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1. Overview 

In plasma physics, there are a zillion models. Since most of them are just a few key 

models with variations (so that people can put their names on the covers), we’d better 

first know the key models well. As Pat said, once we understand a few cats, we 

understand them all, even including “big cats” like lions, tigers, leopards, and cheetahs.  

Normally, we have two approaches to study these key models, Top→  own and 

Bottom→Up. Both approaches have advantages and disadvantages. A brief description 

for these two approaches and their comparison are listed in table 1.  

Approach Hierarchy Advantage  isadvantage 

Top→ own 

Vlasov-Boltzmann → Gyro/ rift 

Kinetics → Fluids/Gyro Fluid → 

Reduced Fluid (i.e. Hasegawa-Mima) 

More 

systematic 
Laborious 

Bottom→Up 

Time/space scale → Reduction 

Principle/Idea → Reduced Model 

(Hasegawa-Mima) → Less reduced 

Model (4 fields, 6 fields) 

More 

insight 

Less 

systematic 

Table 1 “Top→Down” and “Bottom→Up” approach 

Historically, both top→ down (gyro kinetics: Frieman, Rutherford’ late 60s; Chen, 

Frieman’ early 80s; MH : Rosenbluth, Kadomtsev-Pogutse’ 60s; et al.) and 

bottom→ up (Hasegawa, Kadomtsev, Sagdeev, et al.) evolved simultaneously. So a 

synergism of both approaches is useful. Lecture 5 and lecture 6 focus on simple drift 

wave models from a bottom-up perspective. 

In these two lectures, the basic setup is: 

⚫ A strong 𝑩𝟎, which means a strongly magnetized plasma. Because of this strong 

field, the turbulence is anisotropic (𝑙∥ ≫ 𝑙⊥ or 𝑘∥ ≪ 𝑘⊥). 

⚫ Time scales are larger than ion-cyclotron, i.e., 𝜔 < Ω𝑖 (ion cyclotron frequency). 

⚫ Quasi-neutrality is always guaranteed (𝑙 > 𝜆𝐷). 

⚫ Consider electrostatic case first, in which 𝒗⊥ = 𝑐𝑬 × �̂�/𝐵. 

 

2. An introduction to Potential Vorticity 

 

Traditionally, we can derive Hasegawa-Mima equation from ion continuity equation 

(with Boltzmann electron). But now we seek a new, more insightful way to derive it by 

using the conservation of potential vorticity (PV). 

 



2.1. A simple definition of PV and motivation 

We plan to derive Hasegawa-Mima equation from the point of view of Potential 

vorticity conservation. Then one might ask what PV is? A quick answer is that PV is a 

conserved “effective charge” density or a generalized vorticity. Here the charge means 

total charge, which contains both guiding center charge and polarization charge. 

But why do we care about PV? There are several reasons. First of all, PV is conserved 

so that it is easy to keep track of its exchange between mean field and fluctuations. In 

addition, unlike phase space density 𝑓 , another conserved quantity, PV is a 

macroscopic quantity, which makes it useful. What’s more, one of the key points of 

Hasegawa-Mima’s paper is that drift wave turbulence is in some sense like geophysical 

fluid turbulence and geophysical fluid dynamics (GF ) makes heavy use of PV. So for 

our purpose, it is essential to study PV. 

 

2.2. The expression for PV 

We will start from fluid at first, then we will generalize this idea to plasma. There is a 

common point in both cases: the Rossby number is small, i.e., 𝑅𝑜 ≪ 1. For fluid, the 

Rossby number is defined as 𝑅𝑜~𝑣⊥/𝐿⊥Ω, where Ω is the rotation rate of the fluid. 

For plasma, we just need to replace Ω by Ω𝑖, which is the gyro frequency of ions. 

Since Ω or Ω𝑖 is very large, the vorticity is along the rotation axis (in plasma, it is in 

the main field direction) so that the flow is quasi-two dimensional. 

Now consider two point frozen into flow, as show in Fig 1. The displacement between 

these two points is 𝒍 and their velocities are the velocities of flow at their locations.  

Obviously, 𝒍 can vary with time, and its evolution can be described by  

𝑑𝒍

𝑑𝑡
= 𝒗(𝒙𝟐) − 𝒗(𝒙𝟏), (2 − 1) 

or in a compact form 

𝑑𝒍

𝑑𝑡
= 𝒍 ⋅ ∇𝒗 (2 − 2) 

Eq (2-2) may remind us the local form of the Alfvén’s theorem 

𝑑

𝑑𝑡
(
𝑩

𝜌
) = (

𝑩

𝜌
) ⋅ ∇𝒗, (2 − 3) 

Fig 1 Two points in a flow 



which says for ideal plasma, magnetic flux is frozen into the field.  

A straightforward derivation can prove that vorticity is also frozen into fluid/plasma. 

For flow, the equation of motion is 

𝜕𝒗

𝜕𝑡
+ 𝒗 ⋅ ∇𝒗 = −

∇𝑝

𝜌
− 2𝛀 × 𝒗, (2 − 4) 

where the last term on the RHS represents Coriolis force or Lorentz force. Because the 

definition of vorticity is ∇ × 𝒗, we can get the vorticity equation by simply taking the 

curl of Eq (2-4). N.B. 𝒗 ⋅ ∇𝒗 = −∇(𝑣2/2) − 𝒗 ×𝝎. When 𝑝 is a function of 𝜌 only, 

the vorticity equation is 

𝜕𝑡(𝝎 + 𝟐𝛀) = ∇ × (𝒗 × (𝝎+ 2𝛀)). (2 − 5) 

Combining Eq (2-5) with the continuity equation, we have 

𝑑

𝑑𝑡

(𝝎 + 2𝛀)

𝜌
=
(𝝎 + 𝟐𝛀)

𝜌
⋅ ∇𝒗. (2 − 6) 

Again, the form of Eq (2-6) implies that (𝝎 + 𝟐𝛀)/𝜌 is frozen-in. 

By the way, since |𝛀| is static and for when it is much larger than other frequencies in 

this problem, if we only keep the 0th order of Eq (2-6), it implies 𝛀 ⋅ ∇𝒗 ≈ 0. This is 

a famous theorem in fluid dynamics called the Taylor-Proudman Theorem, i.e., to 0th 

order, flow is uniform along the direction of rotation axis. Even though there are 

corrections, the plasma is two-dimensional. Since we are considering a case with small 

Rossby number, there is no surprise to see this result. 

Now consider a passive scalar 𝜓, which is conserved along trajectory (𝑑𝜓/𝑑𝑡 = 0). 

Similarly, at two different points in the flow, 𝛿𝜓 = 𝜓(𝒙𝟐) − 𝜓(𝒙𝟏) = ∇𝜓 ⋅ 𝑑(𝒙𝟐 −

𝒙𝟏) = ∇𝜓 ⋅ 𝑑𝒍 . Because 𝜓  is invariant along trajectory, 𝛿𝜓 = 0 , which further 

implies 

𝑑

𝑑𝑡
(∇𝜓 ⋅ 𝑑𝒍) = 0. (2 − 7) 

Since 𝑑𝒍 and (𝝎 + 𝟐𝛀)/𝜌 satisfy the same equation (as shown in Eq (2-2) and Eq 

(2-6)), we can replace 𝑑𝒍 in Eq (2-7) by (𝝎 + 𝟐𝛀)/𝜌 and rewrite Eq (2-7) as 

𝑑

𝑑𝑡
[
(𝝎 + 𝟐𝛀) ⋅ ∇𝜓

𝜌
] = 0. (2 − 8) 

Through Eq (2-8), we construct a conserved quantity called potential vorticity, and we 

always use letter 𝑞 (sometimes 𝜌𝑞) to denote it. PV can be interpreted as “effective 

Fig 2 Displacement of a fluid element in latitude 



charge” density. 

 

2.3. Utility of PV 

PV is a useful quantity. For example, as shown in Fig 2, if ∇𝜓 = �̂�, and we displace a 

fluid element in latitude, since 𝛀 ⋅ �̂� changes, 𝝎 ⋅ �̂� must change, too. We can predict 

the flow change without detailed calculation. 

 

2.4. Symmetry behind PV conservation 

When there is a conserved quantity, there must be a symmetry behind it. This is what 

Noether’s theorem tells us. So what is the corresponding symmetry of conserved PV? 

The answer is particle re-labeling symmetry. If we label each of particles at position 𝑠 

and time 𝑡  in the flow and shift the position by 𝛿𝑠 , the thermodynamic state is 

invariant under this transformation, which explains why PV is conserved. For a one-

component fluid whose thermodynamic state is determined by two scalar variables, 

specific volume 𝑣  and specific entropy 𝜂 , whereas the label represents a three-

dimensional manifold, there exist one-dimensional relabeling transformations leading 

to the conservation of a scalar.  

 

2.5. From Kelvin’s theorem to Charney equation 

Recalling Eq (2-5) and Alfvén’s theorem 

𝜕𝑩

𝜕𝑡
= ∇ × (𝒗 × 𝑩), (2 − 9) 

we can conclude that the flux of total vorticity through any given moving plasma 

element does not change. Mathematically, we have the following equation 

𝑑

𝑑𝑡
[∫𝑑𝑺 ⋅ (𝝎 + 𝟐𝛀)] = 0. (2 − 10) 

Specially, if 𝛀 = 0, we have 
𝑑

𝑑𝑡
[∫𝑑𝑺 ⋅ 𝝎] =

𝑑

𝑑𝑡
∮𝑑𝒍 ⋅ 𝒗 = 0. (2 − 11) 

Eq (2-10) is called Kelvin’s theorem: the total circulation, including a parcel 

component and a planetary component, is conserved.  

By the way, when the system is non-isentropic, i.e., 𝑝 is not a one-variable function of 

𝜌, Eq (2-5) no longer holds, and Eq (2-10) fails as well. For this case, the evolution of 

vorticity is 

𝜕

𝜕𝑡
(𝝎 + 𝟐𝛀) = ∇ × (𝒗 × (𝝎 + 2𝛀)) +

1

𝜌𝑠2
∇𝜌 × ∇p (2 − 12) 

Multiplying Eq (2-12) by ∇𝑠, where 𝑠(𝑝, 𝜌) is entropy, we obtain 

∇𝑠 ⋅
𝜕

𝜕𝑡
𝜔 = ∇𝑠 ⋅ [∇ × (𝒗 × 𝝎)] = −∇ ⋅ [∇𝑠 × (𝒗 × 𝝎)]

= −(𝝎 ⋅ ∇𝑠)∇ ⋅ 𝒗 − 𝒗 ⋅ ∇(𝝎 ⋅ 𝒔) + 𝝎 ⋅ ∇(𝒗 ⋅ ∇𝑠)                       (2 − 13) 

In addition to Eq (2-13), we also have 

𝑑𝑠

𝑑𝑡
=
𝜕𝑠

𝜕𝑡
+ 𝒗 ⋅ 𝛁𝑠 = 0 (2 − 14) 

Combining Eq (2-13), (2-14) and continuity equation, instead of Kelvin’s theorem, 



what we get now is Ertel’s theorem: 

𝑑

𝑑𝑡
(
𝝎 ⋅ ∇𝑠

𝜌
 ) = 0 (2 − 15) 

According to Eq (2-8), the definition of PV, we can define 𝜓 = 𝑠  and PV =

(𝝎 ⋅ ∇𝑠)/𝜌. So PV is still conserved for non-isentropic ideal fluid, except a fact that the 

definition of PV is different from the definition in Kelvin’s theorem. 

Now go back to the equation of motion Eq (2-4). Because 𝑅𝑜 ≪ 1 , which implies 

𝑑𝒗/𝑑𝑡 ≪ 𝛀 × 𝒗, we can neglect the tern on the LHS and balance the two terms on the 

RHS (so-called Geostrophic balance). Therefore, the solution to this equation is 

𝒗 ≈ −
∇⊥𝑝 × �̂�

2Ω
. (2 − 16) 

Now consider a tangent plane of a planet and call it “𝛽-plane”. If we displace the parcel 

on this plane, as shown in Fig 3, Eq (2-10) tells us 

𝑑𝜔

𝑑𝑡
= −

2Ω

𝐴
sin 𝜃0

𝑑𝐴

𝑑𝑡
= −2Ω sin 𝜃0

𝑑𝜃0
𝑑𝑡

≡ −𝛽𝑣𝑦 (2 − 17) 

where 𝛽 = 2Ω sin 𝜃0 /𝑅, the gradient of Coriolis parameter. We can rewrite Eq (2-12) 

as 

𝑑

𝑑𝑡
(𝜔 + 𝛽𝑦) = (

𝜕

𝜕𝑡
+ 𝒗 ⋅ ∇) (𝜔 + 𝛽𝑦) = 0,𝜔 = ∇⊥

2𝜙 (2 − 18) 

Eq (2-18) is what we call Charney equation. This equation is just an expression for 

the conservation of potential vorticity. As we can see, the latitudinal displacement may 

result in a change in relative vorticity. By linearizing Charney equation, we get an 

equation describing Rossby wave (azimuthally asymmetric vortex mode): 

𝜕𝑡∇
2𝜙 = −𝛽𝜕𝑥𝜙. (2 − 19) 

The corresponding dispersion relation is 

𝜔 = −𝛽𝑘𝑥/𝑘
2 (2 − 20) 

When 𝑘𝑥 → 0,𝜔 → 0. This reminds us of the zonal flow. In fact, the group velocity in 
the 𝑦-direction 𝑣𝑔𝑦 is 2𝛽𝑘𝑥𝑘𝑦/𝑘

4, intimately relating latitudinal propagation to the 

Reynolds stress. 

 

3. Hasegawa-Mima equation and electron drift wave 

 

3.1. A novel way of deriving Hasegawa-Mima equation 

Fig 3 Displacement of a parcel in the 𝜷-plane 



To derive Hasegawa-Mima equation, all we need to do is replacing the Coriolis 

frequency 𝟐𝛀 in Eq (2-8) by ion gyro frequency Ω𝑖�̂�. And the density has a small 

perturbation �̃�. Taking ∇𝜓 = �̂�, PV conservation tells us 
𝑑

𝑑𝑡
[
𝜔𝑧 + Ω𝑖
𝑛0(𝑟) + �̃�

] = 0. (3 − 1) 

Expand Eq (3-1) and simplify it as 

𝑑

𝑑𝑡
𝜔𝑧 −

Ω𝑖
𝑛0
 
𝑑𝑛𝑖̃

𝑑𝑡
= 0 (3 − 2) 

where 𝜔𝑧 = (𝑐/𝐵0)∇⊥
2𝜙, 𝒗 = −(𝑐/𝐵0)∇𝜙 × �̂�, 𝑑𝑛𝑖̃ /𝑑𝑡 = 𝑑�̃�/𝑑𝑡 + �̃�𝑟𝜕𝑟𝑛0(𝑟). 

In addition, we assume both electrons and ions satisfy Boltzmann equation so that 

�̃�𝑖
𝑛0
=
�̃�𝑒
𝑛0
≈
|𝑒|�̃�

𝑇0
. (3 − 3) 

This requires 𝑣𝑡ℎ𝑖 < 𝜔/𝑘∥ < 𝑣𝑡ℎ𝑒 , so that electrons can reach equilibrium in one 

period of oscillation. Substituting Eq (3-3) into Eq (3-2), we get the famous Hasegawa-

Mima equation 

𝑑

𝑑𝑡
(
|𝑒|�̂�

𝑇
− 𝜌𝑠

2∇⊥
2
|𝑒|�̂�

𝑇
) + 𝑣∗𝜕𝑦

|𝑒|�̂�

𝑇
= 0, (3 − 4) 

where 𝜌𝑠
2 = 𝑐𝑠

2/Ω𝑖
2, 𝑣∗ = 𝜌𝑠𝑐𝑠/𝐿𝑛, 𝐿𝑛 = −𝜕𝑟𝑛0/𝑛0. 

Therefore, Hasegawa-Mima equation is equivalent to the statement that 𝑃𝑉 = (𝜔𝑧 +

Ω𝑖)/(𝑛0(𝑟) + �̃�) is conserved. 

 

3.2. The usual derivation of Hasegawa-Mima equation 

We start from the continuity equation for ions 

𝜕𝑛

𝜕𝑡
+ ∇ ⋅ (𝑛𝒗) = 0. (3 − 5) 

By linearizing it, we get 

𝜕𝑡�̃� + 𝑣�̃�𝜕𝑟𝑛0 + 𝑛0∇ ⋅ �̃� = 0. (3 − 6) 

Again, we assume electrons satisfy Boltzmann distribution. The perturbed velocity is 

the sum of polarization velocity and 𝑬 × 𝑩 velocity, i.e., 

�̃� = �̃�𝑬×𝑩 + �̃�𝑝𝑜𝑙 = −(𝑐/𝐵0)∇𝜙 × �̂� + 𝜌𝑠
2𝑛0

𝑑

𝑑𝑡
𝐸⊥. (3 − 7) 

And the divergence of �̃� is 

∇ ⋅ �̃� = ∇ ⋅ (�̃�𝑬×𝑩 + �̃�𝑝𝑜𝑙) = −𝜌𝑠
2𝑛0∇ ⋅

𝑑

𝑑𝑡
𝑬⊥. (3 − 8) 

Combining Eq (3-6), (3-7) and (3-8), we get 

(𝜕𝑡 −
𝑐

𝐵0
∇𝜙 × �̂� ⋅ ∇) (𝜙 − 𝜌𝑠

2∇⊥
2𝜙) + 𝑣∗

𝜕𝜙

𝜕𝑦
= 0, (3 − 9) 

which is same as Eq (3-4). 

The linear wave we can obtain from Eq (3-9) is electron drift wave and its dispersion 

relation is 



𝜔 =
𝑘𝜃𝑣∗

1 + 𝑘⊥
2𝜌𝑠2

=
𝜔∗

1 + 𝑘⊥
2𝜌𝑠2

, (3 − 10) 

which is different from Eq (2-15), the dispersion relation of Rossby wave. The “1” in 

the denominator of Eq (3-10) comes from Boltzmann electrons, which have no 

counterpart in fluids. And “𝑘⊥
2𝜌𝑠

2” is a representation of ions’ inertia, which is important 

for the drift wave instability we’ll discuss next. 

 

3.3. Zonal flow 

One might want to relate H-M equation to zonal flow. However, the basic property of 

zonal flow is contradictory to the setup of H-M equation. In H-M model we require 

𝜔/𝑘∥ < 𝑣𝑡ℎ𝑒   while in zonal flow, due to its symmetry in poloidal and toroidal 

directions, 𝑘∥ = 0 . Therefore, electrons in zonal flow don’t satisfy the Boltzmann 

relation. To get zonal flow, we turn to exploit the fact that plasma is quasi-neutral, which 

means for zonal flow 

∇ ⋅ (𝑱⊥ + 𝑱∥) = 0 (3 − 11) 

Since 𝑘∥ = 0, ∇∥𝐽∥ = 0. Further, because 𝑱𝑬×𝑩 = 0, the only non-vanishing term of 

Eq (3-11) is ∇⊥ ⋅ 𝑱𝒑𝒐𝒍 = 0. The contribution to 𝑱𝒑𝒐𝒍 is mainly from ions, because ions’ 

inertia is much larger than electrons’. Finally, the equation describing zonal flow is 

𝑑

𝑑𝑡
𝜌𝑠
2∇⊥

2𝜙 = 0, (3 − 12) 

which is just the equation of 2  fluid. 

One important observation is that zonal flow is not governed by the same equation as 

drift wave while Charney equation allows us to connect the Rossby wave to zonal flow 

fluently. So “Charney-Hasegawa-Mima equation” is actually a misnomer. In history, 

Charney first derived this equation in 1958, 20 years earlier than Hasegawa and Mima. 

At the same time as Hasegawa and Mima, Sagdeev et al. derived the same equation.  

Why is zonal flow important? First, zonal flow is more easily excited in plasma than 

fluid since it has the minimal inertia. A huge difference between Eq (3-12) and Eq (3-

4) is that there is no Boltzmann electron in Eq (3-12). So the potential vorticity of zonal 

flow is simply 𝑞𝑟
2𝜌𝑠

2�̂�𝑞, as opposed to (1 + 𝑘⊥
2𝜌𝑠

2)�̂�𝒌. Low effective inertia means that 

large zonal flow velocities develop in response to drift wave drive, unless damping 

intervenes. Second, the shearing effect of zonal flow can repress turbulence, so it is 

very important for confinement. Third, zonal flow can’t cause transport. Because for 

zonal flow 𝑚 = 0, �̃�𝑟, the radial flow fluctuation is zero. Thus zonal flow cannot tap 

expansion free energy stored in radial gradients. (See Pat  iamond, et al, 2005) 

But can we relate zonal flow to PV conservation? The answer is yes! Recall Eq (3-2), 

the linearized version of PV conservation. Since zonal flow has no density perturbation, 

it is reasonable to consider the pure vortex mode, which means �̃� → 0 but 𝜔𝑧 ≠ 0. 

And the poloidal symmetry of zonal flow allows us to eliminate �̃�𝑟. Then Eq (3-2) 

becomes 

𝑑

𝑑𝑡
𝜔𝑧 =

𝑑

𝑑𝑡
∇𝑟
2𝜙 = 0, (3 − 13) 



which is same as Eq (3-12). N.B. �̃�𝑟 = 0  means zonal flow cannot tap/relax free 

energy source like ∇𝑛0 and ∇𝑇0. In fact, zonal flow can only be excited by nonlinear 

interactions and, more specifically, driven by Reynolds force (i.e. vorticity flux). We 

will discuss this in detail later in this course. Another point worth mentioning here is 

that zonal flow is an “𝑬 × 𝑩” flow. We should distinguish it from the physical mass 

flow.  

 

4. Hasegawa-Wakatani model and drift wave instability 

 

4.1. Motivation and history 

In section 3, we discussed the derivation of Hasegawa-Mima equation and the 

dispersion relation of electron drift wave. However, there is no instability in H-M 

equation, which means it can only describe stable drift waves. Hasegawa-Wakatani 

model is the prototype of drift instability. It illustrates the connection between 

relaxation/transport and zonal flow, and the branching of energy (as shown in Fig 4) 

between these two channels. If we understand H-W model well (collisional drift wave), 

it is easy to grasp collisionless drift wave (aka “Universal Mode”),  TEM, CTEM, etc. 

In history, Sagdeev and Moiseev first developed theory of collisional drift wave (i.e. 

Hasegawa-Wakatani) in 1960s, much earlier than Hasegawa and Wakatani. It is a 

useful but not absolute rule of thumb that everything was done first in Russia. 

 

4.2. Derivation of Hasegawa-Wakatani model 

To include instability into dynamical model, one may want to ask this question first: 

what is missing here? The clue is radial particle flux. In H-M model, we have zero radial 

particle flux because we assume electrons satisfy Boltzmann equation. The correlation 

between �̃�𝑟 and �̃� is 

⟨�̃�𝑟�̃�⟩ = 𝑐⟨𝜕𝑦�̃��̃�⟩ = 𝑐
∗⟨𝑘𝑦�̃��̃�⟩ = 0. (4 − 1) 

The reason that this correlation vanishes is because it is an odd moment of 𝑘𝑦. To get 

non-vanishing ⟨�̃�𝑟�̃�⟩ , �̃�  and �̃�  should be weakly coupled. To get a non-vanishing 

�̃��̃� correlation, we need a shift in the phase between �̃� and �̃�. This phase shift is 

fundamental to all electron drift waves. In this simple story, phase shift comes from 

parallel dissipation. 

Fig 4 Branching of energy between zonal flow and transport 



Now recall the fact that plasma is quasi-neutral, so we have 

∇ ⋅ 𝑱 = 0 (4 − 2) 

where 𝑱 = 𝑱∥ + 𝑱⊥ = 𝑱∥ + 𝑱𝒑𝒐𝒍 + 𝑱𝑷𝑺. In this case, we only consider the contribution 

of 𝑱𝒑𝒐𝒍 to 𝑱⊥ and retain ∇∥𝑱∥, which was neglected in Eq (3-11). We already know 

the expression for 𝑱⊥ in Eq (3-12), so we need to figure out what 𝑱∥ is. To be precise, 

𝑱∥ is  

𝐽∥ = −𝑛0|𝑒|(�̃�∥𝑒 − �̃�∥𝑖). (4 − 3) 

In this case, since we do not worry about acoustic wave coupling, we only retain �̃�∥𝑒. 

For simplicity, instead of using Braginskii equations, we choose to get �̃�∥𝑒  from a 

simple version of drift kinetic equation for electrons, which is 

𝜕𝑓

𝜕𝑡
+ 𝑣∥�̂� ⋅ ∇𝑓 −

𝑐

𝐵
∇⊥𝜙 × �̂� ⋅ ∇𝑓 −

|𝑒|𝐸∥
𝑚𝑒

𝜕𝑓

𝜕𝑣∥
= 𝑐(𝑓). (4 − 4) 

We choose to study electrons rather than ions because electrons’ inertia is small, so they 

stay on the field line, making them easier to deal with. In Eq (4-4), 𝑣∥ is the parallel 

velocity in phase space. Apart from collisions, Eq (4-4) is like Vlasov equation, 

including a parallel motion along the field line and a 𝑬 × 𝑩 drift. The velocity field 

𝑣∥(𝒓)  can be calculated by taking the average over momentum space, i.e. 𝑣∥ =

∫𝑑3𝑣∥𝑓. After Multiplying Eq (4) by 𝑣∥ and integrating it over momentum space, we 

get 

𝑚𝑒

|𝑒|
{
𝜕𝑣∥
𝜕𝑡

−
𝑐

𝐵
∇⊥𝜙 × �̂� ⋅ ∇𝑣∥} +

𝑚𝑒

|𝑒|
𝒏 ⋅ ∇∫𝑑3𝑣𝑣∥

2𝑓 + 𝐸∥ = −
𝑚𝑒

|𝑒|
𝜈𝑒𝑖𝑣∥ (4 − 5) 

The term on the RHS of Eq (4-5) is the frictional losses due to collisions with ions. 

Again, utilizing the fact that electron inertia is small, we can drop the first term on the 

LHS and rewrite Eq (4-5) as 
𝑚𝑒

|𝑒|
∇∥⟨𝑣∥

2𝑓⟩ + 𝐸∥ = −
𝜈𝑒𝑖𝑚𝑒

|𝑒|
𝑣∥ = −

𝜈𝑒𝑖𝑚𝑒

𝑛0|𝑒|2
𝐽∥𝑒 = 𝜂𝐽∥𝑒 . (4 − 6) 

The first term on the LHS represents electron pressure. Electron pressure contribution 

to Ohm’s law is complex, but for simplicity we approximate it to 𝑛𝑇  (where 

temperature is a constant). Therefore, the final expression for 𝐽∥𝑒 is 

𝐽∥ = −
𝑣𝑡ℎ𝑒
2

𝜈𝑒𝑖
∇∥ (�̃� − 𝑇

�̃�

𝑛0
) = −𝐷∥∇∥ (�̃� −

𝑇

|𝑒|

�̃�

𝑛0
) . (4 − 7) 

Plugging Eq (4-7) into Eq (4-2), we get the first Hasegawa-Wakatani equation 

𝜌𝑠
2
𝑑

𝑑𝑡
∇⊥
2 �̃� = 𝐷∥∇∥

2 (�̃� −
𝑇

|𝑒|

�̃�

𝑛0
) . (4 − 8) 

Obviously, to close this dynamical model, we need another equation for �̃�. Starting 

from the continuity equation and linearizing it, we get 

1

𝑛0

𝜕�̃�

𝜕𝑡
+
�̃�𝑟
𝑛0

𝜕𝑛0
𝜕𝑟

+ �̃�𝑟 ⋅
∇�̃�

𝑛0
= −𝑛0∇∥�̃�∥𝑒 . (4 − 9) 

Replacing the RHS of Eq (4-9) by electron current density, we get the second 

Hasegawa-Wakatani equation 



1

𝑛0

𝑑

𝑑𝑡
�̃� +

�̃�𝑟
𝑛0
𝜕𝑟𝑛0(𝑟) = 𝐷∥∇∥

2 (�̃� −
𝑇

|𝑒|

�̃�

𝑛0
) . (4 − 10) 

So finally, the complete Hasegawa-Wakatani model is 

{
 

 𝜌𝑠
2
𝑑

𝑑𝑡
∇⊥
2 �̃� = 𝐷∥∇∥

2 (�̃� −
𝑇

|𝑒|

�̃�

𝑛0
)

1

𝑛0

𝑑

𝑑𝑡
�̃� +

�̃�𝑟
𝑛0
𝜕𝑟𝑛0(𝑟) = 𝐷∥∇∥

2 (�̃� −
𝑇

|𝑒|

�̃�

𝑛0
)

(4 − 11) 

Sometimes, by including viscosity and diffusion, Hasegawa-Wakatani can be modified 

to 

{
 

 𝜌𝑠
2 (
𝑑

𝑑𝑡
− 𝑣0∇⊥

2)∇⊥
2 �̃� = 𝐷∥∇∥

2 (�̃� −
𝑇

|𝑒|

�̃�

𝑛0
)

1

𝑛0
(
𝑑

𝑑𝑡
− 𝐷0∇⊥

2) �̃� +
�̃�𝑟
𝑛0
𝜕𝑟𝑛0(𝑟) = 𝐷∥∇∥

2 (�̃� −
𝑇

|𝑒|

�̃�

𝑛0
)

4 − 11(𝑏) 

 

A few comments: 

⚫ Here we did not consider ion acoustic corrections. 

⚫ H-W is clearly a 2-field model with dissipative coupling. 

⚫ In reality, 𝐷∥ ≫ 𝑣0 ≫ 𝐷0. 

⚫ Frequently, a scale-invariant damping is invoked for zonal mode. 

In Hasegawa-Wakatani model, there are two conserved quantities: energy 𝐸  and 

potential enstrophy 𝑈. The conservation laws for these two quantities are 
𝜕𝐸

𝜕𝑡
≡
1

2

𝜕

𝜕𝑡
∫[𝑛2 + (∇𝜙)2]𝑑𝑉

= −𝑐1
′ ∫(

𝜕𝑛

𝜕𝑧
−
𝜕𝜙

𝜕𝑧
)
2

𝑑𝑉 − 𝑐2∫(∇
2𝜙)2𝑑𝑉 − ∫𝑛(�̂� × 𝜿) ⋅ ∇𝜙𝑑𝑉, 

𝜕𝑈

𝜕𝑡
≡
1

2

𝜕

𝜕𝑡
∫(∇2𝜙 − 𝑛)2 = −𝑐2∫(𝑛 − ∇

2𝜙)∇4𝜙𝑑𝑉 −∫𝑛(�̂� × �̂�) ⋅ ∇𝜙𝑑𝑉, 

where 𝑐1
′ = 𝑇𝑒/𝑒

2𝑛0𝜂𝜔𝑐𝑖, 𝑐2 = 𝜈0/𝜌𝑠
2𝜔𝑐𝑖. (See Hasegawa, Wakatani, 1983) 

Now, very importantly, we should realize that H-W model is a set of coupled equations 

for �̃�  and �̃� . To measure how strong this coupling is, we need a dimensionless 
parameter called adiabaticity parameter 𝛼, which is the ratio of 𝑘∥

2𝑣𝑡ℎ𝑒
2 /𝜈𝑒𝑖 to 𝜔, i.e., 

the ratio of the first term on the RHS of the second H-W equations to the first term on 

the LHS (𝑘∥ = 1/𝑅𝑞). There are two important limits of H-W model: when 𝛼 > 1, �̃� 

and �̃� are strongly coupled, corresponding to adiabatic limit (drift wave mode limit); 

when 𝛼 < 1, �̃� and �̃� are weakly coupled, corresponding to hydrodynamical limit 

(convective cell limit). In each case there are two 2 linear modes, but usually the 

adiabatic limit is more interesting. Let’s discuss them separately. 

 

4.3. Adiabatic limit 

In adiabatic limit, 𝛼 > 1 , which means fluid element diffuses 𝜆∥  faster than 1 

oscillation. In this case, we can assume electrons are nearly Boltzmann but with a small 

correction, so 



�̃�

𝑛
≈
|𝑒|

𝑇
�̃� + ℎ̃ (4 − 12) 

Plugging Eq (4-12) into the second equation of H-W, we can replace equations for �̃� 

and �̃� with equations for ℎ̃ and �̃�, which are 

{
 

 
𝜕ℎ̃𝒌
𝜕𝑡

+ 𝑘∥
2𝐷∥ℎ̃𝒌 = −

|𝑒|

𝑇

𝜕�̃�

𝜕𝑡
−
𝑣∗|𝑒|

𝑇

𝜕�̃�𝒌
𝜕𝑦

𝜌𝑠
2
𝜕

𝜕𝑡
∇⊥
2 �̃�𝒌 = 𝑘∥

2𝐷∥ℎ̃𝒌

(4 − 13) 

So 

ℎ̃𝒌 =
𝑖|𝑒|

𝑇

(𝜔 − 𝜔∗)�̃�

−𝑖𝜔 + 𝑘∥
2𝐷∥

. (4 − 14) 

Here we drop −𝑖𝜔  in the denominator because 𝑘∥
2𝐷∥ ≫ 𝜔 . Now, after adding a 

correction ℎ̃, the radial particle flux is no longer zero and its expression is 

⟨�̃�𝑟�̃�⟩ = ⟨�̃�𝑟ℎ̃⟩ = ∑−𝜌𝑠𝑐𝑠 (
|𝑒|�̃�𝒌
𝑇

)

2
𝑘𝑦(𝜔 − 𝜔

∗)

𝑘∥
2𝐷∥

𝒌

(4 − 15) 

The parallel diffusion 𝑘∥
2𝐷∥ matters here, because without it radial flux vanishes. But 

to have instability which can relax density gradient, that’s not enough. According to Eq 

(4-15), an outward radial particle flux requires 𝜔 < 𝜔∗. To compare the magnitudes of 

𝜔 and 𝜔∗, we need to calculate 𝜔 first. As mentioned above, ℎ̃ is a small correction 
and electrons are nearly Boltzmann, so by relating the two equations of H-W, we can 

obtain 

𝜌𝑠
2
𝑑

𝑑𝑡
∇⊥
2 �̃� ≅

1

𝑛0
(
𝑑�̃�

𝑑𝑡
+ �̃�𝑟𝜕𝑟𝑛0) (4 − 16) 

and 

𝜕𝑡
|𝑒|�̃�

𝑇
− 𝜌𝑠

2
𝑑

𝑑𝑡
∇⊥
2 �̃� + 𝑣∗𝜕𝑦

|𝑒|�̃�

𝑇
= 0. (4 − 17)  

Eq (4-17) is exactly Hasegawa-Wakatani equation. This is an important observation: in 

adiabatic limit, Hasegawa-Wakatani model reduces to Hasegawa-Mima equation! 

Obviously, 𝜔𝑟𝑒𝑎𝑙  is just the frequency of electron drift wave, which is 𝜔
∗/(1 +

𝑘⊥
2𝜌𝑠

2) . Fortunately, due to the ion inertia, 𝜔  is naturally smaller than 𝜔∗ , which 

allows us to have an outward radial flux and instability. Plugging the expression for 𝜔 

into Eq -(4-15), we can see the radial particle flux is 

⟨�̃�𝑟�̃�/𝑛0⟩ =∑𝜌𝑠
2𝑐𝑠
2 |
|𝑒|�̃�𝒌
𝑇

|

𝟐
𝑘𝑦
2𝑘⊥

2𝜌𝑠
2𝜔∗

𝑘∥
2𝐷∥(1 + 𝑘⊥

2𝜌𝑠2)
𝒌

. (4 − 18) 

N.B.: to get relaxation/growth, we should have both parallel friction and 𝜔 < 𝜔∗. The 

physics behind 𝜔 < 𝜔∗ is that the energy gained from gradient relaxation exceeds the 

cost of “pumping” the potential. 

The growth rate of drift wave instability can be calculated simply by perturbation 

method. Recall Eq (3-10), the dispersion relation of stable drift wave, we can rewrite is 

as 



𝜔∗

𝜔
− 𝑘⊥

2𝜌𝑠
2 = 1. (4 − 19) 

The “1 ” on the RHS comes from Boltzmann electron. Now we know electrons are 

nearly Boltzmann, but with a small correction, which is given by Eq (4-14). Add this 

correction back to Eq (4-19), and the more accurate dispersion relation is 

𝜔∗

𝜔
− 𝑘⊥

2𝜌𝑠
2 = 1 +

𝑖(𝜔 − 𝜔∗)

𝑘∥
2𝐷∥

. (4 − 20) 

To the 0th order, Eq (4-20) is equivalent to Eq (4-19). To the 1st order, perturbation 

method gives us the growth rate  

𝛾

𝜔
=

𝜔∗𝑘⊥
2𝜌𝑠

2

𝑘∥
2𝐷∥(1 + 𝑘⊥

2𝜌𝑠
2)2

. (4 − 21) 

Up to now, we have finished all the derivation for drift wave instability. This is also 

called the collisional/dissipative/resistive drift wave instability.  

All the electron drift instabilities and trapped electron modes are, in some sense, the 

similar story. See table 2 for some hints. 

Collisional drift wave Phase shift is: 𝑖𝑘∥
2𝐷∥ 

Collisionless drift wave 
 issipation comes from electron Landau 

resonance (𝜔~𝑘∥𝑣∥)  

 issipative trapped electron mode 
Phase shift is: 𝑖𝜈𝑒𝑒 (𝜈𝑒𝑒 is electron 

detrapping frequency) 

Collisionless trapped electron mode 

 issipation comes from resonance 

between the energy-dependent 

processional drift and the frequency 

table 2 Comments on some other modes 

Another point is that not only can ∇𝑛 drive drift wave instability, but also can ∇𝑇. 

 

4.4. Hydrodynamical limit 

In this case, oscillation is faster than collisional parallel diffusion. So we can no longer 

assume that electrons satisfy Boltzmann distribution. This case is similar to MH . 𝜔𝑟𝑒 

and 𝜔𝑖𝑚 are both comparable and proportional to √𝛼. A more accurate expression for 
the frequency at this limit is 

𝜔ℎ𝑦𝑑𝑟𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐 ≅
1

2
(−𝑖

𝛼(1 + 𝑘⊥
2𝜌𝑠

2)

𝑘⊥
2𝜌𝑠2

+√
4𝑖𝛼𝜔∗

𝑘⊥
2𝜌𝑠2

) ≅ √
𝜔∗𝛼

2𝑘⊥
2𝜌𝑠2

(1 + 𝑖). (4 − 22) 

Hydrodynamical limit is less important unless we have a high density and low 

temperature limit, at the edge. 

 

4.5. Ohm’s law 

The Ohm’s law is the key to all this. Even for simplest story, there are many terms in it. 

For example, in this case, we have 



(−
1

𝑐

𝜕𝐴∥
𝜕𝑡
)

1

− ∇∥𝜙 + 𝑇∇∥𝑛 = 𝜂𝐽∥ (4 − 23) 

①      ②    ③    ④ 

⚫ When ① balances ②, we have ideal MH , i.e. 𝐸∥ = 0.  

𝑬 + 𝒗 × 𝑩 = 0 

⚫ When ② balances ④ (with ①), we have resistive MH  (𝛼 < 1).  

𝑬 + 𝒗 × 𝑩 = 𝜂𝑱 

⚫ When ② balances ③ (with ④), we have drift wave instabilities (𝛼 > 1).  

𝑬 + 𝒗 × 𝑩 = 𝜂𝑱 −
∇𝑝𝑒
𝑛𝑒

 

⚫ When we consider small scale things like ETG and EMH , we have to consider 

electron inertia. 

𝑚𝑒

𝑒

𝑑

𝑑𝑡
𝑣∥ + 𝐸∥ = 𝜂𝐽∥ −

∇∥𝑝𝑒
𝑛𝑒

 

Basically, the dominant balance in Ohm’s law largely determines dynamics. 


