stable. Thus if one 
visualizes a plasma in the form of a column along H, then for stability it is necessary 
that the length of the column be less than about ten radii. This condition is not 
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difficult to satisfy for the plasma in magnetic traps of the mirror type. It is more 
difficult to achieve it in traps of the toroidal type (in the Stellarator). In this case a 
marked twisting of the lines of force (shear, Section 3) may be necessary. 
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